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Models for nucleation

Two models, with small differences
• Myhr and Grong (2000)
• Robson et al. (2003)
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Models for nucleation

Two models, with small differences
• Myhr and Grong (2000)
• Robson et al. (2003)

Comparison:
• Basic model == Myhr and Grong (2000)
• Adapted using Robson et al. (2003)
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Unknowns

• Growth rate v

• Production term S
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Growth of spherical particles

Directly influence by

• Mean concentration C̄

• Interface concentration
Ci

• Internal concentration
Cp

• Diffusion coefficient D

Cp C̄

Ci

Matrix

Particle
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Growth of spherical particles

v(r, t) =
C̄ − Ci

Cp − Ci

D

r Cp C̄

Ci

Matrix

Particle
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A particle with radius r∗ that will neither grow or
dissolve:

v(r∗) = 0
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A special particle

A particle with radius r∗ that will neither grow or
dissolve:

v(r∗) = 0

Solved for r∗:

r∗ =
2γαβVm

RT

(

ln

(

C̄

Ce

))−1

Definition: Critical particle radius
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Production term

• Indicates the number of particles that
nucleate over the whole domain

• Influenced by critical radius r∗

• Influenced by nucleation rate j
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Production term

• Indicates the number of particles that
nucleate over the whole domain

• Influenced by critical radius r∗

• Influenced by nucleation rate j

Kampmann et al. (1987):

S(r, t) =

{

j(t) if r = r∗ + ∆r∗,
0 otherwise.
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Nucleation rate

The number of particles that nucleate with radius
r∗ + ∆r∗:

• Influenced by diffusion
• Only if some barrier has been overcome
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Nucleation rate

The number of particles that nucleate with radius
r∗ + ∆r∗:

• Influenced by diffusion
• Only if some barrier has been overcome

j = j0 exp

(

−
∆G∗

het

RT

)

exp

(

−
Qd

RT

)
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Nucleation energy barrier

• Chemical composition
• Misfit strain energy
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Nucleation energy barrier

• Chemical composition
• Misfit strain energy

∆G∗
het =

Ã3
0

(∆Gv + ∆Gm

s
)2
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Model overview

• Governing DE:

∂N

∂t
= −

∂ (Nv)

∂r
+ S

• Source term:

S(r, t) =

{

j(t) if r = r∗ + ∆r∗,
0 otherwise.
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Model overview

• Governing DE:

∂N

∂t
= −

∂ (Nv)

∂r
+ S

• Growth rate:

v =
C̄ − Ci

Cp − Ci

D

r
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Elastic deformations
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Assumptions

Rotation symmetry:
• No deformations in tangential direction
• No deformation at center axis in radial

direction
• All derivatives in tangential direction vanish
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Assumptions

Rotation symmetry:
• No deformations in tangential direction
• No deformation at center axis in radial

direction
• All derivatives in tangential direction vanish

uθ = 0 uη(0, θ, z) = 0
∂(.)

∂θ
= 0
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Strain and deformation

Chau and Wei (2000):

εηη =
∂uη

∂η
εθθ =

uη

η

εzz =
∂uz

∂z
εηθ = 0

εηz =
1

2

(

∂uη

∂z
+

∂uz

∂η

)

εθz = 0
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Stress and strain

Hook’s Law:

σαβ = δαβλ (εηη + εθθ + εzz) + 2µεαβ
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Stress and strain

Hook’s Law:

σαβ = δαβ λ (εηη + εθθ + εzz) + 2 µ εαβ

Stiffness matrix Shear modulus
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Force balance

Jaeger et al. (2007):

∂σηη

∂η
+

∂σηz

∂z
+

σηη − σθθ

η
+ bη = 0

∂σηz

∂η
+

∂σzz

∂z
+

σηz

η
+ bz = 0
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Boundary conditions

• Symmetry condition:

uη(0, θ, z) = 0
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Boundary conditions

• Symmetry condition:

uη(0, θ, z) = 0

• Fixed boundaries:

uα(η, θ, z) = 0

• Moving boundaries:
(

σ(η, θ, z)
)

α
· n = fα(η, θ, z)
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Coupling the models

Remember the nucleation energy barrier:

∆G∗
het =

Ã3
0

(

∆Gv + ∆Gm
s

)2

Misfit strain energy
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Coupling the models

Remember the nucleation energy barrier:

∆G∗
het =

Ã3
0

(

∆Gv + ∆Gm
s

)2

Misfit strain energy

Question:

Is there something like elastic strain energy?
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Coupling the models (2)

Answer:
YES!!!
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∆Gel
s =

1

2
σ : ε
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Coupling the models (2)

Answer:
YES!!!

Solution:

∆Gel
s =

1

2
σ : ε

and:

∆G∗
het =

Ã3
0

(

∆Gv + ∆Gm
s +∆Gel

s

)2
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Coupling the models (3)

Question:
Is there also a reverse coupling?
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Coupling the models (3)

Question:
Is there also a reverse coupling?

Answer:
YES !!!
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Coupling the models (3)

Question:
Is there also a reverse coupling?

Solution by Pal (2005):

µ = µm +

(

15(1 − νm)(µp − µm)

2µp(4 − 5νm) + µm(7 − 5νm)

)

µm f

E = Em + (10β1(1 + νm) + β2(1 − 2νm)) Em f

λ = µ
E − 2µ

3µ − E
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Recap

Two models:
• Nucleation model
• Elastic model

Two couplings:
• From elastic to nucleation
• From nucleation to elastic
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Numerical methods

Nucleation model:
• Upwind scheme

• IMEX-θ method with θ = 1

2
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Numerical methods

Nucleation model:
• Upwind scheme

• IMEX-θ method with θ = 1

2

(

I −
1

2

∆t

∆r
An

)

~Nn+1 =

(

I +
1

2

∆t

∆r
An

)

~Nn + ∆t~Sn
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Numerical methods (2)

Elastic model:
• Finite Element Method
• Linear elements
• Use of rotation symmetry
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Numerical methods (2)
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Numerical methods (2)

Equation:
[

Sηη Sηz

Szη Szz

][

uη

uz

]

=

[

qη

qz

]
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Numerical methods

Algorithm:

1. Set all constants;

2. Set all initial values;
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Numerical methods

Algorithm:

1. Set all constants;

2. Set all initial values;

3. For each time step:
(a) Calculate elastic parameters;
(b) Build matrices for elastic deformation;
(c) Calculate elastic deformations;
(d) Calculate elastic strain energy;
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Numerical methods

Algorithm:
. . .

3. For each time step:
. . .

(e) For each point:
i. Calculate nucleation parameters;
ii. Calculate matrices for nucleation;
iii. Calculate nucleation.
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Simulation

Material:
• Aluminum alloy AA 6082
• Mg2Si particles
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Simulation

Material:
• Aluminum alloy AA 6082
• Mg2Si particles

Shape:
• Cylindrical
• Height 30 millimeter
• Radius 3 millimeter
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Simulation (2)

Time
• Total of 3000 seconds
• Time step of 0.5 seconds
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Simulation (2)

Time
• Total of 3000 seconds
• Time step of 0.5 seconds

Test:
• Tensile test
• Bottom axial and radial fixed
• Top radial fixed

• Axial force at top of 6 million N/m2

• Sides free
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Typical deformations: Axial
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Typical deformations: Radial
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Typical deformations: Energy
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Nucleation results: Nucleation rate
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Nucleation results: Number density
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Nucleation results: Concentration
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Reflection

Are the results anomalies during simulation?
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Reflection

Are the results anomalies during simulation?

Increase force to test for similar behavior.

F = 6 × 109
N

m2
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Reflection

Are the results anomalies during simulation?

Increase force to test for similar behavior.

F = 6 × 109
N

m2

Physically no longer elasticity



14-12-2009 32

Delft Institute of Applied Mathematics

New elastic stain energy
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Nucleation results: Number density
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Conclusions

• Two separate nucleation models combined
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Conclusions

• Two separate nucleation models combined
• Formulated model for elastic deformations
• Coupling between nucleation and

deformations
• Simulations show influence of deformations

on nucleation
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Recommended future work

• Extension to multiple particle configurations
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Recommended future work

• Extension to multiple particle configurations
• Adaption to other alloys
• Improving numerical techniques
• Comparison with experimental data
• Including plastic deformations
• Including homogeneous nucleation
• Including grain prediction models
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