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Chapter 1

Introduction

1.1 Stochastic Models

It was in 1973 that Myron Scholes and Fischer Black came up with their Black-Scholes formula to price
options. Until then a few over-the-counter options and some exchange-traded warrants were traded, but
from that moment on options exchanges spring up in Chicago, New York and Philadelphia. Later on in
London, Paris and Tokyo. Nowadays there are exchanges in many locations, such as the Netherlands
and Germany. Options are traded in a world wide market.
The Black-Scholes formula

∂V

∂t
+ (r − q)S

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− rV = 0, (1.1)

(σ: volatility, r: interest rate, q: dividend yield,S:underlying equity) is a very simple equation to price
options. In this simplicity lays the elegance of the formula. How can an instrument, which follows a pro-
cess that cannot be described, be priced by such a simple formula? It is here that Black and Scholes had
to make some assumptions. If those assumptions are taken for granted then the Black-Scholes equation
can be used without a doubt. However, as Fischer Black remarks in [1], these assumptions are simple
and unrealistic and when Black and Scholes tried to make money with the formula, by simple buying
options that were underpriced, all they gained was a loss. One has to be very careful when using the
Black-Scholes formula.
This was also discovered by traders in 1987. Until then options were priced using a constant volatility
(another assumption of the Black-Scholes formula) and this was one of the reasons for the big crash in
October 1987. Options at the money have a different volatility than options in or out the money, the so
called volatility smile or skew. This means that the assumption of constant volatility is not a good one
and from that moment on it was tried to make a model that fitted the smile, while still having realis-
tic underlying dynamics. All sorts of models for the volatility were tried, p.e. local volatility, implied
volatility, historical volatility and furthermore their were numerous scientists who tried to model the
volatility by assuming that volatility varies in a random way (stochastic volatility), such as Heston; Hull
and White; Cox, Ingersoll and Ross. These models fit the smile and have realistic underlying dynamics
(observing the market data). From these models (and other, potential more realistic ones) the Heston
model (which is a version of the square root process described by Cox, Ingersoll and Ross) is the most
popular, because of the existence of a fast and easily implemented quasi-closed form solution for Euro-
pean options [2].
It is therefore that volatility will be modeled using the Heston model.
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1.2 The Heston Model

The partial differential equation for an equity underlying with constant volatility and interest is given
by (1.1). Since volatility need not be constant this model can be extended with stochastic volatility. For
the stochastic volatility the Heston model is used.
The Heston model is a mean reverting Ornstein-Uhlenbeck process (as observed in the market). The
dynamics for the underlying equity and the Heston stochastic volatility are given by:

dSt = (r − q)Stdt +
√

vtStdZ1, (1.2)

dvt = −λ(vt − v)dt + η
√

vtdZ2, (1.3)

Cov(dZ1, dZ2) = ρ12dt, (1.4)

where r and q are resp. the interest rate and the dividend yield of the stock. λ is the speed of reversion of
the instantaneous variance vt to its long term mean v and η is the volatility of the volatility. Last but not
least ρ12 is the correlation between random stock price returns and changes in vt. These processes can
be simulated using numerical techniques [2] and Figures (1.1) and (1.2) show a numerical simulation
of these processes. The figures are obtained by a numerical simulation using an Euler discretization for
the equity process St and a Millstein scheme for the variance process vt (The Millstein scheme for the
variance process is taken to avoid negative values). This discretization looks as follows

Si+1 = Si + (r − q)Si∆t + Si

√
vi

√
∆tN(0, 1), i = 1, .., N

vi+1 = (
√

vi + (
η

2
)
√

∆tN(0, 1))2 − λ(vi − v)∆t − η2

4
∆t, i = 1, .., N

(where ∆t is the timestep size and N(0, 1) is the standard normal probability density function)
Figure (1.1) is a simulation of vt only. The parameters for this simulation are λ = 1, η = 0.5, v0 =
0.352, v = 0.352, T = 1. In this figure it is seen that the variance process vt is indeed mean reverting.
In Figure (1.2) a simulation of the equity underlying with stochastic volatility is shown. The paramters
used for this simulation are λ = 1, η = 0.5, v1 = 0.352, v = 0.352, r = 0.05, q = 0.03, S1 = 1, T = 1.
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Figure 1.1: Simulation of the Heston process
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Figure 1.2: Simulation of the stock price with
Heston stochastic volatility

1.2.1 The pricing equation for the two-factor model with stochastic volatility and
an equity underlying

To price an instrument with the underlying processes given by (1.2), (1.3) and the correlation given by
(1.4) we can derive a pricing equation. Solving this equation gives the price of the instrument.



1.2 The Heston Model 4

There are two approaches to find the pricing equation for the two-factor model with stochastic volatility
and an equity underlying. The first one is by setting up a portfolio Π containing the option being priced
denoted by V(S,v,t), −∆ of the underlying equity and −∆1 of another equity whose value depend on
volatility. After this portfolio is constructed one hedges the portfolio to make it riskfree and since it is
riskfree the return dΠ of the portfolio should equal rΠdt. Filling in all terms gives the pricing equation
for the two-factor model. In [2] this approach is followed and the pricing equation for the two-factor
model is obtained. It’s worth reading this approach. However, in this thesis another approach is used,
since this is, to my opinion, more easily extendable to the three-factor models.
The second approach is the Feynman-Kac approach. Feynman and Kac derived a relationship between
stochastic differential equations and partial differential equation. The Feynman-Kac theorem is given by

Theorem 1.1 (Feynman-Kac) Suppose the underlying processes y1(t), y2(t), .., yn(t) follow the stochastic dif-
ferential equation:

dyi = µi(y1, y2, .., yn, t) + σi(y1, y2, .., yn, t)dWi, (1.5)

then the function

f(y1, y2, .., yn, t) = Ey1,y2,..,yn,t[F (y1(T ), .., yn(T ))], (1.6)

is given by the solution of the partial differential equation

∂f

∂t
+

n∑

i=1

µi

∂f

∂yi

+
1

2

n∑

i,j=1

ρijσiσj

∂f

∂yi∂yj

= 0, (1.7)

subject to

f(y1, y2, .., yn, T ) = F (y1, y2, .., yn), (1.8)

where ρij = cov(dWi, dWj)/dt

The price of a claim on St paying F (S(T )) at maturity is given by

V (St, vt, t) = ES,v,t

(
F (T )e−

∫
T

t
r(s)ds

)
(1.9)

Since (for now) r is constant the term e−
∫

T

t
r(s)ds can be taken out of the expectation. Here after the

following function can be defined

V (St, vt, t) = e−r(T−t)U(St, vt, t) (1.10)

Where U(St, vt, t) is ES,v,t (F (T )) and to the function U(St, vt, t) the Feynman-Kac theorem can be ap-
plied. Transforming the U(St, vt, t) back to V (St, vt, t) gives the pricing equation of the two-factor model.
Setting y1 = St and y2 = vt and applying the transformation as described above and Theorem (1.1) to
(1.2) and (1.3) gives:
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∂V

∂t
+ (r − q)S

∂V

∂S
− λ(vt − v)

∂V

∂v
− rV +

1

2
vtS

2 ∂2V

∂S2

+ρ12Svtη
∂2V

∂S∂v
+

1

2
η2vt

∂2V

∂v2
= 0, St ∈ [0,∞], vt ∈ [0, 1]. (1.11)

To solve this problem numerically the domain must be truncated to the domain
[Smin, Smax]x[vmin, vmax] and as a consequence boundary conditions are necessary. However, it is
not always known what these boundary conditions are. How this problem is solved will be discussed
in Chapter (2).
In this section it was suggested to use a stochastic model for the volatility, because volatility varies in a
random way. The Heston model was proposed, because of a number of advantages. However, volatility
is not the only variable which varies in a random way. The interest is also a variable which can vary in
a random way and why not model this variable as a stochastic quantity?!
In the next section the stochastic interest rate will be discussed.

1.3 Stochastic interest

Volatility is not the only quantity that varies in a random way. It can be seen in the market that interest
too varies as a random quantity and therefore interest rate will also be modeled as a stochastic quantity.
To model the interest rate, another mean reverting Ornstein-Uhlenbeck process (as observed in the mar-
ket ) is used, namely the Hull-White interest rate model. This model describes the short-term interest
rate and the dynamics are given by:

drt = (Θ(t) − art)dt + σrdW (1.12)

where r is the short term interest rate, Θ is a function of time determining the average direction in which
r moves (Θmax ≈ 0.07 ), chosen such that movements in r are consistent with todays zero coupon yield
curve 1, a is the mean reversion rate (which is taken constant or sometimes it is computed using historic
data, a ≈ 0.05), governing the relationship between short an long rate volatilities and σr is the annual
standard deviation of the short rate (it is determined via calibration to caplets, σr ≈ 0.01 ).
In figure (1.3) an Euler discretization simulation for the Hull-White process is given with parameters:
a = 0.05, Θ = 0.07, σr = 0.01, rbegin = 0.03.
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Figure 1.3: numerical simulation for Hull-White process

1www.powerfinance.com
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1.4 The pricing equation for the three-factor Heston / Hull-White

model

In the previous section it was suggested to model the interest rate and the volatility with stochastic
models. In his section we will derive the pricing equation for the three-factor model with stochastic
interest, stochastic volatility and an equity underlying.
The dynamics for the underlying equity St, the interest rate rt and the variance vt are given by:

dSt = (rt − q)Stdt +
√

vtStdW1, (1.13)

drt = (Θ(t) − art)dt + σrdW2, (1.14)

dvt = −λ(vt − v)dt + η
√

vtdW3. (1.15)

The price of a claim on St paying F (S(T )) at maturity given by

V (St, vt, t) = ES,v,t

(
F (T )e−

∫
T

t
r(s)ds

)
. (1.16)

However, this time the interest rate r is not constant and the term e−
∫

T

t
r(s)ds can not be pulled out of the

expectation. This can be solved by defining an auxiliary process of the form dz = −r(t)dt. The function
V (St, vt, rt, t) is then equal to e−zESt,vt,rt,z,t[F (T )ez(T )]. Defining V (St, vt, rt, t) = e−zU(St, vt, rt, t) and
applying Feynman-Kac to U(St, vt, rt, t) then gives the desired result. The whole derivation can be read
in [4] or [3].
Applying Theorem (1.1) and the transformation as described above to the equations (1.13),(1.14) and
(1.15) gives the following pricing equation for the three-factor Heston / Hull-White model:

∂V

∂t
+ (r − q)S

∂V

∂S
+ (Θ(t) − ar)

∂V

∂r
− λ(vt − v)

∂V

∂v
− rV +

1

2
vS2 ∂2V

∂S2

+ρ12S
√

vσr

∂2V

∂S∂r
+ ρ13Svη

∂2V

∂S∂v
+

1

2
σ2

r

∂2V

∂r2
+ ρ23σrη

√
v

∂2V

∂r∂v

+
1

2
η2v

∂2V

∂v2
= 0 (1.17)

where

ρij = Cov(dWi, dWj)/dt (1.18)

1.5 Goal of this thesis

The goal of this thesis is to implement a three dimensional solver, especially, but not only, to solve the
partial differential equation (1.17). Three keywords for the solver are fast, accurate and general and no
concession can be made on either three of them. However, solving three dimensional problems give
rise to speed issues, which need to be resolved to obtain a useful finite difference solver. One very inter-
esting topic of research is the boundary conditions. Since not all boundary conditions for the problem
are known and since we like the set up to be general we like to go round the boundary condition.
This can be done in two ways. One way is the use of pde boundary conditions. This gives the great
advantage that an implicit method can be used, however the pde boundary conditions may give rise
to other problems. Another way is by simply solving explicitly. This may, however, result in very slow
methods and to a decrease of accuracy . Both methods will be examined for the 1 factor Black-Scholes,
Hull/White and Heston model. Together with the boundary conditions we will investigate the other
problems which may occur in these one-factor models, before we go to the three-factor model.



Chapter 2

Models for the asset price, interest rate
and volatility

2.1 Black-Scholes Equation

The pricing equation for an option V (S, t) with an underlying equity S is given by

(BS) =

{
V = V (S), t = T
∂V
∂t

+ (r − q)S ∂V
∂S

+ 1
2σ2S2 ∂2V

∂S2 − rV = 0, S ∈ [0,∞), t ∈ [0, T )
(2.1)

Since (BS) is defined on the half space ℜ+, the behavior of V (S) for S → ∞ is entirely implied by the
initial value, or payoff, at t = T. However, in numerical computations the domain must be truncated and
a proper boundary condition has then to be chosen. Since the payoff implies the behavior for large S, the
choice of theboundary condition has to be as ”weak” as possible to avoid its influence on the solution
on the whole domain. There are two ways to achieve this:

1. The use of pde-boundary conditions. In this approach the whole PDE is discretized on the bound-
ary grid node. The main benefit of this approach is that we can use implicit time-integration meth-
ods.

2. The use of explicit time integration methods on grids that are tree -shaped. In each time-integration
step the boundary grid nodes are ”stripped” from the solution vector as they do not contribute to
the solution in all further time-integration steps.

These approaches allow for general solvers which can be used for Heston / Hull-White models as well.
In literature the ”linearity” condition is often used at boundaries where no conditions are known. It
is, however, easily seen that these conditions not need be valid. Take for example a power option. The
payoff of this option is V (S) = S2 and this is obviously not linear at the boundary.
One remark that we make now, but will be repeated throughout this thesis is that the problem is solved
backward in time. So it is solved from T to t and therefore the timestep is negative.

We will start with the discretization of the Black-Scholes equation. The first and second derivative for

the interior points (resp. ∂Vi

∂S
and ∂2Vi

∂S2 for i = 2, .., N ) will be approximated by a second order accurate
finite difference scheme using functions in the points Si−1, Si, Si+1 (Vi = V (Si) ). Since the grid is not
necessarily uniform (later on we might use grid-stretching), the first and second derivative will be ap-
proximated resp. by an adjusted central and standard three point method, to guarantee second order
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Figure 2.1: discretization of the interior points

accuracy.
The interior will be discretized using functions in the points Si−1, Si, Si+1 (∆Si = Si+1 − Si).

To attain second order accuracy the first derivative will be approximated by:

∂Vi

∂S
= αi

−1Vi−1 + αi
0Vi + αi

1Vi+1, (2.2)

= αi
−1V (Si − ∆Si−1) + αi

0V (Si) + αi
1V (Si + ∆Si). (2.3)

The terms Vi−1 = V (Si − ∆Si−1) and Vi+1 = V (Si + ∆Si) can be expanded in a Taylor serie:

V (Si − ∆Si−1) = Vi − ∆Si−1V
′

i + (∆Si−1)
2 1

2
V ′′

i − (∆Si−1)
3 1

6
V ′′′

i , (2.4)

V (Si + ∆Si) = Vi + ∆SiV
′

i + (∆Si)
2 1

2
V ′′

i + (∆Si)
3 1

6
V ′′′

i . (2.5)

First the substitution of (2.4) and () in (2.3) is made. Thereafter the αi
−1, α

i
0, α

i
1 have to be chosen such

that the first derivative is approximated with second order accuracy. Working out all terms it can be
concluded that second order accuracy is reached if αi

−1, α
i
0, α

i
1 satisfy the following linear system:




1 1 1
−∆Si−1 0 ∆Si
1
2∆S2

i−1 0 1
2∆S2

i







αi
−1

αi
0

αi
1


 =




0
1
0


 (2.6)

This procedure will be applied to determine the stencil for all following derivatives.
It is, however, not possible to use the central scheme for an explicit time-discretization scheme and in
that case we will use upstream discretization. Since the problem we are investigating is solved backward
in time upstream discretization is given by

βi

∂V

∂S
=

{
βi

Vi+1−Vi

∆Si

βi > 0

βi
Vi−Vi−1

∆Si−1
βi < 0

(2.7)

This can be written in the following form

∂Vi

∂S
= αi

−1Vi−1 + αi
0Vi + αi

1Vi+1, (2.8)

= αi
−1V (Si − ∆Si−1) + αi

0V (Si) + αi
1V (Si + ∆Si), (2.9)

with



2.1 Black-Scholes Equation 9

αi
−1 = −1

2
(

βi

∆Si

− | βn

∆Si−1
|), (2.10)

αi
1 =

1

2
(

βi

∆Si

+ | βn

∆Si−1
|), (2.11)

αi
0 = −αi

−1 − αi
1. (2.12)

The second derivative will be approximated by:

∂2Vi

∂S2
= βi

−1Vi−1 + βi
0Vi + βi

−1Vi+1, (2.13)

second order accuracy is reached if the coefficients α−1, α0, α1 satisfy:




1 1 1
−∆Si−1 0 ∆Si
1
2∆S2

i−1 0 1
2∆S2

i







βi
−1

βi
0

βi
1


 =




0
0
1


 (2.14)

Combined with the boundary conditions the following semi-discrete system is obtained.

du

dt
+ Au = 0, (2.15)

where A is the discretization matrix of the spatial operator L(V ):

L(V ) =
1

2
σ2S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV, (2.16)

Matrix A thus contains the discretization of the interior and the boundary points and is of the form:

A =




γ1 γ2 γ3 γ4 γ5 0 . . . 0

a2 b2 c3 0 0 0
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... 0 0 0 aN bN cN

0 . . . 0 ǫN−4 ǫN−3 ǫN−2 ǫN−1 ǫN




(2.17)

where ai, bi and ci, i = 2, .., N depends on the interior discretization and γ1 to γ5 and ǫN−4 to ǫN depend
on the boundary conditions used, which we will discuss in the next section.
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2.1.1 Implicit time method with the pde-boundary condition

First of all the pde boundary condition, in which the equation itself is a boundary condition, will be
examined. We will investigate the behavior of the pde-boundary condition up to a second order one
sided difference scheme at the boundary. First of all the finite difference schemes will be presented.
Starting at the left boundary and making use of functions in the points Si, Si+1, Si+2, Si+3 the first
order first derivative will be approximated by:

∂V1

∂S
= α1

1V2 + α1
0V1, (2.18)

where α1
1, α

1
0 satisfy the linear system:

[
1 1

∆S1 0

] [
α1

1

α1
0

]
=

[
0
1

]
(2.19)

and the second order first derivative by:

∂V1

∂S
= α1

2V3 + α1
1V2 + α1

0V1, (2.20)

where α1
2, α

1
1, α

1
0 satisfy:




1 1 1
(∆S1 + ∆S2) ∆S1 0

1
2 (∆S1 + ∆S2)

2 1
2∆S2

1 0







α1
2

α1
1

α1
0


 =




0
1
0


 (2.21)

The first order second derivative is approximated by:

∂2V1

∂S2
= α1

2V3 + α1
1V2 + α1

0V1, (2.22)

where α1
2, α

1
1, α

1
0 satisfy:




1 1 1
(∆S1 + ∆S2) ∆S1 0

1
2 (∆S1 + ∆S2)

2 1
2 (∆S1)

2 0







α1
2

α1
1

α1
0


 =




0
0
1


 (2.23)

and the second order second derivative by:

∂2V1

∂S2
= β1

3V4 + β1
2V3 + β1

1V2 + β1
0V1, (2.24)

where α1
3, α

1
2, α

1
1, α

1
0 satisfy:




1 1 1 1
(∆S1 + ∆S2 + ∆S3) (∆S1 + ∆S2) ∆S1 0

1
2 (∆S1 + ∆S2 + ∆S3)

2 1
2 (∆S1 + ∆S2)

2 1
2∆S2

1 0
1
6 (∆S1 + ∆S2 + ∆S3)

3 1
6 (∆S1 + ∆S2)

3 1
6∆S3

1 0







α1
3

α1
2

α1
1

α1
0


 =




0
0
1
0


 (2.25)
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The discretization at the right boundary can be done in a similar way as for the left boundary only now
by taking functions in the points SN , SN−1, SN−2, SN−3, SN−4

The different boundary conditions will be referred to as:

• pde1: O(h2) discretization for first and second derivative

• pde2: first derivative: O(h2), second derivative: O(h)

• pde3: first derivative: O(h), second derivative: O(h2)

• pde4: first derivative: O(h), second derivative: O(h)

• pde5: first: O(h), second derivative zero (linear boundary condition)

• pde6: first: O(h2), second derivative zero (linear boundary condition)

Once the semi-discrete system is known, the extension to the full discrete system can be made.
The semi-discrete system is given by:

du

dt
+ Au = 0, (2.26)

The full-discrete equation (using an ω-scheme) is given by:

un+1 = (I + dtωA)−1((I − dt(1 − ω)A)un + dtωfn+1 + dt(1 − ω)fn), ω ∈ [0, 1]. (2.27)

For the stability analysis we will follow the article of Vetzal, Forsyth and WindCliff . A legitimate discreti-
sation of the spatial operator L(V ) (2.16) has the properties that if λi is an eigenvalue of the matrix A
then

1. Case q ≥ 0: All of the eigenvalues must satisfy Re(λi) ≤ 0.

2. Case q < 0: There is at most a single index ρ for which Re(λρ > 0).

In the case of a pde boundary condition vector f = 0, B then becomes B = (I +dtωA)−1(I−dt(1−ω)A).
For strict stability it is then required that:

||B|| ≤ 1. (2.28)

(|| · || is the spectral norm)

Later on it will be seen that (2.28) does not necessarily hold for the pde boundary and therefore will lead
to unstabilities.
In Figures (2.2), (2.4) and (2.6) the numerical solutions, solved on a bigger and bigger grid, of a European
call option with parameters r = 0.05, σ = 0.5, q = 0.,K = 100, T = 5 are plotted.
In Figures (2.3), (2.5) and (2.7) the behavior of a European put option is shown for increasing Smax.
It can be seen that as Smax becomes larger that the numerical solution (solid blue line) converges toward
the exact solution (dashed black line)

However we are mainly interested in the error in the point S = K. Table (2.1) shows the absolute error
in S = K for the pde boundary conditions and increasing maturity times. The number of timesteps is
equal to 40 ∗ T , Smax = 1000 and the number of space steps is 500.
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Figure 2.2: solid blue line: numerical solution
with pde3, dashed black line: exact solution
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Figure 2.3: solid blue line: numerical solution
with pde3, dashed black line: exact solution
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Figure 2.4: solid blue line: numerical solution
with pde2, dashed black line: exact solution
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Figure 2.5: solid blue line: numerical solution
with pde2, dashed black line: exact solution
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Figure 2.6: solid blue line: numerical solution
with pde1, dashed black line: exact solution
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Figure 2.7: solid blue line: numerical solution
with pde1, dashed black line: exact solution

In Table (2.1) it can be seen that more or less accurate results are obtained with the pde boundary
conditions. However, to achieve these results the domain has to be very large, something we would like
to avoid.

The differences between the exact and numerical solutions are caused by the pde-boundary-conditions.
There are three main points which need to be explored in order to get more accurate results. One point
where inaccuracies rise up is at the right boundary. Suppose that r − q > 0 then the convection term at
the right boundary is positive and since the problem is solved backward in time, this means that flow is
to the left. However, we take one-sided differences as though flow is to the right.
Another point of worry is the discretization matrix A. The discretization is non-legitimate and this causes
positive eigenvalues, where as for stability for the ω-scheme no positive eigenvalues may occur. The
non-legitimate discretization is due to the pde-boundary condition.
The last point is also related to the pde boundary conditions. One-sided differences are used here, but



2.1 Black-Scholes Equation 13

T exact pde6 pde5 pde4 pde3 pde2
5 28.1582 28.1549 28.1549 28.1594 28.1549 28.1549
10 41.5022 41.5001 41.5001 41.5001 41.5001 41.5001
15 51.4771 51.4755 51.4755 51.4775 51.4755 51.4756
20 59.3879 59.3863 59.3863 59.3873 59.3862 59.3875
25 65.8239 65.8207 65.8207 65.8285 65.8204 65.8306
30 71.1346 71.1256 71.1256 71.1570 71.1246 71.1686
35 75.5552 75.5340 75.5340 75.6234 75.5318 75.6666
40 79.2573 79.2154 79.2154 79.4177 79.2115 79.5450
45 82.3709 82.2997 82.2997 82.6926 82.2935 83.0110
50 84.9981 84.8891 84.8891 85.5747 84.8805 86.2858

Table 2.1: K = 100, r = 0.03, σ = 0.25

was does this in fact mean.

∂V1

∆S
=

V2 − V1

∆S
=

V2 − V0

2∆S
+

∆S

2

V2 − 2V1 + V0

(∆S)2
, (2.29)

where V0 is a virtual point. Actually some more diffusion is added to the problem at the left boundary
and at the right boundary diffusion is subtracted. This may also have influence on the solution. The
second order first derivative at the left boundary can also be rewritten

∂V1

∆S
=

V2 − V1

∆S
=

V2 − V0

2∆S
+

(∆S)2

2

−V3 + 3V2 − 3V1 − V0

(∆S)3
, (2.30)

the last term is a numerical approximation to minus the third derivative. So in this case extra dispersion
is added to the problem.
Taking a look at the first order second derivative yields

∂2V1

∂S2
=

V3 − 2V2 + V1

(∆S)2
=

V2 − 2V1 + V0

(∆S)2
+ (∆S)

V3 − 3V2 + 3V1 − V0

(∆S)3
, (2.31)

where the last term is a numerical approximation to the third derivative. So also here extra dispersion is
added to the problem.
Adding extra diffusion or dispersion to the problem may also cause inaccurate results. Therefore we try
to set up a solver which does not depend on the boundary condition. This approach of solving with an
explicit method on a tree-structured grid will be discussed in the next section.

2.1.2 Explicit time methods solved on a tree structured grid

Solving the partial differential equation explicitly on a tree mesh means that we solve the equation back
to one space point as illustrated in figure (2.8)

For the first derivative in point 1 we need functions in the points 2,3,4, but certainly not in point 0.
The solution is thus not influenced by the boundary conditions. The method applied to solve the Black-
Scholes equation on a tree-structured grid is:

• Take an equidistant grid from Smin to Smax
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Figure 2.8: Eigenfunction

• For the convective part, upstream discretization is used, because the central scheme cannot be
used in combination with an explicit method.

• Explicit Euler forward is used for the time integration and the number of timestep is smaller then
K−Smin

∆S
. The problem is not solved back to one point, but toward the smallest interval which still

contains the point K (instead of K we can also take another point of interest)

• Interpolation in the point K gives the desired result.

• To make the method stable the criterion |1 − λidt| < 1 has to be satisfied, with λi eigenvalues of
the discretization matrix A. It seems very hard to fulfill this criterion, which is a drawback for this
method.

Using Gerschgorin an upper- and lowerbound for the eigenvalues can be found. Defining

αi = −1

2
(

βi

∆S
− | βi

∆S
|) +

fi

∆S2
, i = 2, .., N (2.32)

γi =
1

2
(

βi

∆S
+ | βi

∆S
|) +

fi

∆S2
i = 2, .., N (2.33)

with

βi = (r − q)Si, (2.34)

fi =
1

2
σ2S2

i . (2.35)

Then the following inequality has to be fulfilled to get a stable method

−2(αi + γi) − r >
2

∆t
. (2.36)

Substituting (2.32) in (2.36) and assuming r − q > 0 (which usually is the case) gives

(r − q)Si

∆S
+

σ2S2
i

∆S2
− r < − 1

∆t
. (2.37)
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It will be shown that restriction (2.37) is hard to satisfy. This will be due to the use of the Explicit Euler
method and that is why other methods will be applied such as Runge-Kutta-Chebyshev methods (but
this is one of the future goals).
The most ideal case would be if the point of interest is the center of the computational domain (as a
consequence ∆t = −T

Q
= −T

2N
, where Q is the number of timesteps and N the number of spacesteps). All

other cases are worse and it will be shown that it is already hard to satisfy the restriction for the most
ideal case.

(r − q)Si

∆S
+

σ2S2
i

∆S2
− r ≤ − 1

∆t
, (2.38)

(r − q)Si

∆S
+

σ2S2
i

∆S2
− r ≤ 2N

T
. (2.39)

(2.40)

Si = Smin + (i − 1)∆S and ∆S = Smax−Smin

N
.

If the above equation holds for N + 1 then it holds for all i = 1, .., N + 1.

(r − q)(Smin + N∆S)

∆S
+

σ2(Smin + N∆S)2

∆S2
− r ≤ 2N

T
(r − q)Smin

∆S
+ (r − q)N +

σ2Smin

∆S2
+

2σ2SminN

∆S
+ σ2N2 − r ≤ 2N

T
(r − q)SminN

Smax − Smin

+ (r − q)N +
σ2SminN2

(Smax − Smin)2
+

2σ2SminN

Smax − Smin

+ σ2N2 − r − 2N

T
≤ 0

(
2σ2Smin

SmaxSmin

+ σ2 +
σ2SminN2

(Smax − Smin)2
)N2 + (

(r − q)Smin

Smax − Smin

+ (r − q) − 2

T
)N − r ≤ 0

This inequality can be solved and it gives an upperbound for the number of space steps N such that the
method is certainly stable:

N ≤ −1

2
a +

√
(
1

2
a)2 − b (2.41)

a =
r − q − 2

T
+ (r−q)Smin

(Smax−Smin)

2σ2Smin

Smax−Smin

+ σ2 + σ2Smin

(Smax−Smin)2

(2.42)

b =
−r

2σ2Smin

Smax−Smin

+ σ2 + σ2Smin

(Smax−Smin)2

(2.43)

This upperbound is a very sharp upperbound. So the number of spacesteps can be taken somewhat
bigger, but not much.
For a European call option with r = 0.03, q = 0, σ = 0.25 the upperbound (2.41) can be plotted as a
function of Smin and Smax (see Figure (2.9)).

From Figure (2.9) it follows that it does not matter how big the interval is taken, the maximal N will
always be 6, which is a strict restraint and will lead to inaccurate results.
This example shows that Euler forward is not a very good time-discretization method in this case and
there is a need for better suited time-discretization methods (It is suggested that the Runge-Kutta-
Chebyshev method might solve our problem. So it will be one of the future research topics to investigate
this).
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Figure 2.9: upperbound for number of space steps

2.2 Interest rate model

The next model that will be examined is the one-dimensional Hull-White model. The partial differential
equation for this model is given by

∂V

∂t
+ (Θ(t) − ar)

∂V

∂r
+

1

2
σ2

r

∂2V

∂r2
− rV = 0 (2.44)

First we will derive an exact solution for a zero coupon bond under this model, which will be used as
a benchmark for the numerical solution. A problem for the numerical computation of the zero coupon
bond under the Hull-White model is that the boundary conditions are not known. To deal with this
problem we will use an explicit method on a tree structure, or an implicit method with the whole equa-
tion as a boundary condition to solve the problem. These methods will be compared and results will be
given. The approaches may give inaccurate results, which are caused by the ′ − rV ′ term, since r can
either be positive or negative and the solution grows exponentially fast for small r. Therefore we like
the scale out this term, which can be done by making use of the exact solution of the zero coupon bond.
In the next sections we will discuss all the details mentioned above.

2.2.1 Exact solution for the zero coupon bond under the Hull-White interest rate
model

In this section an exact solution for a simple zero coupon bond under the Hull-White interest rate model
is derived. The exact solution will be used as a reference for the numerical results and later on this exact
solution will be used for the transformation to scale out the ′ − rV ′ term.
A simple zero coupon bond is a contract for which the holder pays a certain premium at the beginning
of the period and receives 1 at the end of that period. The pricing equation for the zero coupon bond
under the Hull-White interest rate model is given by (2.44).
We assume that the solution of (2.44) can be written in the form

V (r, t) = eA(t)+rB(t), (2.45)

with final condition
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V (r, T ) = 1.

Substitution of (2.45) in (2.44) gives

(A′(t) + rB′(t))V (r, t) + (Θ(t) − a(t)r)B(t)V (r, t),

+
1

2
σ2

r(t)B2(t)V (r, t) − rV (r, t) = 0. (2.46)

Rearranging terms gives

V (r, t)([A′(t) + Θ(t)B(t) +
1

2
σ2

r(t)B2(t)] + r[B′(t) − aB(t) − 1]) = 0,

and since this must hold for any V (r, t) it follows that

[A′(t) + Θ(t)B(t) +
1

2
σ2

r(t)B2(t)] + r[B′(t) − aB(t) − 1] = 0.

This equation is valid for all r and so both terms between brackets have to be zero, which leads to the
system with two unknowns A(t) and B(t)

A′(t) + Θ(t)B(t) +
1

2
σ2

r(t)B2(t) = 0, (2.47)

B′(t) − a(t)B(t) − 1 = 0. (2.48)

The final condition for V (r, T ) is given by (2.46). Since neither A(t) nor B(t) are functions of r it follows
that A(t) and B(t) are both zero on T .

A(T ) = 0, (2.49)

B(T ) = 0. (2.50)

Using an appropriate integrating factor, the solution of (2.48) is given by

B(t) =
−

∫ T

t
e
∫

T

u
a(s)dsdu

e
∫

T

t
a(s)ds

. (2.51)

Equation (2.47) can be solved by using −
∫ T

t
A′(t)dt = A(t) − A(T ) = A(t) (the last equivalence holds

due to the endcondition (2.49): A(T ) = 0). So A(t) can be computed by rearranging (2.47) to A′(t) =
−Θ(t)B(t) − 1

2σ2
rB2(t) and integrating from T to t.

A(t) = −
∫ T

t

[−Θ(s)B(s) − 1

2
σ2

r(s)B2(s)]ds. (2.52)

(2.53)

The exact solution of the zero coupon bond under the Hull-White model (2.44) is given by
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V (r, t) = eA(t)+rB(t), (2.54)

B(t) =
−

∫ T

t
e
∫

T

u
a(s)dsdu

e
∫

T

t
a(s)ds

, (2.55)

A(t) = −
∫ T

t

[−Θ(s)B(s) − 1

2
σ2

r(s)B2(s)]ds. (2.56)

2.2.2 Numerical solution for the zero coupon bond under the Hull − White interest
rate model

The Hull-White interest model is given by (2.44). The spatial operator L(V ) is defined by:

L(V ) = (Θ(t) − ar)
∂V

∂r
+

1

2
σ2 ∂2V

∂r2
− rV. (2.57)

At first we concentrate on the discretization of the spatial operator. The convection term can either by
positive or negative changing sign at Θ(t)− ar = 0 and therefore we use upstream discretization for the
convection part. The problem is solved backward in time and therefore the upstream discretization is
given by:

β
∂u

∂r
=

{
β ui+1−ui

∆ri

β > 0

β ui−ui−1

∆ri−1
β < 0

(2.58)

For the diffusion part we will use the three point stencil and since a uniform grid is used (∆rn =
∆rn−1 = ∆r)
We define

αi = −1

2
(

βi

∆r
− | βi

∆r
|) +

fi

∆r2
, i = 2, .., N (2.59)

γi =
1

2
(

βi

∆r
+ | βi

∆r
|) +

fi

∆r2
i = 2, .., N (2.60)

with

βi = Θ(t) − ari, i = 2, .., N (2.61)

fi = 0.5σ2, i = 2, .., N (2.62)

As suggested by Hull-White we choose ∆r =
√

nσ2∆t, n ∈ N . This gives the following discretization
matrix for the spatial operator (2.57)

A =




γ1 γ2 γ3 γ4 0 0 0
α2 −α2 − β2 − r2 β2 0 0 0 0
0 α3 −α3 − β3 − r3 β3 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 0 αN−1 −αN−1 − βN−1 − rN−1 βN−1 0
0 0 0 0 αN −αN − βN − rN βN

0 0 0 ǫ1 ǫ2 ǫ3 ǫ4




(2.63)
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(where γ1 till γ4 and ǫ1 till ǫ4 are depending on the type of discretization used at the boundary) It can
directly be seen that, since r can either be positive or negative, diagonal dominance is not guaranteed.
To what extent this will cause trouble will be examined in the next sections, where we investigate the
use of an explicit time method where we solve on a tree structure and the implicit time method, where
we discretize the whole equation as a boundary condition.

2.2.3 Implicit Time method with pde boundary conditions

The implicit method we use is the ω-scheme with ω = 0.5 (actually this is not an implicit scheme, but an
implicit-explicit scheme), which is certainly stable as long as the eigenvalues of the spatial operator are
all smaller or equal than zero. Since the discretization matrix (2.63) is not diagonally dominant we can
not estimate the eigenvalues with Gerschgorin to be smaller or equal than zero. As a consequence we
can not conclude that the ω-scheme will always be stable. However, taking a look at the eigenvalues of
the discretization matrix A shows that these eigenvalues are less then zero as long as a is not too small.
Another point of care are the boundary conditions. In the previous chapter these conditions were anal-
ysed for the Black-Scholes equation and one observation was the fact that at the right boundary the flow
was to the left while we take one-sided differences at this boundary as though flow is to the right. This
was a possible explanation for the strange behavior at this boundary.
Taking a look at the spatial operator (2.57) one can see that the flow at the boundaries will be in the same
direction as the one-sided differences, taken at that boundary, as long as the following two condition are
fulfilled

rmin <
Θ

a
, (2.64)

rmax >
Θ

a
. (2.65)

The first inequality will always be satisfied, since Θ and a are both positive, but the second inequality
gives an upperbound for the spatial step that can be taken.

rmax >
Θ

a
,

Q∆r >
Θ

a
,

−Q2n∆tσ2 >
Θ2

a2
,

n >
Θ2

a2σ2TQ
,

therefore n will be taken equal to ⌈ Θ2

a2σ2TQ
⌉ in this case

2.2.4 Numerical results (zero coupon bond)

By means of a number of examples we will investigate the accuracy of this method. We again consider
six types of boundary conditions

• pde1: O(h2) discretization for first and second derivative

• pde2: first derivative: O(h2) second derivative: O(h)

• pde3: first derivative: O(h) second derivative: O(h2)
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• pde4: first derivative: O(h) second derivative: O(h)

• pde5: first derivative: O(h) second derivative: 0

• pde6: first derivative: O(h2) second derivative: 0

In Figures (2.10) to (2.13) the quotient of the exact and numerical solution is plotted. The used parameters
are : a = 0.05, Θ = 0.025, σ = 0.01.
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Figure 2.10: quotient exact/ numerical solution for the zero coupon bond with pde1
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Figure 2.11: quotient exact/ numerical solution for the zero coupon bond with pde2

2.2.5 Numerical results (caplets)

A Caplet is a particular type of European option whose underlying is the curve of interest rates. It can
also be seen as a call option on the short rate. The Caplet is a contract which protects the buyer from
paying to much interest in the future. At time Tf the forward interest rate for the period TS to Te is
defined. If this rate becomes to high the caplet will guarantee a payoff, making up for the high forward
interest rate one has to pay. If future interest rate is low then nothing will happen, but one also will not
pay to much interest in the future. The Payoff at Tf for a Caplet Caplet(t, Tf , TS , Te, τ,K) is given by

Caplet(Tf , Tf , TS , Te, τ,K) = (P (Tf , TS) − (1 + τK)P (Tf , Te))
+, (2.66)
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Figure 2.12: quotient exact/ numerical solution for the zero coupon bond with pde3
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Figure 2.13: quotient exact/ numerical solution for the zero coupon bond with pde4

where P (t, T ) is the solution of the zero coupon bond and τ the day count fraction.
In [5] the exact solution for the Caplet is derived and this exact solution will be used as a benchmark to
validate the numerical results. The problem is solved implicitly with the pde boundary condition pde3 .
Exact and numerical solutions for the Caplet with parameters: Θ = 0.25, a = 0.05, σ = 0.01, K =
0.06, Tf = 5, TS = 5, Te = 6 are plotted in figure (2.14) and (2.15).

In (2.16) and (2.17) the exact and numerical value of a Caplet with parameters: Θ = 0.025, a = 0.05, σ =
0.01, K = 0.06, Tf = 5, TS = 5, Te = 6 are plotted.

In table (2.2) we compare the exact and numerical values of some Caplets.

2.2.6 Solving on a tree structured mesh with Euler forward

The results for the implicit method with the natural boundary condition are not satisfactory and there-
fore we try an explicit approach. We will first discuss the stability conditions for this method.
A is the discretization matrix of the spatial operator (2.57). The eigenvalues λi of A and the eigenvalues
Λi of the full-discretization matrix B(= (I − dtA)) are related by

Λi = 1 − ∆λi (2.67)

For stability it must hold that
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Figure 2.14: exact solution
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Figure 2.15: numerical solution

Figure 2.16: exact solution
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Figure 2.17: numerical solution

Tf TS Te Θ exact numerical σ a n
5 5 6 0.025 0.0440 0.0438 0.01 0.05 3
5 5 10 0.025 0.2958 0.2958 0.01 0.05 3
10 10 11 0.025 0.0459 0.0460 0.01 0.05 2
10 10 15 0.025 0.2016 0.2030 0.01 0.05 2
15 15 16 0.025 0.0207 0.0209 0.01 0.05 1
15 15 20 0.025 0.0770 0.0777 0.01 0.05 1
20 20 21 0.025 0.0062 0.0062 0.01 0.05 1
20 20 25 0.025 0.0210 0.0209 0.01 0.05 1
30 30 31 0.025 0.0003 0.0003 0.01 0.05 1

Table 2.2: number of time steps is 200

|Λi| ≤ 1

which is the case if

2

∆t
≤ λi ≤ 0 (2.68)
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Tf TS Te Θ exact numerical σ a
5 5 6 0.25 0.0382 0.0388 0.01 0.05 50
5 5 10 0.25 0.0562 0.0574 0.01 0.05 50
10 10 11 0.25 2 · 10−5 2.3 ·10−5 0.01 0.05 25
10 10 15 0.25 2.4 1̇0−5 2.7 ·10−5 0.01 0.05 25
15 15 16 0.25 2.1 ·10−10 3.0 ·10−10 0.01 0.05 17
15 15 20 0.25 2.3 ·10−10 3.2 ·10−10 0.01 0.05 17

Table 2.3: number of time steps = 1000

(N.B. ∆t is negative)
Discretization of (2.57) may lead to problems due to the term ′ − rV ′, since r can either be positive and
negative. To avoid such problems equation (2.57) will be transformed to a convection-diffusion kind of
problem. This means that due to the transformation the ′ − rV ′ term will drop out.

Transforming the 1-dimensional Hull-White equation For the transformation of (2.44) we take V =

VsolṼ , where Vsol is the solution for the zero-coupon bond under the Hull-White model and Ṽ is the

new variable which we should solve. Replacing V with VsolṼ in (2.44) yields

Vsol

∂Ṽ

∂t
+ Ṽ

∂Vsol

∂t
+ (Θ(t) − ar)(Vsol

∂Ṽ

∂r
+ Ṽ

∂Vsol

∂r
)

+
1

2
σ2

r(Vsol

∂2Ṽ

∂r2
+ 2

∂Vsol

∂r

∂Ṽ

∂r
+ Ṽ

∂2Vsol

∂r2
)

−rVsolṼ = 0.

Rearranging terms gives

Vsol

∂Ṽ

∂t
+ (Θ(t) − ar + σ2

r

∂Vsol

∂r
)
∂Ṽ

∂r
+

1

2
σ2

rVsol

∂2Ṽ

∂r2

+Ṽ (
∂Vsol

∂t
+ (Θ − a(t)r)

∂Vsol

∂r
+

∂2Vsol

∂r2
− rVsol) = 0. (2.69)

And since Vsol is the zero-coupon bond, which satisfies

∂Vsol

∂t
+ (Θ(t) − ar)

∂Vsol

∂r
+

∂2Vsol

∂r2
− rVsol = 0. (2.70)

Equation (2.69) becomes

Vsol

∂Ṽ

∂t
+ (Θ(t) − ar + σ2

r

∂Vsol

∂r
)
∂Ṽ

∂r
+

1

2
σ2

rVsol

∂2Ṽ

∂r2
= 0. (2.71)

The solution for the zero coupon bond is given by

Vsol = eA(t)+rB(t)
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and substituting this in (2.70) leads to the convection-diffusion equation

∂Ṽ

∂t
+ (Θ(t) − ar + σ2

rB(t))
∂Ṽ

∂r
+

1

2
σ2

r

∂2Ṽ

∂r2
= 0. (2.72)

Using Gerschgorin it can be shown that when upstream discretization for convection and the standard
three point method for diffusion are used, which are used here, the right part of (2.68) is always fulfilled.

As proposed by Hull and White we take ∆r =
√

nσ2∆t. They also suggest to take n = 3, for the speed
of convergence, but in this case n (together with ∆t) has to be chosen in such a way that the left part of
(2.68) is fulfilled. The left-hand-side of (2.68) is satisfied if

|Θ(t) − ar + σ2B(t)

∆r
| + σ2

∆r
≤ −1

∆t
, ∀r, B(t), a, Θ, σ (2.73)

This inequality is derived as follows.
The method is stable if (2.68) is satisfied. The right part of this equation is always satisfied, so we only
have to worry about the left part, which says that λi has to be greater then 2

∆t
.

The eigenvalues of matrix A can be estimated with Gerschgorin given a lower bound for the eigenvalues:

λlowerbound ≥ −2(
Θ(t) − ar + σ2B(t)

∆r
+

σ2

∆r2
)

and as long as λlowerbound will be above 2
∆t

the method will be stable. This is exactly what equation (2.73)
states. From (2.73) an upper- and lowerbound for n can be derived.
Suppose that Θ(t) − ar + σ2B(t) ≥ 0. This is the case if

r ≤ −σ2B(t) − Θ(t)

−a
, (2.74)

(2.75)

The worst case appears as r = rmax and rmax = Q∆r = Q
√

n∆tσ2. So it can be concluded that Θ(t) −
ar + σ2B(t) ≥ 0 if

Q ≤
(−σ2B(t)−Θ(t)

−a
)2

nσ2T
. (2.76)

Since it is now known that Θ(t) − ar + σ2B(t) ≥ 0 an upperbound for n can be deduced. Starting from
(2.73)it can be shown that

Θ(t) − ar + σ2B(t)

∆r
+

σ2

∆r
≤ −1

∆t
, (2.77)

−√
n(Θ(t) − ar + σ2B(t)) T

Q√
T
Q

σ2
− 1 + n ≥ 0, (2.78)

Solving this equation for n yields
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n ≤

√

−1

2
b +

√
(
1

2
b)2 − c (2.79)

b =
−(Θ(t) − ar + σ2B(t)) T

Q√
T
Q

σ2
(2.80)

c = −1 (2.81)

(2.76) is more easily satisfied then the criterion for the Black-Scholes equation.

2.2.7 Numerical results (Caplet)

(N.B. the zero coupon is priced exactly under the transformed equation, because the begin solution does
not change in time. As a consequence, the transformed solution is equal to the exact solution.
The transformed equation has also been solved with an implicit method and the pde-boundary condi-
tions. This, however, gives exactly the same results as the non-transformed equation for the zero coupon
bond and the Caplets.)
In table (2.4) the exact and numerical solution of a Caplet under the transformed Hull-White equation
are compared.

Tf TS Te Θ exact numerical σ a n
5 5 6 0.025 0.0440 0.0444 0.01 0.05 50
5 5 10 0.025 0.2958 0.2939 0.01 0.05 50
10 10 11 0.025 0.0459 0.0461 0.01 0.05 50
10 10 15 0.025 0.2016 0.2008 0.01 0.05 50
15 15 16 0.025 0.0207 0.0207 0.01 0.05 50
15 15 20 0.025 0.0770 0.0760 0.01 0.05 50
20 20 21 0.025 0.0062 0.0060 0.01 0.05 50
20 20 25 0.025 0.0210 0.0201 0.01 0.05 50
30 30 31 0.025 0.0003 0.0002 0.01 0.05 50

Table 2.4: number of time steps is 200



Chapter 3

Conclusion

In chapter (2) the models for the equity underlying and the interest rate were treated. It was seen that
the Black-Scholes formula could be solved with an implicit method and the pde-boundary condition
(discretizing the whole equation using one-sided differences), but the computational domain had to be
very big (Another point of worry was that stability can need be guaranteed and that the flow at the
right boundary was opposite to the one-sided differences taken ). Another approach was to solve the
formula on a tree structured grid with an explicit method. The problem here is that the central stencil
cannot be used and the upstream discretization used is less accurate.
Solving the Hull-White problem with an implicit method also had the disadvantage that we could not
guarantee stability. However, it seemed that the method was stable, although we did not proof this. The
stability could not be guaranteed because of the ′ − rV ′ term and that was why a transformation was
performed. After the transformation the equation seemed also solvable with the explicit method on a
tree structured-grid. The criterion so satisfy stability is, however, still complex and for the moment we
achieved stability by simply changing the right parameters.
Furthermore the two models were examined and the problems for each model were explained.

It can be concluded that solving a partial differential equation without known boundaries can be done
in two ways. One is to solve with an implicit method and pde-boundary condition (although when has
to be very careful). The other is by solving explicit on a tree method. Both methods are worth some more
investigation.



Chapter 4

Future goals

In this thesis two approaches were treated to solve partial differential equation without known bound-
ary condition. The approach of solving with an implicit method using the pde-boundary conditions
need to be applied with care, but is worth investigating if this approach can be used for the solver
of the three-factor model. For the approach with the explicit method solved on a tree-structured grid
first of all the restrictions for the time step need to be found to make the method stable. Since upwind
discretization is used for the convection part the results can become inaccurate, this can be solved by
discretizing the equation in a different way. However Euler forward has some strict stability conditions
and we are going to try another time-discretization method, namely the Runge-Kutta-Chebyshev, to see
if this method is more suitable for our problem.
The final goal is to implement a three dimensional solver for the three-factor Heston / Hull-White
model.
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