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Introduction - cerebral small vessel disease

cerebral small vessel disease
:= changes in the brain due to damaged small vessels

Resulting lesions
® Lacunes of presumed vascular origin
® Recent small subcortical infarcts
¢ White matter hyperintensities

® Perivascular spaces

Cerebral microbleeds
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Introduction - lacunes of presumed vascular origin?

Definition

a round or ovoid, fluid-filled cavity
of between 3 mm and about 15 mm
in diameter

Figure: Example of a lacune.

1. Wardlaw et al. (2013). “Neuroimaging standards for research into small vessel disease and its contribution to ageing

and neurodegeneration.”. In: The Lancet Neurology 12.8, pp. 822-838. DOI: 10.1016/S1474-4422(13)70124-8.



https://doi.org/10.1016/S1474-4422(13)70124-8

Introduction - relevance

Relevance of finding lacunes
® Helps to detect the disease

e Can give more information
about the disease

Relevance of an automated method

® Helps speeding up the process

Figure: Example of a lacune.
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Introduction - segmentation
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Introduction - segmentation

Segmentation methods

® |abel every voxel

Figure: Example of a lacune
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Introduction - segmentation

Segmentation methods

® |abel every voxel

Figure: Example of a segmented lacune
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Introduction - segmentation

Segmentation methods

® |abel every voxel ‘

Figure: Lacune segment.
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Introduction - segmentation

Segmentation methods

® |abel every voxel

Figure: Background segment.
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Introduction - segmentation

Gives information about
® | ocation
® Shape

e Size

b

Figure: Example of a segmented lacune
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Introduction - contribution

Previous lacune methods

® Only on 2D images or 3D sub-images
® Analyzing entire 3D images with these previous methods requires

® more time
® more computational cost
® additional manual labour

Our methods

® detect and segment lacunes in 3D MRI images at once
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Introduction - challenges

Class imbalance

Differentiation with similarly looking structures
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Introduction - challenges - class imbalance

Imbalance between lacune and
background voxels

® Scan of 512x512x192 =
50,331,648 voxels

® 74 to 9200 voxels with lacune

¢ Over-classifying the
background
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Figure: Example of a lacune.



Introduction - challenges - differentiation

Differentiate lacunes from (parts of) brain structures with similar
® shape
® size

® intensity
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Introduction - components of a method

Input image

Network
architecture
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Data - Rotterdam scan study

Scans
e 222 manually segmented lacune scans
® Image size of 512x512x192 voxels
¢ T1-weighted MRI images

Data split
® 89 images for training
® 22 images for validation

® 111 images for testing
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Figure: Lacune on a
Rotterdam scan study scan.
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Method - network architecture
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Method - network architecture
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Method - network architecture
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Method - loss function
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Method - loss function
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Method - loss function

To cope with the challenges, 5 loss functions are compared
® Binary cross-entropy loss
® Weighted binary cross-entropy loss
® Dice loss
® Dice-RelLU loss

e Constrained Dice-RelLU loss
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Method - loss function
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Method - loss function - binary cross-entropy loss

n = number of voxels in an image
yi = k™" voxel value of the manually segmented image
pr = k" voxel value of the prediction image

BCE = —% zn: (yk log (Ak) + (1 = yi) log (1 - px) )
k=1
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Method - loss function - binary cross-entropy loss
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Method - loss function - binary cross-entropy loss

n = number of voxels in an image
yi = k™" voxel value of the manually segmented image
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Method - loss function - binary cross-entropy loss

n = total number of voxels in an image
yi = k™" voxel value of the manually segmented image
pr = k" voxel value of the prediction image

BCE loss = -

S|

zn: (yk log (px) + (1 - yk) log (1 - px) )

k=1

%
TUDelft




Method - loss function - weighted binary cross-entropy loss

g = number of lacune voxels in the manually segmented image

r = number of background voxels in the manually segmented image
ps = st prediction voxel that should be a lacune

pr = tt prediction voxel that should be background

118 12
WBCE loss = —— (— > log (ps) + = log (1 —ﬁt))
2 qs:l rt:].
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Method - loss function - weighted binary cross-entropy loss

g = number of lacune voxels in the manually segmented image
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Method - loss function - weighted binary cross-entropy loss

g = number of lacune voxels in the manually segmented image

r = number of background voxels in the manually segmented image
ps = st prediction voxel that should be a lacune

pr = tt prediction voxel that should be background

113 12
WBCE loss = —— (— > log (ps) + = log (1 —ﬁt))
2 qs:l rt:].
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Method - loss function - Dice loss

The Dice loss is derived from the Dice similarity coefficient(DSC)

where | Y| is the cardinality of set Y and |P| is the cardinality of set P
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Method - loss function - Dice loss

n = number of voxels in an image
yi = k™" voxel value of the manually segmented image
pr = kth voxel value of the prediction image

222:1 Vi Pk

Dice loss=1- —; —
k=1 Ykt Lko1 Pk + €
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Method - loss function - Dice loss

n = number of voxels in an image
vk = k™ voxel value of the manually segmented image
pr = k" voxel value of the prediction image
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Dice loss =1 - —; T
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Method - loss function - Dice loss

n = number of voxels in an image
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Method - loss function - Dice loss

n = number of voxels in an image
yi = k™" voxel value of the manually segmented image
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Method - loss function - Dice loss

n = number of voxels in an image
yi = k™" voxel value of the manually segmented image
pr = kth voxel value of the prediction image

222:1 Vi Pk

Dice loss=1- —; —
k=1 Ykt Lko1 Pk + €
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Method - loss function - Dice-RelLU loss

Clip prediction values with a shifted ReLU function

f (p\k) = max (Olap\k) )

where py is the k' voxel value of the prediction image
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Method - loss function - Dice-RelLU loss

n = number of voxels in an image
vk = k™ voxel value of the manually segmented image
pr = k" voxel value of the prediction image

2% -1 yemax (0.1, py)

Dice-RelL U loss=1 - —
Yko1 Yk + Xg=g max (0.1, pi)
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Method - loss function - constrained Dice-RelLU loss

Cp = constraint on the volume of the prediction voxels that should be
predicted as background

C; = constraint on the volume of the prediction voxels that should be
predicted as lacunes

= parameter defining the contribution of the constraint to the loss

CDR loss = Dice-ReL U loss+ 1. (Cg + Cp)
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Method - loss function - constrained Dice-RelLU loss

Vg = volume of the prediction voxels that should be predicted as
background
VT = volume of the manually segmented lacune voxels
FPstare = start volume of the prediction voxels that should be predicted

as background

Background constraint

CB (VB7 VT) = {(Fpstarto.25VT)2 If VB > 025\/—,—7
0

otherwise
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Method - loss function - constrained Dice-RelLU loss

V| = volume of the prediction voxels that should be predicted as lacune

VT = volume of the manually segmented lacune voxels

Lacune constraint

V=075V’ e 75V
C(Vi,Vr) = { 075V T VL <O.05VT,
0

otherwise
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Method - optimizer
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Method - optimizer

Network
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Method - optimizer

AdaDelta

® Binary cross-entropy loss

® Weighted binary cross-entropy loss
Adam

® Dice loss

® Dice-RelU loss

® Constrained Dice-RelLU loss
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Results - terminology - true positive

(a) Manually segmented image. (b) Prediction image.
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Results - terminology - false negative

(a) Manually segmented image. (b) Prediction image.
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Results - terminology - false positive

(a) Manually segmented image. (b) Prediction image.
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Results - detection performance
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Results - overall segmentation performance

Loss function DSC (mean + STD) Relative volume differ-  Absolute volume differ-
ence (mean + STD) ence (mean + STD)

BCE - - -

WBCE 0.14 + 0.19 1.07 £ 1.37 243.10 + 395.77

Dice 0.19 + 0.25 0.89 + 1.69 204.01 + 370.38

Dice-RelLU 0.05 + 0.05 42.28 + 43.78 5409.05 + 2445.62

CDR 0.08 + 0.08 18.28 + 20.59 2424.08 + 1575.61

BCE = binary cross-entropy, WBCE = weighted binary cross-entropy,
CDR = constrained Dice-RelLU




Results - segmentation performance of TP elements

Loss function DSC (mean + STD) Relative volume differ-  Absolute volume differ-
ence (mean + STD) ence (mean + STD)

BCE - - -

WBCE 0.45 + 0.21 0.75 + 0.61 106.74 + 87.05

Dice 0.47 + 0.23 0.49 + 0.30 132.88 + 314.79

Dice-RelLU 0.28 + 0.15 5.93 + 5.65 738.66 + 509.36

CDR 0.29 + 0.14 477 + 4.41 601.65 + 428.37

BCE = binary cross-entropy, WBCE = weighted binary cross-entropy,
CDR = constrained Dice-RelLU




Results - example of a true positive

(d) Dice loss. (e) Dice-RelLU loss.
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Results - examples of a false negative

(a) Near ventricle. (b) Intensity. (c) In cerebellum.

(e) Near ventricle. (f) Intensity. (g) In cerebellum.
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Results - examples of a false negative

(a) In brainstem.  (b) Upper part.

(c) In brainstem.  (d) Upper part.
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Results - examples of a false positive

3
TUDelft



Table of Contents

@ Conclusion

%
TUDelft




Conclusion

Conclusions

e All loss functions, except the BCE loss were able to detect and
segment lacunes

® Dice loss performed best on the number of FPs per image and on
both segmentation performances, but worse on sensitivity
performance.

¢ Clipping background values (Dice-ReLU loss) improved the
sensitivity performance, but with many FPs.

* Adding a constraint (constrained Dice-ReLU loss) halved the
number of FPs with only a limited decrease in sensitivity.
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Conclusion

Aim
® Develop a deep learning method that is able to detect and segment
lacunes in 3D brain MRI scans

Challenges
® Data imbalance

e Differentiation with similarly looking structures
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Conclusion

Final conclusion
e All loss functions can cope with the data imbalance

e Clipping background values in the Dice loss (Dice-ReLU loss) helps
in coping with the data imbalance

® Adding a constraint improves the differentiation with similarly
looking structures

® The Dice-RelLU loss and the CDR loss are suitable for detecting
cerebral small vessel disease

® The WBCE loss and the Dice loss are suitable for gaining more
information into the cerebral small vessel disease
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Future work

® Add scans without lacunes
® Add FLAIR images
® Fine-tuning of constraint

® Constrain Dice loss to keep
lacunes

® Constrain weighted binary

cross-entropy to reduce false
positives

Figure: Lacune on a FLAIR image
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