Mathematical modeling of particle nucleation and growth in metallic alloys

Dennis den Ouden

Contents

- Something about metallurgy
- A model for nucleation
- A model for deformations
- Combining the models
- Results
- Conclusion

Something about alloys

Something about alloys

TUDelft

Something about deformations

TUDelft

Something about deformations

TUDelft

Models for nucleation

Two models, with small differences

- Myhr and Grong (2000)
- Robson et al. (2003)

TUDelft

14-12-2009 5

Models for nucleation

Two models, with small differences

- Myhr and Grong (2000)
- Robson et al. (2003)

Comparison:

- Basic model == Myhr and Grong (2000)
- Adapted using Robson et al. (2003)

TUDelft

14-12-2009 5

Governing DE

14-12-2009 6

Governing DE

$$\bigvee$$

$$\downarrow \downarrow$$

$$\frac{\partial N}{\partial t} = -\frac{\partial (Nv)}{\partial r} + S$$

TUDelft

6

Unknowns

- Growth rate v
- Production term S

Growth of spherical particles

Directly influence by

- Mean concentration \bar{C}
- Interface concentration C_i
- Internal concentration C_p
- ullet Diffusion coefficient D

Growth of spherical particles

$$v(r,t) = \frac{\bar{C} - C_i}{C_p - C_i} \frac{D}{r}$$

A special particle

A particle with radius r^* that will neither grow or dissolve:

$$v(r^*) = 0$$

A special particle

A particle with radius r^* that will neither grow or dissolve:

$$v(r^*) = 0$$

Solved for r^* :

$$r^* = \frac{2\gamma_{\alpha\beta}V_m}{RT} \left(\ln\left(\frac{\bar{C}}{C_e}\right) \right)^{-1}$$

TUDelft

A special particle

A particle with radius r^* that will neither grow or dissolve:

$$v(r^*) = 0$$

Solved for r^* :

$$r^* = \frac{2\gamma_{\alpha\beta}V_m}{RT} \left(\ln\left(\frac{\bar{C}}{C_e}\right) \right)^{-1}$$

Definition: Critical particle radius

TUDelft

Production term

- Indicates the number of particles that nucleate over the whole domain
- Influenced by critical radius r^*
- Influenced by nucleation rate j

TUDelft

Production term

- Indicates the number of particles that nucleate over the whole domain
- Influenced by critical radius r^*
- Influenced by nucleation rate j

Kampmann et al. (1987):

$$S(r,t) = \begin{cases} j(t) & \text{if } r = r^* + \Delta r^*, \\ 0 & \text{otherwise.} \end{cases}$$

TUDelft

Nucleation rate

The number of particles that nucleate with radius $r^* + \Delta r^*$:

- Influenced by diffusion
- Only if some barrier has been overcome

TUDelft

Nucleation rate

The number of particles that nucleate with radius $r^* + \Delta r^*$:

- Influenced by diffusion
- Only if some barrier has been overcome

$$j = j_0 \exp\left(-\frac{\Delta \mathbf{G}_{het}^*}{RT}\right) \exp\left(-\frac{\mathbf{Q}_d}{RT}\right)$$

TUDelft

Nucleation energy barrier

- Chemical composition
- Misfit strain energy

TUDelft

Nucleation energy barrier

Chemical composition

Model overview

Governing DE:

$$\frac{\partial N}{\partial t} = -\frac{\partial \left(Nv\right)}{\partial r} + S$$

Source term:

$$S(r,t) = \begin{cases} j(t) & \text{if } r = r^* + \Delta r^*, \\ 0 & \text{otherwise.} \end{cases}$$

TUDelft

Model overview

Governing DE:

$$\frac{\partial N}{\partial t} = -\frac{\partial \left(Nv\right)}{\partial r} + S$$

Growth rate:

$$v = \frac{\bar{C} - C_i}{C_p - C_i} \frac{D}{r}$$

TUDelft

Elastic deformations

Ø

Elastic deformations

B

Assumptions

Rotation symmetry:

- No deformations in tangential direction
- No deformation at center axis in radial direction
- All derivatives in tangential direction vanish

TUDelft

Assumptions

Rotation symmetry:

- No deformations in tangential direction
- No deformation at center axis in radial direction
- All derivatives in tangential direction vanish

$$u_{\theta} = 0$$
 $u_{\eta}(0, \theta, z) = 0$ $\frac{\mathcal{O}(.)}{\partial \theta} = 0$

TUDelft

15

Strain and deformation

Chau and Wei (2000):

$$\varepsilon_{\eta\eta} = \frac{\partial u_{\eta}}{\partial \eta} \qquad \qquad \varepsilon_{\theta\theta} = \frac{u_{\eta}}{\eta}$$

$$\varepsilon_{zz} = \frac{\partial u_{z}}{\partial z} \qquad \qquad \varepsilon_{\eta\theta} = 0$$

$$\varepsilon_{\eta z} = \frac{1}{2} \left(\frac{\partial u_{\eta}}{\partial z} + \frac{\partial u_{z}}{\partial \eta} \right) \qquad \varepsilon_{\theta z} = 0$$

Stress and strain

Hook's Law:

$$\sigma_{\alpha\beta} = \delta_{\alpha\beta}\lambda \left(\varepsilon_{\eta\eta} + \varepsilon_{\theta\theta} + \varepsilon_{zz}\right) + 2\mu\varepsilon_{\alpha\beta}$$

TUDelft

17

Stress and strain

Hook's Law:

$$\sigma_{\alpha\beta} = \delta_{\alpha\beta} (\lambda) (\varepsilon_{\eta\eta} + \varepsilon_{\theta\theta} + \varepsilon_{zz}) + 2(\mu) \varepsilon_{\alpha\beta}$$
 Stiffness matrix Shear modulus

Force balance

Jaeger et al. (2007):

$$\frac{\partial \sigma_{\eta\eta}}{\partial \eta} + \frac{\partial \sigma_{\eta z}}{\partial z} + \frac{\sigma_{\eta\eta} - \sigma_{\theta\theta}}{\eta} + b_{\eta} = 0$$
$$\frac{\partial \sigma_{\eta z}}{\partial \eta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{\sigma_{\eta z}}{\eta} + b_{z} = 0$$

TUDelft

Boundary conditions

• Symmetry condition:

$$u_{\eta}(0,\theta,z) = 0$$

19

Boundary conditions

Symmetry condition:

$$u_{\eta}(0,\theta,z)=0$$

Fixed boundaries:

$$u_{\alpha}(\eta,\theta,z)=0$$

TUDelft

19

Boundary conditions

Symmetry condition:

$$u_{\eta}(0,\theta,z)=0$$

Fixed boundaries:

$$u_{\alpha}(\eta,\theta,z)=0$$

Moving boundaries:

$$\left(\underline{\boldsymbol{\sigma}}(\eta,\theta,z)\right)_{\alpha}\cdot\boldsymbol{n}=f_{\alpha}(\eta,\theta,z)$$

TUDelft

Coupling the models

Remember the nucleation energy barrier:

$$\Delta G_{\mathsf{het}}^* = \dfrac{ ilde{A}_0^3}{\left(\Delta G_v + \left(\Delta G_s^m
ight)
ight)^2}$$
 Misfit strain energy

Coupling the models

Remember the nucleation energy barrier:

$$\Delta G_{\mathsf{het}}^* = \dfrac{\hat{A}_0^3}{\left(\Delta G_v + \left(\Delta G_s^m\right)\right)^2}$$
 Misfit strain energy

Question:

Is there something like elastic strain energy?

TUDelft

Coupling the models (2)

Answer:

YES!!!

21

Coupling the models (2)

Answer:

YES!!!

Solution:

$$\Delta G_s^{el} = \frac{1}{2} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}}$$

Coupling the models (2)

Answer:

YES!!!

Solution:

$$\Delta G_s^{el} = \frac{1}{2} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}}$$

and:

$$\Delta G_{\mathsf{het}}^* = rac{ ilde{A}_0^3}{\left(\Delta G_v + \Delta G_s^m + \Delta G_s^{el}
ight)^2}$$

TUDelft

Coupling the models (3)

Question:

Is there also a reverse coupling?

7

Coupling the models (3)

Question:

Is there also a reverse coupling?

Answer:

YES !!!

TUDelft

22

Coupling the models (3)

Question:

Is there also a reverse coupling?

Solution by Pal (2005):

$$\mu = \mu_m + \left(\frac{15(1 - \nu_m)(\mu_p - \mu_m)}{2\mu_p(4 - 5\nu_m) + \mu_m(7 - 5\nu_m)}\right) \mu_m f$$

$$E = E_m + (10\beta_1(1 + \nu_m) + \beta_2(1 - 2\nu_m)) E_m f$$

$$\lambda = \mu \frac{E - 2\mu}{3\mu - E}$$

TUDelft

Recap

Two models:

- Nucleation model
- Elastic model

Two couplings:

- From elastic to nucleation
- From nucleation to elastic

Nucleation model:

- Upwind scheme
- IMEX- θ method with $\theta = \frac{1}{2}$

TUDelft

Nucleation model:

- Upwind scheme
- IMEX- θ method with $\theta = \frac{1}{2}$

$$\left(I - \frac{1}{2}\frac{\Delta t}{\Delta r}A^n\right)\vec{N}^{n+1} = \left(I + \frac{1}{2}\frac{\Delta t}{\Delta r}A^n\right)\vec{N}^n + \Delta t\vec{S}^n$$

M TUDalft

Numerical methods (2)

Elastic model:

- Finite Element Method
- Linear elements
- Use of rotation symmetry

TUDelft

Numerical methods (2)

14-12-2009 25

Numerical methods (2)

Equation:

$$\begin{bmatrix} S_{\eta\eta} & S_{\eta z} \\ S_{z\eta} & S_{zz} \end{bmatrix} \begin{bmatrix} u_{\eta} \\ u_{z} \end{bmatrix} = \begin{bmatrix} q_{\eta} \\ q_{z} \end{bmatrix}$$

Algorithm:

- 1. Set all constants;
- 2. Set all initial values;

TUDelft

Algorithm:

- 1. Set all constants;
- 2. Set all initial values;
- 3. For each time step:
 - (a) Calculate elastic parameters;
 - (b) Build matrices for elastic deformation;
 - (c) Calculate elastic deformations;
 - (d) Calculate elastic strain energy;

TUDelft

```
Algorithm:
```

. . .

3. For each time step:

. . .

- (e) For each point:
 - i. Calculate nucleation parameters;
 - ii. Calculate matrices for nucleation;
 - iii. Calculate nucleation.

Simulation

Material:

- Aluminum alloy AA 6082
- Mg₂Si particles

TUDelft

Simulation

Material:

- Aluminum alloy AA 6082
- Mg₂Si particles

Shape:

- Cylindrical
- Height 30 millimeter
- Radius 3 millimeter

Simulation (2)

Time

- Total of 3000 seconds
- Time step of 0.5 seconds

TUDelft

Simulation (2)

Time

- Total of 3000 seconds
- Time step of 0.5 seconds

Test:

- Tensile test
- Bottom axial and radial fixed
- Top radial fixed
- Axial force at top of 6 million N/m^2
- Sides free

TUDelft

28

Typical deformations: Axial

TUDelft

Typical deformations: Radial

TUDelft

29

Typical deformations: Energy

TUDelft

Nucleation results: Nucleation rate

Nucleation results: Number density

Nucleation results: Concentration

Reflection

Are the results anomalies during simulation?

31

Reflection

Are the results anomalies during simulation?

Increase force to test for similar behavior.

$$F = 6 \times 10^9 \frac{N}{m^2}$$

Reflection

Are the results anomalies during simulation?

Increase force to test for similar behavior.

$$F = 6 \times 10^9 \frac{N}{m^2}$$

Physically no longer elasticity

New elastic stain energy

14-12-2009 32

Nucleation results: Number density

Two separate nucleation models combined

- Two separate nucleation models combined
- Formulated model for elastic deformations

- Two separate nucleation models combined
- Formulated model for elastic deformations
- Coupling between nucleation and deformations

TUDelft

- Two separate nucleation models combined
- Formulated model for elastic deformations
- Coupling between nucleation and deformations
- Simulations show influence of deformations on nucleation

TUDelft

Extension to multiple particle configurations

- Extension to multiple particle configurations
- Adaption to other alloys

T Dalft

- Extension to multiple particle configurations
- Adaption to other alloys
- Improving numerical techniques

Ŋ

- Extension to multiple particle configurations
- Adaption to other alloys
- Improving numerical techniques
- Comparison with experimental data

TUDelft

- Extension to multiple particle configurations
- Adaption to other alloys
- Improving numerical techniques
- Comparison with experimental data
- Including plastic deformations

TUDelft

- Extension to multiple particle configurations
- Adaption to other alloys
- Improving numerical techniques
- Comparison with experimental data
- Including plastic deformations
- Including homogeneous nucleation

TUDelft

- Extension to multiple particle configurations
- Adaption to other alloys
- Improving numerical techniques
- Comparison with experimental data
- Including plastic deformations
- Including homogeneous nucleation
- Including grain prediction models

TUDelft

References

- Chau, K.T. and Wei, X.X. Finite solid circular cylinders subjected to arbitrary surface load. Part I analytic solution. International Journal of Solids and Structures, 37(40):5707–5732, 2000.
- Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W.. Fundamentals of rock mechanics. Wiley, Blackwell, 2007.
- Kampmann, R., Eckerlebe, H., and Wagner, R. In: Materials Research Society Symposium Proceedings, volume 57, page 525. MRS, 1987.
- Myhr, O. R. and Grong, Ø. . Modelling of non-isothermal transformations in alloys containing a particle distribution. <u>Acta Materialia</u>, 48(7):1605–1615, 2000.
- Pal, R. . New models for effective Young's modulus of particulate composites. <u>Composites Part B: Engineering</u>, 36(6-7): 513–523, 2005.
- Robson, J.D., Jones, M.J., and Prangnell, P.B.. Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al-Sc alloys. <u>Acta Materialia</u>, 51(5): 1453–1468, 2003.