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1
Introduction

Cerebral small vessel disease (cSVD) is a disease that can result in different types of brain lesions,
including lacunes of presumed vascular origin, perivascular spaces, white matter hyperintensities and
microbleeds. It affects mostly elderly people and can have a large impact on psychological and physical
abilities. However, the mechanisms underlying the disease are not fully known. cSVD itself is hard to
detect with neuroimaging, but the lesions resulting from cSVD are better to image. Therefore, the
disease is detected by inspecting brain MRI images for these lesions. This task is mostly performed by
a radiologist and can take up a lot of time. Additionally, as the interpretation is executed by a human
being, it is subject to bias and variations across interpreters.

In the past, other researchers have come up with several machine learning methods that tried to
automate this manual process to assist the radiologist in making more accurate decisions and save
time. For lacunes of presumed vascular origin these methods were mostly detection based, which
means that the method detects the lesion with drawing a box around it. In order to get more precise
information about the size and location, semantic segmentation should be applied as this procedure
provides the exact outline of the lesion. Previously, one other method was designed to segment lacunes
of presumed vascular origin. However, since the field of machine learning is still advancing, more recent
developed techniques might be able to improve the segmentation task even more.

Therefore the aim of this thesis is to come up with a new automated method that is able to produce
more accurate lacune of presumed vascular origin segmentation results using the more recent tech-
niques. The automation of this task would reduce the time a radiologist has to spend analyzing the
images and increases the accuracy of the diagnosis. Moreover, it also will benefit the patient, since
potential diseases can be detected in an earlier stage and as a consequence can be treated more
effectively. Lastly, it may help giving more insight in the exact cause of the disease.

This literature study will provide more medical background on lacunes of presumed vascular origin
and cerebral small vessel disease in chapter 2. Next, an introduction on convolutional neural networks
is given in chapter 3, after which chapter 4 describes how such a network can be trained. A promising
architecture within the field of convolutional neural networks, U-Net, is explained in chapter 5. Chapter 6
discusses previously developedmethods to automate the process of detecting and segmenting lacunes
of presumed vascular origin. Potential challenges that can occur while developing a segmentation
method in this thesis are mentioned in chapter 7. Subsequently, a conclusion of this literature study is
given in chapter 8. Finally, chapter 9 contains the research proposal, in which the research questions
of this thesis are stated.
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2
Medical Background

2.1. Cerebral small vessel disease
The term cerebral small vessel disease (cSVD) refers to pathological changes in the small arteries,
arterioles, venules and capillaries in the brain. All together these blood vessels are called the small
vessels. As a consequence of these changes, lesions can occur in the brain parenchyma, which is the
functional tissue in the brain consisting of neurons and glial cells. However, the mechanisms causing
the pathological changes that lead to lesions are heterogeneous and not fully understood. It is shown
that the parenchymal damages, such as lacunes of presumed vascular origin, white matter hyperinten-
sities of presumed vascular origin and microbleeds, are generally located in the subcortical structures.
Since alterations in small vessels are hard to detect with neuroimaging, whereas the resulting lesions
are better to image, these lesions are often used as biomarkers for cerebral small vessel disease. As
a result of this, the term cerebral small vessel disease often refers to the parenchymal lesions rather
than the pathological small vessel changes [34].

There are several types of small vessel diseases which can be subdivided based on its pathology
into the amyloidal form and the non-amyloidal form. This separation is based on whether aggregates
of proteins, called amyloids, play a role in the disease or not. Within the amyloidal group, cerebral
amyloid angiopathy (CAA) is a very common subtype [9]. CAA is a chronic degenerative disease
which is predominantly associated with advanced age [5]. It is caused by progressive accumulation of
𝛽-amyloid in the walls of small arteries in the brain. The deposition of the 𝛽-amyloid leads to occlusion
and rupture of the vessels and eventually to brain parenchymal injuries [6, 39]. The non-amyloidal form
is also known as age-related and vascular risk-factor-related small vessel disease because it is often
associated to ageing, diabetes and hypertension. This form of cSVD represents itself by an increase
of the vessel wall, narrowed interior of the vessels, the occurrence of dilated and elongated vessels or
the buildup of fats, cholesterol and other substances on the vessel walls [34].

Although the exact link between cSVD and parenchymal damage is still unclear, it is hypothesized
that damage to the blood-brain barrier might be a possible cause of some cSVD types [51]. The blood-
brain barrier (BBB) is a semipermeable barrier that separates the cardiovascular system from the ex-
tracellular fluid of the central nervous system. It prevents the pathogens and circulating immune cells
from passively entering and as a result damaging the brain [1, 9]. In several studies it was found that in
patients with cSVD, BBB leakage was present [42, 52, 56, 60]. The hypothesis is that with increasing
age the permeability of the BBB increases and this damage process is enhanced by several risk fac-
tors such as hypertension, diabetes and inflammation. If the BBB is weakened, pathogens and immune
cells can then invade into the brain and induce brain parenchymal lesions [9, 51, 56].

The consequences of small vessel disease are diverse. Elderly patients with cSVD experience
cognitive decline [48], depressive symptoms [18] and physical disabilities such as gait disturbances [10]
and urinary problems [37]. Furthermore, the disease is the cause of 25% of all ischaemic strokes [2],
contributes to up to 45% of dementias [53] and appears to be associated with Alzheimer’s Disease and
Parkinson’s Disease [9]. However the exact relation of cSVD with these neurodegenerative diseases
is still unclear.

In order to detect small vessel disease, neuroimaging and especially magnetic resonance imaging
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4 2. Medical Background

(MRI) is used to visualize the different parenchymal lesions. To assess the severity of the disease a
total cSVD score was proposed, which takes several of these imaged biomarkers into account instead
of evaluating them separately [26, 55]. Besides this, the neuroimaging of biomarkers can also be im-
portant to get insight about the cause of the disease and its connection to other neurodegenerative
diseases. It is shown that dysfunction of the blood-brain barrier is associated with the consequential
parenchymal lesions of cSVD [56, 60]. However, if the exact relation and process between the leak-
ing BBB and the disease can be unraveled, it might help to prevent the small vessel disease from
originating.

The parenchymal lesions that are commonly used as cSVD biomarkers are recent small subcortical
infarcts, lacunes of presumed vascular origin, whitematter hyperintensities of presumed vascular origin,
perivascular spaces, cerebral microbleeds and brain atrophy. These lesions vary in size, shape and
location in the brain. Furthermore, their intensities on an MRI scan may vary as well from having a
low intensity (white) to having a high intensity (dark gray/black) [54]. It is beyond the scope of this
report to discuss all of the lesions here. However, since the goal of this research is to automate the
segmentation of lacunes of presumed vascular origin, this lesion type will be discussed in more detail
in the next section, as well as other lesions that are relevant due to their similarities in appearance.

2.2. Lacunes of presumed vascular origin
Lacunes of presumed vacular origin are small cavities filled with fluid and are mainly located in the
deeper parts of the brain [15]. They are presumed to be a result of subcortical infarcts, which on their
turn are expected to be caused by occlusion of small arteries [15, 54]. However, the lesions may also
be caused by intracerebral haemorrhage as it was found to be associated with lacunes of presumed
vascular origin [35, 40]

Figure 2.1: A lacune on an FLAIR im-
age having a hyperintense ring around
a center of hypointensity [54].

Since across papers there was little consistency in terminology and
definitions for the biomarkers of small vessel disease, Wardlaw et al.
proposed a consensus term and definition for each marker. In this
report we will use the recommended standards for lacunes of pre-
sumed vascular origin as stated by Wardlaw et al. [54]. Therefore, a
lacune of presumed vascular origin is defined as ”a round or ovoid,
subcortical, fluid-filled cavity of between 3 mm and about 15 mm in
diameter, consistent with a previous acute small deep brain infarct or
haemorrhage in the territory of one perforating arteriole”. Lesions can
be recognized on MRI sequences, which are combinations of particu-
lar settings of radiofrequency pulses and field gradients that influence
the appearance of an image. On all MRI sequences the lacunes of
presumed vascular origin can be recognized by its intensity which is
similar to the cerebrospinal fluid (CSF) signal, that is, hypointense
or hyperintense depending on the sequence used. In addition, im-
ages of the fluid-attenuated inversion recovery sequence (FLAIR) se-
quence can in some cases also display a hyperintense rim around
the central CSF-like hypointensity. However, on these FLAIR images
the hypointensity is not always present and the lacunes of presumed vascular origin appear entirely
hyperintense [54]. An example of a lacune imaged with a FLAIR sequence is depicted in figure 2.1.

Lacunes of presumed vascular origin need to be distinguished from perivascular spaces as they
can look very similar. According to Wardlaw et al. [54], perivascular spaces are defined as ”fluid-
filled spaces that follow the typical course of a vessel as it goes through grey or white matter”. On
all MRI sequences these lesions also have a CSF-like intensity. They can have an elongated shape
if imaged parallel to the course of the vessel, but they can also appear round or ovoid in shape if
imaged perpendicular to the course of the vessel. When they pass through an area of white matter
hyperintensity, they can even mimic the hyperintense rim of a lacune of presumed vascular origin on
FLAIR images [54]. Several studies differentiate between these two lesions based on the diameter
size and the presence of the hyperintense rim [4, 16, 27–29, 35]. In these articles, FLAIR imaged
hypointense lesions with a diameter between 3 mm and 15 mm with a hyperintense rim are classified
as lacunes of presumed vascular origin. Moreover, when the lesion is not round or ovoid in shape but
somewhat elongated, it is more likely to be a perivascular space.
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In the remainder of this report, the term lacunes of presumed vascular origin will be abbreviated by
’lacunes’. However, in all cases this refers to the consensus term and definition of lacunes of presumed
vascular origin.

2.3. Data: Rotterdam Scan Study
For the segmentation of the lacunes, brain MRI scans from the Rotterdam Scan Study will be used.
The Rotterdam scan study (RSS) is a study with the aim to examine causes and consequences of
neurological diseases among the elderly by imaging the underlying pathological changes in the brain
[20]. Its participants originate from the related Rotterdam study, a population-based study with the
goal of unraveling causes and consequences of chronic disease in mid-life and late-life. The group of
participants in this Rotterdam study consists of around 18,000 inhabitants of the district Ommoord in the
city of Rotterdam who are all aged 40 years or over. After every 3 to 6 years they undergo extensive
physical examinations and are interviewed [21]. A selection of the same group of participants was
approached to participate in the RSS to additionally undergo MRI-exams. More specifically, within the
group of participants of the Rotterdam study only the people without dementia, MRI contra-indications,
claustrophobia and the persons that did give consent were considered for the Rotterdam scan study.
As a result, by 2015 the amount of 12,147 brain MRI scans have been collected of over 5,800 different
participants of 40 years and over [20].

The MRI scans were all performed by a 1.5 Tesla scanner with an 8-channel head coil (General
Electric Healthcare). The Tesla value and the number of channels are indicators of the image quality
and the examination times. In general, the higher the Tesla and channel number, the quicker the images
can be made and the higher their quality. Scanners can have a channel number of up to 32 and often
have a Tesla value of up to 7.0, but can also go beyond. The examinations were all executed by trained
radiology technicians according to a standardized protocol. Several high-resolution MRI sequences
were performed of which, for the purpose of this research, the images of the FLAIR sequence and
T1-weighted sequence will be used. The slice thickness of the FLAIR sequence and the T1-weighted
sequence are 2.5 mm and 1.6 mm respectively and the slices were contiguous [20]. Furthermore, the
scans have a dimension of 512𝑥512𝑥192 voxels, where a voxel is the 3D equivalent of a pixel and have
a size of 0.5 mm in both height and width.

(a) Original T1-weighted scan. (b) Annotated T1-weighted scan. Here, the lacune is given a red color.

Figure 2.2: Brain MRI T1-weighted scan containing a lacune.
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In order to obtain a scan with only brain tissue, the brain is extracted from the image: the cerebel-
lum, eyes and skull are removed. Subsequently, scans are corrected for non-uniformity in intensity.
Furthermore, lacunes in the Rotterdam Scan Study are defined as focal lesion of ≥ 3 and < 15 mm
in size with the same signal characteristics as CSF on all sequences, and with a hyperintense rim on
the FLAIR sequence [20]. This means that on a T1-weighted image they look hypointense (see figure
2.2a), while on a FLAIR images they look hypointense with sometimes a hyperintense rim. Around
5,000 of the 12,147 MRI scans have been examined for the presence of these lesions. If lacunes were
identified, they were annotated on the T1-weighted image, that is, they were provided with an overlay-
ing mask as is seen in figure 2.2b. These lacune annotated scans are also called the ground truth. As
a result, we have 734 annotated scans and around 4,000 scans without annotation.
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Convolutional neural networks

Artificial intelligence gained a lot of attention in the last couple of years. In [7], artificial intelligence is
defined as ”the effort to automate intellectual tasks normally performed by humans”. A part of the field
of artificial intelligence consists of non-learning approaches, which means that with these approaches
programmers manually have to define a large set of explicit rules to automate a process. However,
although this appears to be suitable for simple well-defined and logical problems, these approaches
fail to solve the more complex problems.

A subfield of artificial intelligence that is able to address those more complex problems, such as
language translation, speech recognition and image classification, is called machine learning. Instead
of being manually specified, in machine learning the set of rules are learned by a computer when
looking at the data. When a machine learning system is provided with many examples, which include
both the problems and their answers, and with features it needs to pay attention to, the system can
find a statistical structure and can come up with rules to automate the task. These learned rules can
then be applied to unseen examples of the same task to predict the answer of the new examples. For
example, if we want to let a machine learning system learn to classify whether a picture contains a
cat or not, we have to feed the system with a lot of example pictures of cats and pictures without cats.
Additionally, as the system needs to know how a cat can be recognized, we also need to tell the system
which features are characteristic for a cat, such as a tail, ears, eyes and whiskers. With these example
pictures and features, it defines rules to automate the classification process such that when the learned
system is provided with a new image it can categorize it as a cat or a non-cat image.

Figure 3.1: Graphical explanation of the relationships between artificial intelligence, machine learning, deep learning, neural
networks and convolutional neural networks.

Deep learning is a subgroup of the field of machine learning (see figure 3.1). The main difference
between deep learning techniques and other techniques within the machine learning field, is that deep
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learning techniques learn to identify characteristic features of an object automatically, while for other
techniques these features have to be manually specified. Because of this automated feature extraction,
more complex and an increased number of features can be extracted which leads to better performance
on many problems [7, 17].

A convolutional neural network (CNN) is a deep learning algorithm that is mostly used for analyzing
images and image classification problems. It falls within the group of neural networks, which is a part of
the deep learning field. A general CNN architecture consists of convolution layers, activation functions,
pooling layers and a fully connected layer with an end activation function. When it is provided with an
image, the information will be passed on to a first convolution layer (figure 3.2a). This convolution layer
transforms the input with a so called kernel and outputs the new information to the next convolution
layer. The kernel acts as a kind of filter that is able to detect patterns. As can be seen in figure 3.2b,
in the first layers these patterns are simple features, like edges [7]. The kernels in later layers can
detect more sophisticated features such as ears, eyes and mouths. In the deepest layers, even entire
objects can be detected using these kernels, and the network is able to tell you that on the input image a
human is portrayed: Willem-Alexander, King of the Netherlands (figure 3.2a). In the following sections
the components of a CNN will be explained in more detail.

(a) Graphical explanation of the process within a convolutional neural network. An image goes through several
operation layers after which a prediction of the output is given.

(b) Examples of features through a neural network, starting with simple edges and ending with entire objects.

Figure 3.2: An overview of a convolutional neural network (CNN).

3.1. Convolution layer
In a convolution layer, a so called feature map is given as input and transformed using a kernel into
a new feature map. The input feature maps, output feature maps and kernels are usually multi-
dimensional arrays. In the first convolution layer, the input feature map can be an image, but in later
layers these input maps are the output feature maps of previous layers. A kernel is a matrix with weights
that is able to find one specific pattern, for example a horizontal edge. It often has the size of 3𝑥3 or 5𝑥5
and as these are small matrices compared to the input, a convolution is sparse. By applying the same
transformation kernel to all of the patches within the input feature map, it can detect all horizontal edges
in the given input. If we want the network to find even more features, such as vertical and diagonal
edges, more distinct kernels have to be applied to find these patterns as well [7, 13, 17].

A convolution is executed by sliding the kernel over the input feature map, stopping at all possible
positions. At each location, every entry of the kernel is multiplied by its corresponding overlapping
entry of the input feature map. The results of all kernel entry multiplications are summed to obtain the
value of the output feature map at that position [7, 13]. Figure 3.3 shows how the process works for a
2-dimensional problem. In the top of the figure we see that each entry of the 2𝑥2 kernel is multiplied
by the corresponding value of the upper left 2𝑥2 window that is part of the 4𝑥4 input feature map. The
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Figure 3.3: A kernel of ኼ፱ኼ slides over the input feature map of ኾ፱ኾ. At each position it calculates the sum of the multiplications
of each kernel entry with their corresponding overlapping window entry. The result of the calculation is positioned in the output
feature map at the same location. The kernel slides with one stride (stepsize) to the right and below. Only the first four and the
last windows and their calculations are given in this figure [13, 17].
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result of the first window appears in the output feature map at the same location. In the second step,
the window has slid one stepsize, which is called a stride, to the right to apply the same transformation
to a new region. After three slides, the fourth window begins one stride lower, again at the left. This
procedure of sliding and calculating continues until the kernel transformed every patch of the input
feature map.

The entire process can be repeated by applying as many different kernels as needed. However,
when more than one kernel is used, the output feature map will contain a third dimension. As a con-
sequence of this, cuboid, 3-dimensional, kernels should be applied to slide over the width, height and
depth of the input feature map [13].

The convolution arithmetic from figure 3.3 can also be represented by one generalized formula.
Let 𝐼 ∈ ℝፊ×ፋ be the input feature map, 𝐾 ∈ ℝፌ×ፍ be the kernel and the output feature map 𝑆 with
dimensions of ( ፊዅፌ

pooling stride
+ 1) × ( ፋዅፍ

pooling stride
+ 1). An entry of the output map can then be calculated

as follows [17],

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) =
ፌ

∑
፦

ፍ

∑
፧
𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛). (3.1)

3.2. Activation function
In the convolution layer, only linear operations are used. This means that the network would only be
able to learn the linear transformations of the input. If we want the model to learn complex mapping
functions as well, a non-linearity, also referred to as activation function, is needed [7]. An activation
function is applied elementwise such that for 𝑋 ∈ ℝ፦×፧ , 𝑓 ∶ ℝ፦×፧ ⟶ℝ፦×፧ [19]

(𝑓(𝑥))።፣ = 𝑓(𝑥።፣). (3.2)

The most common activation function for neural networks is the rectified linear unit (ReLU) [17]. If the
input is positive it ”activates”, if the input is negative it will become 0 [22, 33]:

𝑓(𝑥።፣) = {
0 for 𝑥።፣ ≤ 0,
𝑥።፣ for 𝑥።፣ > 0.

(3.3)

Other often used activation functions are leaky ReLU [19] and exponential linear unit (ELU) [7]. The
leaky ReLU is given by [31],

𝑓(𝑥።፣) = {
0.01𝑥።፣ for 𝑥።፣ ≤ 0,
𝑥።፣ for 𝑥።፣ > 0,

(3.4)

and the ELU activation function is given by [8],

𝑓(𝑥።፣) = {
𝛼(𝑒፱ᑚᑛ − 1) for 𝑥።፣ ≤ 0,
𝑥።፣ for 𝑥።፣ > 0,

(3.5)

where 𝛼 > 0.

3.3. Pooling layer
After the output of the convolution layer is nonlinearized by the activation function, a pooling layer is
applied. The output feature map is downsampled by a pooling function, which maps patches of the
output feature map to one summary statistic of the nearby outputs. This is often done by taking the
maximum value from the outputs of the patch, max pooling, or by averaging the outputs of that particular
subimage [19], average pooling. Similar to the window sliding procedure in the convolution layer, the
patches are also chosen by sliding a window over the feature map. However, the pooling window is
mostly smaller, usually 2𝑥2, than a convolutional window. Additonally, a stride of two is often used,
which means that the window slides with two steps across the input. As a result of the stride of two,
the feature map is down sampled with a factor of 2 [7]. In figures 3.4 and 3.5 the mapping of the max
pooling and the average pooling respectively are shown.
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Figure 3.4: Example of max pooling. A window of ኼ፱ኼ slides over the input feature map of ኾ፱ኾ with a stride of 2. At each position
it takes the maximum of the entries within that window. The result is positioned in the output at the same location [13].

Figure 3.5: Example of average pooling. A window of ኼ፱ኼ slides over the input feature map of ኾ፱ኾ with a stride of 2. At each
position it takes the average of the entries within that window. The result is positioned in the output at the same location [13].
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A consequence of the size reduction of the feature maps is that there are less parameters to process
for the next convolution layer, which will make it more computational efficient. Furthermore, because
the results of the convolution layer will be positioned at the same location in the output feature map as
their input features, it can be sensitive to translations in the input. For example, if the object in the input
image would be slightly shifted, the output feature maps created by later convolution layers would look
different. By using a pooling function, the output layers become approximately invariant to these small
movements [17].

3.4. Fully connected layer with end activation function
In order to give a classification to the input image, in the last part of the architecture one or more fully
connected layers are applied. These fully connected layers are able to classify the image by combining
the features extracted in the previous convolution layers. First, the output of the last activation function
or pooling layer 𝑆 ∈ ℝ፤×፥×፦ is stretched into a 𝑘 ⋅ 𝑙 ⋅ 𝑚 sized vector. Second, the stretched outputs
will be connected via weights and an activation function to all of the nodes in the fully connected layer,
where the amount of nodes can be any preferred number. Finally, to output a probability that gives an
indication whether the image belongs to a certain class or not, a final activation function is applied after
the last layer. For this final transformation it is common to use a sigmoid function or a softmax function.
The sigmoid function is especially suitable for binary classification tasks (for example, is there a cat in
the input image ”yes” or ”no”) and if we let x ∈ ℝኼ it can be written as follows,

𝑓(𝑥።) =
1

1 + 𝑒ዅ፱ᑚ . (3.6)

For a multiclass classification task (for example, is it a cat, a dog, a cow, a pig, a goat or a goose that
is displayed on the image?), the softmax function is preferred. In this function, the exponent of every
entry is taken and divided by the sum of all exponentiated entries. Letting x ∈ ℝ፜, where 𝑐 represents
the number of classes, the softmax function is given by,

𝑓(𝑥።) =
𝑒፱ᑚ
∑፜፣ 𝑒፱ᑛ

. (3.7)

Putting this together, the last part of the convolutional neural network may look like the network that is
shown in figure 3.6.

Figure 3.6: Example of the final part of a convolutional neural network [36].
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Training a convolutional neural network

By training a network we want to obtain that the network can predict the true labels as accurate as
possibles. This can be accomplished by minimizing the distance between the predicted outcomes and
the true labels. The distance is calculated by the loss, and this loss is minimized using an optimizer.

4.1. Loss function
The objective of a loss function is to measure the distance between the predictions and their cor-
responding actual outcomes. This can be done in several ways, but the most common used loss
function for classification problems is the cross-entropy loss. Where the binary cross-entropy loss is
most often used for binary classification tasks, and categorical cross-entropy loss is most often used
for tackling multiclass classification problems [7]. Suppose we want to train a dataset of 𝑚 examples
{𝑋(።)}፦።዆ኻ ∈ ℝፕ×ፖ with labeled outputs {𝑌(።)}፦።዆ኻ ∈ ℝፕ×ፖ and the predictions computed by a network
{𝑃̂(𝑋(።); Θ)}፦።዆ኻ ∈ ℝፕ×ፖ where Θ are the weights in the network, then the categorical cross-entropy loss
is given by,

𝐿(Θ) = − 1𝑚

፦

∑
።዆ኻ

ፊ

∑
፤዆ኻ

𝑌(።)፤ log (𝑃̂(𝑋(።); Θ)) , (4.1)

where 𝐾 is the total number of classes. If we take 𝐾 = 2, the binary cross-entropy loss follows from
this:

𝐿(Θ) = − 1𝑚

፦

∑
።዆ኻ
𝑌(።) log (𝑃̂(𝑋(።); Θ)) + (1 − 𝑌(።)) log (1 − 𝑃̂(𝑋(።); Θ)) . (4.2)

4.2. Optimizer
To decrease the distance between the predicted output and the true output, the loss can be minimized
by an optimizer which adjusts the weights of the network. At the start of the training, the weights of
the network are initialized with random values. As a consequence, the predictions will be very far
from what the actual output should be and therefore the value of the loss function will be high. To
decrease this value, the optimizer updates the weights in the convolution and fully connected layers
using backpropagation. This backpropagation operates from the end of the network, the loss function,
through all of the layers to the beginning of the network, the first convolution layer. It computes the
contribution of every weight to the loss function by applying the chain rule. Each time an example is
processed by the network, the weights will be updated in the right direction and the predictions will
slowly become more accurate [7]. For the minimization of the loss function,

minimize
ጆ

𝐿 (𝑃̂(𝑋(።); Θ), 𝑌(።)), (4.3)

13



14 4. Training a convolutional neural network

stochastic gradient descent (SGD) and its variants are the most common optimizers used in deep
learning [17].

Stochastic gradient descent proceeds iteratively: a sequence of matrices is computed with the goal
of converging to a matrix that minimizes the loss function. SGD executes this task as follows: in the
model the weights are stored in matrices, Θ. However, for ease of the explanation we will assume that
the weights that need to be updated are now represented by a vector, 𝜃𝜃𝜃 ∈ ℝፑ. Let the update of this
vector Δ𝜃𝜃𝜃 be small, then when the terms of order ||Δ𝜃𝜃𝜃||ኼ are left out, the Taylor series expansion can
be written as

𝐿(𝜃𝜃𝜃 + Δ𝜃𝜃𝜃) ≈ 𝐿(𝜃𝜃𝜃) +
ፑ

∑
፫዆ኻ

𝜕𝐿(𝜃𝜃𝜃)
𝜕𝜃፫

Δ𝜃፫ , (4.4)

where Ꭷፋ(᎕᎕᎕)
Ꭷ᎕ᑣ

is the partial derivative of the loss function with respect to weight 𝑟. We can simplify this

equation by using the gradient, with (∇𝐿(𝜃))፫ =
Ꭷፋ(᎕᎕᎕)
Ꭷ᎕ᑣ

, such that

𝐿(𝜃𝜃𝜃 + Δ𝜃𝜃𝜃) ≈ 𝐿(𝜃𝜃𝜃) + ∇𝐿(𝜃𝜃𝜃)ፓΔ𝜃𝜃𝜃.

Now, to minimize the expression we need to take the step Δ𝜃𝜃𝜃 in such a manner that ∇𝐿(𝜃𝜃𝜃)ፓΔ𝜃𝜃𝜃 is as
negative as possible. Using the Cauchy-Schwartz inequality where for any 𝑓, 𝑔 ∈ ℝፑ it holds that

|𝑓ፓ𝑔| ≤ ||𝑓||ኼ||𝑔||ኼ.

As a consequence, −||Δ𝜃𝜃𝜃||ኼ||∇𝐿(𝜃𝜃𝜃)ፓ||ኼ is the most negative as ∇𝐿(𝜃𝜃𝜃)ፓΔ𝜃𝜃𝜃 can get, which is true if
Δ𝜃𝜃𝜃 = −∇𝐿(𝜃𝜃𝜃)ፓ. Therefore, the update step will be as follows

𝜃𝜃𝜃 ← 𝜃𝜃𝜃 − 𝜖∇𝐿(𝜃𝜃𝜃)ፓ ,

where 𝜖 is called the learning rate, which is a small stepsize as we assumed that Δ𝜃𝜃𝜃 should be small
[19]. However, when we need to deal with a large number of examples and many weights that need to
be updated, updating can become extremely computationally expensive. In these cases it is common
to take a subset of the examples for some 𝑛 << 𝑚, a so called minibatch. Instead of calculating the
mean of gradients over all examples, with a minibatch the mean of gradients will be calculated over
only a few examples [19]. If we write the loss function as

𝐿(𝜃𝜃𝜃) = 1
𝑚

፦

∑
።዆ኻ
𝐶ፗᑚ(𝜃𝜃𝜃)

then the algorithm for SGD with using minibatches can be written as given in algorithm 1. In this
algorithm we can see that the learning rate changes with every iteration, 𝑘. Generally, it decays linearly
until iteration 𝜏 after which 𝜖 stays constant:

𝜖፤ = (1 −
𝑘
𝜏 ) 𝜖ኺ +

𝑘
𝜏 𝜖Ꭱ .

Variants of the SGD optimizer that are often used are SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta and Adam. However, ”the choice of which algorithm to use, at this point,
seems to depend largely on the user’s familiarity with the algorithm” [17].
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Algorithm 1: Stochastic gradient descent
Require: Learning rate schedule 𝜖ኻ, 𝜖ኼ, …
Require: Initial parameter 𝜃𝜃𝜃
k ←1;
while stopping criterion not met do

Sample a subset of 𝑛 examples from the training set {𝑋(ኻ), ..., 𝑋(፦)} with corresponding
targets 𝑌(።);
Compute gradient estimate: 𝑔̂ ← ኻ

፧∇᎕᎕᎕ ∑። 𝐶ፗᑚ(𝜃𝜃𝜃) ;
Apply update: 𝜃𝜃𝜃 ← 𝜃𝜃𝜃 − 𝜖፤𝑔̂;
𝑘 ← 𝑘 + 1;

end





5
U-Net architecture

For the segmentation of the lacunes, we have to deal with medical images, namely MRI images. Within
the field of medical image analysis for segmentation problems, the U-Net architecture developed by
Ronneberger et al. [38] is the most-well known architecture [30]. Several other papers have success-
fully applied this U-Net for their segmentation problems as well [11, 12, 14, 24, 49, 57]. Rather than just
getting a classification output, with this architecture it is possible to input an image and get a segmented
image as output as well.

Figure 5.1: U-Net architecture in which convolutions, max pooling, up-convolutions and copy and crop operations are used. The
blue bars represent the feature maps with on top the number of feature maps and at its left lower corner the x and y sizes of the
feature maps [38]

The U-Net consists of a contracting part, in which feature maps are downsampled to analyze the
image, and an expanding part, where using up-sampling a full-resolution segmentation is produced
(see figure 5.1). The contracting part consists of 4 blocks containing two 3𝑥3 convolutions with stride
1, which are both followed by a ReLU activation function. Each block ends with one 2𝑥2 max pooling
operation with stride 2. During the first block of operations 64 kernels are used and with every following
contracting block the number of kernels is doubled. The expanding part contains 4 blocks of two 3𝑥3
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18 5. U-Net architecture

convolutions with stride 1, each followed by a ReLU. In the second part of the block the feature map is
doubled in size by upsampling, after which a 2𝑥2 up-convolution with stride 1 is applied. Finally, each
block ends with a copy and crop operation. With every up-convolution the number of feature maps
is halved. At the end of the network another two 3𝑥3 convolutions with stride 1 are applied, which
are each again followed by a ReLU function. At the very end a final 1𝑥1 convolution with stride 1 is
performed to output the segmentation map.

In the upsampling operation the output feature map of the last convolution is taken and expanded
with a factor of two. This is done by taking for every pixel its intensity value and copy and paste it to three
attached neighboring pixels, as can be seen in figure 5.2. Then, the result is used for an up-convolution
of 2𝑥2 to reduce the feature maps. The copy and crop operations, sometimes also referred to as skip
connections, are used to transfer information between the contracting path and the expanding path.
As by downsampling localization information can be lost, while it is needed for the segmentation task,
a part of the feature maps containing high resolution features from the contracting path is copied and
concatenated to its corresponding layer in the expanding path (see figure 5.1). As a consequence, the
expanded path is able to better localize pixels, which results in a more accurate segmentation.

Figure 5.2: Example of upsampling. The value of a pixel is duplicated to three attached neighboring pixels.



6
Previous automated lacune detection

and segmentation methods
The first automated lacune detection method was developed by Yokoyama et al. [58], which consists
of two steps. In the first step all possible lacune candidates are detected using T2-weighted sequence
images of the brain. For this, the images are binarized: every voxel is evaluated based on its intensity
and mapped to either 0 or 1. In the paper it is mentioned that the intensity of lacunes can change
according to its phase, which can be acute, sub-acute or chronic. To cope with these differences in
intensity, the binarization technique is executed 15 times with 15 different thresholds. From the bina-
rized images, candidates are selected based on their area (number of pixels), circularity (measure of
how closely the candidate approaches a perfect circle) and gravity center. As this detection step is a
very rough procedure, other lesions, brain structures and tissues will be incorrectly identified as can-
didates as well. Candidates that are misclassified as lacunes are called false positives. In the second
phase of the model these false positives are reduced using the T1-weighted brain images. The cere-
bral parenchyma is extracted as lacunes can never occur outside the cerebral parenchyma or at its
edge. Furthermore, most lacunes have high intensity differences compared to their surrounding area
while this difference may not be present for false positives. Therefore, the intensity difference between
the candidate and its peripheral area is measured and evaluated using the T1-weighted images. The
method was able to detect 90.1% of the lacunes with an average of 1.4 false positives per image.
Despite of the misclassified candidate reduction step, the results still showed some misclassified can-
didates. Analyzing these false positives, the researchers found that especially the edge of the cerebral
parenchyma, high-signal regions near the ventricles, a part of the cerebral ventricle and perivascular
spaces were misclassified as lacunes.

Uchiyama et al. [44] adopted the method of Yokoyama et al. [58]. However, in order to reduce the
number of false positives, they replaced the approach in the second step with another false positive
reduction approach. In this new step, false positives are eliminated based on their location, signal
intensity difference and shape of the structure. The location is used, because lacunes occur within
cerebral vessel regions and thus candidates on the periphery of the cerebral region are more likely to
be false positives. Next, signal intensity difference is evaluated, as again lacunes show an intensity
difference with their surrounding area and false positives may not. Finally, false positives are eliminated
based on the shape of the structure, as lacunes are more likely to be of nodular shape and some false
positives such as the cerebral sulcus will have a more linear shape. After misclassified candidates are
eliminated using these features with cut-off thresholds, the remaining candidates are subdivided using a
hyperplane into lacunes and false positives. The method shows improved results with detecting 96,8%
of the lacunes and an average of 0.76 false positive per slice. However, still not all false positives were
removed with the new approach. The types of remaining false positives included a part of the cerebral
sulcus, a part of the cerebral ventricle and perivascular spaces.

To reduce specifically these false positives, Uchiyama et al. changed their method in a later paper
[43]. That is, for the detection of candidates the approach of Yokoyama et al. [58] is used and for the
first false positive elimination round the false positives are again removed by looking at the features lo-
cation, signal intensity difference and shape using cut-off thresholds. The second round of elimination
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20 6. Previous automated lacune detection and segmentation methods

is executed by applying neural networks instead of a separating hyperplane. The first neural network
consists of 3-layers with having the features of above as input and the likelihood of a lacune as output.
Thereafter, three parallel neural networks are applied to attack specific classes of false positives: clas-
sifier A distinguishes lacunes from parts of the cerebral sulcus, classifier B distinguishes lacunes from
parts of the cerebral ventricle and classifier C distinguishes lacunes from perivascular spaces. This
method identified 96.8% of the lacunes with an average of 0.30 false positive per scan.

Because Uchiyama et al. experienced that especially the differentiation between lacunes and
perivascular spaces is challenging, they focused more on addressing this aspect in the methods that
followed. In [45] all lesions are first enhanced and segmented. Then, features of location, size, sig-
nal intensity difference and degree of irregularity (a measure of how much the lesion deviates from a
perfect circle) are used as input for a 3-layer neural network to classify the lesions. With this method
they showed that size greatly contributes in distinguishing between lacunes and perivascular spaces
and that location features are useful for differentiation between lacunes located in the periphery of the
lateral ventricle and perivascular spaces. Furthermore, 93.3% of the lacunes were detected and 94.5%
of the predictions were correct. In [46], the exact same method was applied, but with an extra step to
construct a fused image. That is, on a T2-weighted image it can be difficult to distinguish lacunes from
perivascular spaces. Therefore, since perivascular spaces have an elongated shape which is often
only visible in 3D, a 3D vessel region is added to the T2-weighted image. As a result, from this fused
image it is better visible whether a round or oval shaped lesion on a T2-weighted image is a perivascular
space or a lacune.

Seven years after the first method in [44] of Uchiyama et al., they extended this original method
with an extra false positive reduction step, which focused primarily on the differentiation between la-
cunes and perivascular spaces [47]. This means that the selection of candidates and the false positive
elimination approach is similar to their method in [44]. However, after the two phased elimination
step consisting of reduction using location, signal intensity difference and shape of the structure and
grouping the false positives and lacunes using a hyperplane, another reduction phase was added. In
order to delete extra information while maintaining important information that is useful for the differen-
tiation between lacunes and perivascular spaces, a small area around a candidate is used to create
an eigenspace. New unseen test data is then projected to this created eigenspace and evaluated for
being a lacune or a false positive. As a result of this addition, 96.8% of the lacunes were detected while
showing an average of 0.47 false positive per image.

Wang et al. developed a method to segment three lesions at once which also included lacunes
[50]. Their procedure starts with delineating brain tissues based on T1 weighted images after which
hyperintense regions are segmented using FLAIR and T1 weighted images. These hyperintense re-
gions are then used to segment the lacunes with T1 weighted images, T2 weighted images and FLAIR
images. To detect lacunes near white matter hyperintensities, the white matter hyperintensities are
first dilated. After this dilation, voxels can be identified as a lacune by comparing the voxel intensity
with the average intensity within the white matter hyperintensity region. For segmentation of lacunes in
subcortical structures, the intensity of the voxels is compared with the averaged intensity of the specific
subcortical structure to determine whether a voxel belongs to a lacune or not. With this method 80.6%
of the lacunes were segmented while having an average of 0.06 false positive per scan.

The most recent method for the detection of lacunes is the two-stage method of Ghafoorian et
al. [16]. In the first stage candidates are detected using a 7-layer CNN architecture. For this, small
sub-images are used to capture a local neigborhood around each candidate. The second stage was
created to eliminate the false positives with a 9-layer CNN. As location can be a discriminative factor for
the differentiation between lacunes and perivascular spaces, explicit location features are added to this
second CNN. In addition to this, the network is fed with three different sized images of a same candidate,
such that the biggest sized image contains more neighborhood information and as a consequence also
more information about the location than the smallest more detailed sized image. 97.4% of the lacunes
were detected with this method with an average of 0.13 false positive per slice.



7
Segmentation challenges

7.1. Class imbalance problem
Compared to the entire brain, lacunes are very small lesions. This means that on a slice of a brain
MRI image, only a few pixels will be occupied by the lacune. As a result, with the smallest size of the
lesion, 3 mm, we have a lacune:non-lacune pixel ratio of 36:900 in our MRI images (see figure 7.1).
This is called class imbalance and may cause a problem when we want to train a network. If there are
many more samples of one class, which is called the majority class, than there are of the other class,
the minority class, the learning process often gets stuck in a local minimum. When a network needs to
learn from class imbalanced data, it will over-classify the majority class, the non-lacune pixels, because
of its increased prior probability. As a consequence, the minority class, the lacune pixels, will often be
misclassified [23]. So, what can we do to prevent this problem?

Figure 7.1: Lacunes occupy only a small amount of the pixels on an MRI image.

This problem might, however, be prevented. In recent years several loss functions were designed
to handle this class imbalance problem [41]. Among them are the weighted cross-entropy (WBCE)
loss and the Dice loss (DL). The weighted cross-entropy loss was first used in [38] where a weight,
𝑤, is applied to the minority class to give more importance to those pixels during training. With 𝑦(።)፥
being the 𝑙th pixel value of the ground truth image 𝑌(።) and 𝑝̂(።)፥ being the 𝑙th pixel value of the predicted
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probabilistic map 𝑃̂(።), the weighted loss of the binary cross-entropy loss given by equation 4.2 is as
follows,

𝑊𝐵𝐶𝐸 = −1𝐿

ፋ

∑
፥዆ኻ
𝑤𝑦(።)፥ log (𝑝̂(።)፥ ) + (1 − 𝑦

(።)
፥ ) log (1 − 𝑝̂(።)፥ ) , (7.1)

where in [41] for the weight 𝑤, ፋዅ∑ᑝ ፩̂
(ᑚ)
ᑝ

∑ᑝ ፩̂
(ᑚ)
ᑝ

was used.

The Dice loss is based on the Dice coefficient which measures the relative overlap between the
ground truth and the prediction. It was first used by Milletari et al. as Dice loss in [32] and reads as

𝐷𝐿 = 1 −
∑ፋ፥዆ኻ 𝑝̂

(።)
፥ 𝑦

(።)
፥ + 𝜖

∑ፋ፥዆ኻ 𝑝̂
(።)
፥ + 𝑦(።)፥ + 𝜖

−
∑ፋ፥዆ኻ (1 − 𝑝̂

(።)
፥ ) (1 − 𝑦

(።)
፥ ) + 𝜖

∑ፋ፥዆ኻ 2 − 𝑝̂
(።)
፥ − 𝑦(።)፥ + 𝜖

, (7.2)

where 𝜖 is a small number to ensure stability by avoiding divisions by 0 [41]. Since the Dice loss
is focusing on the overlap rather than evaluating individual pixels, this may help tackling the class
imbalance as well.

A final, also promising, approach is instead of using the entire image, splitting the image up in
patches. This is also done by Ghafoorian et al. [16]. By using patches, we can control the amount of
positive and negative samples the network sees, which are the lacunes and non-lacunes, respectively.
This results in a more balanced dataset.

7.2. Differentiation with perivascular spaces
Another challenge that we might face during lacune segmentation is the differentiation with perivascular
spaces. As we have seen in section 2.2, lacunes and perivascular spaces can look very similar. They
have the same intensity on both T1-weighted and T2-weighted images and they can have a similar
round or ovoid shape when imaged perpendicular to the course of the vessel. In chapter 6 we saw that
this indeed can be a challenge for a network. In the papers from Yokoyama et al. and Uchiyama et al.
[44, 58] where detection methods were developed, among the false positives also perivascular spaces
were found. As a consequence, in the methods that followed [16, 45–47] more attention was given to
reduce the misclassification of these perivascular spaces. Therefore, when designing a network for our
lacune segmentation problem this differentiation challenge should also be taken into account. There
are several options to address this challenge.

Because perivascular spaces are generally smaller in size (< 3 mm) than lacunes (3 − 15 mm),
this can be a relevant determinant for the discrimination between these two lesions. It might be ad-
vantageous to apply a comparable approach as was used in [3], where constraints are put in the loss
function on the size of the candidate that should be segmented. Particularly, using the loss function
we can constrain the size of the candidates to be between 3 and 15 mm to differentiate lacunes from
perivascular spaces.

In [16, 45] it was found that location is an important factor for the discrimination between lacunes
and perivascular spaces. Using the idea proposed in [61] of adjusting the loss function to make sure
that a model is able to use the location of a salient object, we could do something similar for our lacune
segmentation task. That is, in order to reduce the false positives beforehand, locations where lacunes
can never occur could be punished via the loss function. This location awareness might then also help
to differentiate between lacunes and perivascular spaces.

If patches would be used as input image to overcome the data imbalance problem, it might be useful
to use different sizes of patches as was also done by Ghafoorian et al. [16] and by Xu et al. [57] as
it makes the network more location-aware. In these papers three sizes are used for the input patch,
with the idea that the bigger patches are able to capture more information about the location while the
smaller patches contain more detailed information to accurately catch the lesion boundary. Taking the
information of the different sized patches together, would then result in a more accurate segmentation.



8
Conclusion

To assist in achieving the aim of developing an automated lacune segmentation method, the literature
study provided a background on lacunes, previous detection an segmentation methods and segmen-
tation challenges. In addition, it gave an introduction on convolutional neural networks and highlighted
a promising architecture, U-Net.

Lacunes are lesions that are a result of the cerebral small vessel disease. cSVD is a disease that
can have an influence on both physical and psychological abilities. Since little is known about the cause
of the disease, detecting the lacunes might help to give more insight about the cause of cSVD.

We have seen that the U-Net architecture was successfully used in several other lesion segmenta-
tion methods. Therefore, it might also be promising to use this architecture as a basis for our segmen-
tation task. However, other choices for the hyperparameters (e.g. activation function, optimizer) than
the ones that are used in the original U-Net might work better for the segmentation of lacunes. Hence,
to optimize our network, other options for the hyperparameters should be considered as well.

Furthermore, when developing a lacune segmentation method, we might encounter problems re-
garding the class imbalance and the differentiation with perivascular spaces. Several suggestions have
been discussed to tackle these problems. For the class imbalance, a weighted cross-entropy loss or
Dice loss might help to overcome the imbalance. Additionally, the network might benefit from using
patches rather than full-sized images, as it helps with controlling the number of positive and negative
samples it sees. For the differentiation with perivascular spaces, the loss function can be used to put a
constraint on the size of the candidate or to punish locations where lacunes can never occur. Further-
more, if patches are used, the architecture can be given different sized patches to make the network
more location-aware.

In conclusion, the U-Net can be a promising architecture to use as a basis for our problem, but it
needs to be fine-tuned for it to also be applicable to lacunes.
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9
Research Proposal

From the literature study it became clear that an automated lacune segmentation method can be ben-
eficial. Therefore the main research question we would like to answer with this thesis is:

How can we develop an automated method that is able to segment lacunes of presumed vascular origin
in brain MRI scans?

To answer this question, the U-Net architecture from [38] will be used as a starting point, as it has
been proven to obtain good segmentation results for other lesions [11, 12, 14, 24, 49, 57]. Almost the
complete structure of the architecture will be replicated. That is, the contracting path will also contain
blocks of two 3𝑥3 convolutions, each followed by a ReLU activation function, and one 2𝑥2 max pool
with stride 2. The expanding path will consist of blocks with two 3𝑥3 convolutions, each followed by
ReLU, and an upsampling operation together with a 2𝑥2 up-convolution. Furthermore, copy and crop
connections are used between the two paths to transfer information and at the end of the network
another two 3𝑥3 convolutions are applied after which a final 1𝑥1 convolution follows. However, where
the original U-Net architecture uses four max pooling layers, this might cause problems for the lacune
segmentation task.

Figure 9.1: Graphical explanation of the effect of max pooling layers on lacunes. When a small lacune of ኽmm is downsized four
times, it will result in a representation that is more than two times bigger than the original. Here a pixel is ኺ.኿ mm in height and
width.
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Since lacunes are very small in size, downsizing feature maps causes the lesion to almost vanish
after only a few pooling layers. From figure 9.1, we can see the effect of applying four pooling layers to
the smallest lacune of 3 mm. Here, one pixel has a size of 0.5 mm for both its height and width, which
means that a small lacune will occupy 6𝑥6 pixels of the 16𝑥16 image. After three pooling layers there
is only one pixel left with information about the lacune. When we apply another pooling layer, there will
still be one pixel containing the lacune information. This is causing the problem, because if we use the
upsampling operation four times, the original lacune is now represented by 16𝑥16 pixels. The lacune
has increased by a factor of almost 3. Therefore it is decided to not use more than three pooling layers
for the lacune segmentation task, starting with two max pool operations.

With the U-Net architecture as a basis for the lacune segmentation problem, the aim will be to adapt
this architecture such that accurate segmentation results can be obtained. To achieve this, the method
should be optimized by considering different choices of hyperparameters. Therefore, the following
subquestion is formulated:

Which options of general hyperparameters (e.g. activation function, optimizer) should be chosen to
obtain the most accurate results?

Where other options for the activation functions are leaky ReLU and ELU, which were discussed in
section 3.2. A good choice for the optimizer would be Adam [25] or AdaDelta [59], as they have been
used more often in combination with the U-Net [11, 12, 14, 24, 49].

Furthermore, from the literature study in chapter 7, we have seen that there are at least two chal-
lenges we may encounter when applying a segmentation method. In order to overcome these prob-
lems, the two subquestions stated below are proposed:

Which approach should be used to tackle the data imbalance problem?

How canwemake sure that themodel is able to differentiate between lacunes and perivascular spaces?

Where choices for tackling the data imbalance problem, as suggested in section 7.1, might be, choosing
for a weighted cross-entropy loss or Dice loss, or making use of patches instead of entire images. In
section 7.2 ideas are posed to overcome the differentiation issue. That is, we could try to use the
loss function to put on the size of a candidate or to penalize locations where lacunes never occur.
Moreover, when patches are used, it might be beneficial to use different sizes to make the network
more location-aware.

Finally, it would also be interesting to investigate how the developed lacune segmentation method
can be applied to other data. This way the approach can be made more generalizable. To assess this
issue the next subquestion is defined:

Can we make the model applicable to another dataset as well?



Acronyms
BBB blood-brain barrier. 3

CNN convolutional neural network. 8

CSF cerebrospinal fluid. 4

cSVD cerebral small vessel disease. 3

ELU exponential linear unit. 10

FLAIR fluid-attenuated inversion recovery. 4

MRI magnetic resonance imaging. 3, 4

ReLU rectified linear unit. 10

RSS Rotterdam scan study. 5

SGD stochastic gradient descent. 14
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Glossary
Amyloid

Aggregate of proteins. 3

Arteriole
Small blood vessel that branches out from an artery into the capillaries. 3

Biomarker
Measurable indicator of the presence or severity of a disease state. 3

Brain parenchyma
Functional brain tissue that consists of neurons and glial cells. 3

Capillary
The smallest blood vessel in the body. They supply blood to the surrounding tissues. 3

Cardiovascular system
System that consists of the heart and blood vessels. 3

Cerebellum
Area at the back and bottom of the brain, which is associated with movement and coordination.
6

Cerebral sulcus
Grooves on the surface of the brain. 19

Cerebrospinal fluid
Clear, colorless body fluid found in the brain and spinal cord that acts as a cushion or buffer. 4

False positive
A positive predicted outcome that should have been negative. 19

Fluid-attenuated inversion recovery sequence
A particular setting of radiofrequency pulses and field gradients that influences the appearance
of an image. 4

Glial cells
Supportive cell in the nervous system. They surround and support neurons. 3

Ground truth
A measurement that approaches the exact outcome, but is assumed to be the exact outcome. 6

Haemorrhage
Blood escaping from the cardiovascular system caused by damaged blood vessels. 4

Hyperintense
Brighter appearance of an abnormality or structure than the structures it is compared to. 4
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Hyperparameter
Chosen parameter whose value is used to control the learning process. 23

Hypointense
Darker appearance of an abnormality or structure than the structures it is compared to. 4

Infarct
Resulting lesion from tissue death due to inadequate blood supply. 4

Ischaemic stroke
Blood supply to a part of the brain is decreased, leading to dysfunction of the brain tissue. 3

Kernel
Filter that is able to extract features. 8

Microbleed
Lesion that results from cerebral small vessel disease. 1

MRI sequence
A particular setting of radiofrequency pulses and field gradients that influences the appearance
of an image. 4

Neuroimaging
The process of producing images of the structure or activity of the nervous system. 3

Neuron
Nerve cell that communicates with other cells with electrical impulses. It is the basic unit of the
nervous system. 3

Pathogen
Any disease-producing agent such as bacteria, a virus or other microorganisms. 3

Perivascular space
Lesion that results from cerebral small vessel disease. 1

Segmentation
The division of a visual input into segments. 1

Semipermeable
Some molecules or ions can pass through, but others can not. 3

Stride
Stepsize of a sliding window. 10

Subcortical
Part of the brain that is located below the cerebral cortex, the outer part of the brain. 3

T1-weighted sequence
A particular setting of radiofrequency pulses and field gradients that influences the appearance
of an image. 5

T2-weighted sequence
A particular setting of radiofrequency pulses and field gradients that influences the appearance
of an image. 19
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Ventricle
CSF-filled space in the brain. 19

Venule
Small blood vessel that transports the regained blood from the capillaries to the veins. 3

White matter hyperintensity
Lesion that results from cerebral small vessel disease. 1
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