
A new interface capturing model with explicit constraint on

mass conservation

Literature Report

Daniël Pols - 4284569

17 May 2018

Summary

In solving two-phase flows, the location of the interface between the phases is necessary to handle interface jump
conditions when solving the Navier-Stokes equation. Current interface capturing and advection methods, however,
suffer from various issues. The level set method uses the signed distance to the interface and the interface being
the zero level set of this function allows the evolution of the level set field to be described with a simple advection
equation. This means that no additional steps are required, but solving the advection equation generally does not
conserve mass. On the other hand, Volume of Fluid methods utilise the local fluid fractions to represent the phase
interface. For these methods, a mass conserving advection algorithm exists [1], but the absence of an explicit interface
requires expensive reconstruction methods to be used instead. Additionally, this Volume of Fluid advection method
is subject to a restrictive CFL condition on the time-step and, being dimensionally split, requires a structured grid
to be used. Other Volume of Fluid or Moment of Fluid advection methods that do not have these conditions are not
mass conserving. Dual interface methods that combine information from the level set and volume fractions are able
to achieve higher accuracy, but these method still use Volume of Fluid advection to remain mass conserving and are
thus subject to the same conditions. These methods use the level set field to avoid expensive reconstruction method,
which negates one drawback of VoF methods.

It is preferable to allow solving the advection equation on unstructured grids. Finite volume methods become
difficult to implement and finite element methods may induce instabilities in the solution, so the discontinuous
Galerkin discretisation method is considered. The discontinuous Galerkin method is analogous to the Galerkin finite
element method, but with piecewise continuous solution instead. While in the finite element method, the residual
of the PDE must be orthogonal to the space of global basis functions, in a discontinuous Galerkin discretisation it
is only required to be orthogonal to the basis functions defined on one element. This also has the result that the
solution is multiply-defined on element boundaries, and adjacent elements are only coupled by the ‘numerical flux’,
which is generally a combination of the multiply-defined flux values on the element boundaries. An added benefit
of this discretisation is that any mass correction steps can be applied locally due to the level of independence of the
control volumes.

The optimisation-based mass conservation method as described in [14, 15] is similar to techniques that are
expected to be necessary for this research. This method introduces a control variable to supply a nonlinear system
of equations that must be satisfied to obtain mass conservation. The exact form of this system depends on the
discretisation and time stepping method used. The optimisation problem aims to minimise a given functional while
satisfying this system of equations, and from the associated Lagrangian first-order optimality conditions can be
derived. The resulting conditions can then be solved using fixed-point iteration to obtain a new conservative level set
field. The difference between the scalar and vector control approaches mentioned is that where the scalar approach
utilises the gradient of a scalar field as control variable, the vector approach requires a vector field instead. This
results in a larger, but possibly more nicely structured system for the vector approach compared to the scalar
approach. With the optimality conditions mentioned, the obtained solution is in general not unique. This can be
resolved by applying additional conditions or adding extra terms to the functional.

The idea for further research is now to use the momentary fluxes instead of the donating regions for advection of
the volume fractions, and apply the described methods to keep the algorithm mass conserving.

i

Contents

Summary i

1 Motivation for an implicit interface time-integration method 1

2 Incompressible immiscible two-phase flow model 2
2.1 Interface models . 2
2.2 Level set method . 3
2.3 Volume of fluid method . 3

2.3.1 Interface Reconstruction . 4
2.3.2 Interface advection . 6
2.3.3 Convergence analysis on VoF interface models . 8

2.4 Dual interface methods . 9
2.5 Concluding remarks . 11

3 Discontinuous Galerkin 12
3.1 Theory behind DG discretisation . 12
3.2 DG on general polygons . 13
3.3 Concluding remarks . 16

4 Optimisation-based mass conservation 17
4.1 Scalar control approach . 17
4.2 Vector control approach . 19
4.3 Concluding remarks . 20

5 Research Questions 21
5.1 Time schedule . 22

6 Conclusion 23

References 24

1 Motivation for an implicit interface time-integration method

Solving two-phase flows is important for many applications in science and industry. The modelling of chemical reactors
are an example of this, but fluid jetting [8] and complex gas-fluid mixtures in pipelines [10] are also instances where
accurate solving of two-phase flows is needed. Solving the Navier-Stokes equations for two-phase flows, however,
requires knowledge of the location of the phase interface to deal with jumps in pressure and velocity, and to handle
the effect of surface tension. While methods exist to find the location of said interface [1, 7, 9, 11, 12], these methods
suffer from some drawbacks that mainly occur through the use of ‘donating regions’. This results in restrictive
requirements on the time step size and necessitates structured grids, while methods that attempt to avoid using
donating regions or that use unstructured grids do not conserve mass while becoming extremely complicated [2]. The
requirements of rectangular grids complicates the use of two-phase flow solvers on complicated domains, whereas the
time step restriction in some cases cannot be met (e.g. cylindrical coordinates) [10].

To avoid these problems, this project aims to formulate a description of a dual interface capturing method with
inherent mass conservation that does not rely on donating regions for interface advection. In section 2, existing models
and their drawbacks will be described in more detail, and the step to dual interface methods will be highlighted.
Then, the discontinuous Galerkin method [13, 3] will be described in section 3, which allows accurate discretisation
on unstructured grids and allows local application of mass conserving corrections. Lastly, optimisation-based mass
correction steps for the level set method [14, 15] will be described in section 4, as it is expected that similar techniques
will be required in this research.

1

2 Incompressible immiscible two-phase flow model

In two-phase flows, a domain Ω ∈ R2 is occupied by two different materials, for example water and air, that are
separated by an interface. If the flow is assumed to be incompressible, so

∇ · u = 0 (2.1)

for the velocity vector u, then the time evolution of the momentum field is governed by the incompressible Navier-
Stokes equations

∂u

∂t
+ u∇ · u = −1

ρ
∇p+

1

ρ
∇ · µ(∇u+∇ut) + g, (2.2)

where ρ is the density, µ the viscosity, p the pressure, and g the outside forces, which usually includes gravity. Since
the materials are incompressible, the density and viscosity are constant within each material. Due to cohesive forces,
at the interface between the two materials, surface tension must also be considered. It can be shown that for a
surface element A the surface tension force equals

fs = −
ˆ
A

σκndA, (2.3)

where n is the outward normal of A with unit length, σ a constant indicating the strength of the surface tension,
and κ = ∇ · n the curvature of the surface. Obviously, the surface tension acts as a force normal to the interface
with magnitude σκ. Additionally, the flow velocity must be continuous at the interface, which results in the interface
conditions

[u] = 0

[pn+ µ(∇u+∇ut) · n] = σκn,

(2.4)

(2.5)

where the brackets denote jumps across the interface. Consider also a vector s parallel to the interface. To avoid
giving the interface infinite acceleration (since the interface has no mass), both sides of the interface must experience
equal tangential stresses. As such, [

µ
∂us
∂n

]
= 0. (2.6)

Since the location of the interface must be known in order to apply the interface jump conditions (2.4) to (2.6),
an interface model is required to numerically integrate the flow velocity in time. In this section, some background
on interface models is given, and different interface model types are discussed.

2.1 Interface models

Most methods that find the location of an interface are either interface tracking methods or interface capturing
methods. Interface tracking methods attempt to explicitly represent the interface, for example (in 2D) by chains of
line segments, and move this representation every time step with the local flow velocity. While interface tracking
methods can work fine in many applications, trouble occurs when dealing with changing topologies. When two
surfaces intersect, or when a surface folds over itself, some parts of the chain must be reworked to merge or split
interfaces. However, if such changes are not anticipated, expensive checks must be done to see whether or not two
segments intersect. Additionally, the reordering of segments in such a case is also not trivial.

Interface capturing methods do not explicitly represent the interface in the way tracking methods do. Instead,
an indicator function is used which allows distinction between the fluids, and the method tracks the change of the
indicator function instead. This change implicitly defines the interface, and topology changes should be automatically
accounted for. Since interface capturing methods should be applicable in situations with changing topologies, only
this kind of method will be described hereafter.

When using indicator functions that are not smooth around the interface, special care must be taken. Note that
in two-phase flows, since the interface moves according to the local flow velocity, for these indicators the interface
represents a linearly degenerate wave. When linearly degenerate waves are present, it is shown in Banks [4] that

for a finite volume non-compressive discretisation of order p, the solution is only approximated with O
(

p
p+1

)
. This

means that for non-smooth indicators, methods of this type that directly discretise the advection equation will have
at most linear convergence. As such, when higher order accuracy is needed, a different type of method is necessary
to numerically approximate the solution of the interface advection problem.

2

2.2 Level set method

The level set (LS) interface capturing method [9] uses a marker function φ defined on the domain Ω that changes
sign at the interface. The interface is implicitly defined as the zero level set of φ:

Γ(t) = {x ∈ Ω : φ(x, t) = 0}. (2.7)

The interface is evolved by applying the advection scheme to the level set function in the divergence-free flow field u,

∂φ

∂t
+ u · ∇φ = 0. (2.8)

Since the level set function is typically smooth near the interface, straightforward application of an advection scheme
is allowed. Since there is no jump discontinuity at the interface, the level set method also does not suffer from the
lower order of approximation that was mentioned in section 2.1. The level set function is usually chosen to be the
signed distance to the nearest interface surface. This allows for easy extracting of certain geometrical properties like
the unit normal n to the interface and the curvature κ of the interface:

n = ∇φ, κ = ∇ · n. (2.9)

The signed distance property of the level set function generally does not hold under advection through a non-uniform
flow, so to restore this property, the function φ must be reinitialised. This can be done, for example, through the
use of a partial differential equation

∂φ

∂t′
= sign(φ0)(1−∇φ),

φ0 = φ|t′=0,

(2.10)

(2.11)

with t′ an artificial time. This PDE leaves the zero level set unchanged, and reaches equilibrium when |∇φ| = 1, so
when φ is again a distance function.

The major drawback of the level set method is that while the level set function itself is conserved, the area
enclosed by the interface does not have to be. While higher order discretisation schemes improve mass conservation,
the loss of mass is not strictly a result of numerical errors, but rather a property of the advection equation itself.

2.3 Volume of fluid method

The volume of fluid (VoF) method [1, 5] is an interface capturing method that is based on the marker particles
method, but with much lower storage requirements. The marker particle method involves filling a fluid region with
particles that move with the local flow velocity. This, like interface capturing methods, automatically deals with
topology changes of the interface, but the amount of points needed grows immensely, especially in three dimensions.
The volume of fluid method aims to use the upsides of this method, while only requiring storage for one value per
cell. The volume of fluid method requires only the fractional volume of fluid inside a cell, which implicitly defines
the location of the interface.

Define a colour function χ which separates regions occupied by different materials,

χ(x) =

{
1, x occupied by fluid

0, otherwise.
(2.12)

The cell-averaged value of χ then represents the fraction of the cells volume occupied by fluid, which defines the
volume of fluid function ψ,

ψ =
1

|Ω|

ˆ
Ω

χ(x) dx, |Ω| =
ˆ

Ω

dx, (2.13)

where Ω now denotes the space inside an arbitrary cell. If the cell-averaged colour function ψ has unit value inside
the cell, it is completely filled with fluid, and likewise the cell contains no fluid if its ψ value is zero. Naturally, cells
for which the value of ψ is between zero and one is then filled with both fluid and gas, and as such will contain an
interface. Note that the VoF method is essentially the cell-averaged version of the marker particle method, while
VoF has much lower storage requirements. The only information that is currently missing in the volume of fluid
method is the location of fluid inside a boundary cell, which can also be obtained.

3

The direction normal to the interface inside a boundary cell lies in the direction where the colour function χ
changes most rapidly. Once the interface orientation is known, the location of the interface can be constructed so
that the amount of fluid inside the cell agrees with ψ. The colour function could then be advected using

∂χ

∂t
+ u · ∇χ = 0. (2.14)

Note, however, that χ is a step function, and that the discontinuity in χ cannot be represented in the discrete case.
As such, approximations for the gradient of χ will not converge. This means that different methods must be used for
advection and for finding the interface normal. Additionally, the advection equation cannot be applied directly to
the volume fraction ψ. Doing so would again disregard the step-like behaviour caused by the interface and instead
create boundary cells in multiple layers around the actual location of the interface. The fluxes can be approximated
geometrically, but first an interface reconstruction method is necessary before an interface advection scheme can be
applied.

0
x

ψ

ψ(t1)

ψ(t0)1

Figure 1: Effect of advection equation on fractional volume ψ; loss of interface definition after one step.
Desired behaviour: filling/emptying of central cell.

2.3.1 Interface Reconstruction

For the interface reconstruction step, two methods will be described here. The first method is described by Weymouth
and Yue [1] which is similar to the original reconstruction method proposed by Hirt and Nicols [5]. The second method
is part of the moment of fluid (MoF) method [7, 8] which also uses the location of fluid centroids to improve the
reconstruction algorithm.

In the reconstruction step, the problem lies in estimating the orientation of the phase interface. Once the interface
normal m and volume fraction ψ are both known, calculating the exact location of the interface is a simple process.
Thus, it is important to uncover an exact relationship between the normal and the volume fraction field. The length
of the normal vector is arbitrary, so in two dimensions the general reconstruction of the interface can be written as

y = α−mx, (2.15)

where the y-component of the interface normal has been set to 1. If the y-values of the interface are known, the
normal is calculated simply using

m = −∂y
∂x

. (2.16)

Since the volume fractions are the only information available, these y-values are unknown. However, the cell-average
heights can be found. Define the mean value of the interface height as

ȳ =

´ b
a
y(x) dx´ b
a
dx

, (2.17)

and note that when the interface does not cross the top or bottom boundary of a cell, this can be rewritten to

ȳ =

´
Ω
χ dv´

∂Ω
dx

= ψ∆y. (2.18)

4

With this formula and an understanding of its validity, a reconstruction scheme can be made. Important is that
the interface does not pass through the top or bottom boundary of the cells on which (2.18) is applied. First, an
estimation must be made to approximate the orientation of the interface. Using central differences in ψ, it can be
determined whether the interface lies more horizontally or more vertically, that is, if it should be described as y(x)
or as x(y). If the y-direction has the largest difference in ψ, then considering this direction to be ‘up’, it is most
likely that the interface does not cross the top or bottom boundary, so (2.18) is applicable.

Additionally, the volume fractions in a neighbourhood of 3×3 cells are summed in the ‘up’ direction that was just
determined. This essentially creates three cells with triple the height, which again ensures that the top and bottom
boundaries do not intersect the interface. Then, (2.16) can be applied to the cell-averaged height ψ∆y, using forward
or backward differences as necessary,

mx =
∂ȳ

∂x
, my = 1. (2.19)

Here, the last precaution is made to ensure the validity of (2.18). If the central cell is more than half full, then
the cell ‘downwind’ of the estimated normal is used in this difference. If the central cell is less than half full, the
‘upwind’ value is used instead. This is because when using the original approximation of the interface and a central
cell that is more than half full, it is more likely that the interface crosses the top boundary of the fuller cell than
that it crosses the bottom boundary of the emptier cell, as a larger volume difference between the cells is required
to make this happen. Since this method exactly reproduces linear interfaces, it is assured to be second-order.

1.0 1.0 0.95

1.0 0.9 0.3

0.7 0.15 0.0

∑
f = 2.7

∑
f = 2.05

∑
f = 1.25

ȳ = 2.85

ȳ = 2.05

ȳ = 1.25

Figure 2: Illustration of the cell concatenation process for unit square cells. The largest difference in volume
fractions lies in the y-direction (using central differences), so the cells are summed in this direction. Equation (2.18)

holds for the centre and right cells and the calculation for mx uses only these two cells. [1]

This results in an interface reconstruction method for two- and three-dimensional problems. This method ap-
proximates the interface normal to second order accuracy, and when comparing to other second order methods shows
a significant reduction in computation time.

While the method described above is able to reconstruct an interface to second order accuracy, it still leaves
some things to be desired. Since the method needs information from the neighbourhood of a cell, it only exactly
reproduces linear interfaces that are linear in the entire 3×3 neighbourhood. Since the interface is assumed to be
linear in this region, this also means that in parts of the interface with high curvature the method does not perform
very well. The justification behind this method also appears weak, as the method seems to require (approximations
to) the non-defined derivatives of the colour function χ. Because of this, it seems that a method which only uses
local data might provide better solutions.

The moment of fluid (MoF) interface reconstruction method uses the information given by the fluid centroids
to reconstruct the interface without requiring data from other cells. To do so, first note that when constructing
an interface that exactly reproduces the volume fraction ψ, the location of the interface is uniquely defined by its
orientation or phase angle θ with respect to some reference angle. Thus, a continuous objective function can be

5

defined that is minimised or maximised with the desired θ. The MoF reconstruction method aims to minimise the
distance between the given centroid x∗ and the centroid resulting from the linear approximation xl(θ), so

f(θ) = ||xl(θ)− x∗||2, (2.20)

where the θ that minimises f must be found. This can be done using an iterative process. For any phase angle,
the height of the fluid and thus the location of the interface can be determined cheaply for convex cells using, for
example, the flood algorithm [7]. Then, the fluid occupies a polygon inside the cell so for convex cells the fluid
centroid is easy to calculate. The distance between the fluid centroid and the advected centroid from the previous
time step then gives the value of the objective function for this phase angle. Now, note that the derivative of the
objective function is given by

f ′(θ) = 2((xl(θ)− x∗) · x′l(θ)), (2.21)

where for convex cells,

x′l(θ) = − 1

12

|Γ(θ)|3

ψ|Ω|
tθ, (2.22)

with tθ the tangent to the interface Γ(θ), |Γ(θ)| the length of the interface, and |Ω| the volume of the entire cell.
With the derivative of f found, it is possible to minimise the objective function using iterative processes such as
Newton’s method. This does require a good initial guess, but taking the interface normal in the direction from the
reference centroid to the cell centre proves a good enough guess for this method.

The MoF interface reconstruction method has the nice property that all linear interfaces are exactly reproduced,
even if it is not linear in a neighbourhood around the cell. Moreover, if the distance between the two centroids reaches
zero, it can be proven that the reconstructed interface best approximates the actual interface and thus should always
be used [12]. It can also be proven that for smooth interfaces, the maximum deviation in MoF reconstruction scales
quadratically with the diameter of the cell [7]. In regions with high curvature the MoF reconstruction has lower
deviation from the true interface than VoF methods. Lastly, MoF reconstruction has no need for a structured grid,
unlike VoF interface reconstruction. All methods can be applied to general polygons, but although no condition is
required, it is preferable for these polygons to be convex to allow easier and cheaper algorithms to be used.

Γ(θ)

Γ ∗ nθ

θ

xl(θ)

x∗

Figure 3: Illustration of the moment of fluid interface reconstruction. The true interface and fluid centroid are
denoted by Γ∗ and x∗ respectively, with the angle-dependent approximations Γ(θ) and xl(θ). The error in interface

reconstruction (maximum deviation) can be proven to be second order. [7]

2.3.2 Interface advection

Now that the location of the reconstructed interface is known, interface advection methods can be applied. As
mentioned, the advection equation cannot be directly implemented for the volume fractions as this would ignore the
discontinuity in χ that is the interface. Instead, special care must be taken during advection. Currently, the only

6

mass conserving advection method for the volume fractions is given in [1]. For this method, note that the integral
form of the colour function conservation equation (2.14) is

∂ψ

∂t
|Ω|+ Fnet =

˛
Ω

χ∇ · u dv. (2.23)

The integral conservation equation must be used since the gradient of χ is undefined at the interface. This problem
can be split into sequential updates of the volume fraction in each spatial dimension, where

∆ψ
|Ω|
∆t

= ∆dFd +

ˆ
Ω

χ
∂ud
∂xd

dv, for d = 1, ...,N , (2.24)

with N the amount of spacial dimensions, ∆ψ the change in volume fraction over one time step, and ∆dFd the net
flux entering the cell in dimension d. The dilatation term in (2.24) is necessary since the different one-dimensional
flows that are considered one at a time are generally not divergence-free, even though the total flow is.

To ensure mass conservation, a short list of requirements can be made. If for a given algorithm:

1. the flux terms are conservative, and

2. the dilatation terms sum to zero, and

3. no clipping or filling of a cell is needed due to violation of 0 ≤ ψ ≤ 1 at any stage,

then the algorithm must preserve ψ to machine precision. Combining the integral term in (2.24) with the cell-centre
value of the colour function

χc =

{
1 if ψ > 1

2 ,

0 otherwise,
(2.25)

produces the advection method

∆ψ =
∆t

|Ω|

(
∆dFd + χc

∂ud
∂xd

)
, (2.26)

which satisfies the first two conditions. Additionally, it can be shown that a Courant restriction

∆t

N∑
d=1

∣∣∣∣ ud∆xd

∣∣∣∣ < 1

2
(2.27)

is required to fulfil the last requirement. This advection method is second order accurate, and for incompressible
flows is fully conservative. The use of donating regions does, however, introduce some complications. First, it means
that a structured (usually rectangular) grid is required as donating regions for general polygonal cells are difficult to
use. Second, the condition (2.27) is unwanted since for some problems, it is impossible to meet [10], and in general
increases computational requirements for higher accuracy. Additionally, volume of fluid advection methods require
expensive methods for both interface reconstruction and for determining the amount of fluid in donating regions.

u1 u2

u1∆t u2∆t

Figure 4: Illustration of a donating regions method. The blue regions are added to the middle cell
before advection in the y-direction happens.

7

While this method is currently the only VoF advection method that preserves mass to machine precision, other
methods also exist. Methods based on donating regions that are not dimensionally split or that are built for
unstructured grids are, however, not mass conserving and generally do not extend well to three dimensions. Another
type of method is the Lagrangian method where the pre-image or post-image of a cell is computed by moving the
vertices of a cell with the flow velocity in time. This method avoids all the drawbacks of this mass conserving
donating region method, but the edges of a cell do not remain straight lines after advection in nonlinear flows, thus
causing inherent mass errors that must be corrected with (usually arbitrary) mass correction steps.

Figure 5: The discrete (a) and true (b) Lagrangian pre-images of the cell Ωi. [7]
The difference in volume between the original cell and the discrete pre-image causes mass errors.

2.3.3 Convergence analysis on VoF interface models

While the method described in [1] is numerically shown to be second order accurate and induces no loss of matter or
volume, more analysis can be done on Volume-of-Fluid methods. The interface reconstruction method and interface
advection method separately have been proven to be second order accurate, but this does not necessarily mean that
the combination is as well. Zhang and Fogelson [6] provides further investigation in the convergence of VoF methods,
and contains some analysis towards higher order methods. In [6], a framework is introduced for interface tracking
methods (MARS), and VoF is a special class of the MARS method. Here,MC is the region occupied by the tracked
material (fluid) inside a cell C, and as such the volume fraction of material M in cell C is

〈ψ(t)〉C =
||MC ||
||C||

, (2.28)

where the volume of a region is defined to be

||S|| =
∣∣∣∣ˆ
S

dx

∣∣∣∣ .
In most VoF methods, for example in [1], the error is measured by the geometric error

Eg(tn) =
∑
C⊂Ω

||C|| |〈ψ(tn)〉C − 〈ψ〉nC |, (2.29)

where 〈ψ(tn)〉C and 〈ψ〉nC are respectively the exact and computed volume fraction in cell C. For analysis, instead, a
different measure is used

E1(tn) = ||M(tn)⊕Mn|| =
∑
C⊂Ω

||MC(tn)⊕Mn
C ||, (2.30)

8

where M(tn) denotes the exact region occupied by material M at time tn, Mn its approximation and ⊕ the sym-
metric difference between two sets. The measure (2.30) is more rigorous than E1. The measure Eg is simply the
difference between calculated and exact volume fractions in each cell, while E1 represents the volume of wrongly
classified regions. As such, an error E1 = 0 does not necessarily imply perfect reconstruction of the interface, while
for Eg this must hold. This means that the measure Eg tends to hide reconstruction errors. Moreover, the error E1

does not depend on the partition of Ω, while Eg does. While, in practice, the calculation of E1 is ill-conditioned,
this measure is used for theoretical analysis. Since, generally, Eg → E1 as cell volume and time step approach zero,
Eg is used for numerical experiments.

The theoretical analysis then shows that a VoF method is second order accurate in the 1-norm (2.30) if

(a) its advection algorithm is second-order accurate,

(b) its reconstruction scheme is second-order accurate,

(c) its reconstruction scheme is idempotent.

Since piecewise-linear interface reconstruction algorithms are always idempotent as the volume fraction is preserved,
this shows that the method of [1] is second-order accurate in the more rigorous measure (2.30).

Analysis was also done on developing a fourth-order VoF method. This would involve using a fourth-order
advection algorithm. A cubic-spline representation of the initial condition reduces the representation error to fourth
order. The difficulty with this VoF is finding an algorithm that reconstructs the interface from volume fraction with
fourth-order accuracy at every time step. This if a difficult task if the Lagrangian length scale is proportional to the
Eulerian grid size, and constructing cubic splines from volume fraction is sensitive to numerical noise. It is possible
to use adaptive mesh refinement to construct the interface on a grid with mesh-width hF = O(h2), where h is the
mesh-width of the coarsest grid. However, this method may be extremely inefficient compared to alternatives.

2.4 Dual interface methods

So far, the level set and volume of fluid interface methods have been described. The level set method has a straight-
forward advection step but does not innately conserve mass, while the volume of fluid method can be made mass
conserving, but requires expensive interface reconstruction steps and needs donating regions for the advection step.
Dual interface methods aim to combine these two methods to solve as many drawbacks as possible and become more
efficient than the two types of methods separately. The dual interface method that will be used as baseline for the
rest of this research is the mass conserving level set (MCLS) method [9, 10], but the coupled level set-volume of
fluid (CLSVOF) method [11] and its moment of fluid equivalent CLSMOF [12] are also examples of dual interface
methods. These dual interface methods are very similar, with only slight differences in the interface reconstruction
and level set correction steps.

In the MCLS method, first both the level set function φ(n− 1
2) and the VoF function ψ(n− 1

2) are advected according
to the local flow velocity u:

∂φ

∂t
+ u · ∇φ = 0,

∂ψ

∂t
+ u · ∇ψ = 0. (2.31)

For both these processes, the second order split method (2.26) is used in cylindrical coordinates. Note that (2.26)
is volume-conservative for VoF as long as the CFL number for the flow field remains less than 0.5. This advection
process yields both the VoF function at the next time step ψ(n+ 1

2) and a temporary level set function φ̃. Knowing
that the step φ(n− 1

2) → φ̃ did not conserve mass, the obtained level set function φ̃ is altered such that locally, mass
is conserved up to a certain tolerance.

To couple the level set and Volume of Fluid functions, the first derivative of φ̃ is approximated using central
differences. Using these derivatives, the level set values at the cell vertices can be approximated. Now, it is easily
determined if an interface exists in this cell by comparing the sign of the minimum and maximum level set values.
Additionally, there will be cell edges along which the sign of the level set function changes. The zero points along
these edges are obtained through linear interpolation, and a linear interface is constructed using these points. Now,
an interface is given, so the volume occupied by the fluid is easily determined by calculating the area of a polygon.
This defines a cheap function f such that the VoF function ψ = f(φ,∇φ). Since f is cheap, its inverse g such that

g(f(φ,∇φ),∇φ) = φ (2.32)

9

can be approximated numerically (e.g. by using a root finder) when correcting the local level set function.

Now that the functions f and g are known, the level set function φ(n+ 1
2) can be determined. First, construct

from the temporary level set function φ̃ a VoF function ψ̃ = f(φ̃,∇φ̃). Then, in every computational cell, compute
the error

∆ψ = |ψ̃ − ψ(n+ 1
2)|. (2.33)

If the error is too large, i.e. ∆ψ ≥ ε in some cell, update the level set using

φ̃ = g(ψ(n+ 1
2),∇φ̃) (2.34)

where the derivative of the old φ̃ is used. Now ∇φ̃ can be recalculated and the process is repeated. This continues
until ∆ψ < ε holds in every computational cell. Then, φ(n+ 1

2) = φ̃. For the inital advection step for the Volume of
Fluid field ψ(n− 1

2) → ψ(n+ 1
2), note that the level set function φ(n− 1

2) is also necessary to provide information about
the interface. Due to the adjustments that happen after advection, ψ(n− 1

2) = f(φ(n− 1
2),∇φ(n− 1

2)), so the level set
function contains the correct information for the Volume of Fluid function to use.

Figure 6: Schematic overview of the MCLS algorithm. [10]

During the advection step, the level set function quickly loses its signed distance property ||∇φ|| = 1. Having a
level set function double as a signed distance is nice when, for example, approximating the gradient or determining
regularized fluid viscosity. Thus, every few iterations the level set function is re-initialised to a distance function.
This is done by solving the equation

∂φ

∂τ
= sign(φn)(1− ||∇φ||2), φ(0) = φn (2.35)

where τ is a pseudo time. The equation is integrated over this pseudo time until a steady-state solution has been
obtained. Additional measures are applied to reduce movement of the interface, and an amount of time steps is
chosen such that the level set function is reinitialised in a neighbourhood of about 5 cells around the interface to
reduce computational effort, as outside this region the level set field is not used.

This algorithm has some differences with the CLSVOF method as outlined in [11]. In the CLSVOF method,
the interface reconstruction for VoF advection creates a level set function for a linear interface, where coefficients
are determined to minimise the error in the level set function in a 3×3 grid around the interface cell. This line is
then shifted to agree with the local value of the VoF field. Additionally, the coupling of level set and VoF is done
in such a way that preserves the signed distance property of the level set function. In an area of K cells around an
interface cell, the level set function in cell (i′, j′) is set to a value based on the sign of the level set value in cell centre

10

(i′, j′) and the value in the closest cell vertex or edge centroid of the interface cell. If these values have opposite sign,
this indicates an interface must be present between these two points, so the level set function is set to the distance
between these points. If they have equal sign instead, no interface separates these two points, so the shortest distance
from cell centre (i′, j′) to the reconstructed interface in the interface cell is used instead.

2.5 Concluding remarks

In this section, the baseline level set and volume of fluid interface methods have been described and analysed. The
benefits and drawbacks of each method have been highlighted to illustrate the motivation behind working towards a
new method. While dual interface methods nullify some of the drawbacks involved with both of these methods, mass
conservation only holds while donating regions are being used for the advection step of the volume of fluid field. The
methods described in this section do allow for better understanding of further steps in this research. For example, a
discretisation method is required for dealing with unstructured grids. Normal finite volume methods are difficult to
implement on non-regular grids, and finite element methods cannot be used to create equivalent methods. Instead,
the discontinuous Galerkin method will be used, which is described in more detail in section 3. Additionally, it is
likely that an VoF advection scheme must be used that does not inherently conserve mass to avoid using donating
regions. Instead, other methods must be sought to guarantee conservation. This situation seems very similar to the
optimisation mass correction step for the level set method as presented in [14, 15], especially when combined with
the discontinuous Galerkin discretisation. Thus, it may be worthwhile to explore these methods.

For the interface reconstruction step, different procedures are used in the described methods. The method in
[1] uses volume fractions inside a neighbourhood to approximate the interface normal, [7, 8] use the fluid centroids
to instead use only local data, and dual methods use the slope of the level set function either locally [9] or again
in a neighbourhood [11]. The method using neighbouring cells to approximate the interface normal direction are
likely unusable for the purposes of this research, as unstructured grids make implementation difficult. So then, the
problem becomes deciding between the MCLS implementation of interface reconstruction or using the moment of
fluid method instead. While the MCLS method is much cheaper, as it only requires two linear interpolations per
cell, the moment of fluid reconstruction method can be shown to produce optimal results in certain circumstances.
However, it is not clear if the added accuracy in interface reconstruction outweighs the extra computation time that
is required to compute the optimal interface, so more research should be done for this comparison.

The added time complexity of any different discretisations or correction steps should also be researched. The
comparison in runtime of the created method with existing interface methods is a step that lacks in other research
like [9, 8, 11]. This comparison, however, is extremely important since having an unconstrained time step is not
relevant when one iteration takes many times longer than for methods with time step restrictions. For the MCLS
method, it is then also not known how the added complexity of the level set correction step compares to the time
saved in the interface reconstruction step. Since methods like discontinuous Galerkin discretisation and optimisation
based mass correction steps are being considered for this research, which have a large amount of variables or need
an unknown amount of iterations, these choices should be justified using numerical results.

11

3 Discontinuous Galerkin

As mentioned in section 2, a method that can be applied to general unstructured grids is preferred. Since finite
volume methods are difficult to implement on such grids, another discretisation method must be found. For general
differential equation on this type of grids, a finite element discretisation might be used, but for conservation laws
(such as the advection equation), the symmetry in basis functions might cause stability problems [13]. As such, the
discontinuous Galerkin (DG) discretisation [13, 3] is considered instead. DG discretisation can be concisely described
as a combination of the finite element and finite volume methods. Instead of using global basis functions, the basis
differs on each element, and the solution is allowed to be multi-valued on element boundaries to grant each element
some independence from the rest. Adjacent elements are then only coupled through a ‘numerical flux’ which depends
on the multiple flux values on element boundaries, which can be used to recreate finite volume fluxes (e.g. using
‘upwind’ fluxes). In this section, first the Galerkin FEM is described before the DG method is explicitly stated to
highlight the similarities between the two.

3.1 Theory behind DG discretisation

For the advection equation
∂φ

∂t
+ u · ∇φ = 0 (3.1)

assume that the numerical solution φh is in some space Vh spanned by basis functions N1(x), ..., Nn(x), so

φh(x) =

n∑
k=1

φ(xk)Nk(x) (3.2)

where the basis functions are chosen such that ∇N j is integrable over Ω. The optimal solution φh ∈ Vh has been
found when the residual

Rh(x, t) =
∂φh
∂x

+ u · ∇φh (3.3)

is orthogonal to the space Vh. Thus, we want to find φh such that

ˆ
Ω

RhN idΩ = 0 ∀i = 1, ..., n (3.4)

This leads to the Galerkin FEM scheme

Mdφh
dt

+ Sφh = 0 (3.5)

where

Mij =

ˆ
Ω

N iN j dΩ, Sij =

ˆ
Ω

N i u · ∇N j dΩ (3.6)

The Galerkin FEM scheme is a valid discretisation for many differential equations, but might induce instabilities
when applied to the advection equation. Instead, elements from finite volume methods are incorporated into this
scheme, leading to the discontinuous Galerkin method [13]. Instead of using global basis functions, the space is
separated into K elements D1, ..., Dk such that

Ω ' Ωh =

K⋃
k=1

Dk (3.7)

Then, the numerical approximation is approximated at each element

φh(x) =

K⊕
k=1

φkh(x), φkh(x) =

np∑
i=1

φkh(xi)N
k
i (x), x ∈ Dk (3.8)

12

The solution inside each element is thus a linear combination of local basis functions, but the solution need not be
continuous across element boundaries. Again, the residual (3.3) is required to be orthogonal to the basis functions,
but now this orthogonality only needs to hold on the element Dk,

ˆ
Dk

RhNk
i dΩ = 0 ∀i = 1, ..., np (3.9)

Additionally, a numerical flux f∗ is introduced, so

ˆ
Dk

RhNk
i dΩ =

ˆ
∂Dk

n̂ ·
[
uφkh − f∗

]
Nk
i dΓ (3.10)

Writing this in a similar form to (3.5) results in

Mk dφkh
dt

+ Skφkh =

ˆ
∂Dk

n̂ ·
[
uφkh − f∗

]
Nk
i dΓ (3.11)

where

Mk
ij =

ˆ
Dk

Nk
i N

k
j dΩ, Skij =

ˆ
Dk

Nk
i u · ∇Nk

j dΩ (3.12)

The numerical flux f∗ is a combination of the (unequal) fluxes on either side of an element boundary. Adjacent
elements are now only coupled by their flux u · ∇φ, so DG allows the level set value inside an element to be altered
without changing nearby elements.

The evaluation of integrals (3.12) depends heavily on the shape of the elements in the grid. For triangular
elements, as described in [13], the element can be mapped to a ‘standard’ triangle. This requires only one set
of basis functions to be defined, and the mapping to the reference element is easily constructed. For square or
rectangular quadrilaterals, this method can be used as well. When moving to elements with more vertices or general
quadrilaterals, this becomes a lot more difficult as the transformation Jacobian is no longer constant. A method to
calculate these integrals and use DG on polygons is presented in [3], which will be described hereafter.

3.2 DG on general polygons

The value of φ is now approximated using a modal expansion

φkh ≈
np∑
m=1

φ̃km(t)Ñk
m(x), x ∈ Dk (3.13)

with modal basis functions Ñm, while the flux terms are approximated using a nodal basis associated with the
interpolation points {xm ∈ Dk}m=1,...,mp

by

fx(φkh,x) ≈
mp∑
m=1

fkx,mN
k
m(x) (3.14)

where the basis functions approximately have the interpolation property

Nk
m(xn) ≈ δm,n (3.15)

Using these bases, we can derive a system of ODE similar to (3.11) on Dk (dropping the superscript):

np∑
n=1

Mmn
dφ̃n
dt

+

mp∑
n=1

(Sx,mnfx,n + Sy,mnfy,n) =

ˆ
∂Dk

n̂ · [f − f∗] Ñm dΓ (3.16)

for all m = 1, ..., np. Here,

Mmn =

ˆ
Dk

Ñm(x)Ñn(x) dΩ, Sx,mn =

ˆ
Dk

∂Ñm
∂x

Nn dΩ, Sy,mn =

ˆ
Dk

∂Ñm
∂y

Nn dΩ (3.17)

13

and f = {fx,fy} = uφh, f∗ the regular and numerical flux respectively. The evaluation of these integrals is the core
issue when defining a DG scheme.

The element Dk is mapped unto a reference element K, which is obtained by the mapping

ξ(x) =
x− xc

∆X
(3.18)

with xc the centroid of Dk, and ∆X = max(xmax − xmin, ymax − ymin). Then, the monomial basis {πm}m=1,...,np
of

P p(K), the space of polynomials with degree at most p, is constructed by

πm(ξ) = ξiηj , i, j ≥ 0, i+ j ≤ p

m =
1

2
(i+ j + 1)(i+ j + 2)− i

(3.19)

(3.20)

Note that the number of basis functions np = (p + 1)(p + 2)/2. Using a modified Gram-Schmidt process, the

orthonormal basis {Ñm(ξ)}m=1,...,np
is constructed. For this process, note that on a square reference element

ˆ
[−1,1]2

ξiηj dξdη =

{
4

(i+1)(j+1) if i, j even

0 otherwise
(3.21)

The basis {Ñm(x)}m=1,...,np
is then defined by remapping the basis functions to the physical element Dk:

Ñm(x) = (Ñm(ξ) ◦ ξ(x)) (3.22)

Note that the basis functions Ñm(x) span the space P p(Dk) and are orthogonal in the L2 norm, so

ˆ
Dk

ÑmÑn dΩ = 0 if n 6= m

which implies that M is a diagonal matrix. The transformed set Ñm(ξ) are even orthonormal. Given a nodal set
{xm}m=1,...,mp

, the nodal basis functions Nm(x) can be constructed from the conditions

Nm(xn) = δm,n, φ(x) =

np∑
m=1

φ̃mÑm(x)
.
=

mp∑
m=1

φmNm(x) (3.23)

This results in the transformation

φ = Vφ̃, Ñ = VTN (3.24)

where φ = {φ1, ..., φmp
}T , φ̃ = {φ̃1, ..., φ̃np

}T , N = {N1, ..., Nmp
}T and Ñ = {Ñ1, ..., Ñnp

}T . V is a generalized
Vandermonde matrix given by

Vm,n = Ñn(xm), m = 1, ...,mp, n = 1, ..., np (3.25)

The only remaining task is to find a nodal set {xm}m=1,...,mp
. For general polygons, this process is not explic-

itly described in [3], but for a square reference element, the nodal points are given by a Legendre-Gauss-Lobatto
disribution, i.e.

ξ(p+1)j+i+1 = (xi, xi) 0 ≤ i, j ≤ p (3.26)

where the set {xi}i=0,...,p are the zeros of the function (1 − x2)
dPp(x)

dx . The nodal points can then be remapped to
the physical element. Note that in this instance, mp = (p+ 1)2 ≥ np. Note that since V is a np ×mp matrix, when
mp > np the inverse is not defined. Thus, a pseudoinverse

V−1 =
(
VTV

)−1
VT (3.27)

is defined to be used in the inverse transformations φ→ φ̃ and Ñ →N .

14

Figure 7: Example of a nodal point distribution on a quadrilateral element. [3]

If the matrix

Dx,ij =
∂Ñj
∂x

∣∣∣∣∣
xi

(3.28)

is defined, then all tools necessary for calculation of the mass and stiffness matrices are present.
Firstly, for the mass matrix, note that

Mij =

ˆ
Dk

φ̃φ̃ dΩ = (∆X)2

ˆ
K
φ̃φ̃ dξ = (∆X)2δi,j (3.29)

where (∆X)2 is the Jacobian of transformation (3.18). Calculation of the stiffness matrix is done with respect to the

nodal basis instead. Since Ñ = VTN , it holds that ∂Ñ
∂x = VT ∂N

∂x . Thus,

Sx = VTSx, with Sx,ij =

ˆ
Dk

∂Ni
∂x

Nj dΩ (3.30)

The derivative can be expanded into the nodal approximation similar to (3.14), i.e.

∂Ni
∂x

(x) =

mp∑
n=1

Dx,niNn(x), with Dx,ij =
∂Nj
∂x

∣∣∣∣
xi

(3.31)

Using the derivative matrix Dx, manipulating the result gives

Sx = DT
xM (3.32)

where M is a mass matrix with respect to the nodal basis functions, defined as

M =

ˆ
Dk

NNT dΩ = (∆X)2

ˆ
K
NNT dξ = (∆X)2

ˆ
K

(V−1)T ÑÑTV−1 dξ = (∆X)2(V−1)TV−1 (3.33)

due to the orthonormal property of the modal basis functions on the reference element K. Now, only the derivative

matrix must be evaluated. Since ∂Ñ
∂x = VT ∂N

∂x , this matrix can be determined by

DxV = Dx (3.34)

where the matrix Dx has entries

Dx,ij =
∂Ñj
∂x

∣∣∣∣∣
xi

(3.35)

15

which can be computed from the derivatives of the monomials (3.19). Computation of Sy is analogous to Sx.
Finally, for computation of the edge integral, the element boundary is divided into multiple straight edge segments

∂Dk =

ne⋃
j=1

∂Dk
j (3.36)

with ne the total number of edge elements needed. Then, the edge integral is calculated using

ˆ
∂Dk

j

n̂ · (f − f∗)Ñi dΓ ≈
|(∂Dk

j)|
2

p+1∑
m=1

[ˆ 1

−1

ÑiN̄m dς

]
((f − f∗) · n̂)(x(ςm)) (3.37)

Here, the flux is interpolated using one-dimensional Lagrange basis functions N̄m of order p defined on the set of
interpolation nodes {ςm} with the Gauss-Lobatto distribution. The value of x(ςm) is the result of the linear mapping
[−1, 1]→ ∂Dk

j and can be determined easily from the edge points of ∂Dk
j .

Note that the described method is very expensive in terms of computation time or memory usage. Since, in
general, every control volume is unique, each cell will have different basis functions and nodal points. This requires
the Vandermonde matrix V of each cell to be stored, or to be calculated at every time step. Alternatively, for
quadrilateral cells it is possible to calculate the relevant matrices on a square reference element Iq = [−1, 1]2 and
map the results to the physical element Dk. The basis functions are then defined as Nm(x) = Nm(ξ(x)), where the
bi-linear mapping Iq → Dk is given by

x(ξ) =

4∑
i=1

xki Lq,i(ξ) (3.38)

where xki denote the ith vertex of Dk, labelled in a counter-clockwise manner, and

Lq,1 =
(1− ξ)(1− η)

4
Lq,2 =

(1 + ξ)(1− η)

4

Lq,3 =
(1 + ξ)(1 + η)

4
Lq,4 =

(1− ξ)(1 + η)

4

(3.39)

Note that for this transformation, it is wanted that Lq,i(ξ(xki)) = δi,j . However, only for quadrilaterals with two
parallel edges is the mapping (3.38) constant. For general quadrilaterals the mass and stiffness matrices thus can no
longer be obtained by scaling the element matrices of the reference element. However, by approximating the inverse
transformation ξ(x), a less accurate but more memory-friendly approach is constructed.

3.3 Concluding remarks

This section describes the discontinuous Galerkin method, which aims to be a combination of the finite element
and finite volume discretisation methods. This is achieved by creating a ‘numerical flux’, whose main justification
is its purpose of connecting adjacent elements, which seems to be necessary to avoid instabilities when handling
conservation laws. The method allows advection of the level set field on a non-structured grid, which works towards
the goals set for this research. This method still has some properties that should be taken into careful consideration
when using, however. The method is purely local, but it can only achieve this by allowing multi-valued solutions at
element boundaries. This means that the method has a large number of unknowns, though only the interface cells
need a high amount of nodal points. The effect of this on computation time and memory usage should be tested.

Additionally, the grid that is used with this method must be chosen carefully. While a method is described to
allow the use of DG on any grid, a method using ‘reference’ elements is only described for triangular and quadrilateral
elements, with the latter requiring an approximate inverse transformation to avoid taking expensive steps. Since
only a small amount of elements can be considered separately, it is questionable whether a grid consisting of many
pentagonal or larger polygonal cells is worth using. The approximate inverse transformation should induce more
errors for larger polygons, so at some point is it no longer feasible to use a regular polygon as reference element.
Whether this cut-off is at pentagonal cells or not should be researched.

16

4 Optimisation-based mass conservation

In subsection 2.5, it is noted that the volume of fluid advection method will most likely not be mass conserving
if donating regions are to be avoided. As such, a different method for mass conservation must be found. The
optimisation-based approach described in [14, 15] might be a solution to this problem. While the method described
is applied to level set fields, with some alteration a similar method should be able to work for volume of fluid fields
as well. Because of this, the scalar control approach and the vector control approach are described.

4.1 Scalar control approach

Suppose that the level set function φ satisfies the equation

∂H(φ)

∂t
+∇ · (uH(φ̃)−∇v) = 0 (4.1)

where v is a scalar-valued control variable, φ̃ indicates the advected level set field using a nonconservative method,
and

H(φ) =

{
1 φ ≥ 0

0 φ < 0
(4.2)

a step function. Assuming that the interface does not cross the boundary ∂Ω, so H(φ̃) = 0, the integral conservation
law holds under the Neumann boundary condition

n̂ · ∇v = 0 on ∂Ω (4.3)

The goal of this optimisation-based correction is to find a solution (φ, v) to the transport equation (4.1) such that φ

and φ̃ are as close together as possible. The cost functional used in [14] is

J(φ, v, φ̃) =
1

2
||φ− φ̃||2 +

β

2
||v||2 (4.4)

with β > 0 a regularisation constant and || · || the L2 norm on Ω. In general, this optimisation problem aims
to minimise the cost functional with respect to variables φ and v such that these variables conform to the PDE
constraint (4.1) with relevant natural boundary condition (4.3).

To apply this optimisation problem, first a discretisation must be applied. First, equations (3.1) and (4.1) are
discretised in time. For example, using a two-level θ scheme,

φ̃n+1 + θ∆tu · ∇φ̃n+1 = φn − (1− θ)∆tu · ∇φn (4.5)

and

H(φn+1)−∇2vn+1 = H(φn)− θ∆t∇ · (H(φ̃n+1)u)− (1− θ)∆t∇ · (H(φn)u) (4.6)

For this, note that (4.1) can be written as

∂H(φ)

∂t
+∇ · (uH(φ̃)) = ∇2v (4.7)

and that the time step ∆t can be absorbed into the control variable v, thus leading to the discretisation (4.6).
Discretisation in space is performed using a finite element method, which means that φ and u are discretised using
basis functions

φh(x) =

K∑
k=1

φkN
k(x), v(x) =

K∑
k=1

vkN
k(x) (4.8)

Substituting these approximations into (4.6) and integrating over the domain yields a nonlinear system of equations

g(φn+1) + Svn+1 = g(φn) + θ∆tf(φ̃n+1) + (1− θ)∆tf(φn) (4.9)

17

where

sij =

ˆ
Ω

∇N i · ∇N j dΩ

fi(φ) =

ˆ
Ω

∇N i · uH(φ) dΩ

gi(φ) =

ˆ
Ω

N iH(φ) dΩ

(4.10)

It can be verified that a solution to (4.9) inherently satisfies a discrete mass conservation law for any choice for the
control variable v. The approximations can also be substituted into the cost functional (4.4), giving

J(φh, vh, φ̃h) =
1

2
φTMφ− φTM φ̃+

1

2
φ̃TM φ̃+

β

2
vTMv (4.11)

where φ,v, φ̃ denote the global vectors of nodal values and M is the mass matrix with entries

Mij =

ˆ
Ω

N iN j dΩ (4.12)

In numerical implementations, the Heaviside step function H is replaced with a smoothed approximation

Hε(φ) =
1

2

(
φ√

φ2 + ε2
+ 1

)
(4.13)

with regularisation parameter ε > 0 smaller than the mesh size h to avoid mass conservation errors.
For the optimisation problem, the variables φh, vh must be found that minimise (4.11) subject to equation (4.9).

Thus, this optimisation problem has an associated Lagrangian

L(φ, v, p) =
1

2
φTMφ− φTM φ̃+

1

2
φ̃TM φ̃+

β

2
vTMv + pT q(φ, v, φ̃) (4.14)

where q(φ, v, φ̃) is the residual of (4.9) and p is a vector containing Lagrange multipliers. The derivatives of L with
respect to the three variables φ, v, p give the first-order optimality conditions

Mφn+1 +K(φn+1)pn+1 = M φ̃n+1

βMvn+1 + Spn+1 = 0

q(φn+1, vn+1, φ̃n+1) = 0

(4.15)

The nonlinear operator K(φ) =
{
∂gi(φ)
∂φj

}
requires the derivative of the smoothed Heaviside function with respect to

the discretisation constants φj , so

Kij(φ) =

ˆ
Ω

N iH ′ε(φh)N j dΩ (4.16)

where the derivative is given by

H ′ε(φh) =
1

2

ε2

(φ2 + ε2)1.5
(4.17)

Since the system of equations (4.15) is nonlinear, the solution must be found iteratively. From the system, the
residual

r(m−1) =

r
(m−1)
φ

r
(m−1)
v

r
(m−1)
p

 =

M(φ̃n+1 − φ(m−1))−K(φ(m−1))p(m−1)

−βMv(m−1) − Sp(m−1)

q(φ(m−1), v(m−1), φ̃n+1)

 (4.18)

where the superscript indicates the iterative approximation to the solution of the system. Since a solution for the
problem r = 0 must be found, the approximate solution can be updated using Newton’s methodφ(m)

v(m)

p(m)

 =

φ(m−1)

v(m−1)

p(m−1)

+

 M 0 K(φ(m−1))
0 βM S

1
τM S 0

−1
r

(m−1)
φ

r
(m−1)
v

r
(m−1)
p

 (4.19)

18

The relaxation parameter τ > 0 can be interpreted as a pseudo-time step. Instead of using the nonlinear state
equation q(φn+1, vn+1, φ̃n+1) = 0, the equation

M
φ(m) − φ(m−1)

τ
+ S(v(m) − v(m−1)) = q(φ(m−1), v(m−1), φ̃n+1) (4.20)

is used. Each iteration (4.19) involves solving a linear system of the form M 0 K(φ(m−1))
0 βM S

1
τM S 0

δφδv
δp

 =

rφrv
rp

 (4.21)

which can be solved using a brute force direct method.

4.2 Vector control approach

As an alternative to the scalar control approach, the vector control approach [15] uses the conservation law

∂H(φ)

∂t
+∇ · (uH(φ̃)− v) = 0 (4.22)

where the vector control variable v = (v1, v2)T is used instead of ∇v. Mass conservation is imposed using the
boundary condition

n̂ · v = 0 on ∂Ω (4.23)

The proposed cost functional is given by

J(φ,v, φ̃) =
1

2
||φ− φ̃||2 +

β1

2
||v1||2 +

β2

2
||v2||2 (4.24)

where again, || · || denotes the L2 norm on Ω.
The same discretisation method used in the scalar control approach now yields a state equation similar to (4.9)

g(φn+1) + C1v
n+1
1 + C2v

n+1
2 = g(φn) + θ∆tf(φ̃n+1) + (1− θ)∆tf(φn) (4.25)

where the matrices C1 and C2 represent the two components of the discrete divergence operator and have entries

C1,ij =

ˆ
Ω

∂N i

∂x
N j dΩ, C2,ij =

ˆ
Ω

∂N i

∂y
N j dΩ

and f, g are defined as (4.10).

At each time step, the approximation φ̃n+1 is determined by

Mφ̃n+1 + θ∆tC(u)φ̃n+1 = Mφn − (1− θ)∆tC(u)φn (4.26)

where the mass matrix M and the discrete transport C(u) have entries

Mij =

ˆ
Ω

N iN j dΩ, Cij(u) =

ˆ
Ω

N iu · ∇N j dΩ (4.27)

Then, the solution (φn+1,vn+1) is found that minimised (4.24) subject to (4.25).
The residual of the discrete state equation (4.25) is given by

q(φ, v1, v2, φ̃) = g(φ)− g(φn) + C1v1 + C2v2 − [θ∆tf(φ̃) + (1− θ)∆tf(φn)] (4.28)

and the Lagrangian associated with the optimisation problem is

L(φ, v1, v2, p) =
1

2
φTMφ− φTM φ̃+

1

2
φ̃TM φ̃+

β

2
(vT1 Mv1 + v2Mv2) + pT q(φ, v1, v2, φ̃) (4.29)

19

The minimisation problem can then be solved in an iterative manner using

M 0 0 K(φ(m−1))
0 βM 0 CT1
0 0 βM CT2

K(φ(m−1)) C1 C2 0

δφ(m)

δv
(m)
1

δv
(m)
2

δp(m)

 =

r

(m−1)
φ

r
(m−1)
v1

r
(m−1)
v2

r
(m−1)
p

 (4.30)

where
r

(m−1)
φ

r
(m−1)
v1

r
(m−1)
v2

r
(m−1)
p

 =

M(φ̃(n+1) − φ(m−1))−K(φ(m−1))p(m−1)

−βMv(m−1)
1 − CT1 p(m−1)

−βMv(m−1)
2 − CT2 p(m−1)

−q(φ(m−1), v
(m−1)
1 , v

(m−1)
2 , φ̃(n+1))

 (4.31)

Again, K(φ) is a weighted mass matrix, but instead of using the smoothed Heaviside function, it can be shown that
the entries reduce to an integral over the interface

Kij =

ˆ
Γ(φh)

N iN j dΩ (4.32)

Additionally, the residual q can be written as a matrix-vector product by using

g(φ) ≈ K(φ)φ (4.33)

While the system size in the vector control approach is significantly larger than in the scalar control approach, the
system matrix may be better suited for the design of efficient solution techniques.

4.3 Concluding remarks

In the scalar and vector control approaches for optimisation-based mass conservation, the mass conservation equa-
tion is modified to include an extra control variable. This variable will correct the convective fluxes as to enforce
mass conservation while minimising deviations from a non-conservative solution. To correct any change in mass,
a functional is minimised under a mass-conserving constraint. Note that in the ideal case where the approximate
solution is already mass-conserving (and a signed distance function), the functional should be minimised by this
solution with a zero control variable. The resulting optimisation problem is solved by studying the Lagrangian, and
the resulting system of equations is solved by fixed-point iteration.

The difference in time complexity between the scalar and vector control approaches should be investigated closely.
Obviously, the system in the vector control approach is several times larger that the scalar approach system. Ad-
ditionally, in [15] it shows that for the problems considered, the vector control approach consistently needs more
fixed-point iterations than the scalar control approach. However, the time required to perform one iteration is not
mentioned in the paper, so the two method might be comparable in terms of computational work. This likely depends
heavily on the solution technique used, so it might be worthwhile to investigate both methods.

It is important to note that while this optimisation-based approach results in a mass conserving level set method,
when applying this same method to the volume of fluid field, or equivalently to the level set method while using DG
discretisation, the resulting solution is not unique. This occurs since for the cost functional it no longer makes a
difference which cell gets altered, as all interaction between the cells remain the same. Thus, when using this method
there should be another term added to the cost functional to ensure uniqueness of the solution.

20

5 Research Questions

The idea of this research is to avoid using the donating regions, and instead use the momentary fluxes through cell
interfaces

dΨ

dt
+ F i1

∣∣+ F i2
∣∣ = 0. (5.1)

Note that the change in volume fraction can be linked to the shift in the level set field

dΨ

dt
=

lif
(∆x)2

dΦ

dt
=

lif
(∆x)2

uF , (5.2)

with lif the length of the interface and uF its velocity. Note that using the momentary fluxes instead of the
time-averaged version (donating regions) allows for advection on unstructured grids as, unlike donating regions, the
momentary fluxes do not use overlapping areas.

u u

F i1

F i2

uF

Figure 8: Illustration of the momentary fluxes. The regions defining the momentary fluxes can never overlap.

This idea forms the basis for further research. In order to provide intermediate goals for this research, some
questions are posed:

(R1) Is it worthwhile to use moment of fluid interface reconstruction alongside the level set implementation?
As mentioned in section 2.5, it is not clear how the computation time of the level set interface reconstruction
compares to that of the MoF method. Analysis of the run-times of these methods is necessary to justify
either method. Since this time depends heavily on the implementation, this would be done using the average
amount of iterations that are required, either for the MoF minimisation step or for the level set correction
step.

(R2) Which functional or optimality condition should be used to ensure a unique solution in the optimisation
problem?
In a discontinuous setting, the solution for the optimisation problem is generally not unique when using
the functional and optimality conditions as given in section 4. Thus, additional conditions are required to
ensure optimality. One possible idea is to add terms involving the total discontinuity in the interface or the
curvature of the interface to the cost functional.

(R3) Is it feasible to implement an improved method on polygonals with 5 or more vertices?
To limit the memory use of a numerical method, the DG method cannot be performed on a large amount
of unique polygons, so reference elements must be used. For quadrilaterals or polygons with more vertices,
approximate transformations to the physical elements are required. It is then questionable whether it is
feasible using, for example, pentagons instead of a purely quadrilateral grid.

(R4) Is it possible for the improved method to have no stability condition on the time step size?
A method without a Courant restriction on the time step would be the ideal end-point of this research.
However, even a restriction that is several times larger than the CFL condition on the donating regions
method would be a significant improvement.

21

5.1 Time schedule

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
2
4

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

W
ee

k
30

W
ee

k
31

W
ee

k
32

W
ee

k
33

W
ee

k
34

W
ee

k
35

W
ee

k
36

W
ee

k
37

W
ee

k
38

W
ee

k
39

W
ee

k
40

W
ee

k
41

W
ee

k
42

W
ee

k
4
3

W
ee

k
4
4

W
ee

k
4
5

W
ee

k
4
6

W
ee

k
4
7

Explicit MCLS and MoF

MCLS on DG grid

Optimisation method

Polygonal cells

Numerical efficiency

Report finishing

Research question (R1) can be answered during implementation of the baseline MCLS, (R2) will be investigated
while working on the optimisation method. The research time for polygonal cells is also partially used as buffer time
if previous parts get held up.

22

6 Conclusion

In this report, literature has been studied with the goal of working towards a new interface advection method to aid
the solving of two-phase flows. First, the existing level set and volume of fluid interface methods have been discussed,
and the steps leading to the creation of the mass conserving level set method have been highlighted. While the dual
interface method solves some of the drawbacks of the individual level set and volume of fluid methods, the use of
donating regions for VoF advection is still required for mass conservation. This means that a structured (rectangular)
grid is necessary to allow simple dimensionally split methods, and a maximum allowed time step is imposed to avoid
overfilling or over-emptying of cells. Avoiding the use of donating regions will require a discretisation method for the
advection equation on polygonal cells, and likely requires a method for mass correction steps on the volume fractions.
While the MCLS method is taken as a baseline for this research, it may be worthwhile to consider Moment of fluid
interface reconstruction instead, where the fluid centroids are used to approximate the interface orientation.

For the advection equation, the discontinuous Galerkin method will be required on polygonal grids. This is due
to the difficulty of finite volume discretisations on unstructured grids, and the possibility of instability when using
finite element methods. The discontinuous Galerkin method aims to combine these two discretisation methods, which
allows solving the advection equation on polygonal elements. When considering general polygons, however, the DG
method becomes extremely expensive in terms of memory storage, so calculations must be done on a ‘standard’
polygon. The results are then mapped back to the original control volume. This mapping is generally difficult and
expensive to find, so it must be approximated as well. As a result, only on triangular or rectangular grids can the
DG method be applied exactly. For other grids, approximations must be used, so it may not be worthwhile to use
DG on grids with a large number of unique polygons. An upside of DG is that adjacent elements are only coupled
through a ‘numerical flux’, which means that any mass correction steps can be applied on a purely local basis.

Since the volume of fluid advection method likely cannot be inherently mass conserving, mass correction steps
will be required. It appears plausible that the required steps will be similar to the described optimisation-based mass
correction steps for the level set field. This can be done using either the scalar or vector control approaches, and
difference in time complexity between these methods should be investigated. It should be noted that in the volume
of fluid methods, the different volume fractions are independent, so solutions to the optimisation problem will not
be unique. Thus, additional conditions should be added to ensure uniqueness.

The idea for further research is now to use the momentary fluxes instead of the donating regions for advection of
the volume fractions, and apply the described methods to keep the algorithm mass conserving.

23

References

[1] Gabriel D Weymouth and Dick K-P Yue. Conservative Volume-of-Fluid method for free-surface simulations on
Cartesian-grids. Journal of Computational Physics, 229(8):2853–2865, 2010.

[2] F Raees, DR Heul, and C Vuik. A mass-conserving level-set method for simulation of multiphase flow in
geometrically complicated domains. International Journal for Numerical Methods in Fluids, 81(7):399–425,
2016.

[3] D Wirasaet, EJ Kubatko, CE Michoski, S Tanaka, JJ Westerink, and C Dawson. Discontinuous Galerkin
methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear
shallow water flow. Comput. Methods Appl. Mech. Engrg, 270:113–149, 2014.

[4] Jeffrey W Banks, T Aslam, and William J Rider. On sub-linear convergence for linearly degenerate waves in
capturing schemes. Journal of Computational Physics, 227(14):6985–7002, 2008.

[5] Cyril W Hirt and Billy D Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal
of computational physics, 39(1):201–225, 1981.

[6] Qinghai Zhang and Aaron Fogelson. MARS: An analytic framework of interface tracking via mapping and
adjusting regular semialgebraic sets. SIAM Journal on Numerical Analysis, 54(2):530–560, 2016.

[7] Vadim Dyadechko and Mikhail Shashkov. Moment-of-fluid interface reconstruction. Los Alamos Report LA-
UR-05-7571, 2005.

[8] Matthew Jemison, Mark Sussman, and Marco Arienti. Compressible, multiphase semi-implicit method with
moment of fluid interface representation. Journal of Computational Physics, 279:182–217, 2014.

[9] Sander Pieter van der Pijl. Computation of bubbly flows with a mass-conserving level-set method. Citeseer, 2005.

[10] GT Oud. A dual interface method in cylindrical coordinates for two-phase pipe flows. 2017.

[11] Mark Sussman and Elbridge Gerry Puckett. A coupled level set and volume-of-fluid method for computing 3D
and axisymmetric incompressible two-phase flows. Journal of computational physics, 162(2):301–337, 2000.

[12] Matthew Jemison, Eva Loch, Mark Sussman, Mikhail Shashkov, Marco Arienti, Mitsuhiro Ohta, and Yaohong
Wang. A coupled level set-moment of fluid method for incompressible two-phase flows. Journal of Scientific
Computing, 54(2-3):454–491, 2013.

[13] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms, analysis, and appli-
cations. Springer Science & Business Media, 2007.

[14] Dmitri Kuzmin. An optimization-based approach to enforcing mass conservation in level set methods. Journal
of Computational and Applied Mathematics, 258:78–86, 2014.

[15] Christopher Basting and Dmitri Kuzmin. Optimal control for mass conservative level set methods. Journal of
Computational and Applied Mathematics, 270:343–352, 2014.

24

https://www.sciencedirect.com/science/article/pii/S0021999109006974
https://www.sciencedirect.com/science/article/pii/S0021999109006974
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Rae16HV.pdf
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Rae16HV.pdf
https://www.sciencedirect.com/science/article/pii/S0045782513003010
https://www.sciencedirect.com/science/article/pii/S0045782513003010
https://www.sciencedirect.com/science/article/pii/S0045782513003010
https://www.sciencedirect.com/science/article/pii/S0021999108002088
https://www.sciencedirect.com/science/article/pii/S0021999108002088
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.413.7358&rep=rep1&type=pdf
https://epubs.siam.org/doi/pdf/10.1137/140966812
https://epubs.siam.org/doi/pdf/10.1137/140966812
https://pdfs.semanticscholar.org/b4d9/909719ea94c8369918285b046b825dc57726.pdf
https://www.sciencedirect.com/science/article/pii/S0021999114006317
https://www.sciencedirect.com/science/article/pii/S0021999114006317
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.867.3290&rep=rep1&type=pdf
https://repository.tudelft.nl/islandora/object/uuid:33718e17-681f-4fb6-92ca-362f340fab45?collection=research
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.5063&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.5063&rep=rep1&type=pdf
https://link.springer.com/content/pdf/10.1007%2Fs10915-012-9614-7.pdf
https://www.researchgate.net/profile/Jan_Hesthaven/publication/51992397_Nodal_Discontinuous_Galerkin_Methods_Algorithms_Analysis_and_Applications/links/09e4150be6f566a7be000000/Nodal-Discontinuous-Galerkin-Methods-Algorithms-Analysis-and-Applications.pdf
https://www.researchgate.net/profile/Jan_Hesthaven/publication/51992397_Nodal_Discontinuous_Galerkin_Methods_Algorithms_Analysis_and_Applications/links/09e4150be6f566a7be000000/Nodal-Discontinuous-Galerkin-Methods-Algorithms-Analysis-and-Applications.pdf
https://www.sciencedirect.com/science/article/pii/S0377042713004573
https://www.sciencedirect.com/science/article/pii/S0377042713007139

	Summary
	Motivation for an implicit interface time-integration method
	Incompressible immiscible two-phase flow model
	Interface models
	Level set method
	Volume of fluid method
	Interface Reconstruction
	Interface advection
	Convergence analysis on VoF interface models

	Dual interface methods
	Concluding remarks

	Discontinuous Galerkin
	Theory behind DG discretisation
	DG on general polygons
	Concluding remarks

	Optimisation-based mass conservation
	Scalar control approach
	Vector control approach
	Concluding remarks

	Research Questions
	Time schedule

	Conclusion
	References

