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Alloys

Alloys can be characterized by
• the solvent metal, such as

• Aluminum
• Lead
• Iron

• the number of elements
• by the apparent number of elements
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By apparent number
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Diffusion

• Interstitial

⇒
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Diffusion

• Interstitial
• Substitutional

⇒
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Nucleation of particles

Directly influenced by

• Mean concentration C̄

• Equilibrium concentration Ce

• Temperature T

• Activation energy for diffusion Qd
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Nucleation of particles

Directly influenced by

• Mean concentration C̄

• Equilibrium concentration Ce

• Temperature T

• Activation energy for diffusion Qd

Formula:

j(t) = j0 exp

(

−

(

A0

RT

)3(

1

ln(C̄/Ce)

)2
)

exp

(

−
Qd

RT
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Growth of particles

Directly influenced by

• Mean concentration C̄

• Interface concentration Ci

• Internal concentration Cp

• Diffusion coefficient D
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Growth of particles

Directly influenced by

• Mean concentration C̄

• Interface concentration Ci

• Internal concentration Cp

• Diffusion coefficient D

Formula:

v(r, t) =
C̄ − Ci

Cp − Ci

D

r
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Critical particles

Particles with no growth:

v(r∗, t) = 0
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Critical particles

Particles with no growth:

v(r∗, t) = 0

or equivalent:

r∗(t) =
2σVm

RT

(

ln

(

C̄

ce

))−1
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Number of particles

Directly influenced by
• Growth rate v

• Nucleation rate j

• Critical radius r∗
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Number of particles

Directly influenced by
• Growth rate v

• Nucleation rate j

• Critical radius r∗

Continuity equation:

∂N

∂t
= −

∂Nv

∂r
+ S
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Source term

Influenced by
• Critical radius r∗

• Nucleation rate j
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Source term

Influenced by
• Critical radius r∗

• Nucleation rate j

Definition

S(r, t) =

{

j(t) if r = r∗ + ∆r∗,
0 otherwise.
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Relations

Define φ by

φ(r, t) =
N(r, t)

∆r
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Relations

Define φ by

φ(r, t) =
N(r, t)

∆r

Then the particle volume fraction equals

f(t) =

∫

∞

0

4

3
πr3φ(r, t) dr
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Relations

Define φ by

φ(r, t) =
N(r, t)

∆r

Then the particle volume fraction equals

f(t) =

∫

∞

0

4

3
πr3φ(r, t) dr

and the mean concentration

C̄(t) =
C0 − Cpf(t)

1 − f(t)
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Simulation

Material: Aluminum alloy AA 6082
• 0.9 wt% Silicon
• 0.6 wt% Magnesium

Temperature: 180◦ C

Initial condition: No particles



13/28

Delft Institute of Applied Mathematics

Distribution function φ
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Derived quantities
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Derived quantities
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Derived quantities
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Derived quantities
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Derived quantities
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Time integration

Three methods:
• θ-method

(

I − θ
∆t

∆r
An

)

~Nn+1 =

(

I + (1 − θ)
∆t

∆r
An

)

~Nn + ∆t~Sn
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Time integration

Three methods:
• θ-method
• First DIRK-method

~Nn+1 = ~Nn +
∆t

2
An
(

~Nn1 + ~Nn2

)

+ ∆t~Sn

~Nn1 = ~Nn + ∆tγ
(

An ~Nn1 + ~Sn
)

~Nn2 = ~Nn + ∆tAn
(

(1 − 2γ) ~Nn1 + γ ~Nn2

)

+ ∆t(1 − γ)~Sn
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Time integration

Three methods:
• θ-method
• First DIRK-method
• Second DIRK-method

~Nn+1 = ~Nn + ∆tAn
(

b1
~Nn + b2

~Nn2 + γ ~Nn3

)

+ ∆t~Sn

~Nn2 = ~Nn + ∆tγAn
(

~Nn + ~Nn2

)

+ 2∆tγ ~Sn

~Nn3 = ~Nn + ∆tAn
(

b1
~Nn + b2

~Nn2 + γ ~Nn3

)

+ ∆t~Sn
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Time integration

Operation
Method Vector addition Matrix addition Matrix multiplication Matrix inversion

θ-method 1 2 1 1
DIRK-1 6 2 2 2
DIRK-2 9 2 3 2
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Time integration

Results:
• θ-method large differences

Second order for θ = 1/2
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Time integration

Results:
• θ-method large differences

Second order for θ = 1/2

• DIRK-methods small differences
Second order for all γ

• θ = 1/2- and DIRK-methods small differences

Conclusion:
θ = 1/2-method favorable
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Recap

Results:
• Model correctly predicts nucleation and

coarsening
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Recap

Results:
• Model correctly predicts nucleation and

coarsening
• Second order accuracy at low costs
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Elastic deformation

Strain in a deformed block:

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)
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Elastic deformation

Strain in a deformed block:

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

Stress in a deformed block:

σij = λδij

3
∑

k=1

εkk + 2µεij
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Elastic deformation

Force balance:

∇ · σ = −b
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Elastic deformation

Force balance:

∇ · σ = −b

Or equivalent:






























λ
∂

∂x1

(∇ · u) + µ

(

∇ ·

(

∇u1 +
∂u

∂x1

))

= −b1

λ
∂

∂x2

(∇ · u) + µ

(

∇ ·

(

∇u2 +
∂u

∂x2

))

= −b2

λ
∂

∂x3

(∇ · u) + µ

(

∇ ·

(

∇u3 +
∂u

∂x3

))

= −b3



21/28

Delft Institute of Applied Mathematics

Finite Element Mesh
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Simulation

Before deformation:
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Simulation

After deformation:
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Simulation

Displacements:
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Simulation

Update:
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Conclusions

Conclusions:
• Realistic results with both models
• High accuracy
• Easy to derive data
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Future work

• Coupling of the two models
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Future work

• Coupling of the two models
• Non-elastic deformations
• Coupling with elastic deformations
• Coupling of the three models
• Extension to multi-component alloys



28/28

Delft Institute of Applied Mathematics

Questions?
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