Particle nucleation and coarsening in aluminum alloys A literature study

D. den Ouden

Contents

This presentation will be about:

- Alloys
- Diffusion
- Particle nucleation and coarsening
- Elastic deformations
- Conclusions
- Future work

Alloys

Alloys can be characterized by

- the solvent metal, such as
 - Aluminum
 - Lead
 - Iron
- the number of elements
- by the apparent number of elements

By apparent number

Complex Binary Ternary Quaternary **Quasi-Binary Quasi-Binary Quasi-Binary Quasi-Ternary** Quasi-Ternary **Quasi-Quaternary** 4/28

Diffusion

Interstitial

Diffusion

- Interstitial
- Substitutional

Nucleation of particles

Directly influenced by

- Mean concentration \bar{C}
- Equilibrium concentration C_e
- Temperature T
- Activation energy for diffusion Q_d

Nucleation of particles

Directly influenced by

- Mean concentration \bar{C}
- Equilibrium concentration C_e
- Temperature T
- Activation energy for diffusion Q_d

Formula:

$$j(t) = j_0 \exp\left(-\left(\frac{A_0}{RT}\right)^3 \left(\frac{1}{\ln(\bar{C}/C_e)}\right)^2\right) \exp\left(-\frac{Q_d}{RT}\right)$$

Growth of particles

Directly influenced by

- Mean concentration \bar{C}
- Interface concentration C_i
- Internal concentration C_p
- Diffusion coefficient D

Growth of particles

Directly influenced by

- Mean concentration \bar{C}
- Interface concentration C_i
- Internal concentration C_p
- Diffusion coefficient D

Formula:

$$v(r,t) = \frac{\bar{C} - C_i}{C_p - C_i} \frac{D}{r}$$

Critical particles

Particles with no growth:

$$v(r^*, t) = 0$$

Critical particles

Particles with no growth:

$$v(r^*, t) = 0$$

or equivalent:

$$r^*(t) = \frac{2\sigma V_m}{RT} \left(\ln \left(\frac{\bar{C}}{c_e} \right) \right)^{-1}$$

Number of particles

Directly influenced by

- Growth rate *v*
- Nucleation rate j
- Critical radius r^*

Number of particles

Directly influenced by

- Growth rate v
- Nucleation rate j
- Critical radius r^*

Continuity equation:

$$\frac{\partial N}{\partial t} = -\frac{\partial Nv}{\partial r} + S$$

Source term

Influenced by

- Critical radius r^*
- Nucleation rate j

Source term

Influenced by

- Critical radius r^*
- Nucleation rate j

Definition

$$S(r,t) = \begin{cases} j(t) & \text{if } r = r^* + \Delta r^*, \\ 0 & \text{otherwise.} \end{cases}$$

Relations

Define ϕ by

$$\phi(r,t) = \frac{N(r,t)}{\Delta r}$$

Relations

Define ϕ by

$$\phi(r,t) = \frac{N(r,t)}{\Delta r}$$

Then the particle volume fraction equals

$$f(t) = \int_0^\infty \frac{4}{3} \pi r^3 \phi(r, t) \, \mathrm{d}r$$

Relations

Define ϕ by

$$\phi(r,t) = \frac{N(r,t)}{\Delta r}$$

Then the particle volume fraction equals

$$f(t) = \int_0^\infty \frac{4}{3} \pi r^3 \phi(r, t) \, \mathrm{d}r$$

and the mean concentration

$$\bar{C}(t) = \frac{C_0 - C_p f(t)}{1 - f(t)}$$

Simulation

Material: Aluminum alloy AA 6082

- 0.9 wt% Silicon
- 0.6 wt% Magnesium

Temperature: $180^{\circ} C$

Initial condition: No particles

Three methods:

• θ -method

$$\left(I - \theta \frac{\Delta t}{\Delta r} A^n\right) \vec{N}^{n+1} = \left(I + (1 - \theta) \frac{\Delta t}{\Delta r} A^n\right) \vec{N}^n + \Delta t \vec{S}^n$$

Three methods:

- θ -method
- First DIRK-method

$$\vec{N}^{n+1} = \vec{N}^n + \frac{\Delta t}{2} A^n \left(\vec{N}^{n1} + \vec{N}^{n2} \right) + \Delta t \vec{S}^n$$

$$\vec{N}^{n1} = \vec{N}^n + \Delta t \gamma \left(A^n \vec{N}^{n1} + \vec{S}^n \right)$$

$$\vec{N}^{n2} = \vec{N}^n + \Delta t A^n \left((1 - 2\gamma) \vec{N}^{n1} + \gamma \vec{N}^{n2} \right) + \Delta t (1 - \gamma) \vec{S}^n$$

Three methods:

- θ -method
- First DIRK-method
- Second DIRK-method

$$\vec{N}^{n+1} = \vec{N}^n + \Delta t A^n \left(b_1 \vec{N}^n + b_2 \vec{N}^{n2} + \gamma \vec{N}^{n3} \right) + \Delta t \vec{S}^n$$

$$\vec{N}^{n2} = \vec{N}^n + \Delta t \gamma A^n \left(\vec{N}^n + \vec{N}^{n2} \right) + 2\Delta t \gamma \vec{S}^n$$

$$\vec{N}^{n3} = \vec{N}^n + \Delta t A^n \left(b_1 \vec{N}^n + b_2 \vec{N}^{n2} + \gamma \vec{N}^{n3} \right) + \Delta t \vec{S}^n$$

	Operation			
Method	Vector addition	Matrix addition	Matrix multiplication	Matrix inversion
θ -method	1	2	1	1
DIRK-1	6	2	2	2
DIRK-2	9	2	3	2

Results:

• θ -method large differences Second order for $\theta=1/2$

Results:

- θ -method large differences Second order for $\theta=1/2$
- DIRK-methods small differences Second order for all γ

Time integration

Results:

- θ -method large differences Second order for $\theta=1/2$
- DIRK-methods small differences Second order for all γ
- $\theta = 1/2$ and DIRK-methods small differences

Time integration

Results:

- θ -method large differences Second order for $\theta=1/2$
- DIRK-methods small differences Second order for all γ
- $\theta = 1/2$ and DIRK-methods small differences

Conclusion:

$$\theta = 1/2$$
-method favorable

Recap

Results:

Model correctly predicts nucleation and coarsening

Recap

Results:

- Model correctly predicts nucleation and coarsening
- Second order accuracy at low costs

Strain in a deformed block:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Strain in a deformed block:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Stress in a deformed block:

$$\sigma_{ij} = \lambda \delta_{ij} \sum_{k=1}^{3} \varepsilon_{kk} + 2\mu \varepsilon_{ij}$$

Force balance:

$$abla \cdot oldsymbol{\sigma} = -oldsymbol{b}$$

Force balance:

$$abla \cdot oldsymbol{\sigma} = -b$$

Or equivalent:

$$\begin{cases}
\lambda \frac{\partial}{\partial x_1} (\nabla \cdot \boldsymbol{u}) + \mu \left(\nabla \cdot \left(\nabla u_1 + \frac{\partial \boldsymbol{u}}{\partial x_1} \right) \right) &= -b_1 \\
\lambda \frac{\partial}{\partial x_2} (\nabla \cdot \boldsymbol{u}) + \mu \left(\nabla \cdot \left(\nabla u_2 + \frac{\partial \boldsymbol{u}}{\partial x_2} \right) \right) &= -b_2 \\
\lambda \frac{\partial}{\partial x_3} (\nabla \cdot \boldsymbol{u}) + \mu \left(\nabla \cdot \left(\nabla u_3 + \frac{\partial \boldsymbol{u}}{\partial x_3} \right) \right) &= -b_3
\end{cases}$$

Finite Element Mesh

Before deformation:

After deformation:

Displacements:

Update:

Conclusions

Conclusions:

- Realistic results with both models
- High accuracy
- Easy to derive data

Coupling of the two models

- Coupling of the two models
- Non-elastic deformations

- Coupling of the two models
- Non-elastic deformations
- Coupling with elastic deformations

- Coupling of the two models
- Non-elastic deformations
- Coupling with elastic deformations
- Coupling of the three models

- Coupling of the two models
- Non-elastic deformations
- Coupling with elastic deformations
- Coupling of the three models
- Extension to multi-component alloys

Questions?