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Summary

The goal of this thesis is to implement a multi-dimensional finite difference solver, which can solve one-,
two- and three-factor financial models in a fast and accurate way.

In the financial world most problems are initial value problems. To solve such problems with the finite
difference method the computational domain has to be truncated and appropriate boundary conditions
have then to be chosen. However, in the valuation of some financial instruments these boundary conditions
are not known a priori. In literature the ”linearity” condition (which means that it is assumed that the
second derivative is zero at the boundary of a truncated domain) is often used at boundaries where no
conditions are known. This, however, may be an incorrect assumption.

Since the payoff basically implies an asymptotic behavior at the boundaries, the choice of the bound-
ary condition has to be chosen as to avoid its influence on the solution on the whole domain. There are
two ways to achieve this:

1. The use of implicit methods with the ”PDE” boundary condition. In this approach the whole PDE is
discretized on the boundary grid node, using one-sided differences. In this way, all before mentioned
models become initial boundary value problems, which can be solved with implicit time-integration
methods [8].

2. The use of explicit time integration methods. In each time-integration step the boundary grid nodes
do not contribute to the solution in all further time-integration steps. For this reason, one does not
need to prescribe boundary conditions. Although it is the most natural strategy, it exhibits serious
limitations concerning stability.

It is seen that applying the ”PDE” boundary condition does not resolve the problem of the a priori
unknown boundary conditions in a satisfactory way. Therefore we will now focus on explicit methods for
which boundary conditions can be omitted.

There are three approaches proposed, which are all based on an explicit time integration scheme.
The first method is EulTree, which is based on the explicit Euler forward method. While this method
can solve the one- and two-factor Black–Scholes and Hull–White model on an exponentially stretched
grid, it can not be applied to all (multi-dimensional) models and all grids, so this method is not an
appropriate one. The second method proposed is RKCTree, which is based on the Runge–Kutta–
Chebyshev method. This method has the same disadvantages as EulTree and therefore the third
method is introduced: RKCTreeImpr, which is also based on the RKC-method. This last method is
well suited to solve one-, two- and three-factor models in a fast and accurate way. This model could,
however, also be improved to perform even better. This will be the subject of further study.
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Chapter 1

Introduction

1.1 The Black–Scholes model and drawbacks

It was in 1973 that Myron Scholes and Fischer Black came up with their Black–Scholes model to price
options. Until then a few over-the-counter options and some exchange-warrants were traded, but from
that moment on options exchanges were set up in Chicago, New York and Philadelphia; Later on in
London, Paris and Tokyo. Nowadays there are exchanges in many countries. Options are traded all over
the world.

The key assumption in the Black–Scholes model is that the return of the stock has a log-normal
distribution. However, it can be seen in the market that the returns typically do not have a log-normal
distribution. As Fischer Black remarks in [1], the assumptions are simple and unrealistic and when Black
and Scholes tried to make money with the formula by simply buying options that were under priced and
selling options that were overpriced, all they gained was a loss.

Another example where the Black–Scholes model is shown to price options insufficiently is after the
crash in 1987. On October 19, 1987, better known as Black Monday, major indices all over the world
dropped dramatically. Several reasons for the crash are given. Due to the strong economic growth,
inflation was becoming a serious concern. Therefore short term interest rates were raised to temper the
inflation. This had, however, also a serious effect on stocks. From that moment on major institutions
protected themselves against further stock dips by buying future contracts, which can compensate for
the losses in the stock market. The future market was taking in billions of dollars causing the market
to crash from instability. It was also the time when computer trading began to flourish. People started
to trust the new fast computational instruments blindly. Computers had taken over many tasks of the
traders and were programmed to automatically sell or buy stocks when certain trends prevailed. The
crash, started from instability, caused computers to sell stocks as fast as they could, rendering a snow
ball effect in the downward spiral and causing the stock market to crash even further. The instability
and the computer trading programs are believed to be two of the main reasons for the crash [2].

From that moment on participants did no longer believe in a log-normal return on the stock market,
but rather, since they feared a repetition of the crash, put more value on instruments expected to do well
in the event of large declines. Into the 1990’s put options deep out-of-the-money were relatively more
expensive than at-the-money calls and puts and out-of-the-money calls. This implies a higher volatility
for these kinds of options, also known as the volatility smile or skew, which did not exist before the crash
of 1987.

People tried to extend the Black–Scholes model such that it would capture the smile, while still
having realistic underlying dynamics. The Black–Scholes was adjusted in various ways, e.g. by local
volatility, displaced diffusion models, pure diffusion models, jump diffusion models. Others tried to
model the volatility by assuming that it varies in a random way (stochastic volatility), such as Heston [3],
Hull and White [19], Cox, Ingersoll and Ross [20]. The stochastic volatility models reflect the apparent
randomness of the volatility and they can capture and explain the smile/skew, the mean reverting nature
of volatility and other structures which are observed in the market. From these models (and other,
potential more realistic ones) the Heston model (which is a version of the square root process described
by Cox, Ingersoll and Ross) is the most popular. The Heston model will be discussed in Section 1.2.

One now could ask the question: If the volatility in the Black–Scholes model is so crucial, why would
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the other parameter in their model, the interest rate, be less important? As some financial instruments
have exposure to (forward) volatility skewness, some others may have exposure to the stochastic nature
of the interest rate. For that reason, one sometimes cannot rely on a deterministic instantaneous interest
rate model and one has to model it stochastically.

In the literature several suggestions to model the stochastic interest rate are given. Among these
models are, the Vasic̃ek, Cox–Ingersoll–Ross, Dothan, Black–Derman–Toy, Ho–Lee and Hull–White model
[7] of which the Hull–White model is the most popular one, because it can fit the observed market data
completely. The Hull–White model will be discussed in Section 1.3. A combination of both stochastic
volatility and stochastic interest rate is introduced in Section 1.4.

1.2 Extension to stochastic volatility: The Heston model

In the Black–Scholes model the value of the underlying financial product St (also called the spot value)
is modeled by a stochastic process. The spot evolves according to the stochastic differential equation
(SDE)

dSt = (r − q)Stdt + σStdW, (1.1)

with a Wiener process W , r the constant interest rate, q the constant dividend yield and σ > 0 describing
the volatility.

In stochastic volatility models, σ in (1.1) is replaced by the square root of a variance which satisfies a
second stochastic differential equation. In this thesis the Heston stochastic volatility model will be used.
The Heston model is a mean reverting Ornstein–Uhlenbeck process (as observed in the market), where
the dynamics for the underlying equity St and the Heston variance (square root of the volatility) vt are
given by:

dSt = (r − q)Stdt +
√

vtStdW1, (1.2)

dvt = −λ(vt − v)dt + η
√

vtdW2, (1.3)

ρ12 = Cov(dW1, dW2)/dt, (1.4)

where Cov(·, ·) is the covariance, W1 and W2 are Wiener processes, λ is the speed of reversion of the
instantaneous variance vt to its long term mean v and η is the volatility of the volatility. Further ρ12 is
the correlation between random stock price returns and changes in vt.

The correlation ρ12 between the underlying equity and the volatility can also be interpreted as the
distribution of the equity’s log-return. Different ρ12 give different distributions. If ρ12 > 0 then the
volatility increases as the equities price/return increases, causing the right tail to spread and the left tail
to squeeze. If ρ12 < 0 it is the other way around. ρ12 effects the skewness of the density function, which
is illustrated in Figure 1.1 [4].

Other than the skewness, ρ12, also effects the shape of the implied volatility surface and it can imply
a variety of volatility surfaces, thus overcoming the shortcoming of constant volatility in the Black–Scholes
model.

The other parameters in the Heston model λ, v and η also influence the distribution of the asset
price. λ can be seen as the degree of ”volatility clustering”. In Figures 1.2, 1.3 and 1.4 the sensitivity of
the parameters on the distribution of the underlying value is shown. The λ, v and η parameters influence
the variance and the kurtosis.

The main reason why the Heston model is so popular is due to the existence of a quasi closed form
solution for European options [3]. In Figure 1.5 the option prices for a European call option in the
Heston model with various parameters are plotted. ”BS” indicates the standard Black-Scholes solution
with S0 = 100, K = 100, v =

√
0.183, r = log(1.0375), t = 0, T = 2 and all parameters in the

Heston model set to zero. ”Heston with positive correlation” refers to the same problem but now with
λ = 1.29, v = 0.2232, η = 0.431, ρ = 0.514. ”Heston with negative correlation” refers to the same
problem with ρ = −0.514. From Figure 1.5 it can be concluded that the higher the correlation the
more expensive the in-the-money options become, while the lower the correlation the more expensive the
out-of-the-money option become. This is consistent with Figure 1.1 which states that the probability of
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Figure 1.1: Distribution of asset price under Heston model. S0 = 10, r = 0, q = 0, λ = 0.01, v = 2, η =
0.1, v0 = 0.01.
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Figure 1.2: Distribution of asset price under Heston model. S0 = 10, r = 0, q = 0, ρ = 0, v = 2, η = 0.1.
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Figure 1.3: Distribution of asset price under Heston model. S0 = 10, r = 0, q = 0, λ = 0.01, ρ = 0, η = 0.1.

a high asset price increases if the correlation becomes higher. As a consequence the option price becomes
higher.

In abstract terms, a pricing equation (or pricing partial differential equation), is the ”law” of evolu-
tion of the value of the option. It allows for the valuation of options with a general payoff at maturity:
The pricing equation is solved as a ”terminal value problem” in which the terminal condition is given by
the payoff function. The pricing equation is derived from the stochastic differential equation (SDE).



4 Introduction

8.5 9 9.5 10 10.5 11 11.5
0

1000

2000

3000

4000

5000

6000

asset value	

nu
m

be
r 

of
 s

im
ul

at
io

ns

eta=0
eta=0.2
eta=0.9

Figure 1.4: Distribution of asset price under Heston model. S0 = 10, r = 0, q = 0, λ = 0.01, ρ = 0, v = 2.

50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

equity price

op
tio

n 
pr

ic
e

value of a european call−option

BS 
Heston, positive correlation
Heston, negative correlation

Figure 1.5: Call option prices in the Heston model.

There are two approaches to find the pricing equation for the two-factor model with stochastic
volatility and an equity underlying. The first one is by setting up a portfolio Π containing the option
being priced denoted by V (S, v, t), −∆ of the underlying equity and −∆1 of another equity whose value
depends on volatility. After this portfolio is constructed one hedges the portfolio to make it risk free and
since it is risk-free the return dΠ of the portfolio should equal the return under the risk free rate, i.e. dΠ
= rΠdt. Filling in all terms gives the pricing equation for the two-factor model. In [3] this approach is
followed and the pricing equation for the Heston model is obtained.

The second approach is applying the Feynman–Kač theorem [6]. Feynman and Kač derived a
relationship between stochastic differential equations and partial differential equations.

Theorem 1.1 (Feynman-Kač) Suppose the underlying processes y1(t), y2(t), .., yn(t) follow the stochas-
tic differential equation

dyi = µi(y1, y2, .., yn, t)dt + σi(y1, y2, .., yn, t)dWi. (1.5)

Then the function

g(y1, y2, .., yn, t) = Ey1,y2,..,yn,t[f(y1(T ), .., yn(T ))] (1.6)

is given by the solution of the partial differential equation
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∂g

∂t
+

n∑

i=1

µi
∂g

∂yi
+

1

2

n∑

i,j=1

ρijσiσj
∂2g

∂yi∂yj
= 0, (1.7)

subject to

g(y1, y2, .., yn, T ) = f(y1, y2, .., yn), (1.8)

where ρij = Cov(dWi, dWj)/dt.

Let y1 = St, y2 = vt and let the price of a claim on St paying f(ST , vT ) at maturity be given by

V (St, vt, t) = ESt,vt,t

(
f(ST , vT )e−

∫
T

t
r(s)ds

)
. (1.9)

Since r is constant, the term e−
∫

T

t
r(s)ds can be taken out of the expectation. Here after the following

function can be defined

V (St, vt, t) = e−r(T−t)U(St, vt, t), (1.10)

where U(St, vt, t) = ES,v,t (F (T )). Now Theorem 1.1 can be applied to the function U(St, vt, t). Trans-
forming the U(St, vt, t) back to V (St, vt, t) gives the pricing equation for the two-factor model

(H)





∂V

∂t
+ (r − q)S

∂V

∂S
− λ(v − v)

∂V

∂v
− rV +

1

2
vS2 ∂2V

∂S2

+ρ12Svη
∂2V

∂S∂v
+

1

2
η2v

∂2V

∂v2
= 0, S ∈ (0,∞), v ∈ (0, 1), t ∈ (0, T ).

V (S, v, T ) = f(S, v), S ∈ (0,∞), v ∈ (0, 1).

1.3 Extension to stochastic interest: The Hull–White model

The short term interest rate rt will be modelled using the Hull–White model, for which the underlying
dynamics are given by

drt = (θ(t) − art)dt + σrdW, (1.11)

where θ is a function of time determining the average direction in which rt moves (θmax ≈ 0.07 ). The
θ is chosen such that movements in rt are consistent with todays zero coupon yield curve. The mean
reversion rate a is usually taken constant (a ≈ 0.05) and σr is the annual standard deviation of the short
rate ( σr ≈ 0.01 ). The short term interest rate volatility σr is determined via calibration to caplets.

For the two-factor Hull–White model the dynamics for the underlying value St and the interest rate
rt are given by:

dSt = (rt − q)Stdt + σStdW1,

drt = (θ(t) − art)dt + σrdW2,

ρ12 = Cov(dW1, dW2)/dt. (1.12)

Applying the Feynman–Kač Theorem to (1.12) gives the pricing equation. However, the derivation is not
as straightforward as in the stochastic volatility case, since now the interest rate rt is not constant and

the term e−
∫

T

t
r(s)ds can not be pulled out of the expectation. This can be solved by defining an auxiliary

process of the form dz = −r(t)dt. The function V (St, vt, rt, t) is then equal to e−zESt,vt,rt,z,t[f(T )ez(T )].
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Defining V (St, vt, rt, t) = e−zU(St, vt, rt, t) and applying Theorem 1.1 to U(St, vt, rt, t) then gives the
desired result. The whole derivation can be read in [6] or [5] and the pricing equation reads

(H–W)





∂V

∂t
+ (r − q)S

∂V

∂S
+ (θ − ar)

∂V

∂r
− rV +

1

2
σ2S2 ∂2V

∂S2

+ρ12Sσσr
∂2V

∂S∂r
+

1

2
σ2

r

∂2V

∂r2
= 0, S ∈ (0,∞), r ∈ (−∞,∞), t ∈ (0, T ).

V (S, r, T ) = f(S, r), S ∈ (0,∞), r ∈ (−∞,∞).

1.4 Hybrid model

In this section we will derive the pricing equation for the three-factor model with stochastic interest,
stochastic volatility and an equity underlying.
The dynamics for the underlying equity St, the interest rate rt and the variance vt are given by:

dSt = (rt − q)Stdt +
√

vtStdW1, (1.13)

drt = (θ(t) − art)dt + σrdW2, (1.14)

dvt = −λ(vt − v)dt + η
√

vtdW3. (1.15)

ρij = Cov(dWi, dWj)/dt. (1.16)

The price of a claim on St paying F (ST , rT , vT ) at maturity is given by

V (St, vt, rt, t) = ESt,rt,vt,t

(
f(ST , rT , vT )e−

∫
T

t
r(s)ds

)
. (1.17)

The extension to the hybrid model is now relatively easy. Applying Theorem 1.1 and taking the auxiliary
process for the interest into account we obtain the following pricing equation for the three-factor Heston–
–Hull–White model:

(H––H–W)





∂V

∂t
+ (r − q)S

∂V

∂S
+ (θ(t) − ar)

∂V

∂r
− λ(vt − v)

∂V

∂v
− rV +

1

2
vS2 ∂2V

∂S2

+ρ12S
√

vσr
∂2V

∂S∂r
+ ρ13Svη

∂2V

∂S∂v
+

1

2
σ2

r

∂2V

∂r2
+ ρ23σrη

√
v

∂2V

∂r∂v

+
1

2
η2v

∂2V

∂v2
= 0, S ∈ (0,∞), r ∈ (−∞,∞), v ∈ (0, 1), t ∈ (0, T ).

V (S, v, r, T ) = f(S, v, r), S ∈ (0,∞), r ∈ (−∞,∞), v ∈ (0, 1).

1.5 Outline of this thesis

The goal of this thesis is to implement a multi-dimensional finite difference solver, which can solve initial
value problems such as (H) (H–W) and (H––H–W) in a fast and accurate way. A problem which occurs
when using a finite difference solver is that the computational domain must be truncated and as a
consequence boundary values are needed. These boundary values are not always known and therefore
we prefer the solver to be independent of the boundary values. In Chapter 2 we will introduce methods
which solve the initial value problems with a finite difference approach without boundary conditions.
After these methods are discussed they will be applied to the one-factor Black–Scholes and Hull–White
models in Chapters 3 and 4 to analyse the performance on one-factor models. It turns out that one of
the proposed methods is especially well suited for solving initial value problems and with this method
the two-factor models Black–Scholes, (H) and (H–W) will be solved in Chapters 5, 6 and 7. An extension
to three-factor models is made in Chapter 8.



Chapter 2

The finite difference method for
option valuation

In this chapter we discuss numerical solution strategies for (H), (H–W) and (H––H–W). We focus on a
finite difference implementation.

Generally, in numerical simulations the computational domain is truncated and appropriate bound-
ary conditions have to be chosen. However, in the valuation of some financial instruments these boundary
conditions are not known a priori. In literature the ”linearity” condition (which means that it is assumed
that the second derivative is zero at the boundary of a truncated domain) is often used at boundaries
where no conditions are known. This, however, may be a wrong assumption. If we take for example a
variance swap its payoff does not behave linearly at the boundaries.

Since the payoff basically implies an asymptotic behavior at the boundaries, the choice of the bound-
ary condition has to be chosen as to avoid its influence on the solution on the whole domain. There are
two ways to achieve this:

1. The use of implicit methods with the ”PDE” boundary condition. In this approach the PDE is
discretized on the boundary grid nodes, using one-sided differences. In this way, all before mentioned
models become initial boundary value problems, which can be solved by implicit time-integration
methods [8].

2. The use of explicit time integration methods. In each time-integration step the boundary grid nodes
do not contribute to the solution in all further time-integration steps. For this reason, one does not
need to prescribe boundary conditions. Although it is the most natural strategy, it exhibits serious
limitations concerning stability.

In Section 2.2 we discuss strategy 1 and strategy 2 is explained in Section 2.3. First of all some basic
spatial discretization will be introduced in the next section.

2.1 Spatial discretization

Consider the general one-dimensional differential operator L defined by

L(V ) := σ(S, t)
∂2V

∂S2
+ µ(S, t)

∂V

∂S
− r(t)V, (2.1)

where σ(S, t) is the volatility term, µ(S, t) the drift term, and r(t) the discounting term. Further,
let {Si}N+1

i=1 be the set of grid nodes representing some (non-uniform) partition of the yet unspecified
truncated domain (Smin := S1, SN+1 =: Smax). Define Vi := V (Si), V = (V1, .., VN+1)

T , and ∆Si :=
Si+1 − Si. Then the first- and second-order spatial derivatives will be approximated by second order
accurate three-point stencils. The first derivative in the interior grid nodes Si is approximated as a linear
combination of the neighboring values, i.e.

∂V

∂S
(Si) ≈ αi

−1Vi−1 + αi
0Vi + αi

1Vi+1, i = 2, .., N. (2.2)
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Figure 2.1: Discretization of the interior points.

The terms Vi−1 = V (Si − ∆Si−1) and Vi+1 = V (Si + ∆Si) can be expanded in Taylor series

V (Si − ∆Si−1) = Vi − ∆Si−1V
′
i + (∆Si−1)

2 1

2
V ′′

i − (∆Si−1)
3 1

6
V ′′′

i + O(∆S4
i−1), (2.3)

V (Si + ∆Si) = Vi + ∆SiV
′
i + (∆Si)

2 1

2
V ′′

i + (∆Si)
3 1

6
V ′′′

i + O(∆S4
i ). (2.4)

After substitution of (2.3) and (2.4) in (2.2) the αi
−1, α

i
0, α

i
1 have to be chosen such that the first derivative

is approximated by second order accuracy. Working out all terms it can be easily shown that second
order accuracy is achieved if αi

−1, α
i
0 and αi

1 satisfy the linear system



1 1 1
−∆Si−1 0 ∆Si
1
2∆S2

i−1 0 1
2∆S2

i







αi
−1

αi
0

αi
1


 =




0
1
0


 . (2.5)

The solution of this system is given by

αi
−1 =

∆Si

(∆Si + ∆Si−1)∆Si−1
,

αi
0 =

−(∆Si−1 − ∆Si)

∆Si∆Si−1
,

αi
1 =

∆Si−1

(∆Si + ∆Si−1)∆Si
.

For convection dominated problems, the first derivative cannot be approximated by the central scheme,
because it may lead to unstable solutions. In this case the first-order upstream discretization is used. The
”flow” direction depends on the coefficient in front of the first derivative, µi := µ(Si, t), i = 1, .., N + 1,
and the formula for the upstream discretization is given by

µi
∂V

∂S
(Si) ≈





µi
Vi+1−Vi

∆Si
µi > 0,

µi
Vi−Vi−1

∆Si−1
µi < 0.

(2.6)

This can again be written in the form (2.2) with

αi
−1 = −1

2
(

µi

∆Si
− | µi

∆Si−1
|),

αi
1 =

1

2
(

µi

∆Si
+ | µi

∆Si−1
|),

αi
0 = −αi

−1 − αi
1.

Similarly, the second derivative will be approximated by

∂2V

∂S2
(Si) ≈ βi

−1Vi−1 + βi
0Vi + βi

−1Vi+1, i = 2, .., N,

where the coefficients are now given by

βi
−1 =

2

(∆Si + ∆Si−1)∆Si−1
,

βi
0 =

−2

(∆Si + ∆Si−1)∆Si−1∆Si
,

βi
1 =

2

(∆Si + ∆Si−1)∆Si
.
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Let A be the discretization matrix of the spatial operator L. Thus A contains the discretization of the
interior and the boundary points and is of the form

A =




γ1 γ2 γ3 γ4 γ5 0 . . . 0

a2 b2 c2 0 0 0
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... 0 0 0 aN bN cN

0 . . . 0 ǫN−3 ǫN−2 ǫN−1 ǫN ǫN+1




. (2.7)

The elements ai, bi and ci, i = 2, .., N , depend on the interior discretization, while γ1, .., γ5 and ǫN−3, .., ǫN+1

depend on the boundary conditions used.
In the following two sections we consider the semi-discretization problem





dV

dt
+ AV = 0, t ∈ (0, T ),

V(t = T ) = V0.

(2.8)

This problem is solved backwards in time, since for our problems the value is given at t = T from which
we want to solve back to t = 0.

2.2 Initial boundary value problems and implicit methods

The first strategy to solve (2.8) is to use the implicit method with the ”PDE” boundary condition. The
”PDE” boundary condition will influence the first and last row of the semi-discretization matrix A (2.7)
depending on the discretization used. The boundary discretizations are obtained in a similar way as the
interior point discretization, but now by using only one-sided differences. Suppose the approximation of
the first derivative at the boundary is given by

∂V

∂S
(S1) ≈ α1

−1V1 + α1
0V2 + α2

1V3. (2.9)

Then second order accuracy is reached if the following linear system is satisfied




1 1 1
0 ∆S1 ∆S1 + ∆S2

0 1
2∆S2

1
1
2 (∆S1 + ∆S2)

2







α1
−1

α1
0

α1
1


 =




0
1
0


 . (2.10)

The solution of this system is given by

α1
−1 =

−(2∆S1 + ∆S2)

(∆S2 + ∆S1)∆S1
,

α1
0 =

−(∆S1 − ∆S2)

∆S2∆S1
,

α1
1 =

−∆S1

(∆S2 + ∆S1)∆S2
.

First- and second-order accurate first and second derivatives are obtained in a similar way. After the
boundaries are discretized the semi-discretization problem (2.8) is obtained and this can be solved with
an implicit method, see Section 3.1.

It will, however, turn out that, as a consequence of the discretization at the boundaries using one-
sided differences, the spectrum of the semi-discretization matrix A will contain positive eigenvalues, see [8].
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This is something that should be avoided, since stability is then very hard to achieve. Another drawback
of this approach is that when an extension is made to higher-dimensional models, the computational time
will increase significantly because a simple tridiagonal solver cannot be used.

The second remark regarding the validity of the ”PDE” boundary condition concerns the nature of
the PDE. Suppose that µ(S, t) > 0, where µ(S, t) is the drift term as defined in (2.1). Then the convection
term at the right boundary is positive and since the problem is solved backwards in time, this means that
this boundary is an inflow boundary. Hence, the discretization at the inflow boundary is opposite to the
flow direction.

The last point is the choice of one-sided difference stencils. Rewriting the first derivative on the left
boundary, using a uniform grid, gives

∂V

∂S
(S1) ≈

V2 − V1

∆S
=

V2 − V0

2∆S
+

∆S

2

V2 − 2V1 + V0

(∆S)2
,

where V0 is a virtual point. This shows that some more diffusion is added to the problem at the left
boundary and at the right boundary diffusion is subtracted. This negatively influences the accuracy of
the solution.

Closer analysis of the first order approximation of the second derivative yields

∂2V

∂S2
(S1) ≈

V3 − 2V2 + V1

(∆S)2
=

V2 − 2V1 + V0

(∆S)2
+ (∆S)

V3 − 3V2 + 3V1 − V0

(∆S)3
,

where the last term is a numerical approximation to the third derivative. So here dispersion is added to
the problem.

We conclude that applying the ”PDE” boundary condition does not resolve the problem of the
a priori unknown boundary conditions in a satisfactory way. Therefore we will now focus on explicit
methods for which boundary conditions can be omitted.

2.3 Initial value problems and trees

In this section explicit time-integration methods are discussed. We will show that this approach does
not require boundary conditions and is therefore suitable for solving initial value problems. Drawbacks
of this approach are a stringent stability condition, leading to extremely small time steps. Therefore
we propose a new family of explicit methods (Runge–Kutta–Chebyshev schemes [9]) which have weaker
stability restrictions regarding the time step. The latter approach, albeit with some modifications, can
be applied to all models (H), (H–W) and (H––H–W).

2.3.1 Explicit methods (Euler forward) and its limitations

For a three-point discretization stencil, explicit time-integration of (2.8) with constant coefficients using
Euler’s method can be described by the following recursive formula

(1 − r∆t)V n+1
i = [pi,i−1V

n
i−1 + pi,iV

n
i + pi,i+1V

n
i+1], i = 1, .., N + 1, n = 0, .., ⌊T/∆t⌋, (2.11)

or in the matrix vector notation

(1 − r∆t)Vn+1 = (I + ∆tA)Vn =: BVn,

V0 = V0. (2.12)

where

B =




. . .
. . . 0

. . .
. . .

. . .

pi,i−1 pi,i pi,i+1

. . .
. . .

. . .

0
. . .

. . .




. (2.13)
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The matrix elements pi,i−1, pi,i, pi,i+1, depend on the spatial discretization and will be discussed in
Chapters 3 and 4.

If this problem is solved on a complete grid, boundary conditions are needed. However, this is what
we want to avoid and instead of solving the problem on a complete grid we will use a tree structured grid
as shown in Figure 2.2. Starting from the green nodes solving for the solution at the red node it is shown
that boundary conditions are not necessary, since they do not influence the solution at the red point.
Thus all information from the past is known and no information from the future is needed to calculate
the new value. By stripping off these apparently redundant boundary grid nodes, the problem is solved
backwards in time toward the spot price, or at least toward an interval containing the spot price. Hence
this way of solving the problem requires N ≥ 2Q, where N + 1 denotes the number of grid nodes and
Q := ⌊T/∆t⌋ the number of time steps. Thus explicit methods may be used on a tree structured grid,
which resolves the problem of the a priori unknown boundary conditions and saves computational time.

Figure 2.2: Tree grid approach.

Stability

In finance it is well-known that trinomial trees and the explicit Euler forward method are related, see for
example [15]. The trinomial tree is based upon the idea that at each time level there are probabilities to
jump to the nodes in the next time level. Probabilities have to be positive then.

Consider again difference equation (2.12). Suppose A can be diagonalized, i.e. S−1AS = diag(λ1, .., λN+1).
Then the amplification matrix B = B(∆tA) has the following properties:

B(∆tA) is diagonalizable,

S−1AS = M with M = diag(Q̃(∆tλ1), .., Q̃(∆tλN+1)),

Q̃(∆tλ) is the amplification factor of the numerical method.

The numerical method is stable if the inequalities

|Q̃(∆tλi)| ≤ 1 (2.14)

hold for all 1 ≤ i ≤ N +1. For the Euler method, the amplification factor is given by Q̃(∆tλ) = 1+∆tλ.
We prove

Theorem 2.1 (Sufficient conditions for stability) Scheme (2.11) is stable in the above-mentioned
sense if the following holds:

pi,i−1, pi,i, pi,i+1 ≥ 0,
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pi,i−1 + pi,i + pi,i+1 = 1.

Proof. We use the Gershgorin circle theorem [16] to locate the eigenvalues of matrix B defined in
(2.13). Let G be an arbitrary matrix with elements gij , and let Ci denote the circle in the complex plane
with center gii and radius

Ri =

N+1∑

j=1

j 6=i

|gij |, (2.15)

i.e. Ci = {z ∈ C : |z − gii| ≤ Ri}. The Gershgorin circle theorem then states that the eigenvalues of G

are contained within the union of circles Ci, i.e.
⋃N+1

i=1 Ci. Applying Gershgorin to matrix B yields

Ri = |pi,i+1| + |pi,i−1| = pi,i+1 + pi,i−1 (2.16)

since pi,i+1 and pi,i−1 are both positive. The first and last row of B (the boundary conditions) give only
smaller radii and are hence omitted in the proof. In particular we have

Ci = {z ∈ C : |z − pi,i| ≤ pi,i+1 + pi,i−1}. (2.17)

Using pi,i+1 + pi,i−1 + pi,i = 1, it is easily shown that

Ci ⊆ {z ∈ C : |z| ≤ 1}, 1 ≤ i ≤ N + 1, (2.18)

which is just the condition for stability. See Figure 2.3 for a geometrical picture in the unit circle. �

Figure 2.3: Gershgorin circles.

For stiff problems, the positivity condition for pi,i generally leads to very small time steps. This will
be illustrated in Chapters 3 and 4. Therefore we will focus on another explicit method, which weakens
the restrictions as derived above.

2.3.2 Weakening restrictions: The Runge–Kutta–Chebyshev method

In the previous section the Euler explicit method was discussed. It is known that this method has severe
restrictions and since we would like to weaken these restrictions, an alternative explicit time integration
method will be proposed.

One of the properties of this time discretization method has to be that the stability region includes
a large part of the real negative axis. This allows us to deal with stiff problems. Therefore the Runge–
Kutta–Chebyshev methods are proposed [9], since this time discretization method has the property that
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the stability region can cover as much of the real negative axis as needed. The method is however not
very well suited if the spectrum of the discretization matrix contains imaginary eigenvalues.

Since the RKC method is an explicit method it is to be expected that a time step restriction is
prescribed to keep the method stable. However with this method the number of grid nodes N +1 as well
as the number of time steps Q can be chosen independently. To obtain stability for each integration step,
from tn to tn+1, the number of stages s has to be chosen sufficiently large. A larger number for s does,
however, not contribute to a higher accuracy.

Let the semi-discretization of some pricing equation be given by
{

y′(t) = F(t,y(t)), t > 0,
y(0) = y0.

(2.19)

Let yn denote the numerical approximation to the exact solution of the semi-discrete system (2.19) at
t = tn, let τ be the stepsize from tn to tn+1 and furthermore let Fk = F(tn + ckτ,Wk). Then the second
order explicit RKC method has the form

W0 = yn,

W1 = W0 + µ̃1τF0,

Wj = (1 − µj − νj)W0 + µjWj−1 + νjWj−2 + µ̃jτFj−1 + γ̃jτF0, j = 2, .., s,

yn+1 = Ws.

All coefficients are available in analytical form.

µ̃1 = b1ω1,

µj =
2bjω0

bj−1
, νj =

−bj

bj−2
, µ̃j =

2bjω1

bj−1
, γ̃j = −aj−1µ̃j , j = 2, .., s,

cj = bjω1T
′
j(ω0),

where

Tj(x) = 2xTj−1(x) − Tj−2(x), T0(x) = 1, T1(x) = x,

aj = 1 − bjTj(ω0),

b0 = b2, b1 =
1

ω0
, bj =

T ′′
j (ω0)

(T ′
j(ω0))2

,

ω0 = 1 +
ǫ

s2
, ω1 =

T ′
s(ω0)

T ′′
s (ω0)

.

The damping parameter ǫ ≥ 0 influences the stability region. Taking ǫ small gives a long and small region
of stability in the left half space, while taking ǫ large gives a wider but shorter strip as region of stability
in the left half space.

Stability

For a fixed timestep ∆t and for some fixed grid, the RKC method is stable if the number of stages s
satisfies

s >

√
∆tρ(F′) + 1

p1
, (2.20)

where ρ(F′) is the spectral norm of the Jacobian F′ and p1 depends on ǫ (in most cases ǫ will be taken
zero, the corresponding value of p1 is then 2/3). It must be emphasized that the stability region regarding
the real axis increases quadratically with s.

A good approximation for ρ(F′) is needed. For this purpose we use again the Gershgorin circle
theorem. For real spectra, a relatively sharp estimate for the spectral radius can be found by taking the
diameter of the largest Gershgorin circle. In this largest circle, complex eigenvalues may exist. If the
imaginary part of these complex eigenvalues is too large, then the RKC method may become unstable
since these complex eigenvalues may not be contained in its stability region. Therefore we assume in the
sequel of this thesis that the imaginary parts (if they exist) of the eigenvalues of the semi-discretization
matrix A are small.



14 The finite difference method for option valuation

RKC method and the tree approach

The RKC method can be fit in the tree approach in two ways. The first way is to set the number of grid
nodes N greater or equal to 2Qs, where the number of stages s is determined using (2.20). After each
stage the outer points will be stripped off, as they do not contribute the final solution in the spot and to
reduce the computational complexity. This approach will be called RKCTree. However, the problem
with this approach is that it is hard to match the number of grid nodes with the number of time steps
and stages. The convergence is expected to be poor, because the grid has to be chosen in a very special
way. Therefore a new approach is suggested in which stability can be guaranteed in all cases. Instead of
stripping off the outer points after each stage, the outer points are stripped off after each time step and
the boundary points are obtained by extrapolating the internal points. Therefore we can take N ≥ 2Q,
as for the Euler method. This approach will be referred to as RKCTreeImpr. In Figure 2.4 a sketch of
this method is depicted. The green nodes are the initial values of the problem. The black nodes are the
internal nodes and the blue nodes are the nodes that are extrapolated from the internal nodes. There

Figure 2.4: Improved tree grid approach.

are a number of ways to extrapolate these points such as linear, quadratic and cubic extrapolation. They
will be explained below. Suppose that S1, .., Sn+1 distinct grid nodes are given with the corresponding
function values V (S1), .., V (Sn+1) then there exists a unique polynomial P (S) of at most n with

V (Sk) = P (Sk), k = 1, .., n + 1. (2.21)

This polynomial is given by

P (S) =

n+1∑

i=1

V (Sk)Ln,k(S), (2.22)

where

Ln,k(S) =

n+1∏

i=1

i6=k

S − Si

Sk − Si
. (2.23)

The general approach is to construct the Lagrange polynomial using an appropriate number n of internal
points (linear n = 2, quadratic n = 3, cubic n = 4). Then the extrapolated grid node is put into the
Lagrange polynomial to obtain the extrapolated value [12].

As a consequence of the extrapolation, the problem can not be solved back to a single point, because
the boundary points must be extrapolated making use of only the interior points. Therefore the number
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of grid intervals N will be taken equal to

linear : N ≥ 2Q + 2,

quadratic : N ≥ 2Q + 4,

cubic : N ≥ 2Q + 6. (2.24)

Apart from the fact that enough grid nodes should be taken such that the extrapolation makes sense it
also has to be noted that RKCTreeImpr cannot be solved back to one point, since it is observed that
processing backwards toward one single point will cause the solution to diverge too much from the full
grid solution. This is caused by the fact that the extrapolation is linear, but the solution is not. As a
consequence we have to solve to the smallest interval for which the solutions at the end nodes has minimal
influence on the solution at the internal nodes [18].

2.4 Extension to higher-dimensional models

In the previous sections the discretization and the time-integration methods were discussed to solve a
one-factor model. However, the goal of this thesis is to solve higher-dimensional models.

To solve higher-dimensional models the same approach can be applied. There are, however, some
additional features which will be discussed below. Take for example the following general two-dimensional
spatial operator L defined by

L(V ) := σ1(S1, S2, t)
∂2V

∂S2
1

+ ζ1(S1, S2, t)
∂2V

∂S1S2
+ σ2(S1, S2, t)

∂2V

∂S2
2

+ (2.25)

µ1(S1, S2, t)
∂V

∂S1
+ µ2(S1, S2, t)

∂V

∂S2
− r(t)V = 0.

As can be seen in (2.25), the higher-dimensional problem has the same terms in every direction as in the
one-dimensional case. The main difference is, however, that crossterm(s) occur. So, while the drift and
volatility terms in every direction can be discretized using the adjusted central scheme or upwind scheme,
a discretization for the crossterm(s)has to be given to complete the discretization.

The discretization of the crossterm(s) will be done by taking the derivative in one direction and take
the derivative of the result in the other direction using the adjusted central scheme. This leads to the
second order accurate nine-point stencil




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , (2.26)
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where

a11 =
∆S2,k+1

∆S2,k+2(∆S2,k+1 + ∆S2,k+2)

−∆S1,j+2

∆S1,j+1(∆S1,j+1 + ∆S1,j+2)

a12 =
∆S2,k+1

∆S2,k+2(∆S2,k+1 + ∆S2,k+2)

−∆S1,j+1 − ∆S1,j+2

∆S1,j+1∆S1,j+2

a13 =
∆S2,k+1

∆S2,k+2(∆S2,k+1 + ∆S2,k+2)

∆S1,j+1

∆S1,j+2(∆S1,j+1 + ∆S1,j+2)

a21 =
∆S2,k+1 − ∆S2,k+2

∆S2,k+1∆S2,k+2

−∆S1,k+2

∆S1,k+1(∆S1,k+1 + ∆S1,k+2)

a22 =
∆S2,k+1 − ∆S2,k+2

∆S2,k+1∆S2,k+2

−∆S1,k+1 − ∆S1,k+2

∆S1,k+1∆S1,k+2

a23 =
∆S2,k+1 − ∆S2,k+2

∆S2,k+1∆S2,k+2

∆S1,k+1

∆S1,k+2(∆S1,k+1 + ∆S1,k+2)

a31 =
∆S2,j+2

∆S2,j+1(∆S1,j+1 + ∆S1,j+2)

−∆S1,k+2

∆S1,k+1(∆S1,k+1 + ∆S1,k+2)

a32 =
∆S2,j+2

∆S2,j+1(∆S1,j+1 + ∆S1,j+2)

−∆S1,k+1 − ∆S1,k+2

∆S1,k+1∆S1,k+2

a33 =
∆S2,j+2

∆S2,j+1(∆S1,j+1 + ∆S1,j+2)

∆S1,k+1

∆S1,k+2(∆S1,k+1 + ∆S1,k+2)
.

When a uniform grid is taken in both directions the elements of the stencil reduce to

a11 =
1

4∆S1∆S2

a13 =
−1

4∆S1∆S2

a31 =
−1

4∆S1∆S2

a33 =
1

4∆S1∆S2
.

Discretization of a higher-dimensional model will influence the discretization matrix (2.27). Extra off
diagonals are introduced in the matrix, which will lead to the following matrix structure in the two-
dimensional case

A =




. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .




. (2.27)

The resulting semi-discretization can be solved by means of explicit schemes as for the one-factor models,
by taking setting the number of grid nodes in each direction equal or greater than 2Q, where Q is the
number of time steps.

2.5 Computational costs

It is hard to compare the different methods by the amount of time it takes to calculate the solution, since
these computational times depend on the implementation and time-measurement tools. Therefore, instead
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of looking at the computational times, we will look at the number of iterations needed to compute the
solution. The different approaches will be compared by the number of iterations to compute the solution.

Suppose that we have a d-dimensional problem with Ni +1, i = 1, .., d grid nodes in each direction.
If a 3d-point stencil is used then the number of iterations is given by Table 2.1. In this table vi :=∏d

j=1(Nj +1−2(i−1))−∏d
j=1(Nj−1−2(i−1)) and w :=

∏d
j=1(Nj +1)−∏d

j=1(Nj−1).

Number of iterations
Matrix vector computations
× and ÷ + and −

Full Grid
∑Qs

i=1 3d
∏d

j=1(Nj − 1)
∑Qs

i=1 3d
∏d

j=1(Nj − 2)

EulTree
∑Q

i=1 3d
∏d

j=1(Nj + 1 − 2i)
∑Q

i=1 3d
∏d

j=1(Nj − 2i)

RKCTree
∑Qs

i=1 3d
∏d

j=1(Nj + 1 − 2i)
∑Qs

i=1 3d
∏d

j=1(Nj − 2i)

RKCImpr (linear) s
∑Q

i=1 3d
∏d

j=1(Nj + 1 − 2i) s
∑Q

i=1 3d
∏d

j=1(Nj − 2i)

RKCImpr (quadratic) s
∑Q

i=1 3d
∏d

j=1(Nj + 1 − 2i) s
∑Q

i=1 3d
∏d

j=1(Nj − 2i)

RKCImpr (cubic) s
∑Q

i=1 3d
∏d

j=1(Nj + 1 − 2i) s
∑Q

i=1 3d
∏d

j=1(Nj − 2i)

Extrapolation
× and ÷ + and −

Full Grid (2 × (2 + 1))w (2 × 4 + 1)w
EulTree
RKCTree
RKCImpr (linear) (2 × (2 + 1))vi 2 × (2 × 4 + 1)vi

RKCImpr (quadratic) (3 × (4 + 1))vi 3 × (2 × 6 + 2)vi

RKCImpr (cubic) (4 × (6 + 1))vi 4 × (2 × 8 + 3)vi

Table 2.1: Number of iterations for the various methods.
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Part I

One-factor models





Chapter 3

Black–Scholes model

In the previous chapter two types of time integration methods were proposed. The implicit method
with the ”PDE” boundary condition and the explicit method solving on a tree structured grid. Both
approaches will be applied to the Black–Scholes equation, which is given by

(BS)





∂V

∂t
+ (r − q)S

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− rV = 0, S ∈ (0,∞), t ∈ (0, T )

V (S, T ) = f(S), S ∈ (0,∞).

where σ is the (constant) volatility, r the (constant) interest rate, q the dividend yield and S is the
underlying value.

For a European call, i.e. V (S, T ) = max(S − K, 0), a closed formula exists. It is given by

V (S, t) = Se−q(T−t)N(d1) − Ke−r(T−t)N(d2), (3.1)

d1 =
log(S/K) + (r − q + 1

2σ2)

σ(T − t)
, (3.2)

d2 = d1 − σ
√

T − t. (3.3)

where N(·) is the cumulative normal distribution.
The closed form expression will be used to validate numerical results.

3.1 Implicit methods

Solving (BS) with an implicit method using the ”PDE” boundary condition is done by discretizing in
space after which the semi-discretization problem is integrated in time.

Discretizing in space is done by using the central scheme for the convection and the three point stencil
for the diffusion. The discretization of the boundary points depends on the accuracy that is required at
the boundaries. For time integration the ω-scheme [13] is used. This scheme can be compactly rewritten
as

Vn+1 = (I + ∆ωA)−1((I − ∆(1 − ω)A)Vn), ω = 0.51.

As an example a European call/put option with parameters

r = 0.05, σ = 0.5, q = 0, K = 100, T = 5, (3.4)

will be considered. For the discretization of the boundary condition we use the following approximations
for the derivatives which occur in the ”PDE” boundary condition:

(pde1) :
∂u

∂x
: O(h2) ,

∂2u

∂x2
: O(h),

(pde2) :
∂u

∂x
: O(h) ,

∂2u

∂x2
: O(h2),

(pde3) :
∂u

∂x
: O(h) ,

∂2u

∂x2
: O(h).



22 Black–Scholes model

The behavior of the European call and put are shown in Figures 3.1, 3.3, 3.5, and Figures 3.2, 3.4, 3.6 re-
spectively, for uniform grids with increasing Smax. It can be seen that when Smax increases the numerical
solution (solid blue line) converges toward the exact solution (dashed black line). Hence, the boundary
conditions are of minimal influence to the internal solution. However, if Smax is not taken large enough,
the numerical solution deviates significantly from the exact solution. Since the discretization is non-
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Figure 3.1: Call option. Solid blue line: Nu-
merical solution with pde3. Dashed black line:
Exact solution.
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Figure 3.2: Put option. Solid blue line: Nu-
merical solution with pde3. Dashed black line:
Exact solution.
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Figure 3.3: Call Option. Solid blue line: Nu-
merical solution with pde2. Dashed black line:
Exact solution.
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Figure 3.4: Put option. Solid blue line: Nu-
merical solution with pde2. Dashed black line:
Exact solution.
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Figure 3.5: Call option. Solid blue line: Nu-
merical solution with pde1. Dashed black line:
Exact solution.
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Figure 3.6: Put option. Solid blue line: Nu-
merical solution with pde1. Dashed black line:
Exact solution.

legitimate, which means that there can occur both positive and negative eigenvalues, the implicit method
with the ”PDE” boundary conditions does not solve our problem adequately. Therefore, experiments
with explicit methods will be discussed in the next section.
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3.2 Explicit methods

In the previous chapter three explicit approaches EulTree, RKCTree and RKCTreeImpr were sug-
gested to solve an initial value problem. In this chapter the three approaches will be applied to solve the
Black–Scholes equation (BS).

3.2.1 Stability restrictions for the Euler method

The (BS) initial value problem can be spatially discretized using the second order stencil for the first
and second derivative as discussed in Chapter 2. For the time integration the explicit Euler method is
used. The discounting term ’−rV ’ will be treated implicitly. Combining this gives the following recursive
equation for the time integration

(1 − r∆t)V n+1
i = [pi,i−1V

n
i−1 + pi,iV

n
i + pi,i+1V

n
i+1], n = 1, .., Q, i = 1, .., N + 1, (3.5)

with

pi,i−1 = ∆t(
(r − q)Si∆Si

(∆Si−1 + ∆Si)∆Si−1
− σ2S2

i

∆Si−1(∆Si−1 + ∆Si)
),

pi,i = 1 + ∆t
(r − q)Si(∆Si−1 − ∆Si)

∆Si∆Si−1
+ ∆t

σ2S2
i

∆Si−1∆Si
,

pi,i+1 = −∆t(
(r − q)Si∆Si−1

(∆Si−1 + ∆Si)∆Si
+

σ2S2
i

∆Si(∆Si−1 + ∆Si)
).

Trying to solve the Black–Scholes equation straightforward with EulTree or RKCTree gives rise to
several problems. Since the problem is solved explicitly, the eigenvalues of the discretization matrix must
lie in a stability region depending on the method used.

Applying Theorem 2.1 on a uniform grid, we obtain

0 ≥ ∆t ≥ − ∆S2

σ2S2
i

, and
|r − q|∆S

1
2σ2S2

i

6 2. (3.6)

For large S the equation is dominated by the diffusion term and the full discretization matrix becomes
very stiff. As can be easily seen from (3.6), this will lead to extremely small time steps ∆t, or, equivalently,
to a large number of time levels Q.

The choice of the grid influences the spectrum of the semi-discretization matrix A. For some specific
grid definitions, the eigenvalues are such that they imply relatively weaker restrictions for the time step.
We will discuss this property with an example. It is widely known that the Black–Scholes equation can
be transformed with the transformation

S = ex. (3.7)

A transformation of the equation itself is less elegant, since this also requires a transformation of the
initial value (payoff). Therefore, rather than transforming the equation itself, the underlying grid is
transformed. Then we have the following stability result.

Theorem 3.1 Let Q be the number of time levels, and let N + 1 = 2Q + 1 be the number of grid nodes.
Define x0 = log(S0). The uniform grid with center x0, denoted by {xi}N+1

i=1 , is given by

xi = x0 + ∆x(i − 1 − N

2
), i = 1, .., N + 1, (3.8)

and

Si = ex0+∆x(i−1−N/2),

∆Si = Si+1 − Si = ex0+∆x(i−N/2)(1 − e−∆x). (3.9)
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Furthermore, let (r − q) − σ2

(e∆x−1)2e−∆x < 0. Then scheme (3.5) is stable if

1

(r − q) − σ2

(e∆x − 1)2e−∆x

≤ ∆t ≤ 0, (3.10)

with the restriction that

log(
r − q

σ2 + (r − q)
) ≤ ∆x ≤ log(

σ2 + r − q

r − q
). (3.11)

Proof. Substitution of (3.9) into (3.5) and using Theorem 2.1 gives for pi

1 − ∆t(r − q) + ∆t
σ2

(e∆x − 1)2e−∆x
≥ 0,

which immediately gives (3.10). The upper and lower off-diagonal elements are treated similar. Applying
the transformation and requiring that the off-diagonal elements must be positive immediately gives (3.11).
�

Thus for a fixed ∆x satisfying (3.11), the number of time levels Q follows from (3.10) with ∆t = − T
Q ,

i.e.

Q ≥ −T

[
(r − q) − σ2

(e∆x − 1)2e−∆x

]
. (3.12)

One could also obtain the grid the other way around by choosing a Q and then calculate the appropriate
∆x, see appendix A.

Applying the grid transformation to the problem ensures that the spectrum is good enough to apply
the EulerTree and RKCTree. The grid transformation is, however, very specific and since the spatial
steps near the spot price can become large, accuracy might be lost. Therefore the RKCTreeImpr was
introduced. In the next section the three methods will be compared.

3.2.2 Numerical results for a European call

We start by examining a simple European call option with the parameters

r = 0.1, q = 0, K = 100, S0 = 100, σ = 0.25, T = 1. (3.13)

This example is an initial value problem (BS) with payoff V (S, T ) = max(S − K, 0). By applying the
grid transformation (3.7) the spectrum of the semi-discretization matrix is such that EulTree can be
applied. The same transformation will be applied for all the other methods and results are shown in
Table 3.1. All three methods converge toward the exact solution. In Figure 3.7 and 3.9, Euler Tree

and RKCTreeImpr are compared to resp. FullEuler and FullRKC. In Figure 3.8 the value of the
option with a scalings factor is plotted and it is shown that the solution is solved back toward one point.
It is seen that the solutions are stable, which is exactly what we expect from stability analysis. It is also
shown that the solutions exactly match. The important remark has to be made here that RKCTreeImpr

is not solved back to one point, but to an interval, since it was mentioned that unstable solutions could
be obtained if the remaining interval is not large enough. By setting N = 2Q + 10 the results will be as
accurate as by solving on the full grid. We will see later on what happens if the remaining grid (this is
the grid that is still left at t = 0) is not taken large enough.

However, although the solution is stable and the converges toward the exact solution, the rate of
convergence is not satisfying. This is due to the exponential grid. The spatial intervals around the point
of interest are too large, and this is exactly where the payoff is not differentiable. To deal with non-smooth
payoffs, we would like to have a grid refinement located at the non-smooth part of the payoff. We will
first focus on a uniform grid to see if the methods still work. Then we will try to apply the methods to
refined grids. For the grid refinement we follow [14, Eqn. (4.39) with µ = 1].

If a uniform grid is used then it can be seen that the spectrum of the semi-discretization matrix
will be such that EulTree and RKCTree cannot be applied anymore. RKCTreeImpr could still
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N Q FullEuler EulTree s FullRKC RKCTree

50 25 14.9105 14.9105 2 14.851 14.851
100 50 14.9431 14.9431 2 14.9141 14.9141
200 100 14.9595 14.9595 2 14.9451 14.9451
400 200 14.9676 14.9676 2 14.9605 14.9605
800 400 14.9717 14.9717 2 14.9681 14.9681
1600 800 14.9737 14.9737 2 14.972 14.972
3200 1600 14.9748 14.9748 2 14.9739 14.9739
N Q s RKCTreeImpr

linear quadratic cubic
50 25 2 14.851 14.851 14.851
100 50 2 14.9141 14.9141 14.9141
200 100 2 14.9451 14.9451 14.9451
400 200 2 14.9605 14.9605 14.9605
800 400 2 14.9681 14.9681 14.9681
1600 800 2 14.972 14.972 14.972
3200 1600 2 14.9739 14.9739 14.9739

Table 3.1: Comparison of 3 approaches on an exponential grid. The exact solution to the problem is
14.9758.

be applied, but at the cost of taking a very small time step. This increases the computational time
significantly and therefore this method will be omitted. Therefore we will only focus on RKCTreeImpr,
and in particular the linear case since quadratic and cubic extrapolation are shown to give the same
answers. The results for RKCTreeImpr on a uniform grid are shown in Table 3.2. From this table
it can be concluded that it is very important as to what to choose as the remaining interval. If the
remaining interval is taken too small, then inaccurate answers are obtained. In Figure 3.10 and 3.11
it is shown more precisely how the size of the grid influences the solution. It can be seen that if the
remaining interval is not taken large enough, the linear extrapolation is not a good approximation and
leads to inaccurate solutions. It was shown that only RKCTreeImpr can be appplied to solve (BS) on a

N Q s FullRKC RKCTreeImpr s extra points
A B

50 25 4 14.8816 14.7599 4 8 14.8742
100 50 6 14.9357 14.8604 6 16 14.9344
200 100 7 14.9510 14.8927 8 32 14.9472
400 200 10 14.9595 14.9818 11 64 14.9622
800 400 14 14.9697 14.8366 16 128 14.9693
1600 800 19 14.9724 14.8037 22 280 14.9725
3200 1600 27 14.9742 14.85 31 600 14.9742

Table 3.2: RKCTreeImpr on uniform grids. A: Solving back to one point. B: Solving back to large
grid. The exact solution to the problem is 14.9758.

uniform grid. However, it might be more convenient if a grid refinement could be applied to capture the
non-smooth behavior of the payoff. Refining the grid leads to very stiff problems and therefore EulTree

and RKCTree can also not be applied to solve this problem.

In Table 3.3 the results for the refined grid are shown. It is seen that solving back to one point
gives once again inaccurate answers. To solve this problem a number of points is added such that the
remaining interval is large enough. This large number of extra points increases the computational time
and is therefore undesirable. Figures 3.12 and 3.13 illustrate what the influence of the linear extrapolation
at the endpoints is. Solving (BS) on the refined grid can only be done if a lot of extra points is added,
which will slow down the method.
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Figure 3.7: European call option with Q = 100. Black line: FullEuler. Red line: EulerTree.
Solution is shown for every 5 timesteps.
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Figure 3.8: European call option with EulerTree and Q = 100. Solution is shown for every 5 timesteps.

3.3 Conclusion

The Black–Scholes equation can be solved as an initial value problem with EulTree, RKCTree and
RKCTreeImpr on an exponential grid. However, this choice of grid is too restricted in view of accuracy
of the method and therefore other grids were tried: uniform and mesh-refined grids. It is shown that
only RKCTreeImpr can handle these grids. When applying RKCTreeImpr, it is important that the
remaining interval (this is the spatial interval which is left at t = 0) is not too small. So instead of solving
back to a single point, the problem is solved back to an interval. If the remaining interval is too small
inaccurate answers are obtained.
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Figure 3.9: European call option with Q = 100. Black line: FullRKC. Red line: RKCTreeImpr.
Solution is shown for every 5 timesteps.
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Figure 3.10: European call option on a uniform grid with Q = 100 and N = 200. Black line: FullRKC.
Red line: RKCTreeImpr.
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Figure 3.11: European call option on a uniform grid with Q = 100 and N = 200 + 32. Black line:
FullRKC. Red line: RKCTreeImpr.

N Q s FullRKC RKCTreeImpr s extra points for
starting grid

A B
50 25 40 14.8703 14.4551 114 90 14.8497
100 50 58 14.9125 7.8514 162 180 14.9112
200 100 82 14.9476 10.7895 236 376 14.9402
400 200 116 14.9640 13.2453 333 750 14.9548
800 400 164 14.9693 12.6115 470 1500 14.9615
1600 800 232 14.9727 12.7680 665 3000 14.9649
3200 1600 327 14.9742 12.8546 940 6000 14.9667

Table 3.3: RKCTreeImpr on refined grids. A: Solving back to one point. B: Solving back to a larger
grid. The exact solution to the problem is 14.9758.
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Figure 3.12: European call option on a refined grid with Q = 100 and N = 200. Black line: FullRKC.
Red line: RKCTreeImpr. Solution is shown for every 5 timesteps.
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Figure 3.13: European call option on a refined grid with Q = 100 and N = 200 + 376. Black line:
FullRKC. Red line: RKCTreeImpr. Solution is shown for every 5 timesteps.
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Chapter 4

Hull–White model

The interest rate under the Hull–White model follows the stochastic differential equation (1.11). Suppose
a security V (r, t) pays F (r) at T , then V (r, t) solves the following one-factor partial differential equation





∂V

∂t
+ (θ(t) − ar)

∂V

∂r
+

1

2
σ2

r

∂2V

∂r2
− rV = 0, r ∈ (−∞,∞), t ∈ (0, T ),

V (r, T ) = f(r), r ∈ (−∞,∞).

(4.1)

The value P (t, T ) of a zero-coupon bond maturing at time T depends on the interest rate r and satisfies
the above-mentioned partial differential equation with payoff F (r) = 1. An exact formula can be derived
(see Appendix B), which is given by

P (t, T ) = eA(t)+rB(t), (4.2)

B(t) =
−

∫ T

t
e
∫

T

u
a(s)dsdu

e
∫

T

t
a(s)ds

, (4.3)

A(t) =

∫ T

t

[θ(s)B(s) +
1

2
σ2

r(s)B2(s)]ds. (4.4)

The solution of the zero coupon bond will be used to transform the one-factor Hull–White equation.
As another example we will take a caplet. A caplet is a particular type of a European option whose

underlying is the curve of interest rates. It can also be seen as a call option on the short rate. This will
be explained some more.

Given that at the moment we are at t, then the forward rate in the interval [Ts, Te] is given by

F (t, Ts, Te) :=
1

τ
(
P (t, Ts)

P (t, Te)
− 1).

where τ denotes the day count fraction. A call option on the forward rate with maturity t = Tf and
paying at time t = Te is given by

τ max(F (Tf , Ts, Te) − K, 0), at t = Te, (4.5)

Shifting this back to t = Tf yields

τ max(F (Tf , Ts, Te) − K, 0)P (Tf , Te), at t = Tf . (4.6)

So the payoff of the caplet Caplet(t, Tf , Ts, Te, τ,K) ≡ CTf ,Ts,Te,τ,K(t, r) is given by

Caplet(Tf , Tf , Ts, Te, τ,K) = max(P (Tf , Ts) − (1 + τK)P (Tf , Te), 0) = CTf ,Ts,Te,τ,K(Tf , r). (4.7)

4.1 Explicit discretizations for the Hull–White model

The Hull–White initial value problem will be spatially discretized using an upstream discretization,
because the convection term can either be positive or negative, changing signs at θ(t) − ar = 0, for the



32 Hull–White model

first derivative. We use the three-point stencil for the second derivative. For the time integration the
explicit Euler method is used. We will use a uniform grid, so ∆rn = ∆rn−1 = ∆r. Combining this gives
the following recursive equation for the time integration

V n+1
i = [pi−1V

n
i−1 + piV

n
i + pi+1V

n
i+1], n = 1, .., Q, i = 1, .., N + 1, (4.8)

with

pi,i−1 = −∆t(−1

2
(

βi

∆r
− | βi

∆r
|) +

fi

∆r2
),

pi,i = 1 − ∆t(−| βi

∆r
| − 2fi

∆r2
− ri),

pi,i+1 = −∆t(
1

2
(

βi

∆r
+ | βi

∆r
|) +

fi

∆r2
).

and

βi = θn − ari, θn := θ(tn), i = 2, .., N,

fi =
1

2
σ2

r , i = 2, .., N.

The discounting term ’−rV ’ is taken here explicitly (see pi,i). We disregard the term structure for θ, i.e.
it is taken constant.

The pi,i−1, pi,i, pi,i+1 cannot be treated as probabilities since they do not add up to 1. Therefore
stability of (4.8) cannot be proved via Theorem 2.1. Numerical experiments in Subsection 4.1.1, however,
show that the method is stable if a particular grid is chosen. This particular grid is obtained by taking
rmin not too negative, since a too small rmin destroys the diagonal dominance of the matrix. To control
the stability of the used schemes, we transform in Subsection 4.1.2 the original equation to get rid of the
’−rV ’ term.

4.1.1 Numerical results for the untransformed Hull–White equation

In this section the results for a zero coupon bond (Table 4.1) with parameters

T = 5, r0 = 0.03, a = 0.05, θ(t) = θ = 0.025, σr = 0.01, (4.9)

and a caplet (Table 4.2) with parameters

r0 = 0.03, θ(t) = θ = 0.025, a = 0.05, σr = 0.01, K = 0.06, Tf = 5, TS = 5, Te = 6 (4.10)

will be given for EulTree and RKCTreeImpr. Both can be applied to solve the one-factor Hull–White
problem on a uniform grid defined by

ri = r0 + ∆r(i − 1 − N/2), i = 1, · · · , N + 1, (4.11)

with ∆r =
√

σ2∆t. If RKCTreeImpr is applied, extra points have to be added to ensure that the
remaining interval is large enough.

The tables show that the numerical solutions converge toward the exact solution. In Figures 4.1 and
4.2 the zero-coupon bond is shown solved with EulTree and RKCTreeImpr. In Figures 4.3 and 4.4
the caplet is shown solved on a full grid with Euler explicit and with EulTree.

The tree methods once again match exactly with the full grid solver. So both methods can solve the
Hull–White initial value problem effectively.
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N Q FullEuler EulTree s FullRKC

50 25 0.6604 0.6604 2 0.6600
100 50 0.6595 0.6595 2 0.6594
200 100 0.6590 0.6590 2 0.6589
400 200 0.6586 0.6586 2 0.6585
800 400 0.6583 0.6583 2 0.6583
1600 800 0.6582 0.6582 2 0.6581
3200 1600 0.6580 0.6580 2 0.6580
N Q s RKCTreeImpr

linear
50 25 2 0.6568
100 50 2 0.6580
200 100 2 0.6582
400 200 2 0.6581
800 400 2 0.6580
1600 800 2 0.6579
3200 1600 2 0.6579

Table 4.1: Pricing of a zero coupon bond with EulTree and RKCTreeImpr on a uniform grid. The
exact solution to the problem is 0.6577.

N Q FullEuler EulTree s FullRKC

50 25 0.0532 0.0532 2 0.0515
100 50 0.0527 0.0527 2 0.0518
200 100 0.0525 0.0525 2 0.0520
400 200 0.0524 0.0524 2 0.0523
800 400 0.0525 0.0525 2 0.0524
1600 800 0.0525 0.0525 2 0.0525
3200 1600 0.0525 0.0525 2 0.0525
N Q s RKCTreeImpr

linear
50 25 2 0.0515
100 50 2 0.0518
200 100 2 0.0520
400 200 2 0.0523
800 400 2 0.0524
1600 800 2 0.0525
3200 1600 2 0.0525

Table 4.2: Pricing of a caplet with EulTree and RKCTreeImpr on a uniform grid. The exact solution
to the problem is 0.0525.

4.1.2 Transformed Hull–White equation

For the transformation of (4.1) we write V (r, t) = Vsol(r, t)Ṽ (r, t), where Vsol(r, t) is the solution of

the zero-coupon bond under the Hull–White model and Ṽ is the new variable which we want to solve.
Substitution in (4.1) yields

Vsol
∂Ṽ

∂t
+ Ṽ

∂Vsol

∂t
+ (θ(t) − ar)(Vsol

∂Ṽ

∂r
+ Ṽ

∂Vsol

∂r
)

+
1

2
σ2

r(Vsol
∂2Ṽ

∂r2
+ 2

∂Vsol

∂r

∂Ṽ

∂r
+ Ṽ

∂2Vsol

∂r2
) − rVsolṼ = 0.
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Figure 4.1: Pricing of a zero coupon bond on a uniform grid. Black line: FullEuler. Red line:
EulerTree.
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Figure 4.2: Pricing of a zero coupon bond on a uniform grid. Black line: FullRKC. Red line: RKC-

TreeImpr.

Rearranging terms gives

Vsol
∂Ṽ

∂t
+ ((θ(t) − ar)Vsol + σ2

r

∂Vsol

∂r
)
∂Ṽ

∂r
+

1

2
σ2

rVsol
∂2Ṽ

∂r2

+Ṽ (
∂Vsol

∂t
+ (θ(t) − ar)

∂Vsol

∂r
+

∂2Vsol

∂r2
− rVsol) = 0. (4.12)

And since Vsol is the zero-coupon bond satisfying

∂Vsol

∂t
+ (θ(t) − ar)

∂Vsol

∂r
+

∂2Vsol

∂r2
− rVsol = 0, (4.13)
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Figure 4.4: Pricing of a caplet on a uniform grid. Black line: FullRKC. Red line: RKCTreeImpr.

equation (4.12) becomes

Vsol
∂Ṽ

∂t
+ ((θ(t) − ar)Vsol + σ2

r

∂Vsol

∂r
)
∂Ṽ

∂r
+

1

2
σ2

rVsol
∂2Ṽ

∂r2
= 0. (4.14)

The solution for the zero coupon bond is given by

Vsol(r, t) = eA(t)+rB(t),

and substituting this in (4.13) leads to the convection-diffusion equation

∂Ṽ

∂t
+ (θ(t) − ar + σ2

rB(t))
∂Ṽ

∂r
+

1

2
σ2

r

∂2Ṽ

∂r2
= 0. (4.15)
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This transformation is applied to get rid of the ’−rV ’ term, in order to obtain a better spectrum for the
semi-discretization matrix. We would like to derive sufficient conditions for stability by using Theorem
2.1. The theorem states that if the diagonal and off-diagonals elements are positive then the method is
stable. Due to the upwind discretization the off-diagonals are always positive. However, it is hard to
proof positiveness for the diagonal elements, but in practice it is seen that stability is easily obtained.

4.1.3 Numerical results for caplets

In Table 4.3 the exact and numerical solution of a caplet under the untransformed and transformed
Hull-White equation are compared for EulTree. It can be seen that the results of the transformed and
untransformed equation do not differ much.

Tf TS Te exact untransformed transformed
5 5 6 0.0440 0.0441 0.0444
5 5 10 0.2958 0.2968 0.2939
10 10 11 0.0459 0.0462 0.0461
10 10 15 0.2016 0.2030 0.2008
15 15 16 0.0207 0.0207 0.0207
15 15 20 0.0770 0.0765 0.0760
20 20 21 0.0062 0.0059 0.0060
20 20 25 0.0210 0.0198 0.0201
30 30 31 0.0003 0.0002 0.0002

Table 4.3: EulTree on a uniform grid under the untransformed equation. Number of time steps is 200.
The point of interest is r0 = 0.

4.2 Conclusion

It was shown in this chapter that both EulTree and RKCTreeImpr can solve the one-factor Hull-
White model on a uniform grid as effectively as FullEuler and FullRKC. However, a special grid, in
which rmin is not taken too negative, had to be taken, since a too negative rmin destroys the diagonal
dominance of the matrix, which leads to an unstable method. To control the spectrum of the semi-
discretization matrix a transformation was proposed, which scaled out the ’−rV ’ term. It was, however,
shown that the results for the untransformed and transformed equation were almost similar. Therefore
the transformation does not need to be applied, as long as the grid is chosen in a special way.
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Two-factor models





Chapter 5

Black–Scholes model

In this chapter the results for the two-factor Black–Scholes model will be discussed. We will give an
answer to the question if it is possible to apply EulTree,RKCTree and RKCTreeImpr to solve this
initial value problem. The most important question when higher-dimensional models are treated is what
the influence of the correlation term ρ will be.

The two-dimensional Black–Scholes equation is given by




∂V

∂t
+

1

2
σ2

1S
2
1

∂2V

∂S2
1

+ σ1σ2S1S2ρ12
∂2V

∂S1S2
+

1

2
σ2

2S
2
2

∂2V

∂S2
2

+(r1 − q1)S1
∂V

∂S1
+ (r2 − q2)S2

∂V

∂S2
− rV = 0, S1, S2 ∈ (0,∞), t ∈ (0, T ),

V (S1, S2, T ) = f(S1, S2), S1, S2 ∈ (0,∞).

(5.1)

For an exchange option (which will be taken as an example throughout this chapter) with payoff formula
f(S1, S2) = max(α1S1 − α2S2, 0), a closed formula exists. It is given by (see Appendix C)

V (S1, S2, t) = α1S1e
−q1(T−t)N(d′1) − α2S2e

−q2(T−t)N(d′2), (5.2)

where

d′1 =
log(α1S1

α2S2
) + (q2 − q1 + 1

2σ′2)(T − t)

σ′
√

T − t
,

d′2 =
log(α1S1

α2S2
) + (q2 − q1 − 1

2σ′2)(T − t)

σ′
√

T − t
,

σ′ =
√

σ2
1 − 2ρ12σ1σ2 + σ2

2 .

The closed form formula (5.2) will be again used as a benchmark for the numerical results.

5.1 Numerical results for an exchange option

All first and second derivatives are discretized with respectively the central scheme and the three point
stencil. The cross derivatives are discretized with the nine-point stencil.

In Table 5.1 the three methods EulTree,RKCTree and RKCTreeImpr using an exponential
grid are shown. The parameters for this problem are

q1 = 1, σ1 = 0.25, D1 = 0.07, S01 = 105, (5.3)

q2 = 2, σ2 = 0.2, D2 = 0.05, S02 = 50,

ρ12 = 0.5, r = 0.1, T = 5.

Table 5.1 shows that the numerical solutions converge toward the exact solution. In Figures 5.1 and
5.2 EulerTree and RKCTreeImpr are depicted for different time levels. For both EulerTree and
RKCTreeImpr, the solutions stay stable over the life time of the option.



40 Black–Scholes model

These calculations can once again also be done for a uniform and refined grid. For these grids only
the RKCTreeImpr can be applied to solve this problem. If it is taken into account that the remaining
interval stays large enough then these grids also produce accurate answers, see Table 5.2. It follows
evidently from the table that the convergence rate is influenced by the number of extra points that is
taken into account. Or to formulate it otherwise, the remaining interval should be taken large enough to
obtain good approximations. So it is very important for the uniform and refined grid that enough extra
points are added and since it is sometimes not clear how many extra points should be taken into account
and since the exponentially stretched grid is less influenced, our focus will mainly lie on the exponentially
stretched grid.

N Q EulTree s FullRKC RKCTree

50 25 13.3687 3 13.3641 13.3641
100 50 13.4798 3 13.4241 13.4241
200 100 13.4757 3 13.4539 13.4539
400 200 13.4816 3 13.4696 13.4696
800 400 13.4827 3 13.4767 13.4767
N Q s RKCTreeImpr

linear quadratic cubic
50 25 3 13.2617 13.3657 13.3640
100 50 3 13.3745 13.4244 13.4241
200 100 3 13.4296 13.4540 13.4539
400 200 3 13.4575 13.4696 13.4696
800 400 3 13.4707 13.4767 13.4767

Table 5.1: Comparison of the three approaches. The exact solution to the problem is 13.4841.

N Q s RKCTreeImpr
linear

140 25 17 13.4967
240 100 20 13.4028
300 100 25 13.4859

Table 5.2: RKCTreeImpr on a uniform grid.

5.2 Conclusion

In this chapter the extension to higher-dimensional models is made. It is shown that on an exponential
grid, all three approaches EulTree,RKCTree and RKCTreeImpr can be applied. However, if a
uniform or refined grid is used then only RKCTreeImpr can be applied. This is similar to the one-
factor model and therefore exactly what we would expect.

However, the most important parameter in the higher-dimensional models is the correlation ρ. Eigen-
value analysis shows that positive eigenvalues occur if ρ is taken too large in absolute value (ρ = −1, 1).
These positive eigenvalues are not very large and as a consequence the method will only become unstable
if the maturity T is very large (correlation 1, T = 20). This kind of option are very unusual. However,
EulTree,RKCTree and RKCTreeImpr seem to work good if ρ is not taken too large and maturities
not too big.
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Chapter 6

Hull–White model

In the previous chapter the two-factor Black–Scholes equation was treated. It was shown that all three
approaches EulTree,RKCTree and RKCTreeImpr could be applied on an exponential grid to solve
the problem. It was also discussed what the influence of the correlation term was. In this chapter we will
discuss all these things for the two-factor Hull–White model.

The two-dimensional Hull–White equation is given by (H–W) in Chapter 1. For a European call,
i.e. f(S, r) = max(S − K, 0) with strike K, the closed formula is given by

V (S, r, t) = S0 exp(−q(T − t))N(
log( S0

KP (t,T ) ) − q(T − t) +
1
2

γ2

γ
)−

KP (t, T )N(
log( S0

KP (t,T ) ) − q(T − t) − 0.5γ2

γ
), (6.1)

with

β =
σ2

r

a2
(T − t +

2

a
exp(−a(T − t)) − (

1

2a
) exp(−2a(T − t)) − 3

2a
),

γ =

√
β + σ2(T − t) +

2ρ(σrσ)

a
(T − t − 1

a
(1 − exp(−a(T − t)))).

This example will be taken as a benchmark for our numerical results.

6.1 Numerical results for a European call option

In the S-direction we will use an exponential grid. The first derivative in the S-direction is discretized
using central differences. In the r-direction a uniform grid is used, where rmin (see (4.11) for the grid
definition) is chosen in such a way that it prevents the semi-discretization from losing diagonal dominance.
The first derivative in the r-direction is discretized using an upwind method. In both directions, the second
derivative is discretized using a three-point stencil. The crossterm is discretized via a nine-point stencil
as discussed in Chapter 2.

Consider a European call option with the following parameters:

T = 5, q = 0, r0 = 0.03, S0 = 100, a = 0.05, θ(t) = θ = 0.025, σr = 0.01, ρ = 0.5. (6.2)

In Table 6.1 it can be seen that all three approaches converge toward the exact solution. They all converge
equally fast and toward the same solution, so based on this table we can not conclude which one is better.
In Figures 6.1 and 6.2 it is shown that the solutions are stable.

Note that this problem can also be solved on a uniform or refined grid using RKCTreeImpr, see
Table 6.2 for some results for the uniform grid. It follows, as with the two-factor Black–Scholes, that the
remaining grid should be taken large enough.
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N Q EulTree s FullRKC RKCTree

50 25 40.3828 2 40.3866 40.3866
100 50 40.551 2 40.5490 40.5490
200 100 40.6332 2 40.6314 40.6314
400 200 40.6743 2 40.6733 40.6733
800 400 40.6951 2 40.6946 40.6946
N Q s RKCTreeImpr

linear quadratic cubic
50 25 35 40.3617 40.3846 40.3846
100 50 47 40.5304 40.5485 40.5485
200 100 63 40.6256 40.6313 40.6313
400 200 90 40.6703 40.6733 40.6733
800 400 120 40.6933 40.6946 40.6946

Table 6.1: Four approaches compared. The exact solution to the problem is 40.7172.
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N Q s RKCTreeImpr
linear

140 25 13 40.5549
240 100 15 40.5057
300 100 19 40.6464

Table 6.2: RKCTreeImpr on a uniform grid.
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6.2 Numerical results for a European call option conditional on
the interest rate

To show the performance of the RKCTreeImpr we will take a look at a hybrid option. It consists of a
call in the S-direction together with a digital in the r-direction. The payoff of this product is given by

f(r, S) = max(S − KS , 0)1r<Kr
, S ∈ (0,∞), r ∈ (−∞,∞), (6.3)

where KS and Kr denote the strikes for respectively the call and the digital.
As an example the following parameters are chosen

T = 1, q = 0, S0 = 100, σ = 0.25, r0 = 0.03, a = 0.05, (6.4)

θ(t) = θ = 0.025, Kr = 0.05, σr = 0.01, ρ = 0.5.

and the solution is shown in Figure 6.3. It might be expected that problems arise due to the digital in
the r-direction, but the method handles the digital quite well.

6.3 Conclusion

The two-factor Hull–White model can be solved with EulTree,RKCTree and RKCTreeImpr. How-
ever, the first two methods can only be applied if a special grid is chosen. Eigenvalue analysis shows that
if the correlation term is taken too large, positive eigenvalues occur. As a result inaccurate answers occur
with large maturities.
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Figure 6.3: Value for a two-factor Hull-White digital-call option using RKCTreeImpr at t =
1, 2/3, 1/3, 0. The solution is 2.14759.



Chapter 7

Heston model

In this chapter the results for the two-factor Heston model (H) will be discussed. For a European call
option the (quasi) closed formula reads

C(x, v, τ) = KexP1(x, v, τ) − P0(x, v, τ), (7.1)

with

x = log(
Ft,T

K
),

Ft,T = e−r(T−t)St,

Pj(x, v, τ) =
1

2
+

1

π

∫ ∞

0

Re(
eCj(u,τ)v+Dj(u,τ)v+iux

iu
)dφ,

Cj(u, τ) = λr−τ − 2

η2
log(

1 − ge−dτ

1 − g
),

Dj(u, τ) = r−
1 − e−dτ

1 − ge−dτ
,

r± =
β ± d

η2
, d =

√
β2 − 4αγ,

α =
−u2

2
− iu

2
+ iju, β = λ − ρηj − ρηiu, γ =

η2

2
, g =

r−
r+

.

This option will be used as a benchmark for our numerical experiments. In this chapter we only focus on
RKCTreeImpr.

7.1 Numerial results for a European call option

For the Heston model we use the following grid definition in the v-direction:

vi = v0 − (
N

2
+ 1 − i)∆vL, i = 1, · · · , N/2,

vN
2

+1 = v0,

vN
2

+1+i = v0 + i∆vR, i = 1, · · · , N/2.

The variance can never be negative and therefore vmin := v0− N
2 ∆vL > 0. Thus, for given N , the grid on

the left of v0 differs from the grid on the right of v0. For the S-direction we will use an exponential grid and
the first derivative in the S-direction will be approximated using central differences. The first derivative
in the v-direction is discretized using the upwind scheme. The second derivative in both directions is
again approximated using a three-point stencil. The crossterm is discretized via a nine-point stencil as
discussed in Chapter 2.



48 Heston model

Consider a European call option with parameters

T = 1, r = 0.1, S0 = 100, ρ = 0.1, η = 0.9, λ = 5, q = 0, v0 = 0.0625.

In Table 7.1 the results for the RKCTreeImpr are shown and it is seen that all, except for the cubic
extrapolation, converge toward the exact solution. This failure of the cubic extrapolation is caused by
the fact that this extrapolation is not a good one at the boundaries. Furthermore it is shown in Figure
7.1 that the solutions are stable.

N Q s FullRKC RKCTreeImpr
linear quadratic cubic

50 25 35 18.9223 18.7664 18.9274 18.9090
100 50 47 19.0701 19.0322 19.0714 19.0694
200 100 65 19.1188 19.1147 19.1194 19.1195
400 200 90 19.1461 19.1502 19.1428 19.4340
800 400 126 19.1600 19.1666 19.1537 13.4798

Table 7.1: Four approaches compared. The exact solution to the problem is 19.1652.
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7.2 Conclusion

The semi-discretization matrix for the Heston problem is generally very stiff. As a consequence only
RKCTreeImpr with linear or quadratic extrapolation can be applied. Better accuracy is reached when
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a uniform or refined grid would be used in the S-direction. However, these grids will increase the total
stiffness of the problem even more. To keep the method stable one must then take a lot of extra stages
and this will increase the computational time drastically. In addition, due to these extra stages more
extrapolations are needed in each time step and this may result in a less accurate solution.
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Part III

Three-factor models





Chapter 8

Black–Scholes and
Heston––Hull–White model

In this chapter we will shortly discuss the three-factor Black–Scholes and Heston––Hull–White model.
Both models are extensions of the already known and investigated two-factor models. It was shown that
only RKCTreeImpr could be applied to all models and therefore we will focus only on this method.

The three-factor Black–Scholes model is given by
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∂S2S3
− rV = 0, S1, S2, S3 ∈ (0,∞), t ∈ (0, T ),

V (S1, S2, S3, T ) = f(S1, S2, S3), S1, S2, S3 ∈ (0,∞).

As an example for the three-factor Black–Scholes model we will use a basket option. The payoff for a
basket option is given by f(S1, S2, S3, t) = max(

∑3
i=1 αiSi, 0). Since no closed formula exists for this

option, there is no benchmark.

As an example for the three-factor Heston––Hull–White model (H––H–W) we will use a European
call option, i.e. f(S1, S2, S3, t) = max(S1 −K, 0), and we will also take a look at a call option conditional
on the interest: f(S, r, v) = max(S − KS , 0)1r<Kr

.

8.1 Numerical results for a basket option

The following parameters are chosen for the basket option

α1 = 1, σ1 = 0.25, q1 = 0.07, S01 = 105,

α2 = 2, σ2 = 0.2, q2 = 0.05, S02 = 50,

α3 = 2, σ3 = 0.2, q3 = 0.05, S03 = 50,

ρ12 = 0.5, ρ12 = 0.5, ρ12 = 0.5, r = 0.1, T = 1, K = 100.

The results for this option are given in Table 8.1 and Figure 8.1. This figure is a slice through S3 = 50
in the S1- and S2- direction.
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N Q s RKCTreeImpr
linear

26 10 35 197.664
46 20 47 197.664
66 30 65 197.664
86 40 65 197.664

Table 8.1: Results for the basket option in a three-factor Black–Scholes model.
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Figure 8.1: Value of a basket option in a three-factor Black–Scholes model using RKCTreeImpr at
t = 1, 23, 1

3 , 0.

8.2 Numerical results for a European call and a digital-call

The following parameters are chosen for the European call option

S0 = 100, q = 0, (8.1)

r0 = 0.03, a = 0.05, θ(t) = θ = 0.025, σr = 0.01,

η = 0.9, λ = 5, v0 = 0.0625,

ρ12 = 0.1, ρ13 = 0.1, ρ23 = 0.1, T = 1, K = 100.

and results are given in Table 8.2 and Figure 8.2. For the call option conditional on the interest the same
parameters are taken and the strike for the interest is Kr = 0.05. Results are shown in Table 8.3 and
Figure 8.3. This figure is a slice through v0 in the S- and r- direction.

It is shown that the numerical results for the call option and the digital call option are the same.
This is due to the fact that Kr is above r0. There is, however, still some work to be done to make the
method better and to ensure stability in all cases. It is very important that the correlation terms are
controlled to obtain a stable method. Furthermore it is shown that the stable results are obtained.
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N Q s RKCTreeImpr
linear

30 10 25 15.8962
50 20 30 16.1693
110 50 45 16.3881

Table 8.2: Results for a European call option in a three-factor Heston––Hull–White model.
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Figure 8.2: Value of a call option in a three-factor Heston––Hull–White model using RKCTreeImpr at
t = 1, 2

3 , 1
3 , 0.

N Q s RKCTreeImpr
linear

30 10 25 5.46226
110 50 45 6.23791

Table 8.3: Results for a digital-call option in a three-factor Heston––Hull–White model.
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Figure 8.3: Value for a digital call option in a three-factor Heston––Hull–White model using RKC-

TreeImpr at t = 1, 2
3 , 1

3 , 0.



Chapter 9

Conclusion & Recommendations

In this thesis we focused on the implementation of a fast and accurate multi-dimensional finite difference
solver for solving initial value problems, as these are the most common problems in finance. The most
important issues that needed to be solved were the ”unknown boundary conditions” and the stiffness of
the discretization matrix of the problem. To solve the first problem two approaches were suggested. The
first approach was based on an implicit time integration scheme and the second was based on an explicit
time integration scheme. It was seen that the first approach leads to an unstable method. Therefore we
focused on the explicit approach only. To solve the initial value problems three explicit methods were
proposed: EulTree (based on the explicit Euler forward method), RKCTree and RKCTreeImpr

(both based on the RKC method). It was shown that the first two methods could solve the one- and
two-dimensional Black–Scholes and Hull–White model. However, this could only be done if a special grid
was chosen. So these methods are not very suited, since they could not be applied to general initial value
problems and general grids. The third proposed method could, however, solve all (stiff) initial value
problems on any desired grid. Furthermore, since boundary points that are of no influence to the final
solution are stripped off, the computational costs can be reduced and because this method can be applied
to any desired grid accurate solutions can be obtained.

Therefore it can be concluded that we have built an accurate multi-dimensional solver, which can
solve initial value problems as they arise in finance.

Although some good results were obtained with RKCTreeImpr, the method can be improved.
One of the improvements could be to extrapolate in time instead of the spatial extrapolation, since the
solutions might be smoother in time.

A number of different grids were applied, such as an exponentially stretched grid, uniform grid and
a refined grid. For convergence it is best to have a grid refinement around the nodes where problems are
to be expected, e.g. around the nodes where the solution is discontinuous. However, for computational
costs it is better to choose an exponentially stretched grid, since the spectral radius of the discretization
matrix is then smaller. It is worth investigating what grid is best to use, or what combination to take to
get a better convergence.

The proposed setup allows us to price all kinds of options, such as convertible bonds and CMSs. It
furthermore allows us to price strongly path dependent options and it is worth applying the proposed
method to solve these problems.

We have investigated the proposed method to solve up to a three-factor model. An extension to
four- and five-dimensional models should be made.

Since the method is explicit it is well suited for parallel programming. Computational costs can
then drastically decrease.

Traders are not always interested in the price of the option, but in the risk of having an option. It
is therefore very important that the Greeks (derivatives of the solution) can be calculated. This can also
be done in this model. For example if the ∆ = ∂V

∂S has to be calculated, the number of grid nodes N is
set equal to or greater than 2Q + 2. The remaining interval is now large enough to approximate the first
derivative using numerical methods.

A point of concern regarding this method is/are the correlation term(s). These can be better handled
if instead of the nine-point stencil the stencil as described in [13] is used.
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Appendix A

Stability for Euler forward

Fix ∆t and choose

Si = exi , i = 1, .., N + 1,

∆Si = Si+1 − Si = exmin+i∆x − exmin+(i−1)∆x = exmin+(i−1)∆x(e∆x − 1). (A.1)

where

∆x = log(y),

y = −1

2
a +

√
1

4
a2 − 1,

a = −2 +
∆tσ2n

1 − ∆t(r − q)
, n ≥ 1.

This approach also guarantees a stable method, which we will proof.
Substitution of (3.9) into (3.5) and using Theorem 2.1 gives for the stability condition for pi

1 − ∆t(r − q) + ∆t
σ2

(e∆x − 1)2e−∆x
≥ 0

→ ∆tσ2 ≥ (e∆x − 1)2e−∆x(−1 + ∆t(r − q)) (A.2)

Rewriting this equation gives the first statement in Lemma 3.1.
If −1 + ∆t(r − q) < 0, which is especially the case if r − q > 0, and holds for ∆t → 0, this equation can
be rewritten to

(e∆x − 1)2e−∆x ≥ ∆tσ2

−1 + ∆t(r − q)

This holds if

(e∆x − 1)2e−∆x =
n∆tσ2

−1 + ∆t(r − q)
(A.3)

where n ≥ 1.
Solving (A.3) gives the stepsize for the x-grid for which the Euler Explicit Forward method will still

be stable.

(e∆x − 1)2e−∆x =
n∆tσ2

−1 + ∆t(r − q)

e∆x − 2 + e−∆x =
n∆tσ2

−1 + ∆t(r − q)

e∆x − 2 − n∆tσ2

−1 + ∆t(r − q)
+ e−∆x = 0

e2∆x + (−2 − n∆tσ2

−1 + ∆t(r − q)
)e∆x + 1 = 0 (A.4)
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This equation can easily be solved yielding:

Si = exmin+(i−1)∆x, i = 1, .., N + 1

∆x = log(y),

y = −1

2
a +

√
1

4
a2 − 1,

a = −2 +
∆tσ2n

1 − ∆t(r − q)
, n ≥ 1.

which proofs the second statement in Lemma 3.1.
This equation only makes sense if 1

4a2 − 1 ≥ 0 and if y > 0.

1

4
a2 − 1 ≥ 0,

1

4
(−2 +

∆tσ2n

1 − ∆t(r − q)
)2 − 1 ≥ 0,

1 − ∆tσ2n

1 − ∆t(r − q)
+

1

4
(

∆tσ2n

1 − ∆t(r − q)
)2 − 1 ≥ 0,

∆tσ2n

1 − ∆t(r − q)︸ ︷︷ ︸
part1

(−1 +
1

4

∆tσ2n

1 − ∆t(r − q)
)

︸ ︷︷ ︸
part2

≥ 0.

Part 1 and part 2 are both smaller than zero and therefore the inequality holds. The second
restriction is the positiveness for y, which is always satisfied if a ≤ 0.

a ≤ 0,

−2 +
∆tσ2n

1 − ∆t(r − q)
≤ 0,

∆t ≤ 2

σ2n + 2(r − q)
.

(A.5)

The last equation allows large values for ∆t, so this criterion will always be satisfied. The same
thing can be done for the upper and lower diagonal elements. Applying the transformation and requiring
that the diagonal elements will always be above zero yields the following constraint to keep ai−1 and ai+1

positive, which leads to the last statement in Lemma 3.1

log(
r − q

σ2 + (r − q)
) ≤ ∆x ≤ log(

σ2 + r − q

r − q
).



Appendix B

Exact formula zero coupon bond

In this section an exact solution for a simple zero coupon bond under the Hull-White interest rate model
is derived. The exact solution will be used as a reference for the numerical results and later on this exact
solution will be used for the transformation to scale out the ’−rV ’ term.

A simple zero coupon bond is a contract for which the holder pays a certain premium at the beginning
of the period and receives 1 at the end of that period. The pricing equation for the zero coupon bond
under the Hull-White interest rate model is given by (4.1).

We assume that the solution of (4.1) can be written in the form

V (r, t) = eA(t)+rB(t), (B.1)

with final condition

V (r, T ) = 1.

Substitution of (B.1) in (4.1) gives

(A′(t) + rB′(t))V (r, t) + (Θ(t) − a(t)r)B(t)V (r, t),

+
1

2
σ2

r(t)B2(t)V (r, t) − rV (r, t) = 0. (B.2)

Rearranging terms gives

V (r, t)([A′(t) + Θ(t)B(t) +
1

2
σ2

r(t)B2(t)] + r[B′(t) − aB(t) − 1]) = 0,

and since this must hold for any V (r, t) it follows that

[A′(t) + Θ(t)B(t) +
1

2
σ2

r(t)B2(t)] + r[B′(t) − aB(t) − 1] = 0.

This equation is valid for all r and so both terms between brackets have to be zero, which leads to the
system with two unknowns A(t) and B(t)

A′(t) + Θ(t)B(t) +
1

2
σ2

r(t)B2(t) = 0, (B.3)

B′(t) − a(t)B(t) − 1 = 0. (B.4)

The final condition for V (r, T ) is given by (B.2). Since neither A(t) nor B(t) are functions of r it follows
that A(t) and B(t) are both zero on T .

A(T ) = 0, (B.5)

B(T ) = 0. (B.6)

Using an appropriate integrating factor, the solution of (B.4) is given by

B(t) =
−

∫ T

t
e
∫

T

u
a(s)dsdu

e
∫

T

t
a(s)ds

. (B.7)
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Equation (B.3) can be solved by using −
∫ T

t
A′(t)dt = A(t) − A(T ) = A(t) (the last equivalence holds

due to the endcondition (B.5): A(T ) = 0). So A(t) can be computed by rearranging (B.3) to A′(t) =
−Θ(t)B(t) − 1

2σ2
rB2(t) and integrating from T to t.

A(t) = −
∫ T

t

[−Θ(s)B(s) − 1

2
σ2

r(s)B2(s)]ds. (B.8)

(B.9)

The exact solution of the zero coupon bond under the Hull-White model (4.1) is given by

V (r, t) = eA(t)+rB(t), (B.10)

B(t) =
−

∫ T

t
e
∫

T

u
a(s)dsdu

e
∫

T

t
a(s)ds

, (B.11)

A(t) = −
∫ T

t

[−Θ(s)B(s) − 1

2
σ2

r(s)B2(s)]ds. (B.12)



Appendix C

Derivation of exact solution for an
exchange option

An exchange option is a right (not an obligation) to exchange a quantity q1 of an underlier S1 for a
quantity q2 of an underlier S2 on t = T . The payoff of an exchange option is given by

f(S1, S2) = max(α1S1 − α2S2, 0). (C.1)

Following [21], we derive in this appendix an exact solution of problem (5.1) together with (C.1).
The following transformation is applied:

V (S1, S2, t) = α1S2H(ξ, t), (C.2)

with

ξ =
S1

S2
.

Substituting (C.2) into (5.1) reduces the dimension of the equation, making it easier to solve. The partial
derivatives in the new coordinate become:

∂V

∂t
= α1S2

∂H

∂t
∂V

∂S1
=

∂α1S2H

∂S1
=

∂α1S2H

∂ξ

∂ξ

∂S1
= α1S2

∂H

∂ξ

1

S2
= α1

∂H

∂ξ
,

∂V

∂S2
=

α1S2∂H

∂S2
= α1H + α1S2

∂H

∂ξ

ξ

∂S2
= α1H + α1S2

∂H

∂ξ

−S1

S2
2

= α1H − α1ξ
∂H

∂ξ
,

∂2V

∂S2
1

=
∂(α1

∂H
∂ξ )

∂ξ

∂ξ

∂S1
= α1

∂2H

∂ξ2

1

S2
,

∂2V

∂S2
2

=
∂(α1H − α1ξ

∂H
∂ξ )

∂ξ

∂ξ

∂S2
= α1ξ

2 ∂2H

∂ξ2

1

s2
1

,

∂2V

∂S1∂S2
=

∂

∂S2
(α1

∂H

∂ξ
) = α1

∂H
∂ξ

∂ξ

∂ξ

∂S2
= −α1ξ

∂2H

∂ξ2

1

S2
.

Substituting this into (5.1) gives

α1S2
∂H

∂t
+

1

2
σ2

1S
2
1α1

∂2H

∂ξ2

1

S2
− σ1σ2S1S2ρ12α1ξ

∂2H

∂ξ2

1

S2
+

1

2
σ2

2S2
2α1ξ

2 ∂2H

∂ξ2

1

S2

+(r − q1)S1α1
∂H

∂ξ
+ (r − q2)S2(α1H − α1ξ

∂H

∂ξ
) − rα1S2H = 0. (C.3)

Divide by α1S2 to obtain

∂H

∂t
+

1

2
σ2

1ξ2 ∂2H

∂ξ2
− σ1σ2ρ12ξ

2 ∂2H

∂ξ2
+

1

2
σ2

2ξ2 ∂2H

∂ξ2

+(r − q1)ξ
∂H

∂ξ
+ (r − q2)(H − ξ

∂H

∂ξ
) − rH = 0. (C.4)
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Reordering terms gives:

∂H

∂t
+ ξ2(

1

2
σ2

1 − σ1σ2ρ12 +
1

2
σ2

2)
∂2H

∂ξ2
+ ξ(q2 − q1)

∂H

∂ξ
− q2H = 0. (C.5)

Writing σ′ =
√

1
2σ2

1 − σ1σ2ρ12 + 1
2σ2

2 yields the following one-dimensional equation

∂H

∂t
+ ξ2σ′ ∂

2H

∂ξ2
+ ξ(q2 − q1)

∂H

∂ξ
− q2H = 0.

Transforming the payoff results in

H(ξ, T ) = max(ξ − α2

α1
, 0). (C.6)

Equation (C.6) with payoff (C.6) looks like a call option, where the interest r is now replaced by q2 and
the dividend q is replaced by q1. The exact solution for this initial value problem will be similar to the
exact solution of a call option. For a derivation of the exact solution of the Black–Scholes equation see
[15]. So the solution to (C.6) with initial value (C.6) is

ξe−(q1)(T−t)N(d1) − e−(q2)(T−t)N(d2),

with

d1 =
ln( ξ

α2
α1

+ (q2 − q1 + σ′

2 ))

σ′
√

T − t
,

d2 =
ln( ξ

α2
α1

+ (q2 − q1 − σ′

2 ))

σ′
√

T − t
.

Transforming this equation back gives the exact solution for an exchange option

V (S1, S2, t) = α1S1e
−q1(T−t)N(d′1) − α2S2e

−q2(T−t)N(d′2)

where

d′1 =
ln(α1S1

α2S2
) + (q2 − q1 + 1

2σ′2)(T − t)

σ′
√

T − t
,

d′2 =
ln(α1S1

α2S2
) + (q2 − q1 − 1

2σ′2)(T − t)

σ′
√

T − t
.

σ′ =
√

σ2
1 − 2ρ12σ1σ2 + σ2

2 . (C.7)

In Figure (C.1) and (C.2) resp. the payoff and the solution on t = 0 are plotted. The parameters used
are:

q1 = 1, D1 = 0.07, σ1 = 0.25, S01 = 105

q2 = 2, D2 = 0.05, σ2 = 0.2, S02 = 50

ρ12 = 0.5, r = 0.1, t = 0, T = 5.
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Figure C.1: payoff exchange option.

Figure C.2: value of exchange option at t = 0.
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