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Introduction - cerebral small vessel disease

cerebral small vessel disease

:= changes in the brain due to damaged small vessels

Resulting lesions

● Lacunes of presumed vascular origin

● Recent small subcortical infarcts

● White matter hyperintensities

● Perivascular spaces

● Cerebral microbleeds



Introduction - lacunes of presumed vascular origin1

Definition

a round or ovoid, fluid-filled cavity
of between 3 mm and about 15 mm
in diameter

Figure: Example of a lacune.

1J. Wardlaw et al. (2013). “Neuroimaging standards for research into small vessel disease and its contribution to ageing
and neurodegeneration.”. In: The Lancet Neurology 12.8, pp. 822–838. doi: 10.1016/S1474-4422(13)70124-8.

https://doi.org/10.1016/S1474-4422(13)70124-8


Introduction - relevance

Relevance of finding lacunes

● Helps to detect the disease

● Can give more information
about the disease

Relevance of an automated method

● Helps speeding up the process

Figure: Example of a lacune.
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Figure: Example of a lacune
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Segmentation methods

● Label every voxel
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Introduction - segmentation

Segmentation methods

● Label every voxel

Figure: Lacune segment.



Introduction - segmentation

Segmentation methods

● Label every voxel

Figure: Background segment.



Introduction - segmentation

Gives information about

● Location

● Shape

● Size

Figure: Example of a segmented lacune



Introduction - contribution

Previous lacune methods

● Only on 2D images or 3D sub-images
● Analyzing entire 3D images with these previous methods requires

● more time
● more computational cost
● additional manual labour

Our methods

● detect and segment lacunes in 3D MRI images at once



Introduction - challenges

Class imbalance

Differentiation with similarly looking structures



Introduction - challenges - class imbalance

Imbalance between lacune and
background voxels

● Scan of 512x512x192 =
50,331,648 voxels

● 74 to 9200 voxels with lacune

● Over-classifying the
background

Figure: Example of a lacune.



Introduction - challenges - differentiation

Differentiate lacunes from (parts of) brain structures with similar

● shape

● size

● intensity
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Data - Rotterdam scan study

Scans

● 222 manually segmented lacune scans

● Image size of 512x512x192 voxels

● T1-weighted MRI images

Data split

● 89 images for training

● 22 images for validation

● 111 images for testing Figure: Lacune on a
Rotterdam scan study scan.
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Method - loss function

Manually segmented image Prediction image

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 111 0 0
0 0 111 111 111 0
0 111 111 111 111 0
0 0 111 111 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.10 0.13 0.25 0.15 0.06
0.09 0.14 0.34 0.890.890.89 0.55 0.28
0.21 0.44 0.830.830.83 111 0.860.860.86 0.36
0.32 0.760.760.76 0.960.960.96 111 0.910.910.91 0.34
0.16 0.47 0.780.780.78 0.930.930.93 0.38 0.22
0.04 0.21 0.29 0.36 0.18 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Method - loss function - binary cross-entropy loss

n = number of voxels in an image
yk = kth voxel value of the manually segmented image
p̂k = kth voxel value of the prediction image

BCE = −1

n

n

∑
k=1

(yk log (p̂k) + (1 − yk) log (1 − p̂k))
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Method - loss function - binary cross-entropy loss

n = total number of voxels in an image
yk = kth voxel value of the manually segmented image
p̂k = kth voxel value of the prediction image

BCE loss = −1

n

n

∑
k=1

(yk log (p̂k) + (1 − yk) log (1 − p̂k))



Method - loss function - weighted binary cross-entropy loss

q = number of lacune voxels in the manually segmented image
r = number of background voxels in the manually segmented image
p̂s = sth prediction voxel that should be a lacune
p̂t = tth prediction voxel that should be background

WBCE loss = −1
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r
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Method - loss function - Dice loss

The Dice loss is derived from the Dice similarity coefficient(DSC)

DSC = 2∣Y ∩ P ∣
∣Y ∣ + ∣P ∣ ,

where ∣Y ∣ is the cardinality of set Y and ∣P ∣ is the cardinality of set P
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Dice loss = 1 − 2∑n
k=1 yk p̂k

∑n
k=1 yk +∑n

k=1 p̂k + ε
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Method - loss function - Dice loss

n = number of voxels in an image
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Method - loss function - Dice-ReLU loss

Clip prediction values with a shifted ReLU function

f (p̂k) = max (0.1, p̂k) ,

where p̂k is the kth voxel value of the prediction image



Method - loss function - Dice-ReLU loss

n = number of voxels in an image
yk = kth voxel value of the manually segmented image
p̂k = kth voxel value of the prediction image

Dice-ReLU loss = 1 − 2∑n
k=1 yk max (0.1, p̂k)

∑n
k=1 yk +∑n

k=1 max (0.1, p̂k)



Method - loss function - constrained Dice-ReLU loss

CB = constraint on the volume of the prediction voxels that should be

predicted as background

CL = constraint on the volume of the prediction voxels that should be

predicted as lacunes

µ = parameter defining the contribution of the constraint to the loss

CDR loss = Dice-ReLU loss + µ (CB + CL)
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Method - loss function - constrained Dice-ReLU loss

VB = volume of the prediction voxels that should be predicted as

background

VT = volume of the manually segmented lacune voxels

FPstart = start volume of the prediction voxels that should be predicted

as background

Background constraint

CB (VB ,VT ) =
⎧⎪⎪⎨⎪⎪⎩

(VB−0.25VT )
2

(FPstart−0.25VT )
2 if VB > 0.25VT ,

0 otherwise



Method - loss function - constrained Dice-ReLU loss

CB = constraint on the volume of the prediction voxels that should be

predicted as background

CL = constraint on the volume of the prediction voxels that should be

predicted as lacunes

µ = parameter defining the contribution of the constraint to the loss

CDR loss = Dice-ReLU loss + µ (CB +CLCLCL)



Method - loss function - constrained Dice-ReLU loss

VL = volume of the prediction voxels that should be predicted as lacune

VT = volume of the manually segmented lacune voxels

Lacune constraint

CL (VL,VT ) =
⎧⎪⎪⎨⎪⎪⎩

(VL−0.75VT )
2

(0.75VT )
2 if VL < 0.75VT ,

0 otherwise
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Method - optimizer

AdaDelta

● Binary cross-entropy loss

● Weighted binary cross-entropy loss

Adam

● Dice loss

● Dice-ReLU loss

● Constrained Dice-ReLU loss
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Results - terminology - true positive

(a) Manually segmented image. (b) Prediction image.



Results - terminology - false negative

(a) Manually segmented image. (b) Prediction image.



Results - terminology - false positive

(a) Manually segmented image. (b) Prediction image.



Results - detection performance



Results - overall segmentation performance

Loss function DSC (mean ± STD) Relative volume differ-
ence (mean ± STD)

Absolute volume differ-
ence (mean ± STD)

BCE - - -
WBCE 0.14 ± 0.19 1.07 ± 1.37 243.10 ± 395.77
Dice 0.19 ± 0.25 0.89 ± 1.69 204.01 ± 370.38
Dice-ReLU 0.05 ± 0.05 42.28 ± 43.78 5409.05 ± 2445.62
CDR 0.08 ± 0.08 18.28 ± 20.59 2424.08 ± 1575.61

BCE = binary cross-entropy, WBCE = weighted binary cross-entropy,
CDR = constrained Dice-ReLU



Results - segmentation performance of TP elements

Loss function DSC (mean ± STD) Relative volume differ-
ence (mean ± STD)

Absolute volume differ-
ence (mean ± STD)

BCE - - -
WBCE 0.45 ± 0.21 0.75 ± 0.61 106.74 ± 87.05
Dice 0.47 ± 0.23 0.49 ± 0.30 132.88 ± 314.79
Dice-ReLU 0.28 ± 0.15 5.93 ± 5.65 738.66 ± 509.36
CDR 0.29 ± 0.14 4.77 ± 4.41 601.65 ± 428.37

BCE = binary cross-entropy, WBCE = weighted binary cross-entropy,
CDR = constrained Dice-ReLU



Results - example of a true positive

(a) Unsegmented. (b) Manually. (c) WBCE loss.

(d) Dice loss. (e) Dice-ReLU loss. (f) CDR loss.



Results - examples of a false negative

(a) Near ventricle. (b) Intensity. (c) In cerebellum. (d) Outer part.

(e) Near ventricle. (f) Intensity. (g) In cerebellum. (h) Outer part.



Results - examples of a false negative

(a) In brainstem. (b) Upper part.

(c) In brainstem. (d) Upper part.



Results - examples of a false positive
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Conclusion

Conclusions

● All loss functions, except the BCE loss were able to detect and
segment lacunes

● Dice loss performed best on the number of FPs per image and on
both segmentation performances, but worse on sensitivity
performance.

● Clipping background values (Dice-ReLU loss) improved the
sensitivity performance, but with many FPs.

● Adding a constraint (constrained Dice-ReLU loss) halved the
number of FPs with only a limited decrease in sensitivity.



Conclusion

Aim

● Develop a deep learning method that is able to detect and segment
lacunes in 3D brain MRI scans

Challenges

● Data imbalance

● Differentiation with similarly looking structures



Conclusion

Final conclusion

● All loss functions can cope with the data imbalance

● Clipping background values in the Dice loss (Dice-ReLU loss) helps
in coping with the data imbalance

● Adding a constraint improves the differentiation with similarly
looking structures

● The Dice-ReLU loss and the CDR loss are suitable for detecting
cerebral small vessel disease

● The WBCE loss and the Dice loss are suitable for gaining more
information into the cerebral small vessel disease
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Future work

● Add scans without lacunes

● Add FLAIR images

● Fine-tuning of constraint

● Constrain Dice loss to keep
lacunes

● Constrain weighted binary
cross-entropy to reduce false
positives

Figure: Lacune on a FLAIR image
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