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INTRODUCTION

The demand for safe, sustainable and cost-efficient engineering solutions, the need to tackle new complex
technological challenges or simply the desire for daring new designs motivate extensive efforts worldwide in
research and development of numerical methods for engineering applications such as the widely-used finite
element method (FEM). Inversely, progress in numerical methods opens new possibilities for engineers to
explore innovative approaches in problem-solving or product design.
One may think of numerical simulations of oil drilling on the ocean floor or analyses related to construction
works such as the Eastern Scheldt storm surge barrier [1] or the Amsterdam Metro North-South Line [2], both
in the Netherlands. Such works are of high relevance for society or, at least, generally involve considerable
investments. High importance may therefore be attributed to the ability to accurately predict the mechanical
behaviour of soil under various circumstances by means of numerical methods. This is certainly a demanding
task and requires the accurate physical modeling of soil.

Soil is a porous medium, a more or less dense agglomeration of grains of different shapes and sizes. Its pore
volume is filled with a liquid and/or gas as illustrated in Figure 1. Its mechanical behaviour is certainly no
less complex than that of biological tissues or modern high-tech materials used in aircrafts that are likewise
the subject of extensive research.

Figure 1: Constituents of soil: solid, liquid and gas phase [3]

Consider for example the common situation of water-saturated soil with a low permeability, e.g. clay. Upon
loading pore water slowly dissipates out of the soil. As the pore water flows out of the soil the load is trans-
ferred gradually from the pore water to the compacting ’skeleton’ of soil grains. In geotechnical engineer-
ing this phenomenon is called consolidation. A physical model which describes this phenomenon was first
developed by Terzaghi [4] and Biot [5]. Here, water-saturated soil is considered as a 2-phase material, i.e.
a material consisting of a solid and liquid constituent. The gas phase is neglected as commonly done in
geotechnical engineering.

Subject of this thesis is to improve the stability of finite element analyses of three dimensional dynamic con-
solidation processes. In this study a velocity-based 2-phase formulation developed by Van Esch, Stolle and
Jassim [6] based on Verruijt [7] is considered. In this formulation, the porous medium is modeled as a homo-
geneous and isotropic continuum. A continuum implies that the medium is continuously distributed across
the domain it covers. Homogeneous and isotropic mean that the continuum has the same material properties
at any material point and in any direction.
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2 CONTENTS

The 2-phase formulation has been implemented by the above-mentioned authors using the Euler-Cromer
time integration scheme. This semi-implicit scheme is conditionally stable which means that the time step
size in which numerical integration is performed is limited.
Currently the critical time step is estimated by the well-known stability criterion for 1-phase computations.
However, when Ceccato performed numerical analyses with the 2-phase formulation considering soil with
a low permeability, she encountered a numerical instability [8] as the 1-phase criterion does not apply to
partially drained conditions. Results indicated a dependence of the time step on the permeability. The aim
of this thesis is to find the missing stability criterion.
Obtaining such a criterion will increase the efficiency of numerical analyses with the considered 2-phase
formulation, by replacing rough estimates of the time step size. In case of computations with more than
100,000 time steps the difference in computation time might be significant.

At Deltares, which supported this thesis, a material point method is being developed for large deformation
analyses of geotechnical problems. Due to its similarity with FEM, results are expected to be directly trans-
ferable to this method.
Since the velocity-based 2-phase formulation is valid for saturated porous media in general, the benefit of this
work is not limited to geotechnical problems, but is also of use in solving problems involving other porous
materials e.g. biological tissues, ceramics and sponges.

In order to tackle this challenging task a step by step approach is taken. This preliminary study considers
only the discretization of a one dimensional small deformation problem involving a linear-elastic material.
At first, a 1-phase formulation considering drained conditions is treated. Afterwards, the study is extended
to a simplified 2-phase formulation proposed by Stolle (personal communication, 2014). The full 2-phase
formulation in both one and three dimensions will be addressed later.

The content of this report follows the approach taken. In Chapter 1 the physical model is described for 1-
phase materials. Then the space and time discretization are treated in Chapters 2 and 3, respectively. The
stability analysis is presented in Chapter 4 considering the Von Neumann and matrix method. To confirm the
correctness of the study, validation of the criterion is presented in Chapter 5.
In the second part of the study the liquid phase is introduced. A simplified 2-phase formulation is given in
Chapter 6, followed by its space and time discretization in Chapter 7 and 8, respectively. Chapter 9 treats the
stability analyses and presents the obtained stability criteria. The stability criteria are validated in Chapter 10.
Finally, some concluding remarks on this study are presented, as well as recommendations for future work.



PART I

CONSIDERATION OF SOIL

AS A 1-PHASE CONTINUUM
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1
PHYSICAL MODEL

This chapter introduces a three dimensional physical model for small deformations of a 1-phase continuum.
First the relevant differential equations are introduced in Section 1.1 including the definitions of variables
and parameters. Initial and boundary conditions are explained in detail in Section 1.2. A stability analysis
of a three dimensional formulation is however very complex. For that reason the physical model is applied
to a one dimensional problem in Section 1.3. It introduces the oedometer test as the leading problem of the
following chapters. It is proposed to address the stability analysis of the three dimensional case at a later stage
of this thesis.

1.1. EQUATIONS

The original shape of a solid at time t0 is in the following called the initial configurationΩ0 ∈R3 with boundary
∂Ω0. After a certain deformation it has changed into a configuration Ω ∈ R3 with boundary ∂Ω at time t > t0

(see Figure 1.1). This relation can be stated pointwise. For this we consider the initial position x0 and the
updated position x of a particle, which are related by some function

x = x(x0, t ). (1.1)

Figure 1.1: Initial and deformed configuration

The positive Cartesian coordinate system is chosen as a frame of reference since it is used for the problems
considered in this thesis. This means that each vector consists of three components

x0 = [
x01 x02 x03

]T
and x = [

x1 x2 x3
]T

, (1.2)

where the x1-x2 plane is said to be horizontal and the x3-axis represents the vertical direction.
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6 1. PHYSICAL MODEL

When dealing with deformations it is more convenient to look at the displacement of the material

û(x0, t ) = [
û1 û2 û3

]T
(1.3)

which is the difference between the updated position x and the initial position x0

û(x0, t ) = x(x0, t ) − x0. (1.4)

The velocity of the solid is related to the displacement by differentiation. In the Eulerian description the
total derivative is considered, while in the Lagrangian description the partial derivative is considered. The
reason for this difference is the fact that in the Lagrangian description the convective term of the total deriva-
tive vanishes [9]. Since in this study the Lagrangian description is considered, the velocity is related to the
displacement by

v̂(x0, t ) = ∂û

∂t
(x0, t ). (1.5)

Without further notice we present partial derivatives wherever necessary in this study.

From the velocity the strain rate and rotation rate tensors are derived. The strain rate tensor describes the
’rate of deformation’ with respect to the initial configuration and equals the symmetric part of the velocity
gradient tensor

∂ε̂i j

∂t
= 1

2

(
∂v̂i

∂x0 j
+ ∂v̂ j

∂x0i

)
. (1.6)

The rotation rate tensor on the other hand describes the ’rate of rotation’ with respect to the initial configu-
ration and equals the antisymmetric part of the velocity gradient tensor

∂ω̂i j

∂t
= 1

2

(
∂v̂i

∂x0 j
− ∂v̂ j

∂x0i

)
. (1.7)

The nine components of the stress tensor represent the forces that neighboring particles of the continuum
exert on each other in an average sense and can be assembled in a (symmetrical) 3-by-3 matrix

σ̂i j =
σ̂11 σ̂12 σ̂13

σ̂21 σ̂22 σ̂23

σ̂31 σ̂32 σ̂33

 . (1.8)

The diagonal entries represent the normal stress and the off-diagonal entries the shear stress, see Figure 1.2.
A positive value is consistent with tension.

Figure 1.2: Visualization of the stress tensor σ̂i j in the Cartesian coordinate system

Stress and strain are related to each other by a constitutive relation. Taking into account the generally non-
linear behaviour of soil this constitutive relation can be very complex and can depend on a large number of
material parameters. Geometric non-linearity might require consideration as well in the stress-strain relation
when deformations become large, i.e. exceeding a length change of about 5 per cent.



1.2. INITIAL AND BOUNDARY CONDITIONS 7

In this study small deformations are considered which render the following constitutive relation

∂σ̂i j

∂t
= Di j kl

∂ε̂kl

∂t
. (1.9)

For an isotropic linear elastic material the constants Di j kl are defined to be

Di j kl =
(
K − 2

3
G

)
δi jδkl + G

(
δi kδ j l + δi lδ j k

)
, (1.10)

with δi j the Kronecker delta. The parameters K and G refer to the bulk modulus and the shear modulus

K = E

3(1 − 2ν)
and G = E

2(1 + ν)
, (1.11)

that depend on Young’s modulus E and Poisson’s ratio ν. They are measures for the stiffness and the absolute
ratio between lateral and axial deformation, respectively.

With the constitutive relation we have a relation between the velocity profile and the change of stress. How-
ever, the inverse is also possible. The momentum equation describes the change of momentum due to both
internal and external forces. The internal forces are described by the stress profile, while we consider gravita-
tional forces as external forces

ρ
∂v̂i

∂t
= ∂σ̂i j

∂x0 j
− ρgδi 3. (1.12)

This thesis is not meant to go deeply into the theory of continuum mechanics. For further information the
reader is referred to e.g. Malvern [10].

In conclusion, the linear deformation of an isotropic continuum can be described in a closed coupled system
of the velocity v̂ and stress tensor σ̂, depending on the density ρ, gravitational acceleration g , Young’s mod-
ulus E and Poisson’s ratio ν. Since we are interested in the displacement û the relation between velocity and
displacement is added to the set of equations, rendering

ρ
∂v̂i

∂t
= ∂σ̂i j

∂x0 j
− ρgδi 3,

∂σ̂i j

∂t
= Di j kl

∂ε̂kl

∂t
, (1.13)

∂ûi

∂t
= v̂i .

1.2. INITIAL AND BOUNDARY CONDITIONS

Every partial differential equation needs extra conditions to become uniquely solvable. The kind and number
of conditions depend on the order of the various derivatives.

The first order time derivatives in the 1-phase formulation in Equation 1.13 has the consequence that one
initial condition for the displacement, velocity and stress is needed:

• Initial displacement

• Initial velocity

• Initial stress

ûi (x0,0) = û0i (x0)

v̂i (x0,0) = v̂0i (x0)

σ̂i j (x0,0) = σ̂0i j (x0)

Owing to the spatial dependency we also need boundary conditions. Since the system contains two first order
space derivatives, the spatial dependency of the system is of order two. Therefore, exactly one condition at
each boundary point is needed for the problem to have a unique solution.



8 1. PHYSICAL MODEL

In this thesis we consider the following two types of boundary conditions:

• Displacement (or Dirichlet) boundary conditions

• Traction (or Neumann) boundary conditions

ûi (x0, t ) = Ûi (t ) for x0 ∈ ∂Ωu

σ̂i j (x0, t )n̂ j = τ̂i (t ) for x0 ∈ ∂Ωτ

where n̂ is the unit vector normal to the prescribed traction boundary ∂Ωτ and pointing outward. It should
be noted that the velocity profile at the prescribed displacement boudary ∂Ωu is automatically determined
by the displacement boundary conditions.

Since each boundary point needs exactly one boundary condition, we find that the prescribed displacement
boundary ∂Ωu and the prescribed traction boundary ∂Ωτ do not overlap and together form the complete
boundary, see Figure 1.3.

Figure 1.3: Prescribed displacement boundary ∂Ωu and prescribed traction boundary ∂Ωτ

1.3. ONE DIMENSIONAL PROBLEM

Consider a soil sample of height H that is deformed through loading p0 on the top with the bottom being
fixed. Lateral deformation is prohibited along its sides, so that this problem becomes one dimensional. The
case illustrated in Figure 1.4 refers to an oedometer test, a laboratory test used to determine stiffness param-
eters of soil samples.

Figure 1.4: Schematic overview of an oedometer test
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When a soil sample is considered to be a 1-phase continuum, the 1-phase formulation can be applied. Since
the deformation is one dimensional, Equation 1.13 reduces to

ρ
∂v̂

∂t
= ∂σ̂

∂x0
−ρg ,

∂σ̂

∂t
= E

∂v̂

∂x0
, (1.14)

∂û

∂t
= v̂ .

Note that in Equation 1.14 the subscripts are omitted. The coordinate x now refers to the vertical direction.

For the special case of oedometer deformation we find a displacement boundary condition at the bottom

û(0, t ) = 0 (1.15)

and a traction boundary condition at the top

σ̂(H , t ) = p0 (1.16)

where p0 is the load applied on the top surface and p0 < 0 corresponds to a load pointing downward.

When we consider the initial state of the sample as the reference state, we find

û(x0,0) = 0, (1.17)

Since the sample is initially at rest, we also have

v̂(x0,0) = 0, (1.18)

Finally, we assume

σ̂(x0,0) = 0. (1.19)

Note that the system of partial differential equations with these initial and boundary conditions is equivalent
to the non-homogeneous wave equation

∂2û

∂t 2 = E

ρ

∂2û

∂x2
0

− g , 0 < x0 < H , t > 0, (1.20)

with initial conditions and boundary conditions

û(x0,0) = 0,
∂û

∂t
(x0,0) = 0, û(0, t ) = 0, E

∂û

∂x0
(H , t ) = p0. (1.21)

This system has an analytical solution

û(x0, t ) = 1

2

ρg

E
x2

0 + p0 − ρg H

E
x0 +

∞∑
n=1

ûn cos

√
E

ρ

(2n − 1)πt

2H
sin

(2n − 1)πx0

2H
, (1.22)

with coefficients

ûn = 8
(
2πp0n(−1)n + 2ρg H − πp0(−1)n

)
H(

4n2 − 4n + 1
)

(2n − 1)π3E
. (1.23)

The derivation of this solution can be found in Appendix A.
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In Figure 1.5 the oedometric deformation x(x0, t ) of a 1-phase continuum is plotted for 4 different values of x0

considering the given exemplary parameters. Only the first four terms of the infinite sum are used, since the
coefficients ûn are less than 1% of the first coefficient û1 for n ≥ 5.

t (s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x
(m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ = 1 kg/m3

E = 100 Pa

g = 10 m/s2

H = 1 m

p0 = −20 Pa

x0 = 1.00

x0 = 0.75

x0 = 0.50

x0 = 0.25

Figure 1.5: Analytical solution for the one dimensional oedometer problem with exemplary parameters



2
FINITE ELEMENT SPACE DISCRETIZATION

This chapter introduces the finite element method (FEM) for the solution of the one dimensional deformation
problem of Section 1.3, repeated here

ρ
∂v̂

∂t
= ∂σ̂

∂x0
−ρg ,

∂σ̂

∂t
= E

∂v̂

∂x0
, (2.1)

∂û

∂t
= v̂ .

with initial conditions
v̂(x0,0) = 0, σ̂(x0,0) = 0, û(x0,0) = 0, (2.2)

and boundary conditions
v̂(0, t ) = 0, σ̂(H , t ) = p0. (2.3)

With FEM a spatial domain is divided into a finite number of elements. The method is a result of the com-
bination of matrix structural analysis, variational approximation theory and the introduction of digital com-
puters. Turner first introduced FEM to structural problems in aerospace engineering in the early 1950s, while
Zienkiewicz introduced the method to non-structural problems such as heat conduction in the mid 1960s
[11].

In this study the engineering-oriented approach to FEM is followed, which focuses on its practical application
and the analogy to the virtual work equation [12]. In Section 2.1 the momentum equation is transformed into
the virtual work equation. In order to discretize the virtual work equation 2-noded line elements with linear
interpolation functions are introduced in Section 2.2, which are the one dimensional equivalent of 4-noded
tetrahedral elements used later when considering stability of the 2-phase formulation in three dimensions.
Then the global matrices belonging to the virtual work equation are expressed in Section 2.3 by assembling
them from element matrices. Finally the resulting system of ordinary differential equations is presented in
Section 2.4.

2.1. VIRTUAL WORK EQUATION

The virtual work equation is the weak form of the momentum equation, which in one dimension equals

ρ
∂v̂

∂t
= ∂σ̂

∂x0
− ρg . (2.4)

The virtual work equation is obtained by multiplying the momentum equation by a virtual velocity δv̂ and
integrating over the domain 0 < x < H∫ H

0
δv̂ρ

∂v̂

∂t
d x0 =

∫ H

0
δv̂

∂σ̂

∂x0
d x0 −

∫ H

0
δv̂ρg d x0. (2.5)

The virtual velocity δv̂ may take arbitrary values complying with applied boundary conditions.

11



12 2. FINITE ELEMENT SPACE DISCRETIZATION

Next, integration by parts is applied to the first term on the right hand side of Equation 2.5, and after applying
the boundary conditions for the stress, σ(H , t ) = p0, and the virtual velocity, δv̂(0, t ) = 0, the virtual work
equation becomes ∫ H

0
δv̂ρ

∂v̂

∂t
d x0 = −

∫ H

0

∂(δv̂)

∂x0
σ̂d x0 + δv̂(H , t )p0 −

∫ H

0
δv̂ρg d x0. (2.6)

2.2. LINE ELEMENTS WITH LINEAR INTERPOLATION FUNCTIONS

The initial domainΩ0 is divided into a finite number of 2-noded line elementsΩe as illustrated in Figure 2.1.
All elements are numbered from 1 to ne , as well as all nodes from 1 to nn . When we consider a uniform grid,
as in the following, all elements have the same initial length ∆x0 = H/ne .

Figure 2.1: Space discretization of domainΩ0 with finite elementsΩe

In this particular problem it is easy to see that we have nn = ne +1. However, this equality does not hold in
general. Consider e.g. a 3-noded line element in one dimension, or a 4-noded tetrahedral element in three
dimensions.

Based on this space discretization the displacement, velocity and virtual velocity fields are approximated with
linear interpolation functions, also commonly called shape functions

û(x0, t ) ≈ N(x0)u(t ),

v̂(x0, t ) ≈ N(x0)v(t ), (2.7)

δv̂(x0, t ) ≈ N(x0)δv(t ).

where vectors u(t ), v(t ) and δv(t ) are nodal values

u(t ) = [
u1(t ) u2(t ) · · · unn (t )

]T
,

v(t ) = [
v1(t ) v2(t ) · · · vnn (t )

]T
, (2.8)

δv(t ) = [
δv1(t ) δv2(t ) · · · δvnn (t )

]T
.

The interpolation function vector N(x0) is

N(x0) = [
N1(x0) N2(x0) · · · Nnn (x0)

]
, (2.9)

with linear interpolation functions Ni (x j ) = δi j (see Figure 2.2).
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Figure 2.2: Linear interpolation function Ni (x) of node i

The stress field has to be discretized too. We use a different interpolation function vector K(x0) for this pur-
pose

σ̂(x0, t ) ≈ K(x0)σ(t ). (2.10)

Throughout this thesis step functions Ke (x0) are chosen such that Ke (x0 ∈Ω f ) = δe f , which means that the
stress field is assumed to be constant within each element, see Figure 2.3.

Figure 2.3: Step function Ke (x) for element e

The interpolation function vector K(x0) then becomes

K(x0) = [
K1(x0) K2(x0) · · · Kne (x0)

]
, (2.11)

and the vector σ(t ) is ordered per element

σ(t ) = [
σ1(t ) σ2(t ) · · · σne (t )

]T
. (2.12)

2.3. GLOBAL AND ELEMENT MATRICES OF THE VIRTUAL WORK EQUATION

When all terms of the virtual work equation are replaced by their discretized variants, it becomes∫ H

0
(Nδv)TρN

dv

d t
d x0 = −

∫ H

0

(
dN

d x0
δv

)T

Kσd x0 + (N(H)δv)T p0 −
∫ H

0
(Nδv)Tρg d x0. (2.13)

The expression simplifies when brackets are expanded

δvT
∫ H

0
NTρNd x0

dv

d t
= − δvT

∫ H

0

(
dN

d x0

)T

Kd x0σ + δvT N(H)T p0 − δvT
∫ H

0
NTρg d x0. (2.14)

Since the virtual velocity is arbitrarily chosen, Equation 2.14 may be written as∫ H

0
NTρNd x0

dv

d t
= −

∫ H

0

(
dN

d x0

)T

Kd x0σ + N(H)T p0 −
∫ H

0
NTρg d x0, (2.15)

which yields in matrix notation

M
dv

d t
= − Kσσ + Ftr ac + Fg r av . (2.16)
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The matrix M is called the global mass matrix. On the right hand side, vector Kσσ represents the internal
forces and global external force vectors Ftr ac and Fg r av are assembled from the traction forces and the gravi-
tational forces respectively.

The global matrices are assembled from element matrices of elements 1, . . . ,ne . These element matrices are
constructed by elementwise integration of the virtual work equation over elements e with nodes i and i +1∫ xi+1

xi

NT
e ρNe d x0

dve

d t
= −

∫ xi+1

xi

(
dNe

d x0

)T

Ke d x0σe + Ne (H)T p0 −
∫ xi+1

xi

NT
e ρg d x0, (2.17)

where Ne =
[
Ni Ni+1

]
, ve =

[
vi vi+1

]T
, Ke =

[
Ke

]
andσe =

[
σe

]T
since by definition only nodes i and i +1

matter in element e.

In matrix notation Equation 2.17 becomes

Me
dve

d t
= − Kσ

e σe + Ftr ac
e + Fg r av

e . (2.18)

The matrix Me is called the element mass matrix and the vectors Kσ
e σe , Ftr ac

e and Fg r av
e store the correspond-

ing nodal forces of element e.

In order to be able to solve the ordinary differential equations, the integrals of Equation 2.17 need to be
computed. Therefore we firstly transform the integrals from the global coordinate to a local coordinate, given
by

x0 = xi + (xi+1 − xi ) ξ = xi + ∆x0 ξ (2.19)

with ξ being the local coordinate (see Figure 2.4).

Figure 2.4: Global and local coordinate within element e

For the local coordinate the considered linear interpolation functions Ne become

Ne = [
1−ξ ξ

]
(2.20)

The result of the transformation is∫ 1

0
NT

e ρNe∆x0dξ
dve

d t
= −

∫ 1

0

(
dNe

dξ

)T

Ke dξσe + Ne (H)T p0 −
∫ 1

0
NT

e ρg∆x0dξ. (2.21)

Since in most cases it is not possible to apply closed form integration, it is necessary to approximate the
integrals numerically. In this thesis, Gaussian quadrature with a single Gauss point is used, see Appendix C.1,
corresponding to the Deltares MPM code. It should be noted that this reduced integration method is equal to
the midpoint rule in one dimension.
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The application of Gaussian quadrature to Equation 2.21 results in

 1
4ρ∆x0

1
4ρ∆x0

1
4ρ∆x0

1
4ρ∆x0

 dve

d t
= −

−1

1

σe + Ne (H)T p0 +
− 1

2ρg∆x0

− 1
2ρg∆x0

 . (2.22)

We are now able to assemble the global matrices from the element matrices by using the assemblage proce-
dure from Appendix C.2, which renders

M =



1
4ρ∆x0

1
4ρ∆x0 0

1
4ρ∆x0

1
2ρ∆x0

. . .

. . .
. . .

. . .

. . . 1
2ρ∆x0

1
4ρ∆x0

0 1
4ρ∆x0

1
4ρ∆x0



Kσ =



−1 0

1 −1

. . .
. . .

1 −1

0 1



(2.23)

When the same procedure is applied to the external force vectors, we find

Ftr ac =



0

0

...

0

p0


Fg r av =



− 1
2ρg∆x0

−ρg∆x0

...

−ρg∆x0

− 1
2ρg∆x0


(2.24)

Of course the assemblage procedure can be performed easily on a computer.

In order to solve the ordinary differential Equation 2.16 it is necessary to compute the inverse of the mass ma-
trix M. Inverting it repeatedly requires considerable computation time in case of large systems of equations
as encountered with geomechanical problems. Alternatively, we can use the lumped mass matrix ML which
is a diagonal matrix. Appendix C.3 explains how the lumped mass matrix is constructed from the mass matrix
using the lumping procedure.

ML =



1
2ρ∆x0 0

ρ∆x0

. . .

ρ∆x0

0 1
2ρ∆x0


(2.25)

Using the lumped mass matrix renders slightly less accurate results, but saves computation time and storage
space.
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2.4. RESULTING SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

To conclude this Chapter we summarize the system of the ordinary differential equations

ML dv

d t
= − Kσσ + Ftr ac + Fg r av ,

dσ

d t
= Kv v, (2.26)

du

d t
= v,

with initial conditions
v(0) = 0, σ(0) = 0, u(0) = 0. (2.27)

The global matrix Kv and element matrices Kv
e follow from the rather trivial discretization of the considered

constitutive relation

Kv =



− E
∆x0

E
∆x0

0

. . .
. . .

. . .
. . .

0 − E
∆x0

E
∆x0


, Kv

e =
[
− E
∆x0

E
∆x0

]
. (2.28)

The matrix K = KσKv is referred to as the stiffness matrix.



3
EULER-CROMER TIME DISCRETIZATION

For the time discretization of the system of ordinary differential Equations 2.26 we use the Euler-Cromer
method [13]. Preference was given to this scheme above other one-step schemes as it is energy conserving,
conditionally stable, first order accurate and most important it avoids iteration procedures within a time
step [3].

The Euler-Cromer method can be applied to Hamiltonian equations, differential equations of the form

d x

d t
= f (y, t ),

(3.1)
d y

d t
= g (x, t ).

The explicit Euler method is applied to the first equation and the implicit Euler method to the second

xn+1 = xn +∆t f (yn , t n),
(3.2)

yn+1 = yn +∆t g (xn+1, t n).

where ∆t denotes the chosen interval of a time step.
Recall the system of ordinary differential equations from Section 2.4

ML dv

d t
= − Kσσ + Ftr ac + Fg r av ,

dσ

d t
= Kv v, (3.3)

du

d t
= v,

with initial conditions
v(0) = 0, σ(0) = 0, u(0) = 0. (3.4)

Let vn , σn and un denote the velocity, stress and displacement respectively at time level t = n∆t . The initial
conditions are now given by

v0 = 0, σ0 = 0, u0 = 0. (3.5)

Since the first two equations of Equation 3.3 form a pair of differential equations to which the Euler-Cromer
method can be applied, the velocity and stress, on the nodes and Gauss points respectively, can be computed
on the next time level with

vn+1 = vn + ∆t
(
ML)−1 [− Kσσn + Ftr ac + Fg r av ]

,
(3.6)

σn+1 = σn + ∆tKv vn+1,

assuming constant loads and constant mass and stiffness matrices.

17



18 3. EULER-CROMER TIME DISCRETIZATION

Since the velocity at the next time level is now computed, we add an implicit equation for the displacement

un+1 = un + ∆tvn+1. (3.7)

For each time step this procedure is repeated as summarized in the flowchart in Figure 3.1.

Initial conditions
v0 = 0, σ0 = 0, u0 = 0

Update velocity

vn+1 = vn + ∆t
(
ML

)−1 [− Kσσn + Ftr ac + Fg r av
]

Update stress
σn+1 = σn + ∆tKv vn+1

Update displacement
un+1 = un + ∆tvn+1

Update time level
n = n + 1

Final result
vN , σN , uN

n = N

n 6= N

Figure 3.1: Time step procedure for time interval [0, N∆t ]



4
STABILITY ANALYSIS

Numerical methods transform differential equations into discretized equations. However, this does not mean
that performing the numerical method on a computer will necessarily lead to the exact solution of the dis-
cretized equation. Errors between the computed solution and the exact solution might accumulate for a
certain time due to e.g. round-off errors.

A numerical method is called stable if these errors stay bounded, and is otherwise called unstable. However,
it is possible that the stability of a numerical method depends on the time step size. Therefore all numerical
methods are classified to be unconditionally stable, conditionally stable or unconditionally unstable. Which
class a method belongs to can be found with the help of a stability analysis.

In the previous chapters a numerical scheme has been introduced for a one dimensional small deformation
problem for 1-phase materials using the finite element method for the space discretization and the Euler-
Cromer method for the time discretization. This chapter is devoted to the stability analysis of this numerical
scheme considering two different methods for stability analysis. Section 4.1 introduces the Von Neumann
method and Section 4.2 the matrix method.

4.1. VON NEUMANN METHOD

At present, one of the most popular methods for stability analysis is the Von Neumann method, sometimes
referred to as the Fourier stability analysis, which is extensively described by Hirsch [14].

The starting point of the Von Neumann method is the system of discrete equations derived in Chapter 3

vn+1 = vn + ∆t
(
ML)−1 [− Kσσn + Ftr ac + Fg r av ]

,

σn+1 = σn + ∆tKv vn+1, (4.1)

un+1 = un + ∆tvn+1.

The method assumes periodic boundary conditions, i.e. boundary conditions are not taken into account.
Therefore, we are now able to consider only the change of velocity and displacement of internal node i and
the change of stress within element i .
The change of velocity of internal node i is retrieved from row i of the corresponding matrix equation

vn+1
i = vn

i + ∆t

ρ∆x0

(
σn

i − σn
i−1

) − ∆t g . (4.2)

We now introduce the displacement operator D defined by Dk ( · )n
i = ( · )n

i+k and Equation 4.2 becomes

vn+1
i = vn

i + ∆t

ρ∆x0

(
1 − D−1)σn

i − ∆t g . (4.3)

19
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In the same way we find

σn+1
i = σn

i + E∆t

∆x0
(D − 1) vn+1

i ,
(4.4)

un+1
i = un

i + ∆t vn+1
i ,

Equations 4.3 and 4.4 can be written in operator form as

A (D)xn+1
i = B (D)xn

i + q (4.5)

where

A (D) =


1 0 0

E∆t
∆x0

(1 − D) 1 0

−∆t 0 1

 , B (D) =


1 ∆t

ρ∆x0

(
1 − D−1

)
0

0 1 0

0 0 1

 , q =


−∆t g

0

0

 , xn
i =


vn

i

σn
i

un
i

 . (4.6)

Assume that the computed solution xn
i equals the sum of the exact solution x̂n

i and an error ηn
i . Since x̂n

i is
the exact solution of Equation 4.5, the error must satisfy the so-called error equation

A (D)ηn+1
i = B (D)ηn

i . (4.7)

The error can be decomposed into a discrete Fourier series over a finite number of harmonics

ηn
i =

N∑
j=−N

an
j e I k j i∆x0 =

N∑
j=−N

an
j e I iφ j , (4.8)

where I is the unit complex number, an
j the amplitude of the j th harmonic at time level n, and k j the wave

number of the j th harmonic. k j∆x0 is often denoted as the phase angle φ j .

Since A(D) and B(D) are linear operators, all harmonics should satisfy Equation 4.7. When a single harmonic
is inserted into the error equation, the error equation is given by

A (D)an+1
j e I iφ j = B (D)an

j e I iφ j . (4.9)

When the definition of the displacement operator is applied and the subscript j is dropped, we find

A
(
e Iφ)

an+1e I iφ = B
(
e Iφ)

ane I iφ, (4.10)

from which we deduce

an+1 = G(φ)an (4.11)

with amplification matrix G(φ) = A
(
e Iφ

)−1
B

(
e Iφ

)
.

Let ρ(G) = max |λ(G)| be the spectral radius of the amplification matrix G(φ). Richtmyer and Morton [15]
show that the Von Neumann necessary criterion for stability is given by

ρ(G) ≤ 1 + O(∆t ) ∀φ ∈ (−π,π). (4.12)

However, for practical reasons it is more convenient to use the strict stability condition by Hirsch [14]

ρ(G) ≤ 1 ∀φ ∈ (−π,π). (4.13)

The spectral radius of the amplification matrix is determined by the eigenvalue problem

G(φ)a = λa, (4.14)

which is by definition equivalent to the eigenvalue problem

B
(
e Iφ)

a = λA
(
e Iφ)

a. (4.15)

To compute the eigenvalues λ we solve the characteristic equation

det
(
B

(
e Iφ) − λA

(
e Iφ)) = 0. (4.16)
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Let us first consider the matrix B
(
e Iφ

)−λA
(
e Iφ

)
.

B
(
e Iφ)−λA

(
e Iφ) =


1−λ ∆t

ρ∆x0
(1−e−Iφ) 0

−λE∆t
∆x0

(1−e Iφ) 1−λ 0

λ∆t 0 1−λ

 (4.17)

After writing out the determinant, the characteristic equation becomes

(1 − λ)
(
1 + (4d − 2)λ + λ2) = 0, d = E∆t 2

ρ∆x2
0

sin2
(
φ

2

)
, (4.18)

which has the following roots

λ1 = 1, λ2,3 = 1 − 2d ±
√

(1 − 2d) − 1. (4.19)

The Von Neumann necessary stability criterion of Hirsch results in∣∣∣1 − 2d ±
√

(1 − 2d)2 − 1
∣∣∣ ≤ 1, ∀φ ∈ (−π,π). (4.20)

This expression can be simplified using the following lemma.

Lemma 4.1. Let a,b be real numbers that satisfy the inequality∣∣∣a ±
√

a2 − b
∣∣∣ ≤ 1. (4.21)

Then a,b satisfy

−b − 1 ≤ 2a ≤ b + 1 and b ≤ 1. (4.22)

The proof can be found in Appendix D.

Applying Lemma 4.1 to Equation 4.20 renders

−2 ≤ 2 − 4d = 2 − 4
E∆t 2

ρ∆x2
0

sin2
(
φ

2

)
≤ 2, ∀φ ∈ (−π,π), (4.23)

which is satisfied when

0 ≤ E∆t 2

ρ∆x2
0

≤ 1. (4.24)

That is, the numerical method is stable when the applied time step size satisfies

0 ≤ ∆t ≤ ∆x0√
E/ρ

(4.25)

and unstable otherwise.

4.2. MATRIX METHOD

The matrix method uses another approach. It starts with the ordinary differential equations of Section 2.4,
repeated here

ML dv

d t
= − Kσσ + Ftr ac + Fg r av ,

dσ

d t
= Kv v, (4.26)

du

d t
= v,
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Owing to the semi-implicit character of the Euler-Cromer method, it is necessary to transform the system of
first order ordinary differential equations into the second order ordinary differential equation

ML d 2u

d t 2 = − KσKv u + Ftr ac + Fg r av , (4.27)

with corresponding error equation

ML d 2η

d t 2 = − KσKvη (4.28)

Now the problem is uncoupled by solving the eigenvalue problem

KσKv v = λMLv. (4.29)

This is a large eigenvalue problem when considering a larger mesh, but according to Irons [16] we may esti-
mate the eigenvalues by the eigenvalues of the corresponding element matrices

λmi n
e ≤ λ ≤ λmax

e (4.30)

which follow from the smaller eigenvalue problem

Kσ
e Kv

e v = λe ML
e v. (4.31)

Let us first consider the matrix Kσ
e Kv

e −λe ML
e

Kσ
e Kv

e −λe ML
e =


E
∆x0

− 1
2λeρ∆x0 − E

∆x0

− E
∆x0

E
∆x0

− 1
2λeρ∆x0

 (4.32)

which results in the following characteristic equation

1

4
λeρ

(
λeρ∆x2

0 − 4E
) = 0. (4.33)

The roots of the characteristic equation equal

λe,1 = 0, λe,2 = 4E

ρ∆x2
0

. (4.34)

For the eigenvalues of the large eigenvalue problem we thus know

0 ≤ λ ≤ 4E

ρ∆x2
0

. (4.35)

We are now able to reconsider the ordinary differential Equation 4.28 as

d 2η

d t 2 = −λη (4.36)

or componentwise

d 2η j

d t 2 = −λη j , (4.37)

when η is the eigenvector corresponding to eigenvalue λ.

The next step is to transform the second order differential Equation 4.37 back into a system of first order
differential equations 

dη j 1

d t = − λη j 2,

dη j 2

d t = η j 1

(4.38)
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and apply Euler-Cromer method to it

ηn+1
j 1 = ηn

j 1 − ∆tληn
2 j , (4.39)

ηn+1
j 2 = ηn

j 2 + ∆tηn+1
j 1 . (4.40)

In matrix notation this becomes 1 0

−∆t 1


η

n+1
j 1

ηn+1
j 2

 =
1 −λ∆t

0 1


η

n
j 1

ηn
j 2

 . (4.41)

We get the eigenvalues µ from the corresponding eigenvalue problem

µ1,2 = 1 − 1

2
λ∆t 2 ±

√(
1 − 1

2
λ∆t 2

)2

− 1 (4.42)

In order for the method to be stable |µ| ≤ 1 must hold and according to Lemma 4.1 this equals

−2 ≤ 2 − λ∆t 2 ≤ 2 (4.43)

which is satisfied when
0 ≤ λ∆t 2 ≤ 4. (4.44)

Taking into account the estimate for λ in Equation 4.35,we find

0 ≤ E∆t 2

ρ∆x2
0

≤ 1, (4.45)

or equivalently

0 ≤ ∆t ≤ ∆x0√
E/ρ

. (4.46)

As expected, the matrix method gives the same stability criterion as the Von Neumann method.





5
VALIDATION OF OBTAINED

STABILITY CRITERION

After performing the finite element space discretization in Chapter 2 and the Euler-Cromer time discretiza-
tion in Chapter 3 the one dimensional oedometric deformation of a 1-phase continuum presented in Sec-
tion 1.3 equals

vn+1 = vn + ∆t
(
ML)−1 [− Kσσn + Ftr ac + Fg r av ]

,

σn+1 = σn + ∆tKv vn+1, (5.1)

un+1 = un + ∆tvn+1,

with initial conditions
v0 = 0, σ0 = 0, u0 = 0. (5.2)

The numerical solution has been computed using Matlab. Since the analytical solution of the differential
equation is available it is possible to validate the stability criterion that followed from the Von Neumann
method in Section 4.1 and the matrix method in Section 4.2

0 ≤ ∆t ≤ ∆x0√
E/ρ

. (5.3)

The exemplary parameters in Table 5.1 give us the following critical time step

∆tcr i t = ∆x0√
E/ρ

= 0.001 s. (5.4)

ρ = 2 kg /m3 g = 10 m/s2

E = 100 Pa p0 = −20 Pa

H = 1 m ∆x0 = 0.01 m

Table 5.1: List of exemplary parameters

In Figure 5.1 the numerical solution is compared to the analytical solution for 4 different values of x0. For the
considered parameters and a time step of ∆t = 0.99∆tcr i t the numerical method is indeed stable.

However, when considering a time step ∆t = 1.01∆tcr i t that does not satisfy the stability criterion, the nu-
merical method is indeed unstable. Figure 5.2 shows that the numerical solution quickly deviates from the
analytical solution.

The correctness of the stability criterion was already expected since the criterion is consistent with the well-
known CFL (Courant, Friedrichs and Lewy) condition [3, 17].
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Figure 5.1: Comparison of numerical and analytical solution for 1D oedometer problem
for ∆t = 0.99∆tcr i t , rendering stable numerical analysis
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Figure 5.2: Comparison of numerical and analytical solution for 1D oedometer problem
for ∆t = 1.01∆tcr i t , rendering unstable numerical analysis
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6
PHYSICAL MODEL

This chapter introduces a physical model for small deformations of porous, saturated media, e.g. soil. Such
a formulation allows us to simulate the time-delayed settlement due to a gradual dissipation of pore water
out of soil upon loading. In Section 6.1 relevant variables and parameters are defined, before presenting
the differential equations that describe the deformation of a 2-phase continuum. Section 6.2 then states the
necessary number of initial conditions and boundary conditions. In Section 6.3 the one dimensional case is
again introduced. The problem is further simplified for the subsequent stability analysis through additional
assumptions.

6.1. EQUATIONS

Similar to the 1-phase formulation we consider the initial configuration Ω0 ∈ R3 and the deformed configu-
rationΩ ∈R3 in the Cartesian coordinate system. With a 2-phase continuum the deformation of both phases
is considered separately.

The displacement and velocity of the solid phase have already been defined in Section 1.1. For the velocity of
the liquid phase a new variable is introduced

ŵ(x0, t ) = [
ŵ1 ŵ2 ŵ3

]T
. (6.1)

Distinction is made between stresses in the soil skeleton, the effective stresses σ′
i j , and the pore water pres-

sure p [18]. They add up to the total stress σi j

σi j = σ′
i j +pδi j , (6.2)

where σ and p are defined to be positive in tension and suction respectively. This relation is called the prin-
ciple of effective stress by Terzaghi [4].

The constitutive relation describes the relation between the stress and strain at the solid phase

∂σ̂′
i j

∂t
= Di j kl

∂ε̂kl

∂t
(6.3)

with coefficients Di j kl as defined in Equation 1.10 and the strain rate tensor computed from velocity v.

The density and volume of the solid phase are denoted as ρs and Vs respectively, the density of the water
phase as ρw and the volume of the voids as Vv . The porosity n is defined as the ratio of the volume of the
voids and the total volume

n = Vv

Vs + Vv
. (6.4)
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Since we consider saturated media, the density of the 2-phase continuum equals

ρ = nρw + (1 − n)ρs . (6.5)

Using these definitions the conservation of momentum for the solid and liquid phase [3] are given by

(1 − n)ρs
∂v̂ j

∂t
=

∂σ̂′
i j

∂x0i
+ (1 − n)

∂p̂

∂x0 j
− (1 − n)ρs gδ j 3 + n2ρw g

k
(ŵ j − v̂ j ) (6.6)

nρw
∂ŵ j

∂t
= n

∂p̂

∂x0 j
− nρw gδ j 3 − n2ρw g

k
(ŵ j − v̂ j ) (6.7)

where k denotes the hydraulic conductivity. The last term on the right hand side of the two equations is
referred to as ’drag force’: the relative movement between solid and liquid phase induces a damping force.

Combining Equations 6.6 and 6.7 yields the conservation of momentum for the 2-phase continuum

(1 − n)ρs
∂v̂ j

∂t
+ nρw

∂ŵ j

∂t
=

∂σ̂′
i j

∂x0i
+ ∂p̂

∂x0 j
− ρgδ j 3. (6.8)

In order to complete the physical model the conservation of mass is introduced for both phases for both
phases [3]

∂

∂t

[
(1 − n)ρs

] + ∂

∂x j

[
(1 − n)ρs v̂ j

] = 0, (6.9)

∂

∂t

[
nρw

] + ∂

∂x j

[
nρw ŵ j

] = 0. (6.10)

The liquid phase is assumed to be significantly more compressible than the solid phase. Thus it is assumed
that the solid phase is incompressible

∂ρs

∂t
= 0. (6.11)

The liquid phase is assumed to be linearly compressible, expressed by

∂ρw

∂p̂
= − ρw

Kw
, (6.12)

where Kw represents the bulk modulus of the liquid phase.

Isolation of the term dn
d t renders in the so-called storage equation

∂p̂

∂t
= Kw

n

[
(1 − n)

∂v̂ j

∂x0 j
+ n

∂ŵ j

∂x0 j

]
. (6.13)

In conclusion the deformation of porous, saturated media can be described in a closed coupled system of
the velocities v̂ and ŵ, the effective stress tensor σ̂′ and the pore water pressure p. With the considered
formulation, the displacement of the solid phase is traced but not the motion of the liquid phase. The relation
between the velocity and the displacement of the solid phase is therefore added

nρw
∂ŵ j

∂t
= n

∂p̂

∂x0 j
− nρw gδ j 3 − n2ρw g

k
(ŵ j − v̂ j ),

(1 − n)ρs
∂v̂ j

∂t
+ nρw

∂ŵ j

∂t
=

∂σ̂′
i j

∂x0i
+ ∂p̂

∂x0 j
− ρgδ j 3,

∂p̂

∂t
= Kw

n

[
(1 − n)

∂v̂ j

∂x0 j
+ n

∂ŵ j

∂x0 j

]
, (6.14)

∂σ̂′
i j

∂t
= Di j kl

d ε̂kl

d t
,

∂û j

∂t
= v̂ j .
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6.2. INITIAL AND BOUNDARY CONDITIONS

Similar to the 1-phase formulation, the 2-phase formulation is only a well defined problem if the right number
of initial and boundary conditions are added, depending on the order of the problem.

Owing to the first order time derivatives in the 2-phase formulation 6.14 we need one initial condition for
both velocities, the effective stress, pore pressure and displacement:

• Initial displacement of the solid phase

• Initial velocity of the solid phase

• Initial velocity of the liquid phase

• Initial pore pressure

• Initial effective stress

ûi (x0,0) = û0i (x0)

v̂i (x0,0) = v̂0i (x0)

ŵi (x0,0) = ŵ0i (x0)

p̂(x0,0) = p̂0(x0)

σ̂i j (x0,0) = σ̂0i j (x0)

Owing to the spatial dependency of order two for each phase, we need exactly one condition for each phase
at each boundary point in order to have a well defined problem. Therefore the boundary ∂Ω is split into
a prescribed displacement boundary ∂Ωu and a prescribed traction boundary ∂Ωτ for the solid phase (see
Figure 6.1a), and into a prescribed displacement boundary ∂Ωw and a prescribed pressure boundary ∂Ωp for
the liquid phase (see Figure 6.1b).

Figure 6.1: (a) Prescribed displacement boundary ∂Ωu and prescribed traction boundary ∂Ωτ for the solid phase
(b) Prescribed displacement boundary ∂Ωw and prescribed pressure boundary ∂Ωp for the liquid phase

The two boundary conditions for the solid phase are:

• Displacement (or Dirichlet) boundary conditions

• Traction (or Neumann) boundary conditions

ûi (x0, t ) = Ûi (t ) for x0 ∈ ∂Ωu

σ̂′
i j (x0, t )n̂ j = τ̂i (t ) for x0 ∈ ∂Ωτ

The two boundary conditions for the liquid phase are:

• Displacement (or Dirichlet) boundary conditions

• Pressure (or Neumann) boundary conditions

ŵi (x0, t ) = Ŵi (t ) for x0 ∈ ∂Ωw

p̂(x0, t ) = P̂ (t ) for x0 ∈ ∂Ωp

The vector n̂ represents the unit vector normal to the corresponding boundary and pointing outward.
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6.3. ONE DIMENSIONAL PROBLEM

In this section we consider the small deformation problem of an oedometer test as described in Section 1.3,
but the soil sample is now modeled as a porous, saturated medium. Equations 6.14 thus reduce to

ρw
∂ŵ

∂t
= ∂p̂

∂x0
− ρw g − nρw g

k
(ŵ − v̂),

(1 − n)ρs
∂v̂

∂t
+ nρw

∂ŵ

∂t
= ∂σ̂′

∂x0
+ ∂p̂

∂x0
− ρg ,

∂p̂

∂t
= Kw

n

[
(1 − n)

∂v̂

∂x0
+ n

∂ŵ

∂x0

]
, (6.15)

∂σ̂′

∂t
= E

∂v̂

∂x0
,

∂û

∂t
= v̂ .

The equations are further simplified by adopting some of the assumptions proposed by D. Stolle (personal
communication, 2014) in order to simplify the subsequent preliminary stability analysis. Stolle introduces
the strong assumption that the liquid phase is incompressible and that the influence of variations in density
and porosity in space and time are negligible. Thereby the third equation becomes

(1 − n)v̂ + nŵ = 0, (6.16)

and Equations 6.15 reduce to

ρ̃
∂v̂

∂t
+ ρw g

k
v̂ = ∂σ̂′

∂x0
− ρ̄g ,

dσ̂′

d t
= E

∂v̂

∂x0
, (6.17)

dû

d t
= v̂ .

where ρ̃ = ρ+ ( 1
n −2)ρw and ρ̄ = ρ−ρw . Thus, the liquid velocity and pore pressure are no longer relevant

variables in the simplified formulation.

As in Section 1.3 a prescribed displacement boundary condition at the bottom and a prescribed traction
boundary condition at the top are considered

û(0, t ) = 0, (6.18)

σ̂′(H , t ) = p0.

The initial conditions are also inherited from the 1-phase formulation

v̂(x0,0) = 0,

σ̂′(x0,0) = 0, (6.19)

û(x0,0) = 0.

It should be noted that this system of partial differential equations is equivalent to the non-homogeneous
damped wave equation

∂2û

∂t 2 + ρw g

ρ̃k

∂û

∂t
= E

ρ̃

∂2û

∂x2
0

− g̃ , 0 < x0 < H , t > 0 (6.20)

with g̃ = ρ̄
ρ̃ g . The initial and boundary conditions are

û(x0,0) = 0,
∂û

∂t
(x0,0) = 0, (6.21)

û(0, t ) = 0, E
∂û

∂x0
(H , t ) = p0. (6.22)
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As derived in Appendix B, the non-homogeneous damped wave equation has the analytical solution

u(x, t ) = 1

2

ρ̃g̃

E
x2 + p0 − ρ̃g̃ H

E
x

+
∞∑

n=1
IDn>0un

[
1p
Dn

(
−ρw g

2ρ̃k
+
p

Dn

2

)
e−

p
Dn t
2 − 1p

Dn

(
−ρw g

2ρ̃k
−
p

Dn

2

)
e

p
Dn t
2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn=0un

[
1+ ρw g t

2ρ̃k

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn<0un

[
cos

p−Dn t

2
+ 1p−Dn

ρw g

ρ̃k
sin

p−Dn t

2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H
(6.23)

with coefficients

un = 8
(
2πp0n(−1)n +2ρ̃g̃ H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
(6.24)

and discriminants

Dn =
(
ρw g

ρ̃k

)2

−4

(
(2n −1)π

2H

)2 E

ρ̃
. (6.25)

In Figure 6.2 the analytical solution of the oedometric deformation x(t ) of a porous, saturated medium is
plotted for 4 different values of x0. The used exemplary parameters are listed in the same figure. Only the first
5 terms of the infinite sums are taken into account. Other terms are negligibly small.

t (s)

0 0.5 1 1.5 2 2.5 3

x
(m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρs = 2 kg/m3

E = 100 Pa
n = 0.45
k = 0.1 m/s
ρw = 1 kg/m3

g = 10 m/s2

H = 1 m
p0 = −20 Pa

x0 = 1.00

x0 = 0.75

x0 = 0.50

x0 = 0.25

Figure 6.2: Analytical solution for the one dimensional oedometer problem with exemplary parameters





7
FINITE ELEMENT SPACE DISCRETIZATION

This chapter introduces the finite element method for the one dimensional simplified deformation problem
given in Section 6.3. The equations are repeated here for convenience

ρ̃
∂v̂

∂t
+ ρw g

k
v̂ = ∂σ̂′

∂x0
− ρ̄g ,

∂σ̂′

∂t
= E

d v̂

d x0
, (7.1)

∂û

∂t
= v̂ ,

with initial conditions

v̂(x0,0) = 0, σ̂(x0,0) = 0, û(x0,0) = 0, (7.2)

and boundary conditions

v̂(0, t ) = 0, σ̂(H , t ) = p0. (7.3)

The same procedure as in Chapter 2 is followed. This means that we start with deriving the virtual work
equation in Section 7.1. In Section 7.2 this equation is discretized and the corresponding global and element
matrices can be found. The chapter ends with an overview of the resulting system of ordinary differential
equations in Section 7.3.

7.1. VIRTUAL WORK EQUATION

Let us first recall the momentum equation for the soil-water mixture, after applying all assumptions

ρ̃
∂v̂

∂t
+ ρw g

k
v̂ = ∂σ̂′

∂x0
− ρ̄g . (7.4)

We multiply the momentum equation by a virtual velocity δv̂ and integrate over the domain 0 < x0 < H in
order to obtain the virtual work equation∫ H

0
δv̂ ρ̃

∂v̂

∂t
d x0 +

∫ H

0
δv̂

ρw g

k
v̂d x0 =

∫ H

0
δv̂

∂σ̂′

∂x0
d x0 −

∫ H

0
δv̂ ρ̄g d x0. (7.5)

When applying integration by parts and the boundary conditions σ′(H , t ) = p0 and δv̂(0, t ) = 0, the virtual
work equation becomes∫ H

0
δv̂ ρ̃

∂v̂

∂t
d x0 +

∫ H

0
δv̂

ρw g

k
v̂d x0 = −

∫ H

0

∂(δv̂)

∂x0
σ̂′d x0 + δv̂(H , t )p0 −

∫ H

0
δv̂ ρ̄g d x0. (7.6)

35



36 7. FINITE ELEMENT SPACE DISCRETIZATION

7.2. GLOBAL AND ELEMENT MATRICES OF THE VIRTUAL WORK EQUATION

In Section 2.2 two different shape functions are introduced. In the simplified 2-phase formulation the linear
interpolation functions are again used for the velocity and the displacement. The step functions are now used
for the effective stress. When all variables in Equation 7.6 are replaced by their discretized variants, the virtual
work equation becomes in matrix notation

M
dv

d t
+ Cv = − Kσσ′ + Ftr ac + Fg r av . (7.7)

Taking the water phase into account has rendered a new velocity-dependent term involving matrix C. It can
be considered as a damping force, and the matrix C is therefore referred to as the damping matrix.

The corresponding element matrices and vectors are approximated using Gaussian quadrature with a single
Gauss point, see Appendix C.1, after applying the coordinate transformation given by Equation 2.19

Me = ∫ xi+1
xi

NT
e ρ̃Ne d x0 =

 1
4 ρ̃∆x0

1
4 ρ̃∆x0

1
4 ρ̃∆x0

1
4 ρ̃∆x0



Ce = ∫ xi+1
xi

NT
e
ρw g

k Ne d x0 =

 1
4
ρw g∆x0

k
1
4
ρw g∆x0

k

1
4
ρw g∆x0

k
1
4
ρw g∆x0

k



Kσ
e = ∫ xi+1

xi

(
dNe
d x0

)T
Ke d x0 =

−1

1



Fg r av
e = − ∫ xi+1

xi
NT

e ρ̄g d x0 =
− 1

2 ρ̄g∆x0

− 1
2 ρ̄g∆x0



(7.8)

We assume that the reader is now familiar to the assemblage procedure described in Appendix C.2 and im-
mediately give the global matrices and vectors

M =



1
4 ρ̃∆x0

1
4 ρ̃∆x0 0

1
4 ρ̃∆x0

1
2 ρ̃∆x0

. . .

. . .
. . .

. . .

. . . 1
2 ρ̃∆x0

1
4 ρ̃∆x0

0 1
4 ρ̃∆x0

1
4 ρ̃∆x0



(7.9)

C =



1
4
ρw g∆x0

k
1
4
ρw g∆x0

k 0

1
4
ρw g∆x0

k
1
2
ρw g∆x0

k

. . .

. . .
. . .

. . .

. . . 1
2
ρw g∆x0

k
1
4
ρw g∆x0

k

0 1
4
ρw g∆x0

k
1
4
ρw g∆x0

k



(7.10)
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Kσ =



−1 0

1 −1

. . .
. . .

1 −1

0 1


Ftr ac =



0

0

...

0

p0


Fg r av =



− 1
2 ρ̄g∆x0

−ρ̄g∆x0

...

−ρ̄g∆x0

− 1
2 ρ̄g∆x0


(7.11)

The lumped mass matrix is again constructed from the mass matrix confirm the lumping procedure in Ap-
pendix C.3

ML ≈



1
2 ρ̃∆x0 0

ρ̃∆x0

. . .

ρ̃∆x0

0 1
2 ρ̃∆x0


. (7.12)

Whether it is necessary to lump the damping matrix C, depends on the time integration scheme. With an
implicit method lumping is recommended, while it is better to stick with the more accurate non-lumped
damping matrix when considering an explicit method.

7.3. RESULTING SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

We conclude this chapter with the system of ordinary differential equations

ML dv

d t
+ Cv = − Kσσ′ + Ftr ac + Fg r av ,

dσ′

d t
= Kv v, (7.13)

du

d t
= v,

with initial conditions
v(0) = 0, σ′(0) = 0, u(0) = 0. (7.14)

In order to be complete we also state the global matrix Kv and element matrices Kv
e

Kv =



− E
∆x0

E
∆x0

0

. . .
. . .

. . .
. . .

0 − E
∆x0

E
∆x0


, Kv

e =
[
− E
∆x0

E
∆x0

]
. (7.15)
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EULER-CROMER TIME DISCRETIZATION

The Euler-Cromer method is a semi-implicit time discretization method for Hamiltonian equations. In the
1-phase formulation we indeed dealt with Hamiltonian equations, but the damping term in the simplified
2-phase formulation necessitates an extension. The Euler-Cromer time discretization becomes

xn+1 = xn +∆t f (xn , yn , t n),
(8.1)

yn+1 = yn +∆t g (xn+1, t n).

where the explicit Euler method is still applied to the first equation and the implicit Euler method to the
second equation. This extension can be found under the name modified Sielecki method [19].

Recall the system of ordinary differential equations from Section 7.3

ML dv

d t
+ Cv = − Kσσ′ + Ftr ac + Fg r av ,

dσ′

d t
= Kv v, (8.2)

du

d t
= v,

with initial conditions
v(0) = 0, σ′(0) = 0, u(0) = 0. (8.3)

Let vn , σn and un denote the velocity, effective stress and displacement respectively at time level t = n∆t .
The initial conditions are now given by

v0 = 0, σ0 = 0, u0 = 0. (8.4)

Applying the extended Euler-Cromer time discretization to the first two equations of Equation 8.2 the velocity
and effective stress on the next time level can be computed with

vn+1 = vn + ∆t
(
ML)−1 [− Cvn − Kσσn + Ftr ac + Fg r av ]

,
(8.5)

σn+1 = σn + ∆tKv vn+1

It should be noted that in the explicit expression the consistent damping matrix C is used.

For the displacement an implicit expression is used

un+1 = un + ∆tvn+1. (8.6)

The flowchart in Figure 8.1 summarizes the complete solution procedure.
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Initial conditions
v0 = 0, σ0 = 0, u0 = 0

Update velocity

vn+1 = vn + ∆t
(
ML

)−1 [− Cvn − Kσσn + Ftr ac + Fg r av
]

Update effective stress
σn+1 = σn + ∆tKv vn+1

Update displacement
un+1 = un + ∆tvn+1

Update time level
n = n + 1

Final result
vN , σN , uN

n = N

n 6= N

Figure 8.1: Time step procedure for time interval [0, N∆t ]



9
STABILITY ANALYSIS

This chapter contains a detailed stability analysis for the simplified 2-phase formulation of Equation 6.18. The
stability analysis considers the finite element space discretization presented in Chapter 7 and the modified
Euler-Cromer time discretization presented in Chapter 8.

Similar to the stability analysis of the 1-phase formulation, the analysis is performed using both the Von
Neumann method and the matrix method, in Section 9.1 and 9.2, respectively.

9.1. VON NEUMANN METHOD

The Von Neumann method starts with the set of discrete equations derived in Chapter 8, repeated here

vn+1 = vn + ∆t
(
ML)−1 [− Cvn − Kσσn + Ftr ac + Fg r av ]

,

σn+1 = σn + ∆tKv vn+1 (9.1)

un+1 = un + ∆tvn+1.

Since the method does not take boundary conditions into account, we consider only the change of velocity
and displacement of internal node i and the change of stress within element i

vn+1
i = vn

i − ρw g∆t

ρ̃k

(
1

4
D−1 + 1

2
+ 1

4
D

)
vn

i + ∆t

ρ̃∆x0

(
1 − D−1)σn

i − ρ̄∆t g

ρ̃
,

σn+1
i = σn

i + E∆t

∆x0
(D − 1) vn+1

i , (9.2)

un+1
i = un

i + ∆t vn+1
i ,

where D is the displacement operator introduced in Section 4.1.

In operator form Equations 9.2 become

A (D)xn+1
i = B (D)xn

i + q (9.3)

with on the left hand side

A (D) =


1 0 0

E∆t
∆x0

(1 − D) 1 0

−∆t 0 1

 and xn+1
i =


vn+1

i

σn+1
i

un+1
i

 , (9.4)
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and on the right hand side

B (D) =


1 − ρw g∆t

ρ̃k

( 1
4 D−1 + 1

2 + 1
4 D

)
∆t
ρ̃∆x0

(
1 − D−1

)
0

0 1 0

0 0 1

 , xn
i =


vn

i

σn
i

un
i

 and q =


− ρ̄∆t g

ρ̃

0

0

 . (9.5)

We know that performing the Von Neumann method is equivalent to solving the eigenvalue problem in Equa-
tion 4.15, given by

B
(
e Iφ)

v = λA
(
e Iφ)

v. (9.6)

The characteristic equation corresponding to Equation 9.6 is

(1−λ)
[
λ2 + (c + 4d − 2)λ + (1 − c)

] = 0 (9.7)

with

c = ρw g∆t

ρ̃k
cos2

(
φ

2

)
and d = E∆t 2

ρ̃∆x2
0

sin2
(
φ

2

)
. (9.8)

The eigenvalues are then computed as the roots of the characteristic equation

λ1 = 1, λ2,3 = 1 − 1

2
c − 2d ±

√
(1 − 1

2
c − 2d)2 − (1 − c), (9.9)

The Von Neumann stability criterion then renders∣∣∣∣∣1 − 1

2
c − 2d ±

√
(1 − 1

2
c − 2d)2 − (1 − c)

∣∣∣∣∣ ≤ 1, for all φ ∈ [−π,π]. (9.10)

which can be simplified using Lemma 4.1

−2 + c ≤ 2 − c − 4d ≤ 2 − c and 1 − c ≤ 1, for all φ ∈ [−π,π], (9.11)

or equivalently

c ≥ 0, d ≥ 0 and c + 2d ≤ 2, for all φ ∈ [−π,π]. (9.12)

Replacing c and d by Equations 9.8 results in the final expression

0 ≤ ρw g∆t

ρ̃k
≤ 2 and 0 ≤ E∆t 2

ρ̃∆x2
0

≤ 1, (9.13)

and gives critical time step

∆tcr i t = min

(
2ρ̃k

ρw g
,
∆x0√

E/ρ̃

)
(9.14)

Compared to the stability criterion of the 1-phase formulation, we see that there is an extra criterion that
needs to be satisfied in the simplified 2-phase formulation. This extra criterion does not depend on the mesh
but is purely based on material properties, specifically the hydraulic conductivity k.

9.2. MATRIX METHOD

For the matrix method we start with the set of ordinary differential equations from Section 7.3 given by

ML dv

d t
+ Cv = − Kσσ + Ftr ac + Fg r av ,

dσ

d t
= Kv v, (9.15)

du

d t
= v.
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We transform these equations into one second order ordinary differential equation

ML d 2u

d t 2 + C
du

d t
= − KσKv u + Ftr ac + Fg r av (9.16)

with error equation

ML d 2η

d t 2 + C
dη

d t
= − KσKvη. (9.17)

First note that the damping matrix C is a linear combination of the lumped mass matrix ML and the stiffness
matrix KσKv

C = a1ML + a2KσKv (9.18)

with

a1 = ρw g

ρ̃k
and a2 = −ρw g∆x2

0

4Ek
. (9.19)

Equation 9.17 then becomes

ML d 2ε

d t 2 + a1ML dε

d t
= − a2KσKv dε

d t
− KσKvε. (9.20)

Now the problem can be uncoupled by solving the eigenvalue problem

KσKv v = λMLv. (9.21)

Since a similar eigenvalue problem is solved in Section 4.2, we may copy the result with a slight adaptation of
the parameters

0 ≤ λ ≤ 4E

ρ̃∆x2
0

. (9.22)

We are now able to reconsider Equation 9.20 as

d 2η

d t 2 + (a1 + a2λ)
dη

d t
= − λη. (9.23)

or componentwise

d 2η j

d t 2 + (a1 + a2λ)
dη j

d t
= −λη j , (9.24)

when η expresses the eigenvector corresponding to eigenvalue λ.

This second order differential equation is equivalent to the system of first order differential equations

dη j 1

d t
= −(a1 + a2λ)η j 1 − λη j 2,

(9.25)
dη j 2

d t
= η j 1,

to which we apply the modified Euler-Cromer method as described in Chapter 8

ηn+1
j 1 = ηn

j 1 − ∆t (a1 + a2λ)ηn
j 1 − ∆tλεn

j 2,
(9.26)

ηn+1
j 2 = ηn

j 2 + ∆tηn+1
j 1 .

In matrix notation this becomes 1 0

−∆t 1


η

n+1
j 1

ηn+1
j 2

 =
1−∆t (a1 +a2λ) −λ∆t

0 1


η

n
j 1

ηn
j 2

 (9.27)
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The eigenvalues µ belonging to its corresponding eigenvalue problem equal

µ1,2 = 1 − 1

2
λ∆t 2 − 1

2
a1∆t − 1

2
a2λ∆t

±
√(

1 − 1

2
λ∆t 2 − 1

2
a1∆t − 1

2
a2λ∆t

)2

− (1−a1∆t −a2λ∆t ) (9.28)

Lemma 4.1 replaces the criterion |µ1,2| ≤ 1 by

−2 + a1∆t + a2λ∆t ≤ 2 − λ∆t 2 − a1∆t − a2λ∆t ≤ 2 − a1∆t − a2λ∆t (9.29)

and

1−a1∆t −a2λ∆t ≤ 1. (9.30)

These equation are equivalent to

λ∆t 2 ≥ 0, a1∆t +a2λ∆t ≥ 0 and λ∆t 2 + 2a1∆t +2a2λ∆t ≤ 4. (9.31)

Replacing a1 and a2 by Equations 9.19 gives

0 ≤ λ ≤ 4E

ρ̃∆x2
0

and

(
∆t 2 − ρw g∆x2

0∆t

2Ek

)
λ + 2ρw g∆t

ρ̃k
≤ 4. (9.32)

Taking into account the estimate for λ in Equation 9.22, this is satisfied when

0 ≤ ρw g∆t

ρ̃k
≤ 2 and 0 ≤ E∆t 2

ρ̃∆x2
0

≤ 1. (9.33)

The critical time step equals

∆tcr i t = min

(
2ρ̃k

ρw g
,
∆x0√

E/ρ̃

)
(9.34)

Both the Von Neumann and matrix method give the same stability criterion.



10
VALIDATION OF OBTAINED

STABILITY CRITERIA

For the validation of the time step criteria of the simplified 2-phase formulation, the formulation is imple-
mented in Matlab regarding the finite element space discretization of Chapter 7 and the Euler-Cromer time
discretization of Chapter 8. Chapter 9 shows that the corresponding time step criteria lead to a critical time
step

0 ≤ ρw g∆t

ρ̃k
≤ 2 and 0 ≤ E∆t 2

ρ̃∆x2
0

≤ 1 −→ ∆tcr i t = min

(
2ρ̃k

ρw g
,
∆x0√

E/ρ̃

)
(10.1)

The validation of the time step criterion will therefore consist of two steps.

ρs = 2 kg /m3 g = 10 m/s2

E = 100 Pa p0 = −20 Pa

n = 0.45 H = 1 m

ρw = 1 kg /m3 ∆x0 = 0.01 m

Table 10.1: List of examplary parameters

Let us first consider the parameters given in Table 10.1. Some investigation tells us that with a high hydraulic
conductivity k = 0.1 m/s the mesh-dependent criterion determines the critical time step

k = 0.1 m/s −→ 2ρ̃k

ρw g
= 0.03544 s,

∆x0√
E/ρ̃

= 0.00133 s −→ ∆tcr i t = 0.00133 s. (10.2)

In Figure 10.1 both the numerical solutions and analytical solutions are plotted with a time step that is slightly
smaller than the critical time step. The numerical method is clearly stable, since the numerical solutions co-
incide with the corresponding analytical solutions. Figure 10.2 shows that the numerical method is unstable
with a time step slightly larger than the critical time step. These two figures therefore confirm the correctness
of the mesh-dependent criterion.

The other inequality can be checked considering the parameters in Table 10.1 in combination with a low
hydraulic conductivity

k = 0.001 m/s −→ 2ρ̃k

ρw g
= 0.000354 s,

∆x0√
E/ρ̃

= 0.00133 s −→ ∆tcr i t = 0.000354 s. (10.3)

Now Figure 10.3 and 10.4 show respectively the stable and unstable numerical method with time steps that
lie around the critical time step, which means that also the mesh-independent criterion is validated.
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Figure 10.1: Comparison of numerical and analytical solution for 1D oedometer problem for k = 0,1 m/s
and ∆t = 0,99∆tcr i t , rendering stable numerical analysis
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Figure 10.2: Comparison of numerical and analytical solution for 1D oedometer problem for k = 0,1 m/s
and ∆t = 1,01∆tcr i t , rendering unstable numerical analysis
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Figure 10.3: Comparison of numerical and analytical solution for 1D oedometer problem for k = 0,001 m/s
and ∆t = 0,99∆tcr i t , rendering stable numerical analysis
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Figure 10.4: Comparison of numerical and analytical solution for 1D oedometer problem for k = 0,001 m/s
and ∆t = 1,01∆tcr i t , rendering stable numerical analysis





CONCLUDING REMARKS

The goal of this thesis is to determine a stability criterion for the Euler-Cromer method applied to analyses
of consolidation with the finite element method as well as the material point method. Three dimensional
dynamic problems are considered involving, in case of analyses with the material point method, large defor-
mations of soil. A velocity-based 2-phase formulation is used to describe the time-dependent deformation
of water-saturated soil upon loading. The complexity of the underlying physical model is further increased
when taking into consideration the highly non-linear deformation behaviour of soil.

In this thesis, the complexity of the physical model is increased in steps. In this preliminary study soil was
first considered as a 1-phase continuum of a linear-elastic material. Finite Element space discretization and
Euler-Cromer time discretization were applied to a one dimensional case, an oedometer test.
Subsequent stability analyses with both the Von Neumann and matrix method require solving challenging
eigenvalue problems. With the help of Lemma 4.1 the analyses could be greatly simplified. The analyses
rendered the well-known critical time step

∆tcr i t = ∆x√
E/ρ

thus proving the validity of the approach.

In the second part of this preliminary study the liquid phase was taken into account. Since a stability analysis
for the full 2-phase formulation still poses a challenging problem for the one dimensional case, the assump-
tion of an incompressible liquid phase was introduced to obtain a simplified formulation.
The Von Neumann method and matrix method now showed that the presence of a damping term in the
equation of motion renders a second time step criterion. The two obtained criteria read

E∆t 2

ρ̃∆x2 ≤ 1 and
ρw g∆t

ρ̃k
≤ 2,

rendering the critical time step

∆tcr i t = min

(
∆x√
E/ρ̃

,
2ρ̃k

ρw g

)
.

It has been validated for the one dimensional case.

It can be concluded from this preliminary study that the liquid phase, the hydraulic conductivity respectively,
influence the numerical stability of the Euler-Cromer scheme applied to the simplified 2-phase formulation.

In the course of this thesis, the study will be extended to the full 2-phase formulation and to the three dimen-
sional case. Here, the effects of mesh boundary and artificial local damping will be investigated. It is expected
that results can be applied to analyses involving geometric and material non-linearity too, when the critical
time step size is recomputed after each time step. This would allow to apply the formulation enhanced by
a stability criterion to three dimensional geotechnical problems such as cone penetration testing or slope
failure.
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A
ANALYTICAL SOLUTION TO

NON-HOMOGENEOUS WAVE EQUATION

Consider the following non-homogeneous wave equation with initial and boundary conditions
∂2u
∂t 2 = E

ρ
∂2u
∂x2 − g , 0 < x < H , t > 0

u(x,0) = 0, ∂u
∂t (x,0) = 0,

u(0, t ) = 0, E ∂u
∂x (H , t ) = p0.

(A.1)

Let us first find the equilibrium solution uE (x), that satisfies
0 = E

ρ
∂2uE
∂x2 − g , 0 < x < H

uE (0) = 0, E ∂uE
∂x (H) = p0.

(A.2)

Integrating the differential equation twice results in

uE (x) = 1

2

ρg

E
x2 +a1x +a2. (A.3)

The two boundary conditions then determine the two integration constants

uE (0) = a2 = 0 −→ a2 = 0 (A.4)

E
∂uE

∂x
(H) = ρg H +E a1 = p0 −→ a1 = p0 −ρg H

E
, (A.5)

which yields the following equilibrium solution

uE (x) = 1

2

ρg

E
x2 + p0 −ρg H

E
x. (A.6)

Assume now that the solution to the wave equation is a superposition of the equilibrium solution uE and an
unknown function v

u(x, t ) = uE (x)+ v(x, t ). (A.7)

Then we can deduce that the unknown function v should satisfy:
∂2v
∂t 2 = E

ρ
∂2v
∂x2 , 0 < x < H , t > 0

v(x,0) =−uE (x), ∂v
∂t (x,0) = 0,

v(0, t ) = 0, ∂v
∂x (H , t ) = 0.

(A.8)
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This partial differential equation can be solved using the method of seperation of variables, where v(x, t ) =
φ(x)G(t ). The partial differential equation can then be rearranged and set equal to a separation constant, that
Haberman [20] proved to be real

φ(x)
d 2G

d t 2 (t ) = E

ρ

d 2φ

d x2 (x)G(t ) −→ ρ

EG(t )

d 2G

d t 2 = 1

φ(x)

d 2φ

d x2 = −λ. (A.9)

This results in two ordinary differential equations, from which we first consider the spatial differential equa-
tion

d 2φ

d x2 = −λφ. (A.10)

Boundary conditions for φ(x) follow from the boundary conditions for v(x, t )

φ(0)G(t ) = 0,
dφ

d x
(H)G(t ) = 0 −→ φ(0) = 0,

dφ

d x
(H) = 0. (A.11)

Note that G(t ) = 0 is not considered, since we are interested in a non-trivial solution.

When λ> 0 the solution is the sum of a cosinus and a sinus

φ(x) = b1 cos
p
λx +b2 sin

p
λx (A.12)

In order to satisfy the boundary condition φ(0) = 0, we find b1 = 0. The other boundary condition then yields

b2

p
λcos

p
λH = 0 (A.13)

The coefficient b2 should be nonzero in order to imply a non-trivial solution, so the only possibilities are

λ =
(

(2n −1)π

2H

)2

, for n = 1,2,3, . . . (A.14)

with associated functions

φ(x) = b2 sin
(2n −1)πx

2H
, for n = 1,2,3, . . . (A.15)

When λ= 0 the solution is a linear polynomial

φ(x) = c1x + c2 (A.16)

but the boundary conditions imply the trivial solution.

When λ< 0 the solution is the sum of a cosinus hyperbolicus and sinus hyperbolicus:

φ(x) = d1 cosh
p
−λx +d2 sinh

p
−λx (A.17)

but the boundary conditions again imply the trivial solution.

In conclusion the boundary value problem has only positive eigenvalues

λ =
(

(2n −1)π

2H

)2

, for n = 1,2,3, . . . (A.18)

with corresponding eigenfunctions

φ(x) = b2 sin
(2n −1)πx

2H
, for n = 1,2,3, . . . (A.19)

The time-dependent differential equation equals

d 2G

d t 2 = −λE

ρ
G . (A.20)
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and has general solution

G(t ) = e1 cos

√
E

ρ

(2n −1)πt

2H
+e2 sin

√
E

ρ

(2n −1)πt

2H
, for n = 1,2,3, . . . (A.21)

Combining both φ(x) and G(t ) for all allowable λ the solution becomes

v(x, t ) =
∞∑

n=1

(
fn cos

√
E

ρ

(2n −1)πt

2H
+ gn sin

√
E

ρ

(2n −1)πt

2H

)
sin

(2n −1)πx

2H
, (A.22)

The final step in the derivation is finding the unknowns fn and gn with help of the initial conditions

∞∑
n=1

fn sin
(2n −1)πx

2H
= −uE (x), (A.23)

∞∑
n=1

gn

√
E

ρ

(2n −1)π

2H
sin

(2n −1)πx

2H
= 0 (A.24)

By orthogonality of the sines the first initial condition results in

fn = −∫ H
0 uE (x)sin (2n−1)πx

2H d x∫ H
0 sin2 (2n−1)πx

2H d x
= 8

(
2πp0n(−1)n +2ρg H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
, for n = 1,2,3, . . . (A.25)

The second initial condition implies

gn = 0, for n = 1,2,3, . . . (A.26)

The unknown function v is therewith determined

v(x, t ) =
∞∑

n=1

8
(
2πp0n(−1)n +2ρg H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
cos

√
E

ρ

(2n −1)πt

2H
sin

(2n −1)πx

2H
, (A.27)

The solution to the non-homogeneous wave equation with initial and boundary condition then becomes

u(x, t ) = 1

2

ρg

E
x2 + p0 −ρg H

E
x +

∞∑
n=1

un cos

√
E

ρ

(2n −1)πt

2H
sin

(2n −1)πx

2H
, (A.28)

un = 8
(
2πp0n(−1)n +2ρg H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
(A.29)





B
ANALYTICAL SOLUTION TO

NON-HOMOGENEOUS DAMPED WAVE

EQUATION

Consider the following non-homogeneous damped wave equation with initial and boundary conditions
∂2u
∂t 2 + ρw g

ρ̃k
∂u
∂t = E

ρ̃
∂2u
∂x2 − g̃ , 0 < x < H , t > 0

u(x,0) = 0, ∂u
∂t (x,0) = 0,

u(0, t ) = 0, E ∂u
∂x (H , t ) = p0.

(B.1)

Let us first find the equilibrium solution uE (x), that satisfies
0 = E

ρ̃
∂2uE
∂x2 − g̃ , 0 < x < H

uE (0) = 0, E ∂uE
∂x (H) = p0.

(B.2)

From appendix A we know that the equilibrium equation has the following solution, taking notice of the
slightly different parameters

uE (x) = 1

2

ρ̃g̃

E
x2 + p0 − ρ̃g̃ H

E
x. (B.3)

Assume now that the solution to the wave equation is a superposition of the equilibrium solution uE and an
unknown function v

u(x, t ) = uE (x)+ v(x, t ). (B.4)

Then we can deduce that the unknown function v should satisfy
∂2v
∂t 2 + ρw g

ρ̃k
∂v
∂t = E

ρ̃
∂2v
∂x2 , 0 < x < H , t > 0

v(x,0) =−uE (x), ∂v
∂t (x,0) = 0,

v(0, t ) = 0, ∂v
∂x (H , t ) = 0.

(B.5)

This partial differential equation can be solved using the method of seperation of variables, where v(x, t ) =
φ(x)G(t ). The partial differential equation can then be rearranged and set equal to a separation constant, that
Haberman [20] proved to be real

φ
d 2G

d t 2 + ρw g

ρ̃k
φ

dG

d t
= E

ρ̃

d 2φ

d x2 G −→ ρ̃

EG

[
d 2G

d t 2 + ρw g

ρ̃k

dG

d t

]
= 1

φ

d 2φ

d x2 = −λ. (B.6)

55



56 B. ANALYTICAL SOLUTION TO NON-HOMOGENEOUS DAMPED WAVE EQUATION

This results in two ordinary differential equations, from which we first consider the spatial differential equa-
tion

d 2φ

d x2 = −λφ. (B.7)

According to appendix A the only non-trivial solutions that satisfy the boundary conditions φ(0) = 0 and
dφ
d x (H) = 0 are positive eigenvalues

λ =
(

(2n −1)π

2H

)2

, for n = 1,2,3, . . . (B.8)

with corresponding eigenfunctions

φ(x) = b2 sin
(2n −1)πx

2H
, for n = 1,2,3, . . . (B.9)

For the eigenvalue λ=
(

(2n−1)π
2H

)2
the time-dependent differential equation equals

d 2G

d t 2 + ρw g

ρ̃k

dG

d t
= −

(
(2n −1)π

2H

)2 E

ρ̃
G . (B.10)

The shape of the solution depends on the discriminant belonging to this problem

Dn =
(
ρw g

ρ̃k

)2

−4

(
(2n −1)π

2H

)2 E

ρ̃
(B.11)

For Dn > 0 the solution to the differential equation equals

G(t ) =
[

e1e−
p

Dn t
2 +e2e

p
Dn t
2

]
e−

ρw g t
2ρ̃k (B.12)

For Dn = 0 the solution to the differential equation equals

G(t ) = [e1 +e2t ]e−
ρw g t

2ρ̃k (B.13)

And finally, for Dn < 0 the solution to the differential equation equals

G(t ) =
[

e1 cos

p−Dn t

2
+e2 sin

p−Dn t

2

]
e−

ρw g t
2ρ̃k (B.14)

Combining both φ(x) and G(t ) for all allowable λ the solution becomes

v(x, t ) =
∞∑

n=1
IDn>0

[
fne−

p
Dn t
2 + gne

p
Dn t
2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn=0

[
fn + gn t

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn<0

[
fn cos

p−Dn t

2
+ gn sin

p−Dn t

2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H
(B.15)

where I A = 1 if statement A is true and I A = 0 if statement A is false.

The final step in the derivation is finding the unknowns fn and gn with help of the initial conditions

∞∑
n=1

IDn>0
[

fn + gn
]

sin
(2n −1)πx

2H

+
∞∑

n=1
IDn=0 fn sin

(2n −1)πx

2H

+
∞∑

n=1
IDn<0 fn sin

(2n −1)πx

2H
= −uE (x), (B.16)
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and

∞∑
n=1

IDn>0

[(
−ρw g

2ρ̃k
−
p

Dn

2

)
fn +

(
−ρw g

2ρ̃k
+
p

Dn

2

)
gn

]
sin

(2n −1)πx

2H

+
∞∑

n=1
IDn=0

[
−ρw g

2ρ̃k
fn + gn

]
sin

(2n −1)πx

2H

+
∞∑

n=1
IDn<0

[
−ρw g

2ρ̃k
fn +

p−Dn

2
gn

]
sin

(2n −1)πx

2H
= 0. (B.17)

Using a similar approach as in appendix A, the initial conditions result in

IDn>0
[

fn + gn
]+ IDn=0 fn + IDn<0 fn = 8

(
2πp0n(−1)n +2ρ̃g̃ H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
, (B.18)

and

IDn>0

[(
−ρw g

2ρ̃k
−
p

Dn

2

)
fn +

(
−ρw g

2ρ̃k
+
p

Dn

2

)
gn

]
+IDn=0

[
−ρw g

2ρ̃k
fn + gn

]
+ IDn<0

[
−ρw g

2ρ̃k
fn +

p−Dn

2
gn

]
= 0, (B.19)

for n = 1,2,3, . . ..

Filtering all fn and gn gives the unknown function v

v(x, t ) =
∞∑

n=1
IDn>0vn

[
1p
Dn

(
−ρw g

2ρ̃k
+
p

Dn

2

)
e−

p
Dn t
2 − 1p

Dn

(
−ρw g

2ρ̃k
−
p

Dn

2

)
e

p
Dn t
2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn=0vn

[
1+ ρw g t

2ρ̃k

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn<0vn

[
cos

p−Dn t

2
+ 1p−Dn

ρw g

ρ̃k
sin

p−Dn t

2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H
(B.20)

where

vn = 8
(
2πp0n(−1)n +2ρ̃g̃ H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
(B.21)

The solution to the non-homogeneous damped wave equation with initial and boundary condition then be-
comes

u(x, t ) = 1

2

ρ̃g̃

E
x2 + p0 − ρ̃g̃ H

E
x

+
∞∑

n=1
IDn>0un

[
1p
Dn

(
−ρw g

2ρ̃k
+
p

Dn

2

)
e−

p
Dn t
2 − 1p

Dn

(
−ρw g

2ρ̃k
−
p

Dn

2

)
e

p
Dn t
2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn=0un

[
1+ ρw g t

2ρ̃k

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H

+
∞∑

n=1
IDn<0un

[
cos

p−Dn t

2
+ 1p−Dn

ρw g

ρ̃k
sin

p−Dn t

2

]
e−

ρw g t
2ρ̃k sin

(2n −1)πx

2H
(B.22)

where

un = 8
(
2πp0n(−1)n +2ρ̃g̃ H −πp0(−1)n

)
H(

4n2 −4n +1
)

(2n −1)π3E
(B.23)





C
MATHEMATICAL TECHNIQUES

This Appendix introduces several mathematical techniques that are used during this thesis: Gaussian quadra-
ture in Section C.1 to integrate numerically, the assemblage procedure in Section C.2 to assemble global
matrices (vectors) from element matrices (vectors) and the lumping procedure in Section C.3 to construct
diagonal matrices from non-diagonal matricess.

C.1. GAUSSIAN QUADRATURE IN ONE DIMENSION

Consider a line segment [a,b] illustrated in Figure C.1 and a function g (x). Gaussian quadrature is an approx-
imation method that uses n Gauss points to approximate the integral of g (x) over the line segment:∫

Ω
g (ξ)dΩ≈

n∑
q=1

ωq g (ξq ) (C.1)

with weight ωq and position ξq for each Gauss point. Note that Gaussian quadrature with n Gauss points is
exact for polynomials up to order n.

-r r x
a b

Figure C.1: Line element [a,b]

In case of a single Gauss point we calculate its weight ωq and coordinate xq by assuming that Gaussian
quadrature is exact for polynomials up to order one∫ b

a
d x = b −a =ωq → ωq = b −a (C.2)∫ b

a
xd x = 1

2
(b −a)2 =ωq xq → xq = 1

2
(b −a) (C.3)

The location of the Gauss point is exactly in the middle of the line element, see Figure C.2.

-r b r ξ1

a 1
2 (a +b) b

Figure C.2: Single Gauss point in line element [a,b]
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C.2. ASSEMBLAGE PROCEDURE

For a global matrix A (vector F) and corresponding element matrices Ae (vectors Fe ) the assemblage proce-
dure can be written as

A =
ne∑

e=1
BT

e Ae Be

(
F =

ne∑
e=1

BT
e Fe Be

)
, (C.4)

with matrix Be a boolean matrix that maps a global vector into a vector associated with element e [21].

As an example we consider the three line elements in Figure C.3.

q q q q q q1 (1) 2 (2) 2 (1) 3 (2) 3 (1) 4 (2)

e = 1 e = 2 e = 3

Figure C.3: Three line elements with global and local node numbers

From the global and local node numbers we can derive the boolean matrices Be

B1 =
[

1 0 0 0
0 1 0 0

]
, B2 =

[
0 1 0 0
0 0 1 0

]
, B3 =

[
0 0 1 0
0 0 0 1

]
. (C.5)

When the element matrices Ae equal

A1 =
[

1 1
1 1

]
, A2 =

[
2 2
2 2

]
, A3 =

[
3 3
3 3

]
, (C.6)

then the global matrix A is contructed with the assemblage procedure

A =


1 1 0 0
1 3 2 0
0 2 5 3
0 0 3 3

 . (C.7)

C.3. LUMPING PROCEDURE

With the lumping procedure diagonal matrix is constructed from a non-diagonal matrix. The diagonal and
the non-diagonal matrix are denoted as the lumped matrix AL and the full matrix A respectively. Each diago-
nal entry of the lumped matrix equals the row sum of the full matrix

AL
i i =

n∑
j=1

Ai j . (C.8)

Consider for example the following full matrix

A =


4 0 1 1
2 9 1 0
0 1 3 0
1 2 0 5

 . (C.9)

Applying the lumping procedure results in the following lumped matrix

AL =


6 0 0 0
0 12 0 0
0 0 4 0
0 0 0 8

 . (C.10)



D
PROOF OF LEMMA 4.1

Lemma 4.1. Let a,b be real numbers that satisfy the inequality∣∣∣a ±
√

a2 − b
∣∣∣ ≤ 1. (D.1)

Then a,b satisfy

−1 − b ≤ 2a ≤ 1 + b and b ≤ 1. (D.2)

Proof. The proof of this lemma consists of three steps.

1) Assume a2 < b, such that
p

a2 −b is complex-valued. Then Equation D.1 implies∣∣∣a ±
√

a2 − b
∣∣∣2 =

∣∣∣a ± i
√

b − a2
∣∣∣2 = a2 + b − a2 = b ≤ 1. (D.3)

2) Assume a2 = b, such that
p

a2 −b = 0. Then Equation D.1 implies

−1 ≤ a ±
√

a2 − b = a ≤ 1. (D.4)

3) Assume a2 > b, such that
p

a2 −b is real-valued. Then Equation D.1 implies

−1 ≤ a +
√

a2 − b ≤ 1 and −1 ≤ a −
√

a2 − b ≤ 1. (D.5)

The sum of these inequalities renders

−1 ≤ a ≤ 1. (D.6)

These are consistent with

−1 ≤ a +
√

a2 − b and a −
√

a2 − b ≤ 1. (D.7)

This leaves us with

a +
√

a2 − b ≤ 1√
a2 − b ≤ 1 − a

a2 − b ≤ 1 − 2a + a2

2a ≤ 1 + b (D.8)
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and

−1 ≤ a −
√

a2 − b√
a2 − b ≤ 1 + a

a2 − b ≤ 1 + 2a + a2

−1 − b ≤ 2a. (D.9)

Combining the three steps renders

−1 − b ≤ 2a ≤ 1 + b and b ≤ 1. (D.10)

This is illustrated in Figure D.1, where the parabola represents the equality a2 = b.

Figure D.1: Area covered by the inequalities −1−b ≤ 2a ≤ 1+b and b ≤ 1.
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