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Abstract

Groundwater, present beneath the earth’s surface in soil pore spaces, is the primary
source of fresh water that we use in day to day life. Hydrologists at Dutch research
institute Deltares are developing large groundwater models to support water man-
agers in their decision-making process. For example, these models simulate effects
such as water availability during periods of drought. These models use a Deltares
accelerated version of MODFLOW called iMODFLOW.

Together with the United State Geological Survey (USGS), Deltares has devel-
oped the Parallel Krylov Solver (PKS) package, which has recently been incorpo-
rated into iMODFLOW. It was observed that for the larger number of subdomains
the Preconditioned Conjugate Gradient (PCG) solver in PKS deteriorates the number
of iterations.

We have implemented the deflation preconditioner with constant and linear de-
flation vectors in the PCG solver. These vectors approximate the eigenvectors that
are slowing down convergence. The groundwater simulation time can be reduced
by a factor of 4 in iMODFLOW. This speed up is achieved due to a decrease in PCG
iterations. The iteration drop is highest using linear deflation vectors.
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1
Introduction

1.1. Thesis Objective
Water is a vital element in our lives. About 2.5% of total water present on earth
is fresh water. The fresh water is present as ice, liquid water, and water vapor.
About 70% of the freshwater is present in the form of ice, therefore, is not drink-
able. About 98% of the earth’s available fresh water is present beneath the earth’s
surface in soil pore spaces and rocks [16], called groundwater. To understand the
effects of projected increased demands on groundwater to supply water, ground-
water simulation is getting increasingly important.

Scientists at Dutch research institute Deltares are developing large ground-
water models for water boards 1, drinking water companies and municipalities to
simulate the effects of climate change, such as drought. The simulation code used
is MODFLOW written in FORTRAN, and this code is the worldwide standard for
groundwater computation. The first version of the MODFLOW has been developed
by the United States Geological Survey (USGS) in 1984, and the current core ver-
sion is MODFLOW 6. It computes the hydraulic head for the groundwater equation
representing Darcy flow on a cell-centered finite volume grid. Discretization results
into a large system of equations. The problem becomes nonlinear when incorpo-
rating the effect of a river or drains since a Cauchy boundary condition is imposed.
Therefore, in each outer iteration, a linear system is being solved. Typically, the
outer iteration is done by Picard iteration and the inner iteration by Preconditioned
Conjugate Gradient (PCG) solver. Deltares has developed an accelerated version of
MODFLOW called iMOD.

To support the decision makers in addressing hydrological problems, high-resolution
models are often needed. These models typically consist of a vast number of com-
putational cells and therefore have significant memory requirements and long run
1Regional government bodies charged with managing water barriers, water levels, and water quality.

1



1

2 1. Introduction

times. Simulating such large scale models on a serial computer is impractical. Also,
solving the system of equation that arises after discretization costs major time in the
whole simulation. Therefore, Deltares is developing a new module in iMOD, called
Parallel Krylov Solver (PKS) package together with the USGS, Utrecht University and
Delft University of Technology. PKS incorporates Message Passing Interface (MPI)
and OpenMP as parallel processing paradigms. PKS includes Conjugate Gradient
(CG) and Bi-Conjugate Gradient Stabilized (BiCGSTAB) solvers to solve symmetric
and non-symmetric Linear system of equations (LSE) respectively. Additive Schwarz
(AS) method is used as a preconditioner because it is suitable for parallel compu-
tations.

The physical domain is divided into various subdomains, and the computations
are carried on these subdomains in parallel. iMOD with PKS package is capable of
computing the hydraulic head for high resolution models such as, seven layered
Dutch national Nederlands Hydrologisch Instrumentarium (NHI) [13] groundwater
model. The computations are carried on a Dutch national super-computer Cartesius
[7] (figure 1.1).

Figure 1.1: Dutch National Supercomputer Cartesius

Due to an increase in the number of subdomains, the information about the
head from cells in other subdomains takes more iterations to reach the current
subdomain. Therefore, we notice an increase in the number of iterations with in-
creasing number of subdomains in the PCG solver [26]. We have implemented the
deflation preconditioner with constant and linear deflation vectors in the PKS solver.
These vectors approximate the eigenvectors that are slowing down convergence.
We denote PCG solver using constant deflation vectors by CDPCG; and using linear
and constant deflation vectors by LDPCG.

The primary goal of this master’s project research is to improve the performance
of the PKS solver by preventing the PCG iteration increase with increasing number



1.2. Thesis Outline

1

3

of subdomains and therefore reducing the computational time in PKS enabled iMOD.

1.2. Thesis Outline
The content of the chapters in this report is as follows:

Chapter 2 We give a short introduction of the Geohydrology. Further, we derive
the system of equations involving porous media flow. We also describe the
PCG solver in MODFLOW.

Chapter 3 We give the scientific background information about the iterative solvers
and preconditioners. In particular, we focus on the PCG method.

Chapter 4 We discuss Schwarz domain decomposition methods. In particular, we
concentrate on the Additive Schwarz method due to its inherent parallelism.

Chapter 5 We give mathematical theory of the Deflation method and present the
algorithm. We suggest two ways to choose the deflation vectors. We also
give implementation aspects by illustrating with examples for a toy problem.

Chapter 6 We present results for two test problems: Two dimensional (2D) Pois-
son problem and iMOD two-layer unit problem.

Chapter 7 We present results for two real case models: Dutch national NHI mod-
els with cell size 250 m, 100 m and 50 m; and California miamore model with
cell size 100 m and 50 m.

Chapter 8 We conclude from the master’s project research. We provide further
recommendations, open questions and propose directions of future research.





2
Problem Description

2.1. Introduction
In this chapter, we describe the problem, which we want to address and improve
in our research. We start by presenting the theory and mathematics to model
the Ground water flow (GWF) in section 2.2 and 2.3. In section 2.4 and 2.5, we
define how the system of equations is formed in the transient and steady-state
simulation. In the last sections, we give an overview of MODFLOW code which is a
worldwide standard for groundwater computation. The models used in groundwater
computation are three dimensional. However, we formulate the system of equations
in section 2.4 and 2.5 for two-dimensional models for the convenience of the reader.

2.2. Hydrology Background
Water is one of our most valuable natural resources. About 70 percent of the hu-
man body is water. The bodies of all plants and animals contain water. Therefore,
it is difficult to imagine life without water. Nature limits the supply of water avail-
able for our use. Although there is plenty of water on earth, it is not always in the
right place, at the right time and of the good quality. Chemical waste produced
from factories make the water polluted. To understand the complex water sys-
tems of the Earth and address water related problems, Hydrology has evolved as
a science. Hydrologists play a significant role in finding solutions to societal water
related problems by applying scientific knowledge and mathematical principles.

There are two main sources of water: surface water and groundwater. Surface
water is found in lakes, rivers, and reservoirs. Groundwater lies under the sur-
face of the land, where it travels through and fills openings in the rocks/sediments.
The sediments that store and transmit the groundwater are called aquifers. Typi-
cally, the groundwater moves very slowly (a few meters a year). As it moves, the
groundwater is naturally purified – pollutants and harmful bacteria are removed.
This phenomenon creates good quality water that is suitable for the preparation

5
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of drinking water. Groundwater is often cheaper, more convenient and less vul-
nerable to pollution than the surface water. Therefore, it is mainly used for public
water supplies. Groundwater is also often withdrawn for agricultural, municipal,
and industrial use by constructing and operating extraction wells. In the Nether-
lands, the groundwater level varies from 0.5 to 1.0 meter below the surface in the
western parts of the land; in the higher areas (eastern side) from 1.0 to 20.0 meter.

Figure 2.1: Distribution of Earth’s Water taken from [5]

In nature, the analysis of virtually every physical process involves a potential gra-
dient. For example, an electrical current flows through circuits from higher voltages
to lower. The similar concept can be defined for water flow: there is a potential gra-
dient that determines the direction of flow. Hydraulic head determines this potential
gradient. The hydraulic head is a measurement of the total mechanical energy per
weight of the groundwater flow system. It is a fundamental component of Darcy’s
law (defined in the section 2.3.1 ) which describes fluid flow through porous media.
It is usually measured as a liquid surface elevation, expressed in units of length
(in meters). The equation for hydraulic head (ℎ) has three components: elevation
head and pressure head and kinetic energy head defined below:

ℎ = 𝑧 + 𝑃
𝜌𝑔 +

𝑣
2𝑔 (2.1)

where:
𝑧 = elevation of the fluid above a reference elevation (L)
𝑃 = pressure (𝑀𝐿 𝑇 )
𝜌 = density of fluid (𝑀𝐿 )
𝑔 = acceleration of gravity (𝐿𝑇 )
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Since the groundwater flow is very slow, hence practically, the contribution of
kinetic energy is negligible in pressure head calculation. Therefore, the equation
2.1 reduces to:

ℎ = 𝑧 + 𝑃
𝜌𝑔 (2.2)

Figure 2.2: Illustration of different zones in hydrology beneath earth’s surface

In the figure 2.2, we illustrate the geometries of various zones present beneath
earth’s surface. Groundwater (the blue area) is the water present in soil pore spaces
surrounding the sediments in a saturated zone. The cross section showing the sed-
iment and water is an aquifer. The depth at which soil pore spaces and voids in
the sediment become completely saturated with water is called a water table.
The saturation zone (the blue area), is the area in an aquifer, below the water
table, in which relatively all pore spaces are saturated with water. The unsaturated
zone (the yellow area) is the portion of the subsurface above the groundwater table.
The soil and rock in this region contain air as well as water in its pores. Under the
unsaturated and saturated zone is a solid rock deposit called bedrock. Cross-section
of the figure 2.2, representing mainly the groundwater flow is given in figure 2.3.
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Figure 2.3: A cross section of figure 2.2 taken from USGS [5]

2.3. Mathematical Model
In this section, we define Darcy’s law which is the basic principle governing the flow
of the fluid. Then, we describe the continuity equation and the groundwater flow
equation.

2.3.1. Darcy’s Law
Darcy’s law defines the movement of water in the subsurface. It is an equation
that represents the ability of a fluid to flow through a porous medium such as rock.
It relies on the fact that the amount of flow between two points is directly related
to the difference in pressure between the points, the distance between the points,
and the inter-connectivity of flow pathways in the rock between the points. The
Darcy’s law was formulated by a French Engineer Henry Darcy based on the results
of experiments on the flow of water through beds of sand in 1855 − 56.

Let 𝑎 and 𝑏 be center of cell 𝐴 and 𝐵. Let ℎ and ℎ be hydraulic head at 𝑎 and
𝑏 respectively, and let 𝑙 be the distance between 𝑎 and 𝑏. Darcy’s law is defined as

𝑞 = −𝐾𝐴(ℎ − ℎ )
𝑙 or

𝑄 = −𝐾(ℎ − ℎ ) = −𝐾Δℎ
(2.3)

where

𝑞 is the volumetric flow rate (𝐿 𝑇 ) from cell 𝐴 to cell 𝐵;
𝑄 is the the specific discharge (𝐿𝑇 );

𝐾 is the hydraulic conductivity (𝐿𝑇 );

𝐴 is the cross sectional area (𝐿 );
(ℎ − ℎ )/𝑙 is the hydraulic gradient, the change in head over the length of interest.
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2.3.2. Continuity Equation
Continuity equation states that the sum of all flows into and out of the cell must be
equal to the rate of change in storage within the cell. We assume that the density
of ground water is constant. Let there be 𝑁 total flow contributions into a cell (𝑖, 𝑗)
. The continuity equation expressing the balance of flow for a cell is defined by

∑𝑞 , , = 𝑆 Δ𝑉
Δℎ
Δ𝑡 (2.4)

where

𝑞 , , is a flow rate into cell (𝑖, 𝑗) from 𝑛th source ;

𝑆 is the volume of water that can be injected per unit volume of aquifer material
per unit change in head. It is also known as specific storage (𝐿 );

Δ𝑉 be the volume of the cell (𝑖, 𝑗) (𝐿 );

Δℎ is the change in head over a time interval of length Δ𝑡.

2.3.3. Groundwater Flow Equation
The movement of ground water of constant density through porous earth material
can be described by the partial differential equation (PDE):

− ∇ ⋅ 𝑄 +𝑊 = 𝑆 𝜕ℎ𝜕𝑡 (2.5)

where

𝑊 is a volumetric flux per unit volume representing sources and/or sinks of water,
with 𝑊<0.0 for flow out of the ground-water system, and 𝑊>0.0 for flow
into the system (𝑇 );

𝑄 is flux across the cross section area (𝐿𝑇 );

ℎ is the hydraulic head (L); and 𝑡 is time (𝑇).

𝑆 Refer to the subsection 2.3.2.

In the above equation, ℎ and 𝑄 are unknown. We eliminate 𝑄 using equation
2.3 and rewrite equation 2.5 as:

∇ ⋅ (𝐾Δℎ) +𝑊 = 𝑆 𝜕ℎ𝜕𝑡 (2.6)

Expanding the divergence operator in equation 2.6, it can be written as

𝜕
𝜕𝑥 (𝐾

𝜕ℎ
𝜕𝑥) +

𝜕
𝜕𝑦 (𝐾

𝜕ℎ
𝜕𝑦) +

𝜕
𝜕𝑧 (𝐾

𝜕ℎ
𝜕𝑧 ) +𝑊 = 𝑆 𝜕ℎ𝜕𝑡 (2.7)
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where, 𝐾 , 𝐾 and 𝐾 are values of hydraulic conductivity along the x, y, and
z coordinate axes (𝐿𝑇 ).

The steady state groundwater flow (Storage term 𝑆 is zero) is given as

𝜕
𝜕𝑥 (𝐾

𝜕ℎ
𝜕𝑥) +

𝜕
𝜕𝑦 (𝐾

𝜕ℎ
𝜕𝑦) +

𝜕
𝜕𝑧 (𝐾

𝜕ℎ
𝜕𝑧 ) +𝑊 = 0 (2.8)

The proof of above equation can be found in section 2.3 of [29]. All of our
numerical experiments in chapter 6 and 7 are done for the steady state groundwater
flow equation.

2.4. Discretization
Applying finite volume integration and Gauss’s theorem, equation 2.6 can be written
as

∫ ∇ ⋅ (𝐾Δℎ)𝑑𝑉 + ∫ 𝑊𝑑𝑉 = ∫ 𝑆 𝜕ℎ𝜕𝑡 𝑑𝑉

∫(𝐾Δℎ ⋅ �⃗�) 𝑑𝑆 + ∫ 𝑊𝑑𝑉 = ∫ 𝑆 𝜕ℎ𝜕𝑡 𝑑𝑉
(2.9)

The surface integrals represents the flux. MODFLOW computes the flux in for
each cell. Substituting equation 2.3, equation 2.9 transforms to the following

∑𝑞 +𝑊Δ𝑉 = 𝑆 Δ𝑉ΔℎΔ𝑡

Now, we illustrate how cells are formed where we can use the flux representing
surface integrals. The three-dimensional domain of an aquifer system is discretized
spatially using a grid of blocks as shown in the figure 2.4. In this report, we call
each block as one cell. The total number of cells in 𝑥, 𝑦, and 𝑧 directions are
denoted as 𝑁𝐶𝑂𝐿,𝑁𝑅𝑂𝑊,𝑁𝐿𝐴𝑌 respectively. For example, in the figure 2.4, we
have NCOL = 9, NROW = 5, and NLAY = 5. Each cell in this grid can be uniquely
defined by providing cell index (𝑖, 𝑗, 𝑘), where 𝑖 = 1, 2, … , 𝑁𝑅𝑂𝑊; 𝑗 = 1, 2, … , 𝑁𝐶𝑂𝐿
and 𝑘 = 1, 2, … , 𝑁𝐿𝐴𝑌. Regarding Cartesian coordinates, the index 𝑘 changes along
the vertical, 𝑧; because the convention followed in this model is to number layers
from the top to down, an increment in the 𝑘 index corresponds to a decrease in
elevation. For example, index 𝑘 for the top layer is always 1. Similarly, rows would
be considered parallel to the 𝑥 axis, so that increments in the row index, 𝑖, would
correspond to decreases in 𝑦 coordinate and columns would be considered parallel
to the 𝑦 axis, so that increments in the column index, 𝑗, would correspond to in-
creases in 𝑥.
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After dividing the domain into cells, one needs to compute the hydraulic head
at one point in the cell, called node. We have used a cell centered formulation, in
which, nodes are present at the center of each cell. So we compute the hydraulic
head at the center of the cell. In the current implementation of MODFLOW, the cell
length in 𝑥 and 𝑦 direction can be chosen to be different. For simplicity, we choose
it to be the same in our numerical experiments. The typical range of cell size is 100
or 250 meter.

Figure 2.4: Three-dimensional control volume finite difference grid used in MODFLOW taken from [25]

Since mixed derivatives (such as 𝜕𝑥𝜕𝑦) are not involved in the equation 2.7.
Therefore, in the finite volume stencil, there is no flow contribution into cell (𝑖, 𝑗, 𝑘)
from neighboring diagonal cells. The flow is only from the left-right, top-bottom,
and up-down direction. Including the current cell (𝑖, 𝑗, 𝑘), the total contribution is
from 7 cells. Therefore, we obtain a 7 point stencil as given in the figure 2.5.

Now we have all the ingredients ready to define the total groundwater movement
into a cell using Darcy’s law. However, for simplicity, we only stick to one layer
and show the flow into a cell only from left-right and up-down neighboring cells.
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(𝑖, 𝑗 − 1, 𝑘) (𝑖, 𝑗, 𝑘) (𝑖, 𝑗 + 1, 𝑘)

(𝑖 + 1, 𝑗, 𝑘)

(𝑖 − 1, 𝑗, 𝑘)(𝑖, 𝑗, 𝑘 + 1)

(𝑖, 𝑗, 𝑘 − 1)

Figure 2.5: 6 adjacent cell nodes surrounding the cell (i,j,k) in MODFLOW

Figure 2.6: Flow from cell , , into cell , ,

Therefore, we consider the flow into cell (𝑖, 𝑗) from its adjacent 4 cells. Flow from
cell (𝑖, 𝑗 − 1) to (𝑖, 𝑗) is illustrated in figure 2.6. Applying Darcy’s law equation 2.3
for figure 2.6, we get

𝑞( , ) = 𝐾𝐶( , )Δ𝑐 Δ𝑣
(ℎ , − ℎ , )

Δ𝑟 (2.10)

where

𝐾𝐶( , ) : The hydraulic conductivity along the column between the cell (𝑖, 𝑗 − 1)
and cell (𝑖, 𝑗)(𝐿𝑇 );

Δ𝑐 Δ𝑣 : The surface area of the plane normal to the direction of flow (𝐿 );
Δ𝑟 : Distance between the node of cell (𝑖, 𝑗) and (𝑖, 𝑗 − 1).

Note: The index of the row and column in the grid is denoted by 𝑖 and 𝑗 re-
spectively. We indicate the conductance along the row by CR and column by CC
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respectively.

Eventually, we are interested in the relation between the head and the flow rate,
so we define conductance 𝐶𝐶( , ) between nodes (𝑖, 𝑗 − 1) and (𝑖, 𝑗) to make the
equations similar

𝐶𝐶( , ) =
𝐾𝐶( , )Δ𝑐 Δ𝑣

Δ𝑟 (2.11)

Analogy of the conductance is given to the resistance in the Ohm’s law. Substi-
tuting equation 2.11 into equation 2.10, we obtain

𝑞( , ) = 𝐶𝐶( , )(ℎ , − ℎ , ) (2.12)

Now we calculate the flow into cell (𝑖, 𝑗) from other 3 neighbors using the nota-
tion from figure 2.5, and adapting equation 2.12.

𝑞( , ) = 𝐶𝐶( , )(ℎ , − ℎ , ) (2.13)

𝑞( , ) = 𝐶𝑅( , )(ℎ , − ℎ , ) (2.14)

𝑞( , ) = 𝐶𝑅( , )(ℎ , − ℎ , ) (2.15)

Adding equation 2.12-2.15, we can describe the flow into cell (𝑖, 𝑗) from 4 neigh-
boring cells as

𝑞( , ) = 𝑞( , ) + 𝑞( , ) + 𝑞( , ) + 𝑞( , ) (2.16)

2.5. MODFLOW Packages
The flow is described into a cell (𝑖, 𝑗) with the concept of hydrological packages
in MODFLOW. There are two types of packages: the first type is the internal flow
package, which simulates flow between adjacent cells. The second category is the
stress package, which simulates a particular kind of stress (such as rivers, wells,
and recharge). The stress packages add terms to the flow equation representing
inflows or outflows. Mathematically, these are boundary conditions. So far, we
have described flow into cell (𝑖, 𝑗) from neighboring cells in equations 2.12-2.15.
This task is carried out using an internal flow package in MODFLOW. In this section,
we outline the effect of the stress packages. We restrict ourselves to the flow into
or out of the cell (𝑖, 𝑗) from wells, external sources, rivers and drain.

2.5.1. Effect of Wells
Well adds water to or withdraws water from the aquifer at a constant rate 𝑞. Neg-
ative values of 𝑞 are used to indicate well discharge (pumping), whereas positive
values of 𝑞 indicate a recharging well.
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If there are more than one well for an aquifer cell (𝑖, 𝑗), and one assumes one
well recharges to the cell with rate 𝑞 and other wells pump from the cell with rate
𝑞 , the flow into the cell from the wells may be defined by

𝑞( , ) = 𝑞 − 𝑞 (2.17)

2.5.2. Effect of External Source
Assume that there is an external source with constant head 𝐻 .The flow into the
cell (𝑖, 𝑗) from this source depends upon difference between the head in the cell
and the head assigned to the external source and may be given by

𝑞( , ) = 𝐶 (𝐻 − ℎ( , )) (2.18)

where, 𝐶 is the boundary conductance.

2.5.3. Effect of Rivers
Rivers and streams contribute water to or drain water from the aquifer cell (𝑖, 𝑗),
depending on the head gradient between the river and the cell.

We assume that, the water level does not drop below the bottom of the riverbed
layer. Under this assumption, the flow from the river (with head 𝐻 ) into the cell
(𝑖, 𝑗) is given by

𝑞( , ) = 𝐶 (𝐻 − ℎ( , )) (2.19)

where, 𝐶 is the hydraulic conductance of bed sediment.

If the water level in the aquifer falls below a certain point, seepage from the river
no more depends on the head in the aquifer. We denote the bottom of a riverbed
by 𝑅 . The flow through the riverbed layer is given by 𝐶 (𝐻 − 𝑅 ). The
general equation of the movement of water from the river into the cell (𝑖, 𝑗) is given
by

𝑞( , ) = {
𝐶 (𝐻 − 𝑅 ), if ℎ( , ) ≤ 𝑅
𝐶 (𝐻 − ℎ( , )), if ℎ( , )>𝑅 . (2.20)

We have restricted ourselves by defining the flow into the cell without discussing
the physical phenomenon in detail. Interested readers may look in chapter 6 of
MODFLOW 2005 manual [25].

2.5.4. Effect of Drain
In some cases such as agricultural drains, it is required to remove water from the
aquifer to save the crops. The cutoff head is called drain elevation, denoted by
𝐻 . The drainage flow into the cell (𝑖, 𝑗) (which is negative) is given by

𝑞( , ) = {
0, if ℎ( , ) ≤ 𝐻
𝐶 (𝐻 − ℎ( , )), if ℎ( , )>𝐻 . (2.21)
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where, 𝐶 is the drain conductance.

We denote the flow from the source 𝑛 into cell (𝑖, 𝑗) by 𝑞( , , ). From above
boundary conditions, we observe that the inflow rate 𝑞( , , ) varies linearly with
the head. In general, it can be represented by the equation 2.22. If the flow
into the cell (𝑖, 𝑗) is from the river, we observe from equation 2.20, the coefficient
𝑎( , , ) depends upon the head ℎ( , ). It makes the system of equation nonlinear. In
MODFLOW, a Picard iteration is used to modify the system of equations 2.30 in the
linear form (refer section 2.8 ).

𝑞( , , ) = 𝑎( , , )ℎ( , ) + 𝑏( , , ) (2.22)

In general, if there are 𝑁 external sources with a flow into a single cell, the
combined flow is expressed by

∑𝑞( , , ) = ∑𝑎( , , )ℎ( , ) +∑𝑏( , , ) (2.23)

We substitute following 𝐴( , ) and 𝐵( , ) into equation 2.23 to yield 2.24

𝐴( , ) = ∑𝑎( , , ) ; 𝐵( , ) = ∑𝑏( , , )

∑𝑞( , , ) = 𝐴( , )ℎ( , ) + 𝐵( , ) (2.24)

The total flow into cell (𝑖, 𝑗) comprises of flow from 4 neighboring cell as given
in equation 2.16 and the flow from stress packages given in equation 2.24. Substi-
tuting both the equations into continuity equation 2.4, we obtain

𝑞( , ) + 𝑞( , ) + 𝑞( , ) + 𝑞( , )+

𝐴( , )ℎ( , ) + 𝐵( , ) = 𝑆 Δ𝑉
Δℎ
Δ𝑡

(2.25)

Substituting equations 2.12-2.15 into 2.25, and replacing Δ𝑉 from notations of
the figure 2.4, we obtain

𝐶𝐶( , )(ℎ , − ℎ , ) + 𝐶𝐶( , )(ℎ , − ℎ , ) +
𝐶𝑅( , )(ℎ , − ℎ , ) + 𝐶𝑅( , )(ℎ , − ℎ , ) +

𝐴( , )ℎ( , ) + 𝐵( , ) = 𝑆 (Δ𝑟 Δ𝑐 Δ𝑣 )
Δℎ ,
Δ𝑡

(2.26)

Thus we formulate the system of equations which are to be solved for head
values.
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2.6. Groundwater Simulation Type
The MODFLOW supports two types of groundwater simulation: a transient and a
steady state simulation. In this section, we briefly discuss the formulation of system
of equations in both simulation models. However, all the numerical experiments
done in the chapter 6 and 7, are done for the steady state model.

2.6.1. Transient State Simulation
The objective of a transient simulation is to compute the head distributions at suc-
cessive times, given the initial head distribution, the boundary conditions and the
hydraulic parameters. We assume that, the head distribution is known to be ℎ( )

( , )
at time 𝑡( ) and we aim to compute the head distribution at time 𝑡( ). We define
the head gradient by

Δℎ ,
Δ𝑡 ≊

ℎ( )
( , ) − ℎ

( )
( , )

𝑡( ) − 𝑡( ) (2.27)

Substituting equation 2.27 into 2.26 and rearranging the terms, we obtain

𝐶𝑅( , )ℎ
( )
( , ) + 𝐶𝐶( , )ℎ

( )
( , ) + (−𝐶𝑅( , ) − 𝐶𝐶( , )

−𝐶𝐶( , ) − 𝐶𝑅( , ))ℎ
( )
( , ) + 𝐶𝐶( , )ℎ

( )
( , ) + 𝐶𝑅( , )ℎ

( )
( , )+

𝐴( , )ℎ( )
( , ) + 𝐵( , ) = 𝑆 (Δ𝑟 Δ𝑐 Δ𝑣 )

ℎ( )
( , ) − ℎ

( )
( , )

𝑡( ) − 𝑡( )

(2.28)

The initial head distribution provides a value ℎ( )( , ) at each cell (𝑖, 𝑗). Head dis-
tribution at 𝑡( ) can be obtained by solving equation 2.28 with 𝑚 = 1. This results
into 𝑁1 linear system of equations. In the similar way, we use the head distribution
at 𝑡( ), and reformulate the LSE to solve for 𝑡( ). Various iterative methods are
used to solve these system of equations, treated in chapter 3 in more detail.

Equation 2.28 can be seen as a formulation of system of equations.

𝐴𝑢 = 𝑓 (2.29)

where

𝐴 is a known matrix of the coefficients (conductances CR, CC, and CV) of the head
at the node of all active cells (define in section 2.7) in the grid.

𝑢 is an unknown vector of head values at the end of time step m for nodes of active
cells in the grid;

𝑓 is a known vector of the constant terms, RHS, for nodes of active cells in the
grid.

1Total number of cells in 2D domain in layer
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2.6.2. Steady State Simulation
A steady state simulation is represented by a single stress period having a single
time step with the storage term (𝑆 ) set to zero. In a steady state simulation, the
sum of all inflows (where the outflow is a negative inflow) from adjacent cells and
external processes must be zero for each cell in the model. A steady-state problem
requires a single solution of LSE, rather than multiple solutions at multiple time
steps. The boundary conditions are also time independent in steady state simula-
tions.

The complexity in equation 2.28 can be reduced by assuming that the time
superscript is 𝑚 unless otherwise shown. This results into

𝐶𝑅( , )ℎ( , ) + 𝐶𝐶( , )ℎ( , ) + 𝐻 ℎ( , )+
𝐶𝐶( , )ℎ( , ) + 𝐶𝑅( , )ℎ( , ) = 𝑅𝐻𝑆( , )

(2.30)

where,
𝐻 = −𝐶𝑅( , ) − 𝐶𝐶( , ) − 𝐶𝐶( , )

−𝐶𝑅( , ) + 𝐴( , ) −
𝑆 (Δ𝑟 Δ𝑐 Δ𝑣 )
𝑡 − 𝑡( ) , and

𝑅𝐻𝑆( , ) = −𝐵( , ) −
𝑆 (Δ𝑟 Δ𝑐 Δ𝑣 )ℎ( )

( , )
𝑡 − 𝑡( ) .

The entire system of equations 2.30 can be written in matrix form as

𝐴𝑢 = 𝑓 (2.31)

Description of 𝐴, 𝑢 and 𝑓 is similar to the equation 2.31. Treatment of the so-
lution of this system of equations shall be discussed in detail in chapter 3.

In the figure 2.7, we present the sparsity structure of the matrix 𝐴 for NHI SS
model. The description of NHI SS model has been given in the chapter 7. The
number of cells in the first layer denoted by 𝐿 , is less compared to other 6 layers
below 𝐿 . Therefore, we observe that, the band of the layer 𝐿 is smaller than the
band of other layers (figure 2.7a). Also, we are not able to see the 7 bands clearly
in 2.7a, so we present the sparsity of 𝐴 from a coarser model. We can see 7 bands
in figure 2.7b.

2.7. Type of Model Cells
In practice, formulating an equation of the form of equation 2.31 for every cell in
a model grid is not required because the status of the cells is specified at the start
of the simulation. The aquifer is of irregular shape, whereas the model grid is al-
ways rectangular. Therefore, we need to define some flag to distinguish the aquifer
cells and to impose boundary conditions. We define the IBOUND variable for that



2

18 2. Problem Description

(a) cell size 2500 m (b) cell size 25000 m

Figure 2.7: Spy plot of coefficient matrix A from first Picard iteration in layer NHI SS Model, grid cell:
× × in 2.7a and × × in 2.7b.

purpose. Figure 2.8 taken from MODFLOW 2005 manual [25], shows a graphi-
cal representation of the aquifer, model domains and three type of cell mentioned
below:

No-flow cells: No-flow cells are those for which no flow into Or out of the cell
is permitted. These cells are used to simulate the boundary condition for
example to signify the domain of the model. The value of the IBOUND variable
is zero. No flow cell is also called as inactive cell. There is no contribution
of the conductance from the no-flow cells to the nearby active cells, so the
corresponding conductances (CC, CR, and CV) are set to zero for the no-flow
cell. We do not solve for the head using LSE for no-flow cells. We also do not
allocate the deflation vector entry in the no-flow cell.

Constant-head cells: Constant-head cells are those for which the head is speci-
fied for each time, and the head value does not change as a result of solving
the flow equations 2.31. These cells are also used to simulate the boundary
condition. These are used when there is a requirement from physical proper-
ties of an area, e.g. if we want to keep a constant head in a sea or river. The
IBOUND variable has value less than zero in a cell with the constant head.
Constant head serves as nonhomogeneous Dirichlet boundary condition (see
the unit model problem in chapter 6). Hence, the matrix A and the RHS vec-
tor for the cells near the constant head boundary is updated using with the
conductances of the constant-head cells. Since the head values are known at
constant-head cells, We do not solve for the head using LSE. We also do not
allocate the deflation vector entry in these cells. The deflation method has
been described in the chapter 5.

Variable-head cells: The variable-head cells are characterized by heads that are
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Figure 2.8: Discretized aquifer showing boundaries and cell designations

unspecified and free to vary with time. These are also called active cells.
The LSE 2.31 is solved to compute the head for only variable-head cells. We
allocate the entries in the deflation vector only for variable-head cells. The
IBOUND variable has the value greater than zero in these cells.

2.8. Overview of MODFLOW Simulation
In figure 2.9, we present different steps used in the Ground-Water Flow Process.
The total period of simulation is divided into a series of stress periods within which
specified stress data values (such as pumping rate in the well) are constant. Each
stress period, in turn, is divided into a series of time steps. The system of finite
volume equations of the form of equation 2.28 is formulated and solved to yield
the head at each node at the end of each time step. A preconditioned conjugate
gradient (PCG) iterative solver is used to solve for the heads for each time step.
Thus, the program includes three nested loops: a stress-period loop, within which
there is a timestep loop, which in turn contains a solver iteration loop. The initial
head values are chosen from the computed head at previous time step in case of
transient state simulation.
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Figure 2.9: Flowchart of program to simulate Groundwater Flow in MODFLOW

Now, we discuss the solver loop in detail. The system of equations 2.28 may
be nonlinear with respect to the head (refer section 2.5). Therefore, the matrix
coefficients in 𝐴 in the equation 2.30 may depend upon the current head values.
The concept of Picard iteration is used to make the system of equations linear.



2.8. Overview of MODFLOW Simulation

2

21

Solver iteration: Two type of loops (iterations) are performed in the solver: outer
iteration and inner iteration. An outer iteration is a Picard iteration, and the
inner iteration is conjugate gradient (CG) iteration. In each Picard iteration,
the matrix 𝐴 and the right-hand side vector 𝑓 are set using the current head
values. Thus LSE is constructed in each Picard iteration. The head values
solved in previous Picard iteration are used as an initial head values to solve
the LSE in the current Picard iteration. A maximum number of inner itera-
tions, denoted by ITER1 (by default 30) are set. In each Picard iteration, the
solver is said to be converged when the absolute maximum of head values
of the difference between the current and previous inner iteration becomes
smaller than HCLOSE, and the maximum residual norm becomes smaller than
RCLOSE. The infinity norm has been used to check the convergence for
the residual norm. The inner iteration loop terminates either when conver-
gence is met, or when a maximum number of inner iterations have occurred.
Outer iteration loop terminates when HCLOSE and RCLOSE termination crite-
ria is fulfilled in the first inner iteration.

In our research, we have considered that the stress period and time step are
fixed since we are only interested in reducing the inner and outer iterations in the
solver. Therefore, we focus only on the linear system (colored in green in figure
2.9. The linear system is being solved by a domain decomposition method, as de-
scribed in chapter 4.

In this chapter, we have established the ingredients to define the linear system
of equations. In the next chapter, we will focus on the iterative scheme to solve
such systems. Since the system is symmetric positive definite (SPD), we will stick
to the PCG method.
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Iterative Methods

3.1. Introduction
The large nonlinear system of equations formulated in the preceding chapter are
linearized with the Picard iteration, to form the linear system of equations (LSE). In
this chapter, we present iterative methods to solve the LSE.

We start by giving the motivation to use the iterative methods to the reader in
section 3.2. We define the basic and Krylov subspace iterative methods in section
3.3 and 3.4. At the end of the chapter, we define the preconditioning techniques
to solve the LSE efficiently.

3.2. Why Iterative Methods?
In this section, we describe two approaches to solve the linear system of equations
(LSE) given by 3.1.

𝐴𝑢 = 𝑓 where 𝐴 ∈ ℝ × , 𝑢, 𝑓 ∈ ℝ . (3.1)

In the above equation, 𝐴 is assumed to be non-singular. We have underlined the
vectors in equation 3.1, so that the reader can differentiate these vectors with the
scalars. However, many such vectors appear in the upcoming part in this report,
and sometimes the notations get complicated. Hence, we do not show a line under
the vectors.

3.2.1. Direct Methods
Direct methods attempt to solve the LSE by a finite sequence of operations. In
this approach, the coefficient matrix 𝐴 is decomposed into 2 matrices, which are
easier to solve. For example, in a so-called 𝐿𝑈 decompositions, 𝐴 is decomposed
into a lower triangular matrix 𝐿, and an upper triangular matrix 𝑈 such that 𝐴 =
𝐿𝑈. Equation 3.1 becomes

23
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𝐿𝑈𝑢 = 𝑓 ⇒ 𝐿𝑦 = 𝑓 where 𝑈𝑢 = 𝑦 (3.2)

𝑢 can be obtained by first solving for 𝑦 using forward substitution and then for 𝑢
using backward substitution in the equation 3.2. To summarize, the LSE is solved in
two stages and we mention the time and space complexity for the dense matrices
below:

• Decomposition of A into 𝐿𝑈 - 𝑂(𝑛 ) computational complexity and storage
space of 𝑂(𝑛 ) for 𝐿 and 𝑈.

• Solution of equation 3.2 - 𝑂(𝑛 ) computational complexity and storage space
of 𝑂(𝑛) for 𝑦.

From above we notice that the most expensive step is the decomposition of 𝐴
into 𝐿 and 𝑈. For dense matrices, 𝐿𝑈 decomposition requires 𝑂(𝑛 ) operations. For
sparse matrices with band 𝑘, the 𝐿𝑈 decomposition complexity reduces to 𝑂(𝑛𝑘 )
where 𝑘 = 𝑛 when A is a 2D finite difference matrix and 𝑘 = 𝑛 when A is a 3D
finite difference matrix. Furthermore, for large matrices, it is unfeasible to store
𝐿 and 𝑈 in the computer memory. Due to large time complexity, the CPU time
becomes quite large. Therefore, we need iterative methods to solve the LSE.

3.2.2. Iterative Methods
An iterative method is a mathematical procedure that generates a sequence of ap-
proximate solutions, in which the 𝑛-th approximation is derived from the previous
ones. A termination criterion and initial approximation are specified for an iterative
algorithm. An iterative method is called convergent if the corresponding sequence
converges to the solution for given initial approximation.

We denote the converging sequence of iterates by

{𝑢( )} , where 𝑢( ) → 𝑢∗ for 𝑘 → ∞ (3.3)

where 𝑢( ) and 𝑢∗ denotes the initial guess and the exact solution respectively.
At the k-th iteration, we define error vector 𝑒( ) and residual vector 𝑟( ) by

𝑒( ) = 𝑢∗ − 𝑢( ), 𝑟( ) = 𝑓 − 𝐴𝑢( ) (3.4)

From equation 3.1 and 3.4, we form the residual equation

𝐴𝑒( ) = 𝐴𝑢∗ − 𝐴𝑢( ) = 𝑓 − 𝐴𝑢( ) = 𝑟( ) (3.5)

Now we split 𝐴 into a non-singular matrix 𝑀(we assume it exists) and 𝑁 by
𝐴 = 𝑀 −𝑁 and thus equation 3.1 becomes

𝑀𝑢 = 𝑁𝑢 + 𝑓 (3.6)

Multiplying 𝑀 to the left of equation 3.6, we define the iterative scheme:
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𝑢( ) = 𝑀 𝑁𝑢( ) +𝑀 𝑓
= 𝑀 (𝑀 − 𝐴)𝑢( ) +𝑀 𝑓
= 𝑢( ) +𝑀 (𝑓 − 𝐴𝑢( ))
= 𝑢( ) +𝑀 𝑟( )

(3.7)

Various iterative schemes can be developed by choosing different values of the non
singular matrix 𝑀 in equation 3.7. We treat a couple of these schemes in next
section.

3.3. Basic Iterative Methods
Matrix 𝐴 can be decomposed into a lower triangular matrix 𝐿, and upper triangular
matrix 𝑈 and diagonal matrix 𝐷 such that 𝐴 = 𝐿+𝐷+𝑈. In this section, we define
two basic iterative methods (BIM).

3.3.1. Jacobi Method
We substitute 𝑀 = 𝐷 in equation 3.7 to get

𝑢( ) = 𝑢( ) + 𝐷 (𝑓 − 𝐴𝑢( ))
= 𝑢( ) + 𝐷 (𝑓 − (𝐷 + 𝐿 + 𝑈)𝑢( ))
= 𝐷 𝑓 + 𝑢( ) − 𝑢( ) − 𝐷 𝐿𝑢( ) − 𝐷 𝑈𝑢( )

= 𝐷 (𝑓 − 𝐿𝑢( ) − 𝑈𝑢( ))

(3.8)

We can define the update scheme from equation 3.8

𝑢( ) = [𝑓 − ∑
,
𝑎 𝑢( )]/𝑎 ∀𝑖 = 1,… , 𝑛 (3.9)

3.3.2. Gauss-Seidel Method
We substitute 𝑀 = 𝐷 + 𝐿 in equation 3.7 to get

𝑢( ) = 𝑢( ) + (𝐿 + 𝐷) (𝑓 − 𝐴𝑢( ))
(𝐿 + 𝐷)(𝑢( ) − 𝑢( )) = (𝑓 − (𝐷 + 𝐿 + 𝑈)𝑢( ))

𝐷𝑢( ) = 𝑓 − 𝐿𝑢( ) − 𝑈𝑢( )

𝑢( ) = 𝐷 (𝑓 − 𝐿𝑢( ) − 𝑈𝑢( ))

(3.10)

Now, we can define the update scheme from equation 3.10

𝑢( ) = [𝑓 −∑𝑎 𝑢( ) − ∑ 𝑎 𝑢( )]/𝑎 ∀𝑖 = 1,… , 𝑛 (3.11)

From above, we observe that
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• The Jacobi iteration allows to update all components of the iterates 𝑢( ) in-
dependently from each other and is therefore suitable for parallel computing.
For example 𝑝 parallel threads can independently work on subdomain to up-
date the values from 𝑢( ) to 𝑢( ).

• The Gauss-Seidel iteration uses recent information as soon as it becomes
available. So, Gauss-Seidel iteration converges faster the Jacobi since the
spectral radius 𝜌 < 𝜌 . However, the plain Gauss-Seidel is not suitable for
parallelism.

Both algorithms converge slowly but provide a basic iterative scheme.

3.4. Krylov Subspace Methods
Modern iterative methods for solving large systems of linear equations avoid matrix-
matrix operations, but rather multiply vectors by the matrix and work with the re-
sulting vectors. Starting with a vector, 𝑓, one computes 𝐴𝑓; then one multiplies
that vector by 𝐴 to find 𝐴 𝑓 and so on. All algorithms that work this way are re-
ferred to as Krylov subspace methods; they are among the most successful
methods currently available in numerical linear algebra. The name Krylov has been
adapted after Russian applied mathematician and naval engineer Alexei Krylov, who
published a paper about these methods in 1931.

We show the formation of the Krylov subspace for Richardson iteration. The
Richardson update is given by

𝑢( ) = 𝑢( ) + 𝑟( ) (3.12)

where, 𝑢( ) is the approximation of solution and 𝑟( ) is residual at 𝑘 step. The
iterates are given by

𝑢( ) = 𝑢( ) + 𝑟( )

𝑢( ) = 𝑢( ) + 𝑟( )

= 𝑢( ) + 𝑟( ) + 𝑟( )

= 𝑢( ) + 𝑟( ) + (𝑓 − 𝐴(𝑥( ) + 𝑟( )))
= 𝑢( ) + 2𝑟( ) − 𝐴𝑟( )

= 𝑢( ) + 2𝐴 𝑟( ) − 𝐴 𝑟( )

(3.13)

From 3.13, we see that (𝑢( )−𝑢( )) can be represented as linear combination of
𝐴 𝑟 and 𝐴 𝑟. In a similar way, (𝑢( )−𝑢( )) can be represented as linear combination
of 𝐴 𝑟, 𝐴 𝑟,⋯ , 𝐴 𝑟. We define Krylov Subspace 𝒦 (𝐴; 𝑟( )) by

𝒦 (𝐴; 𝑟( )) = span {𝑟( ), 𝐴𝑟( ), 𝐴 𝑟( ), … , 𝐴 𝑟( )}. (3.14)

A BIM does not use the optimal approximation from 𝒦 (𝐴; 𝑟( )) to get the solu-
tion and hence converges slowly. Krylov subspace methods are used for the faster
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convergence because they are based on optimal properties. The best known Krylov
subspace methods to solve LSE are Conjugate Gradient (CG), GMRES (generalized
minimum residual), BiCGSTAB (bi-conjugate gradient stabilized), IDR(s) (Induced
dimension reduction). The matrix in LSE that we get in MODFLOW is symmetric
positive definite (SPD) (refer to Appendix). CG method is most efficient Krylov sub-
space method to solve SPD matrices. Therefore, we define it in the next section.

3.4.1. Conjugate Gradient (CG) Method
The CG methods requires the matrix 𝐴 from equation 3.1 to be

Symmetric The matrix 𝐴 should be such that, 𝐴 = 𝐴 . For symmetric matrix 𝐴,
all eigenvalues of 𝐴 are real.

Positive definite The matrix 𝐴 should be such that, 𝑦 𝐴𝑦 > 0 ∀𝑦 ≠ 0. It implies
that all eigenvalues of 𝐴 are positive.

If 𝐴 is symmetric and positive definite, it is called symmetric positive definite
(SPD) matrix. The matrix in LSE to be solved by the CG method should be a SPD
matrix.

The following properties of the CG method make it one of the best iterative
method to solve SPD LSE:

• Small recurrences: 𝑢( ), 𝑟( ), 𝑝( ) is simple to implement.
• Optimization property: ‖𝑢( ) − 𝑢‖ is minimal, where ‖𝑥‖ is called 𝐴-norm
of a vector 𝑥, defined by 𝑥 𝐴𝑥.

• It is a Krylov Subspace method.

Convergence of CG method depends upon the condition number 𝜅 of the coef-
ficient matrix 𝐴. The error at time step 𝑘 is bounded by the equation 3.15. The
proof can be found in [34].

‖𝑢 − 𝑢( )‖ ≤ 2(√𝜅 − 1
√𝜅 + 1

) ‖𝑢 − 𝑢( )‖ (3.15)

The condition number of A (𝜅) is huge if the eigenvalues are not well clustered.
We observe from 3.15, the bound on the error is large. It slows the convergence of
the CG method. In next section, we describe preconditioning technique to speed up
the convergence. The Preconditioned Conjugate Gradient (PCG) algorithm is given
in the algorithm 1.

3.5. Preconditioning
Convergence of the iterative methods depends on the condition number(𝜅) of the
matrix. The condition number of a SPD matrix is defined as ratio of largest eigen-
value (𝜆 ) and smallest eigenvalue (𝜆 ).

𝜅 = 𝜆
𝜆 .
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When eigenvalues of 𝐴 are not well clustered, we say that the matrix is not
well conditioned and we should incorporate some preconditioner to improve the
spectrum of 𝐴. Usually, we apply the preconditioner to the left of 𝐴, and thus
known as left preconditioner denoted by M. The transformed system is given by

𝑀 𝐴𝑢 = 𝑀 𝑓 (3.16)

Algorithm 1 Preconditioned Conjugate Gradient (PCG) Algorithm

1: procedure PCG(𝐴, 𝑓, 𝑢( ), 𝑡𝑜𝑙, 𝑘 ,𝑀)
2: 𝑟( ) = 𝑓 − 𝐴𝑢( ), 𝑘 = 1 ⊳ Initialization
3: while (𝑘 < 𝑘 and ‖𝑟( )‖ > 𝑡𝑜𝑙) do
4: 𝑧( ) = 𝑀 𝑟( ) ⊳ Preconditioning
5: if 𝑘 = 1 then
6: 𝑝( ) = 𝑧( )
7: else
8: 𝛽 = ( ( )) ( )

( ( )) ( )
9:
10: 𝑝( ) = 𝑧( ) + 𝛽 𝑝( ) ⊳ Search direction
11: end if
12: 𝛼 = ( ( )) ( )

( ( )) ( )
13:
14: 𝑢( ) = 𝑢( ) + 𝛼 𝑝 ⊳ Iterate update
15: 𝑟( ) = 𝑟( ) − 𝛼 𝐴𝑝 ⊳ Residual update
16: 𝑘 = 𝑘 + 1
17: end while
18: k=k-1
19: return 𝑢( ) ⊳ The converged solution
20: end procedure

After applying the preconditioner, instead of solving equation 3.1, the equation
3.16 is solved because the solution converges faster due to clustered spectrum of
𝑀 𝐴. 𝑀 should also be SPD to solve the system 3.16 with the CG method. The
following requirements should be fulfilled for the preconditioner:

• The eigenvalues of 𝑀 𝐴 should be clustered around 1.
• 𝑀 𝑧 should be cheap to compute for vector 𝑧.
The two obvious choices for 𝑀 are Identity matrix (𝐼) and coefficient matrix (𝐴),

but both have the following pitfalls:

• Identity matrix (𝐼): It is the same LSE. The spectrum has not improved.

• Coefficient matrix (𝐴): 𝑀 𝑧 is NOT cheap to compute.
The above are two extreme cases of 𝑀. The preconditioner 𝑀 should lie some-

where in between 𝐴 and 𝐼. We define Jacobi and ILU preconditioner in the next
section.
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3.5.1. Jacobi Preconditioner
The Jacobi Preconditioner is perhaps the simplest preconditioner also known as
diagonal scaling. It is defined by

𝑚 , = {
𝑎 , if 𝑖 = 𝑗,
0 otherwise.

Bounds on the eigenvalues can be given by Gershgorin circle theorem[9] in
which, the eigenvalues are contained in the circle with center 𝑎 , and radius∑ , 𝑎 , .
Applying the preconditioner to the left, the diagonal entries in 𝑀 𝐴 become 1,
while the sub-diagonal entries in 𝑀 𝐴 become smaller than sub-diagonal entries
of 𝐴. For the transformed system 𝑀 𝐴, the center of the Gershgorin circle be-
comes 1, and the radius becomes smaller than the radius of Gershgorin circle of 𝐴.
In this way, we see that the eigenvalue spectrum becomes more clustered (around
1) in 𝑀 𝐴 compared to 𝐴. Division operation is costlier than the multiplicative
operator. Hence, we store

,
in 𝑀 and 𝑀 𝑧 is cheaper to compute. The 𝑖

entry in 𝑀 𝑧 simply becomes
,
.

We also present another version of Jacobi preconditioner, known as Block Jacobi
preconditioner. It is also known as Additive Schwarz preconditioner that we present
in the next chapter. Let the index set 𝑆 = {1, 2, .., 𝑛} be partitioned such that 𝑆 = ⋃𝑆
with the sets 𝑆 mutually disjoint. The block Jacobi preconditioner is defined by

𝑚 , = {
𝑎 , if 𝑖 and 𝑗 are in the same index subset,
0 otherwise.

The block Jacobi preconditioner is suitable for parallel programming. Each set
𝑆 can be seen as 𝑖-th subdomain grid points. It is natural to let the partitioning
coincide with the division of variables over the multiple processors. For the case of
2 processors, The coefficient matrix 𝐴 and block Jacobi preconditioner 𝑀 are given
as

𝐴 = [𝐴 𝐴
𝐴 𝐴 ] , 𝑀 = [𝐴 0

0 𝐴 ]

3.5.2. ILU Preconditioner
The sparse linear system from 3.1 can be solved by computing the 𝐿𝑈 factorization
with 𝐿 unit lower triangular and 𝑈 upper triangular. One then solves 𝐿𝑦 = 𝑏, 𝑈𝑥 = 𝑦
with forward and backward substitution. For a typical sparse matrix, the matrices
𝐿 and 𝑈 can be much less sparse than the original matrix (refer to figure 3.1b and
3.1c). Incomplete factorization of 𝐴 is performed to maintain the sparsity structure
similar to 𝐴 in 𝐿 and 𝑈.

An incomplete factorization seeks triangular matrices �̃� ≈ 𝐿 and �̃� ≈ 𝑈, such
that 𝐴 ≈ �̃��̃� rather than A=LU. The sparsity pattern in �̃� and �̃� is often chosen to
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be similar to the original matrix 𝐴. (refer to figure 3.1d and 3.1e). Solving for 𝑥
from �̃��̃�𝑥 = 𝑏 is cheaper than from 𝐿𝑈𝑥 = 𝑏, but does not yield the exact solution
to 𝐴𝑥 = 𝑏. The matrix 𝑀 = �̃��̃� as a preconditioner. This preconditioner is called
ILU(0). In ILU(0), zero level of fill-in is used.

There are other variants of ILU with more levels of fill-in. They are known as
ILU(p) with p >0 level of fill in. Increasing the value of 𝑝, it converges faster
than ILU(0) in but the computational work per iteration becomes more than that of
ILU(0), so there is a trade-off between the accuracy and the computational cost.
The optimal wall-clock is expected from the intermediate level of fill-in, but we
found the optimal wall-clock for ILU(0). To see the effect of fill-in on the number of
CG iterations and wall clock time, we experimented in MATLAB (refer to Appendix).
We found out that the number of iterations decreases with more levels of fill-in but
the time taken to set up the preconditioner increases when we increase the fill in
𝑝 since 𝐿 and 𝑈 become denser. We conclude that concerning wall clock time; the
ILU(0) preconditioner should be preferred over ILU(𝑝) with 𝑝 > 0 for these prob-
lems.

Since forward and backward substitution can not be performed in parallel fash-
ion, ILU preconditioners are not suitable for parallel computations. ILU(0) is used
to solve the subdomain problem in-exactly in MODFLOW. To exploit parallelism in
ILU(0), Saad[30, chap 12] has suggested Red Black ordering of grid points. In this
approach, we define the red and black label for alternative indexes in 2D such that
update to red points does not depend on black points and vice versa. The black
points can be updated in parallel, and red points can also be updated in parallel.

3.6. Connection with the PKS Package
In the PKS package, serial and parallel implementation of PCG is given as follows:

3.6.1. Serial Implementation
• PKS includes PCG and BiCGSTAB respectively to solve symmetric and asym-
metric linear system.

• The matrix 𝐴 is sparse. However, the full 𝐿𝑈 decomposition of 𝐴 removes the
sparsity in 𝐿 and 𝑈. Hence, in the preconditioning step, the linear system is
solved inaccurately using incomplete 𝐿𝑈 decomposition with zero fill in, i.e.
ILU(0) preconditioner.

• PKS has been developed for unstructured grids.

3.6.2. Parallel Implementation
• Due to inherent parallelism, the block Jacobi preconditioner has been imple-
mented in the PCG solver.



3.6. Connection with the PKS Package

3

31

(a) A

(b) L from A=LU (c) U from A=LU

(d) L from ILU(0) (e) U from ILU(0)

Figure 3.1: Spy plot of various matrices arising from 2D Poisson matrix, with no fill-in and full fill-in.





4
Domain Decomposition

Methods

4.1. Introduction
In Numerical Analysis, Domain Decomposition(DD) methods attempt to solve a
Boundary Value Problem by splitting it, and solving sub problems on various sub-
domains. In Parallel Programming context, DD denotes decomposing the physical
domain of a particular computational task across different processors.

DD is an active research field [6] since long run time of simulations can be
reduced with DD methods using state of the art parallel processors. The study of
domain decomposition methods can be motivated by the following factors [17]:

• Each subproblem can be independently solved in parallel on different proces-
sors.

• Reduction of memory requirements per subproblem, since each subproblem
is smaller than the given problem.

• Complicated geometry can be solved by solving simple geometry problem on
different subdomains.

Surveys of different DD methods can be found in Saad [30, chap 14] and Dolean
[6, chap 1,2]. We will restrict ourselves to Schwarz DD methods.

The structure of this chapter is as follows. We describe Additive and Multi-
plicative Schwarz methods in section 4.2 and 4.3. In section 4.4, we define two
techniques to speed up the PCG solver in PKS. In section 4.5, we give connection
of this chapter to the PKS package. We end this chapter by specifying the global
and local grid numbering in the PKS in section 4.6.

33
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Figure 4.1: Complex geometry made from two simple domains showing the domain decomposition

Schwarz Alternating Methods: Schwarz Methods dates from 1870, developed
by a German mathematician Hermann Schwarz, are overlapping domain de-
composition methods. They solve a PDE by alternating to various sub-domain:
solving the PDE on one domain at each iteration, and taking the updated value
from the sub-domain as a boundary condition for the neighboring sub-domain
(see Saad [30, 14.3]). For simplicity we restrict to a one dimension domain
(1D) case with 2 subdomains. It can be generalized to one dimension domain
(2D) and more subdomains with ease.

4.2. Multiplicative Schwarz Method
The Multiplicative Schwarz Method is most natural form of Schwarz methods, which
attempts to solve the following differential equation:

ℒ𝑢 = 𝑓 in Ω = [𝛼, 𝛽]
𝑢(𝛼) = 𝑝, 𝑢(𝛽) = 𝑞. (4.1)

The domain Ω is decomposed into subdomains, Ω = Ω ∪Ω , such that Ω ∩Ω ≠
∅. Let the solution in Ω and Ω be given by 𝑢 and 𝑢 respectively. We assume
that initial guess 𝑢( ) is known. Please refer to figure 4.2 for notations.

We solve subproblem 𝑢 (𝑘) iteratively in subdomain Ω , for 𝑘 = 1, 2, ... until
convergence.

ℒ𝑢( ) = 𝑓 on Ω ,
𝑢( )(𝛼) = 𝑝,

𝑢( ) = 𝑢( ) on Γ .
(4.2)
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followed by the subproblem 𝑢 (𝑘) in subdomain Ω ,

ℒ𝑢( ) = 𝑓 on Ω ,
𝑢( ) = 𝑢( ) on Γ ,

𝑢( )(𝛽) = 𝑞.
(4.3)

For the overlapping subdomain, 𝑢 or 𝑢 can be chosen to be the solution 𝑢, so
here we take 𝑢 as a solution and we define the 𝑘−th iteration by

𝑢( )(𝑥) = {𝑢
( )(𝑥), if 𝑥 ∈ Ω ⧵ Ω
𝑢( )(𝑥), if 𝑥 ∈ Ω . (4.4)

Ω Ω
𝛼

1 Γ = 𝑎 𝑐 Γ = 𝑏 m-1

𝛽

Figure 4.2: 1D domain and discretization of for Schwarz method

Discretization of equation 4.1 leads to the linear system

𝐴𝑢 = 𝑓 (4.5)

Let 𝑛 be total number of grid-points in Ω. Let 𝑛 and 𝑛 be the number of grid-
points in the subdomain Ω and Ω respectively such that 𝑛 +𝑛 > 𝑛 (overlapping
subdomains). We denote the index sets of interior points in the subdomain Ω and
Ω by 𝐼 and 𝐼 . Let 𝐴 ∈ ℝ × be the coefficient matrix given by

where for 𝑖 = 1, 2, 𝐴 ∈ ℝ × denotes (local) coupling in the subdomain while
𝐴 ( ) ∈ ℝ × ( ) denotes (global) coupling across the subdomains. Overlapping
in the diagonal block matrices are shown using the box.

To define the local coupling sub matrices we need to define the restriction op-
erators 𝑅 ∶ ℝ → ℝ such that for 𝑖 = 1, 2

{𝑅 𝑣} = {𝑣 , if 𝑗 ∈ 𝐼
0, otherwise.
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From the above definitions of 𝑅 and 𝐴 we can write,
𝐴 = 𝑅 𝐴𝑅 , 𝐴 = 𝑅 𝐴𝑅 .

Algorithm 2 Multiplicative Schwarz Procedure

1: procedure MSM(𝑢( ))
2: for 𝑘 = 1, 2, ... until convergence do
3: 𝑢( ) = 𝑢( ) + 𝑅 𝐴 𝑅 (𝑓 − 𝐴𝑢( )) ⊳ Subdomain 1 correction
4: 𝑢( ) = 𝑢( ) + 𝑅 𝐴 𝑅 (𝑓 − 𝐴𝑢( )) ⊳ Subdomain 2 correction
5: end for
6: return 𝑢( ) ⊳ Converged solution
7: end procedure

4.3. Additive Schwarz Method
Additive Schwarz Method (ASM) solves the total problem approximately by splitting
it into smaller domains, solving subproblems on these subdomains and adding the
results. Since ASM is suitable in parallel computers, it has gained popularity re-
cently.

Algorithm 3 Additive Schwarz Procedure

1: procedure ASM(𝑢( ))
2: for 𝑘 = 1, 2, ... until convergence do
3: 𝑢 = 𝑅 𝐴 𝑅 (𝑓 − 𝐴𝑢( )) ⊳ Subdomain 1 correction
4: 𝑢 = 𝑅 𝐴 𝑅 (𝑓 − 𝐴𝑢( )) ⊳ Subdomain 2 correction
5: 𝑢( ) = 𝑢( ) + 𝑢 + 𝑢 ⊳ Add the subdomain corrections
6: end for
7: return 𝑢( ) ⊳ Converged solution
8: end procedure

The above algorithm can be re-written as

𝑢( ) = 𝑢( ) +𝑀 (𝑓 − 𝐴𝑢( )) (4.6)

For 2 subdomains, 𝑀 = 𝑅 𝐴 𝑅 + 𝑅 𝐴 𝑅 .

ASM preconditioner is same as block Jacobi preconditioner. If Ω1 ∩ Ω2 = ∅, the
block-Jacobi preconditioner can be defined as:

𝑀 = [𝐴 0
0 𝐴 ]
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In algorithm 3, corrections in both subdomains are independent, so this method
suits well for parallelism. For example processor 𝑃 updating 𝐼 indexes, and proces-
sor 𝑃 updating 𝐼 indexes can work in parallel to produce the subdomain correction
terms. In the non-overlapping case, the addition of subdomain corrections to 𝑢( )

requires adding different subdomain components of the vector to obtain 𝑢( ). In
the presence of an overlap, the corrections obtained from different subdomains
(processors) are summed up to form the vector 𝑢( ).

Although the Additive Schwarz(AS) method is suitable for parallelism, it con-
verges slowly. Various techniques are employed to make the convergence faster
such as, introducing (global coupling) and introducing Krylov acceleration (CG-
Schwarz method in the PKS package).

In the Krylov acceleration approach, the Krylov subspace methods are used to
solve the LSE and the AS method is used as a preconditioner. To generalize, we in-
crease the number of subdomains from 2 to 𝑠. The local subdomain 𝐴 matrices and
restriction matrices are defined similar to 2 subdomain case. In the PCG method,
𝑧( ) = 𝑀 𝑟( ) (line 4 in the PCG algorithm 1 in chapter 3) can be calculated
in parallel using the algorithm 4 by all 𝑠 subdomains. All the 𝑠 subdomains have lo-
cal vector 𝑧( ) and the remaining steps (lines) of the PCG algorithm are executed.

Algorithm 4 Additive Schwarz as a preconditioner

1: procedure ASP(𝑟)
2: for 𝑖 = 1, 2, ..., 𝑠 do ⊳ Subdomain i correction
3: 𝑐 = (𝑅 𝐴 𝑅 )𝑟
4: end for
5: 𝑐 = 𝑐 + 𝑐 + ... + 𝑐
6: return 𝑀 𝑟 ⊳ Preconditioning step in PCG
7: end procedure

Rewriting equation 4.6 we get

𝑢( ) = 𝑢( ) + (𝑅 𝐴 𝑅 + 𝑅 𝐴 𝑅 )(𝑓 − 𝐴𝑢( )) (4.7)

4.3.1. Overlapping AS Method
To increase the convergence of ASM, we introduce global coupling. The global
coupling can be increased by introducing the overlap between neighboring subdo-
mains. This introduce extra non-zero entries in subdomain matrices 𝐴 and 𝐴 .
Overlapping introduces extra overhead because of duplicate computations, hence
minimal overlapping is recommended for Schwarz DD methods. In the context of
parallel programming, overlapping increases communication between the proces-
sors. Equation 4.7 can be simplified using the notation from figure 4.2 to obtain
4.8.
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(4.8)
Limitations of overlapping AS Method

• The above iterative method can be seen as a fixed point iteration, and it
turns out, that spectral radius(𝜌) 1 of iteration matrix is 1. This eigenvalue
corresponds to the overlap region (𝑎, 𝑏), so AS is not convergent in the overlap
(see Efstathiou [22]).

• In parallel programming context, when we assume that the update of each
subdomain is assigned to a process, only partial sums are computed by each
process in the overlap, so each process has to communicate its partial sums
to produce the global sum. This adds substantial overhead.

We have investigated the ways to overcome the above limitations and found out
that restrictive overlapping can be used (see Cai [19]).

4.3.2. Restrictive Overlapping in AS Method
Let 𝑛 be total number of interior grid-points in Ω. Let ∼𝑛 and

∼𝑛 be the restricted

number of grid-points in the restricted subdomain
∼
Ω ∶ {1, 2, ..., 𝑐 − 1} and

∼
Ω ∶

{𝑐, ..., 𝑚 − 1} respectively such that ∼𝑛 + ∼𝑛 = 𝑛 and
∼
Ω ∩

∼
Ω = ∅. We denote the

index sets of interior points in the restricted subdomains
∼
Ω and

∼
Ω by

∼
𝐼 and

∼
𝐼 .

Let 𝐴 ∈ ℝ × be the coefficient matrix given by

𝐴 = [𝐴 𝐴
𝐴 𝐴 ]

To define the local coupling sub matrices we need to define the restriction op-

erators
∼
𝑅 ∶ ℝ → ℝ

∼
such that for 𝑖 = 1, 2

{
∼
𝑅 𝑣} = {𝑣 , if 𝑗 ∈

∼
𝐼

0, otherwise.

1Supremum among the absolute values of the elements in its spectrum.
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Restrictive Additive Schwarz (RAS) method as a preconditioner is defined in the
equation 4.9.

𝑀 =
∼
𝑅 𝐴 𝑅 +

∼
𝑅 𝐴 𝑅 . (4.9)

From equation 4.6 and 4.9 we obtain

𝑢( ) = 𝑢( ) + (
∼
𝑅 𝐴 𝑅 +

∼
𝑅 𝐴 𝑅 )(𝑓 − 𝐴𝑢( )) (4.10)

We define Prolongation matrices 𝑃 ∈ ℝ( )×( ) and 𝑃 ∈ ℝ( )×( ) where
𝐼 ∈ ℝ( )×( ) and 𝐼 ∈ ℝ( )×( )

𝑃 = [𝐼0 ] , 𝑃 = [0𝐼 ] (4.11)

Now it can be simplified using the notation from figure 4.2 as,

𝑢( ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢( )

⋮
⋮

𝑢( )

𝑢( )

⋮
⋮

𝑢( )

⋮
⋮
⋮

𝑢( )

𝑢( )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+𝑃
∼
𝑅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐴

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑓
⋮
𝑓
⋮

𝑓
𝑓 −

( )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢( )

⋮
𝑢( )

⋮
𝑢( )

𝑢( )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+𝑃
∼
𝑅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐴

⎡
⎢
⎢
⎢
⎢
⎣

𝑓 −
( )

𝑓 ⋮
𝑓
⋮

𝑓

⎤
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑢( )

𝑢( )

⋮
𝑢( )

⋮
𝑢( )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.12)
Remarks about RAS Method

• In Parallel Programming context, assume one process updates grid points of
one subdomain. RAS does not involve partial sum calculations. Since process
1 updates the grid points in restricted subdomain 1 and process 2 updates
the grid points in restricted subdomain 2. So process 1 does not have to
communicate with process 2. Thus we can save communication among the
processes.

• The spectral radius in the overlap region is less than 1 (see Efstathiou [22]).
So RAS converges in the overlap also.

• It has one downside that the matrix 𝑀 is not symmetric, so if we apply RAS
as a preconditioner the matrix 𝑀 𝐴 is no more symmetric. So we cannot
apply RAS preconditioner for symmetric Krylov solvers.
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4.4. Techniques to speed up the Solver
We suggest different ways to speedup the Krylov Solver. When looking at that
problem from Parallel Computing point of view, we note that when we increase
the number of subdomains(processors), the solver iteration does not remain fixed
[26] . It hampers the scalability of the solver. To remedy this various methods
are presented and compared (see Nabben [27]). We present the ideas behind the
Deflation and coarse grid correction here. However, deflation method has been
found superior (in iterations) than coarse grid correction in the paper by Nabben
and Vuik. Therefore, we implement only Deflation in the PKS package.

4.4.1. Deflation
We have implemented Deflation method in PKS. Deflation is described in detail in
the chapter 5.

4.4.2. Coarse Grid Correction
As we increases the number of subdomains, it takes more steps to propagate the
information across the subdomain interfaces, so it takes more iterations to con-
verge. Also, the small eigenvalues of 𝐴 represent some global information which
has to handled efficiently [6]. A classical remedy is to introduce coarse grid cor-
rection (CGC) that couples all the subdomains at each iteration of the iterative
method. In this approach, the correction obtained from coarse grid is added to
the preconditioner (𝑀 ). CGC preconditioner is also known as two level Additive
Schwarz preconditioner. For 2 subdomains it is defined in equation 4.13. Symbols
and operators have been defined in chapter 5 and this chapter are consistent for
e.g. 𝐸 = 𝑍 𝐴𝑍.

𝑀 = 𝑍𝐸 𝑍 + 𝑅 𝐴 𝑅 + 𝑅 𝐴 𝑅 . (4.13)

Remarks about CGC Preconditioner

• The structure of two level AS preconditioner is same as that of one level AS
preconditioner. So it’s implementation is straight forward, given the imple-
mentation of one level AS preconditioner.

• In the two level Schwarz method only local subproblems are solved in parallel
and 𝑍𝐸 𝑍 is global in nature.

• Extra overhead of inverting 𝐸 ∈ ℝ × in 𝑍𝐸 𝑍 is not that much compared
to gain in iterations [21].

In the equation 4.13, 𝑍𝐸 𝑍 is the correction term obtained from coarse grid.
It contributes to both subdomain terms. 𝑍 can be constructed using Nicolaides
coarse space [21].

𝑍 = 𝑅 𝐷 𝑅 𝑣, 𝑖 = 1, 2 (4.14)

where 𝐷 ∶ ℝ → ℝ is a diagonal matrix and 𝑣 ∈ ℝ is a vector with all 1’s. 𝑛 is
number of grid points in 𝑖− th subdomain.
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4.5. Connection with the PKS package
In the PKS package, an Schwarz domain decomposition method is implemented
with the following properties [11]:

• Parallel Additive Schwarz (AS) method (also called block Jacobi precondi-
tioner) is used in the PKS package. Therefore the PCG solver can also be
called as CG-Schwarz method.

• In the preconditioning step, the sub-domain solutions are obtained by solving
the linear system inaccurately using ILU(0).

• PKS only supports Dirichlet interface transmission conditions.

• PKS has been parallelized using MPI (Message Passing Interface) parallel pro-
gramming paradigm. It also supports OpenMP. However, in all the numerical
experiments done in chapter 6 and 7, we use one thread in OpenMP.

• Load balance: PKS support two types of domain decomposition (partitioning)
methods: Uniform Partitioning and Recursive Coordinate Bisection (RCB) par-
titioning [18]. Since there are so many inactive cells in the model (refer figure
4.3 ), the uniform partitioning can create some idle processes. It will suffer
from the load imbalance. Therefore RCB is used for the domain decomposition
to provide optimal load distribution in all the processes .

• One subdomain is assigned to one MPI process in all the numerical experi-
ments done in chapter 6 and 7. In this way PKS is scalable regarding problem
size and hardware.

• Exchanging data between the subdomains is done by MPI subroutines, and
typically involves communication for each inner CG iteration, ensuring a tight
coupling: local (point-to-point) communication for the vector updates and
global (all-reduce) communications for computing interior products and evalu-
ating stopping criteria. Since this is done for each inner iteration the expected
speed-up in computational time with PKS largely depends on MPI (latency and
bandwidth).

4.6. Grid Numbering in PKS
For a domain in figure 4.4, we illustrate the active cell with white background and
inactive cells with gray background. In this domain , two types of numbering in the
computational grid are defined: Global structured numbering and Global unstruc-
tured numbering.

Structured numbering is defined for the whole domain that includes active and
inactive cells (refer 4.4a). Therefore, it does not differentiate the presence of in-
active cells. We call it structured numbering since it is defined for the cells with
regular connectivity. Unstructured numbering is defined only for the active cells
in an irregular subdomain (refer 4.4b). The inactive cells are marked with X. The
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Figure 4.3: Two domain decomposition methods for the steady state NHI model for 128 processes. Left:
uniform partitioning; right: Recursive Coordinate Bisection partitioning [33].

purpose of defining unstructured numbering is because we solve for head values
only at the active cells. Therefore, the indexes in PKS data structures, such as ma-
trix 𝐴 and other vectors, are defined using unstructured numbering. All the entries
in linear and constant deflation vectors (refer chapter 5) are also defined only for
active cells using unstructured numbering .

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

(a) Structured

X 1 2 3 4 X
X 5 6 7 8 X
X 9 10 11 12 X
X 13 14 15 16 X

(b) Unstructured

Figure 4.4: Global grid numbering for × × grid cell

Since all the MPI processes solves on their subdomains locally, the local num-
bering needs to be defined in all the subdomains. Furthermore, near the boundary,
each subdomain requires information from cells in neighboring subdomain (due to
7 point stencil), for example in order to carry out the matrix-vector multiplication.
Therefore, they are also included in the local grid numbering. We call these extra
cells as GHOST (filled in orange in figure 4.5 and 4.6 ) cells. Like figure 4.4, two
types of grid numbering are defined locally on each subdomain: structured local
numbering and unstructured local numbering.

Structured local numbering: Like figure 4.4a, structured numbering is defined
for the whole domain that includes active and inactive cells. Assume that
for a subdomain with local index of the cell (𝑖, 𝑗, 𝑘), number of columns and
rows in the matrix representing local grid domain are 𝑁𝐶𝑂𝐿 and 𝑁𝑅𝑂𝑊
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respectively. We define the structured index numbering StIndex as follows:

StIndex = 𝑁𝐶𝑂𝐿 ∗ 𝑁𝑅𝑂𝑊 ∗ (𝑘 − 1) + 𝑁𝐶𝑂𝐿 ∗ (𝑖 − 1) + 𝑗

For the domain decomposition of the figure 4.4a with two subdomains Ω and
Ω , structured local numbering has been illustrated in the figure 4.5.

Unstructured local numbering: Unstructured local numbering is used to define
the indexes for local data structures in the active cells. All the entries in
linear and constant deflation vectors are defined only for active cells using
unstructured numbering locally. For the domain decomposition of the figure
4.4b with two subdomains Ω and Ω , unstructured local numbering has been
illustrated in the figure 4.6. The inactive cells are marked with X.

ghost
cells

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

(a) Sub-domain

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

(b) Sub-domain

Figure 4.5: Structured local grid numbering

ghost
cells

X 1 2 3
X 4 5 6
X 7 8 9
X 10 11 12

(a) Sub-domain

1 2 3 X
4 5 6 X
7 8 9 X
10 11 12 X

(b) Sub-domain

Figure 4.6: Unstructured local grid numbering

Index conversions between structured and unstructured local grid numbering is
required for internal computations in the PKS package. Therefore two data struc-
tures are defied to convert the indexes: IXMAP and NODEC.

IXMAP is a one dimensional array used to convert a unstructured index to struc-
tured index. GHOST cells needs to be differentiated with the other interior cells
in order to successfully compute the interior products of vectors. This is done by
returning negative values corresponding to the GHOST cells in the IXMAP array.
This mapping is only needed for the active cells so it is not defined for the inactive
cells. For e.g., IXMAP(4)=6 for subdomain Ω in figure 4.6a.
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NODEC is a three dimensional array used to convert a structured index to un-
structured index. It returns zero for the inactive cells. It does not differentiate the
ghost cells. For e.g., NODEC(2,2,1)=4 for subdomain Ω in figure 4.5a.



5
Deflation Preconditioning

5.1. Introduction
It is known that the rate of convergence of an iterative method directly depends
upon the condition number of matrix 𝐴 given by 𝜆 /𝜆 , where 𝜆 is the largest
eigenvalue and 𝜆 is the smallest eigenvalue. To improve convergence, we need
to decrease the condition number of 𝐴. It can be achieved either by increasing
𝜆 or by reducing 𝜆 . In NHI model matrix 𝐴 (refer to matrix 𝐴 in the appendix),
there are extremely small eigenvalues. In DD context, these small eigenvalues of
𝐴 represent some global information which has to handled efficiently [6].

With an aim to remove the harmful eigenvectors, we define a deflation subspace
constructed by the span of eigenvectors corresponding to small eigenvalues. We
deflate the deflation subspace from the solution subspace by projecting the harmful
eigendirections out of the residual. Thus we remove these extreme small eigenval-
ues from the linear system. In practice, the smallest eigenvalues almost become
zero. Thus the condition number decreases since the new smallest eigenvalue (zero
eigenvalues are not counted) is larger than the original smallest eigenvalue. We
solve this new, well-conditioned linear system. It is expected to converge in fewer
iterations than the original system. We consider the Deflation preconditioner in the
form of a projector 𝑃 used by Vuik [35].

The structure of this chapter is as follows. We start by explaining the basics
of deflation in 5.2. In section 5.3, we present different methods to choose the
deflation vectors. The section 5.4 outlines the Deflation algorithm. In the section
5.5, we give the implementation aspects of the Deflation algorithm. At the end of
this chapter: section 5.6, we present the how Deflation has been implemented in
the PKS package.

45
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5.2. Deflation Basics
Let us consider the linear system again given in equation 5.1

𝐴𝑢 = 𝑓 (5.1)

We assume 𝐴 ∈ ℝ × to be symmetric positive definite (SPD) matrix since a SPD
matrix arises in the Control Volume Finite Difference Discretization in MODFLOW.
We define a deflation matrix 𝑍 ∈ ℝ × , where 𝑚 << 𝑛 in practice. The columns in
𝑍 are called deflation vectors and their span is the deflation subspace. The deflation
vectors are linearly independent to each other, hence the rank of 𝑍 is 𝑚. We also
define a matrix 𝐸 ∈ ℝ × such that 𝐸 = 𝑍 𝐴𝑍.

We define an operator 𝑃 = 𝐴𝑍𝐸 𝑍 . We verify that 𝑃 is a projector since,

𝑃 = 𝐴𝑍𝐸 𝑍 ∗ 𝐴𝑍𝐸 𝑍 = 𝐴𝑍𝐸 𝐸𝐸 𝑍 = 𝐴𝑍𝐸 𝑍 = 𝑃

The projector 𝑃 projects an input vector 𝑣 ∈ ℝ to the deflation subspace.
Thus the range of 𝑃 is the deflation subspace. However, we are not interested in
the deflation subspace. We are interested in the subspace that is orthogonal to
the deflation subspace, i.e., the null space of 𝑃. Fortunately, it is not that hard to
accomplish. The complimentary projector to 𝑃, 𝑃 projects exactly on the null space
of 𝑃 [31]. It is defined as

𝑃 = 𝐼 − 𝑃 = 𝐼 − 𝐴𝑍𝐸 𝑍 (5.2)

Let 𝒵 be the subspace formed by spanning the columns of 𝑍. From equation
5.3 we see that, the null space of 𝑃 𝐴 is the subspace 𝒵. We also know that
all the harmful eigendirections belong to the subspace 𝒵. Thus multiplying these
eigendirections with the operator 𝑃 𝐴 yields a zero vector. Therefore, the null space
𝒵 never enters into the iteration, and the corresponding zero eigenvalues do not
hamper the CG convergence. Practically, 𝑚 small eigenvalues of 𝑃 𝐴 becomes zero
[23]. Therefore, the condition number of 𝑃 𝐴 becomes 𝜆 /𝜆 which is smaller
than the condition number of 𝐴 i.e. 𝜆 /𝜆 .

𝑃 𝐴𝑍 = (𝐼 − 𝐴𝑍𝐸 𝑍 )𝐴𝑍,
= 𝐴𝑍 − 𝐴𝑍𝐸 𝐸,
= 0.

(5.3)

Now we define an another projector 𝑃

𝑃 = 𝑃 = 𝐼 − 𝑍𝐸 𝑍 𝐴, it follows 𝑃 𝐴 = 𝐴𝑃 . (5.4)

The solution vector 𝑢 can be seen as summation of projection of 𝑢 on projector
𝑃 and its complementary projector 𝐼 − 𝑃 given by

𝑢 = (𝐼 − 𝑃 )𝑢 + 𝑃 𝑢. (5.5)
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The first term in the equation 5.5 can be computed immediately since

(𝐼 − 𝑃 )𝑢 = 𝑍𝐸 𝑍 𝐴𝑢 = 𝑍𝐸 𝑍 𝑓

To compute the second term in the equation 5.5, we solve the deflated system
given in equation 5.6. �̃� stands for the solution of the deflated system. It is easier
to see that 𝑃 𝑢 = 𝑃 �̃� [20]. So we compute 𝑃 �̃� and substitute it as second term in
equation 5.5. Adding the first and second term we obtain 𝑢.

𝑃 𝐴�̃� = 𝑃 𝑓 (5.6)

We have general remarks about the Deflation method:

• This method requires additional computation of 𝑍𝐸 𝑍 𝑏 but since usually
𝑚 << 𝑛 and 𝐸 ∈ ℝ × , the overhead is minimal.

• 𝑃 𝐴 is singular in the deflated system 5.6 since 𝑚 eigenvalues are zero. How-
ever, it is consistent since the same projection 𝑃 is applied to both sides of
the nonsingular system, 𝐴𝑢 = 𝑓. Hence �̃� can be obtained by solving the
equation 5.6 [27].

• The matrix 𝑃 𝐴 is singular so �̃� in equation 5.6 can contain arbitrary compo-
nents in the null space 𝒵 and is not unique. However, since the projected
solution 𝑃 �̃� is unique, the arbitrary components of null space 𝒵 in �̃� does not
create any problem [23].

5.3. Choosing Deflation Vectors
The choice of deflation vector is crucial for the success of the deflation method.
Essentially, we are interested in removing eigenvalues corresponding to 𝑚 small
eigenvalues from the solution subspace. Naturally, the thought arises to choose
the eigenvectors as columns in the 𝑍 matrix. In this case, the proof of the fact that
𝑚 eigenvalues become zero can be found in section 5.2 in [29]. In particular, the
matrix 𝑍 ∈ ℝ × should satisfy the following properties:

• The construction of 𝑍 should be inexpensive and problem independent.

• The span of columns in 𝑍 should approximate the eigenspace corresponding
to the 𝑚 small eigenvalues as closely as possible.

• The matrix 𝑍 should be chosen such that 𝐸 = 𝑍 𝐴𝑍 is non-singular since
the matrix E needs to be decomposed into lower(𝐿) and upper(𝑈) triangular
matrices.

• The more sparse the 𝑍 is, the lesser time it will take to perform the compu-
tation of subroutines involving 𝑍 matrix. It helps to lower the increase in the
wall-clock time per PCG iteration.
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• 𝑍 should be chosen such that the Deflation method does not cause too much
overhead in wall clock time per PCG iteration.

• Communication of deflation vectors in 𝑍 to the neighboring subdomains should
not be costly.

• Storing 𝑍 should be memory efficient.

The deflation vectors 𝑍 can be constructed in different ways such as eigenvalue
deflation [29], physics-based deflation, algebraic deflation vectors. Computation of
eigenvectors is costly for large matrices, so other techniques are used to obtain de-
flation vectors. In this section, we approximate the eigenvectors using constant and
linear deflation vectors. Constructing 𝑍 with constant deflation vectors is straight-
forward to understand and implement. It is also known as subdomain deflation,
and references can be found in Frank [24] and Nicolaides [28].

5.3.1. Constant Deflation Vectors
As mentioned before, the eigenvectors are expensive to compute. Hence, we need
to think of other possible ways to construct 𝑍 satisfying the requirements from
section 5.3, whose columns approximates the harmful eigenspace. One possible
approach is to approximate eigenvectors with constant deflation vectors in each
subdomain. Each subdomain Ω has a constant deflation vector 𝑧 defined as:

𝑧 = {1, 𝑥 ∈ Ω
0, 𝑥 ∉ Ω 𝑗 = 1, 2, ...𝑚 (5.7)

The matrix 𝑍 ∈ ℝ × is constructed using the above deflation vectors. The
structure of 𝑍 is shown in equation 5.8 for a general one dimensional (1D) domain
where each column represents one subdomain. We can see that the entries in
each column are one at grid index of its corresponding subdomain and zero at grid
indexes of other subdomains.

𝑍 =
⎡
⎢
⎢
⎣

𝑧 𝑧 ⋯ 𝑧 ⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤
⎥
⎥
⎦

(5.8)

Now we want to see how well a harmful eigenvector is approximated using con-
stant deflation vectors in different subdomains. For illustration, we take a 1D Pois-
son problem with homogeneous Dirichlet boundary conditions on [0, 1] and using
128 grid intervals. We plot the eigenvector corresponding to smallest eigenvalue in
the figure 5.1. We approximate this eigenvector using 4 and 16 constant deflation
vectors. We observe that we can approximate it in a better way using 16 deflation
vectors instead of using 4 deflation vectors. This illustration gives us an indication
that we can expect the Deflation method to work better for a higher number of
subdomains. Since in all of our experiments in chapter 6 and 7, we use one MPI
process for one subdomain, we expect that the deflation method works better with



5.3. Choosing Deflation Vectors

5

49

the higher number of processes. Throughout this report, we use the word subdo-
main and process interchangeably.

(a) (b)

Figure 5.1: Approximation of eigenvector with smallest eigenvalue . using constant deflation vectors
in 1D Poisson Problem

Ω Ω
𝛼

1 2 3 4 5 6 7 8

𝛽

Figure 5.2: 1D grid to illustrate deflation vectors

Now we give an example illustrating the deflation vectors. In the figure 5.2, we
have two subdomains, each containing 4 grid points. The local constant deflation
vectors 𝑧 , where 𝑗 = 1, 2 and global Deflation matrix 𝑍 are defined as

𝑧 =
⎡
⎢
⎢
⎢
⎣

1
1
1
1
0

⎤
⎥
⎥
⎥
⎦

, 𝑧 =
⎡
⎢
⎢
⎢
⎣

0
1
1
1
1

⎤
⎥
⎥
⎥
⎦

, 𝑍 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The colors used above are consistent with the figure 5.2.

5.3.2. Linear Deflation Vectors
Constant deflation vectors provide a rough approximation to eigenvector corre-
sponding to the small eigenvalue, so these eigendirections are not completely can-
celed from the solution subspace. Hence, we approximate these eigenvectors with
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linear deflation vectors [32]. Linear deflation vectors provide a better approximation
to these eigenvectors and are expected to cancel the harmful eigendirections more
accurately. We illustrate this behavior in the figure 5.3 for 4 subdomain (deflation
vectors) case.

(a) Constant deflation vectors (b) Linear deflation vectors

Figure 5.3: Approximation of eigenvector with smallest eigenvalue . using deflation vectors in 1D
Poisson Problem

(a) linear deflation vectors (b) Linear deflation vectors

Figure 5.4: Approximation of eigenvector with smallest eigenvalue . using linear deflation vectors in
1D Poisson Problem

As in the case of constant deflation vectors, more linear deflation vectors gives
a better approximation to the harmful eigenvector. It has been illustrated in the
figure 5.4.

The harmful eigenvector is approximated in using notation from figure 5.2, the
local constant deflation vectors 𝑧 , 𝑗 = 1, 2 and global matrix 𝑍 are defined as
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𝑧 =
⎡
⎢
⎢
⎢
⎣

1 1
1 1
1 3
1 4
0 0

⎤
⎥
⎥
⎥
⎦

, 𝑧 =
⎡
⎢
⎢
⎢
⎣

0 0
1 1
1 2
1 3
1 4

⎤
⎥
⎥
⎥
⎦

, 𝑍 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
0 0 1 1
0 0 1 2
0 0 1 3
0 0 1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We observe that each subdomain 𝑖 = 1, 2 has two deflation vectors per subdo-
main. The first vector is constant and the second vector is varying linearly in the
𝑥-direction. Since the grid is one-dimensional, two vectors can approximate the
eigenvector correctly. In higher dimensions, we need more linear deflation vectors
to approximate the eigenvector. In 2D, we need an extra deflation vector varying
linearly in the 𝑦-direction, so in total, we need three deflation vectors per subdo-
main. In 3D, we need two additional deflation vectors varying linearly in the 𝑦 and
𝑧-direction, so in total, we need four deflation vectors per subdomain. In general
for 𝑑-dimensional domain, we need 𝑑+1 deflation vectors per subdomain. In these
vectors, one vector is constant and the each of remaining 𝑑 deflation vector varies
linearly in one direction and constant in other 𝑑 − 1 directions.

Compared to the constant deflation vectors, Linear deflation vectors approxi-
mate the harmful eigenvectors more accurately, but it comes at an extra cost. Lin-
ear deflation vectors create more deflation overhead than constant deflation vectors
since the 𝐸 matrix has grown from NRPROC to 𝑑 ×NRPROC, where NRPROC is the
number of processes/subdomains.

5.4. Deflation algorithm
In this section, we define the Deflation algorithm. The flow of explanation of the
algorithm is similar to the Deflation algorithm in [29].

Using initial solution vector 𝑢( ), the original LSE 𝐴𝑢 = 𝑓 can be written as

𝐴𝑥 = 𝑟( ), where 𝑥 = 𝑢 − �̃�( ), 𝑟( ) = 𝑓 − 𝐴𝑢( ) (5.9)

We use ∼ symbol to denote the vectors obtained in the process of solving
the deflated system given in equation 5.6. Using initial solution vector �̃�( ) =
𝑢( ), i.e. �̃�( ) = 0, the deflated system is written as

𝑃 𝐴�̃� = 𝑃 𝑟( ), where �̃� = �̃� − 𝑢( ), 𝑟( ) = 𝑓 − 𝐴𝑢( ) (5.10)

We aim to solve for 𝑥 in the original system given in equation 5.9. We do not
answer it directly but solve for �̃� in the deflated system given in equation 5.10 as
the condition number of 𝑃 𝐴 has reduced after removing the extreme small eigen-
values in the matrix 𝐴.
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Using equation 5.5 for 𝑥, we project the 𝑥 on 𝑃 and its complementary projector
𝐼 − 𝑃 as

𝑥 = (𝐼 − 𝑃 )𝑥 + 𝑃 𝑥
= (𝐼 − 𝑃 )𝑥 + 𝑃 �̃�
= (𝐼 − 𝑃 )(𝑢 − 𝑢( )) + 𝑃 �̃�
= 𝑍𝐸 𝑍 𝐴𝑢 − 𝑍𝐸 𝑍 𝐴𝑢( ) + (𝐼 − 𝑍𝐸 𝑍 𝐴)�̃�
= 𝑍𝐸 𝑍 (𝑓 − 𝐴𝑢( )) + (𝐼 − 𝑍𝐸 𝑍 𝐴)�̃�
= 𝑍𝐸 𝑍 𝑟( ) + (𝐼 − 𝑍𝐸 𝑍 𝐴)�̃�

(5.11)

Since initial residual vector 𝑟( ) is known at the start of PCG algorithm, the first
term in 5.11 can be easily computed. To compute, the second term we need to
solve the LSE given in 5.10.

Now we define 𝑞 and 𝑞 as

𝑞 ∶= 𝐸 𝑍 𝑟( ), 𝑞 ∶= 𝐸 𝑍 𝐴�̃�
We substitute 𝑞 and 𝑞 in 5.11 to obtain 5.12.

𝑢 = 𝑍(𝑞 − 𝑞 ) + �̃� + 𝑢( ) (5.12)

In order to apply the deflation technique in the PCG algorithm 1, we need to com-
pute 𝑞 , �̃� and 𝑞 . We call deflation enabled PCG algorithm as DPCG algorithm. The
DPCG algorithm requires following additional work compared to the PCG algorithm:

• Computation of 𝑞 at the beginning of PCG algorithm.

• Computation of �̃� by solving the deflated system 5.10.

• Computation of 𝑞 by using �̃� at the end of PCG algorithm.

The additional work in DPCG is carried out in following three phases:

• Deflation Pre-Processing Phase or Deflation Init,

• Deflation Run-Time Phase,

• Deflation Post-Processing Phase or Deflation End.

5.4.1. Deflation Pre-Processing Phase
The first part of additional work in called as deflation pre-processing phase. We
will also call this phase as Deflation Init in this report. It is carried out before the
first CG iteration. In this phase, the required initial conditions to solve the deflated
linear system given in equation 5.10 are set. We assume that initial solution of
deflated system is zero, i.e �̃�( ) = 0. The initial residual of the deflated system is
required in the first DPCG iteration. Using equation 5.10, it is calculated as
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�̃�( ) ∶= 𝑃 𝑟( ) − 𝑃 𝐴�̃�( )

= 𝑃 𝑟( ) (since �̃�( ) = 0)
= (𝐼 − 𝐴𝑍𝐸 𝑍 )𝑟( )

= 𝑟( ) − 𝐴𝑍𝐸 𝑍 𝑟( )

= 𝑟( ) − 𝐴𝑍𝑞

(5.13)

The 𝐴𝑍 matrix in 5.13 is required in the deflation run time phase, so we save
it in the deflation pre-processing phase to reduce the redundant computation. The
same 𝐴𝑍 is used later the deflation run time phase.

To compute 𝑞 in 5.13, the following linear system needs to be solved.

𝐸𝑞 = 𝑍 𝑟( ) (5.14)

When we use constant deflation vectors, structure of 𝐸 is given by

𝐸(𝑖, 𝑗) = is {
≠ 0, if 𝑖 = 𝑗,
≠ 0, if 𝑖 and 𝑗 are neighboring subdomains,
= 0, otherwise.

(5.15)

The dimension of 𝐸 depends upon the number of deflation vectors per sub-
domain. For 𝑑 deflation vectors per subdomain and 𝑚 number of subdomains,
𝐸 ∈ ℝ ∗ × ∗ . The maximum value of 𝑑 can be four when the domain is three
dimensional. Our maximum number of subdomains is in the order of 100, so the
maximum size of 𝐸 is in the order of 400. This size is not large, so we can use a
direct method to solve the LSE 5.14. For higher number of subdomains, we observe
from 5.15 that the matrix 𝐸 is sparse. Therefore, we use sparse 𝐿𝑈 factorization to
solve the LSE 5.14.

For a simple case in CDPCG method, we investigate the structure of 𝐸. We
notice that a non-directed graph arising from the domain decomposition gives the
construction of 𝐸. Hence, the matrix 𝐸 is symmetric. For symmetric 𝐸, the sparse
Cholesky Factorization [2] is cheaper than sparse LU Factorization since it exploits
the symmetry of 𝐸. However, since the matrix 𝐸 is small, the solution of LSE 5.14
is not time-consuming, so we stick to the LU sparse solve.

The right-hand side in 5.14 is constructed by taking the dot products of the de-
flation vectors with the initial residual of the original system. Each subdomain (or
process) stores the local dot products. These local dot products are gathered to
form the term 𝑍 𝑟( ). Each process (subdomain) has access to complete 𝐸 matrix
and 𝑍 𝑟( ), so the same system 5.14 is solved by each process in parallel. We could
also solve the linear system by one process and broadcast 𝑞 to other processes,
but we need further communication in this case. Since the linear system is not that
large, we assume that the communication is more expensive than the computation
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in solving the linear system.

Once the lower triangular matrix 𝐿, the upper triangular matrix 𝑈 and the vector
𝑍 𝑟( ) are constructed, we solve the 5.14 with forward and backward substitution
in parallel by each process.

5.4.2. Deflation Run-Time Phase
The second part of additional work in called as deflation runtime phase. This phase
is introduced since we observe that introduction of Deflation has changed the linear
system as

𝐴𝑥 = 𝑟( ) −−−−−−→ 𝑃 𝐴�̃� = 𝑃 𝑟( ) (5.16)

We notice that the matrix has changed from 𝐴 to 𝑃 𝐴. Therefore, the matrix
vector multiplication has changed from 𝑣( ) to 𝑃 𝑣( ) in the DPCG algorithm as given
in 5.17. We define 𝑞( ) ∶= 𝐸 𝑍 𝑣( ) to simplify 5.17.

𝑃 𝑣( ) = 𝑣( ) − 𝐴𝑍𝐸 𝑍 𝑣( )

= 𝑣( ) − 𝐴𝑍𝑞( )
(5.17)

Now we need to compute 𝑃 𝑣( ) instead of 𝑣( ) in 𝑘th DPCG iteration. In the
Deflation Run time phase, we compute 𝑞( ) by solving the following linear system:

𝐸𝑞( ) = 𝑍 𝑣( ) (5.18)

We construct the vector 𝑍 𝑣( ) similarly as in deflation pre-processing phase.
We use the same lower triangular matrix 𝐿 and upper triangular matrix 𝑈 to solve
5.18. The 𝐴𝑍 matrix constructed in the deflation pre-processing phase is used in
5.17.

5.4.3. Deflation Post-Processing Phase
The last part of additional work in called as deflation post-prepossessing phase. We
will also call this phase as Deflation End in this report. In this phase, we calculate
the solution for the original problem 5.2 after solving the deflated system.

𝐸𝑞 = 𝑍 𝐴�̃� (5.19)

We obtain �̃� after solving the deflated system 5.10. We construct the vector
𝑍 𝐴�̃� similarly as in deflation pre-processing phase. We use the same lower trian-
gular matrix 𝐿 and upper triangular matrix 𝑈 to solve 5.19 for 𝑞 .

The obtained vectors �̃�, 𝑞 and 𝑞 after solving 5.2, 5.14 and 5.19 respectively,
are substituted in 5.12 to get the solution vector 𝑢 in the original linear system 5.2.
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Algorithm 5 Deflated PCG Algorithm

1: procedure DPCG(𝐴, 𝑓, 𝑢( ), 𝑡𝑜𝑙, 𝑘 ,𝑀, 𝑍)
2: 𝑟( ) = 𝑓 − 𝐴𝑢( ), k=1 ⊳ Initialization
3: if (deflation) then ⊳ Deflation pre-processing phase
4: �̃�( ) = 𝑢( )
5: 𝑢( ) = 0
6: Decompose 𝑍 𝐴𝑍 (𝑑 × LC, GC) = �̃��̃� ⊳ d=3 for NHI model in LDPCG
7: solve �̃��̃� = 𝑍 𝑟( ) (GC); �̃�𝑞 = �̃� ⊳ GC: Global communication
8: 𝑟( ) = 𝑟( ) − 𝐴𝑍𝑞 ⊳ LC: Local communication
9: end if
10: while (𝑘 < 𝑘 and ‖𝑟( )‖ > 𝑡𝑜𝑙) do
11: 𝑧( ) = 𝑀 𝑟( ) ⊳ Preconditioning with Additive Schwarz
12: if 𝑘 = 1 then
13: 𝑝( ) = 𝑧( )
14: else
15: 𝛽 = ( ( )) ( )

( ( )) ( )
16:
17: 𝑝( ) = 𝑧( ) + 𝛽 𝑝( ) ⊳ Search direction
18: end if
19: 𝑣( ) = 𝐴𝑝( )
20: if (deflation) then ⊳ Deflation run time phase
21: solve �̃��̃�( ) =𝑍 𝑣( ) (GC); �̃�𝑞( ) = �̃�( )
22: 𝑣( ) = 𝑣( ) − 𝐴𝑍𝑞( )
23: end if
24: 𝛼 = ( ( )) ( )

( ( )) ( )
25:
26: 𝑢( ) = 𝑢( ) + 𝛼 𝑝 ⊳ Iterate update
27: 𝑟( ) = 𝑟( ) − 𝛼 𝑣( ) ⊳ Residual update
28: 𝑘 = 𝑘 + 1
29: end while
30: k = k -1
31: if (deflation) then ⊳ Deflation post-processing phase
32: solve �̃��̃� = 𝑍 𝐴𝑢( ) (LC, GC); �̃�𝑞 = �̃�
33: 𝑢( ) = 𝑢( ) + �̃�( ) + 𝑍(𝑞 − 𝑞 )
34: end if
35: return 𝑢( ) ⊳ The converged solution
36: end procedure
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5.5. Implementation
In this section, we discuss the implementation details of deflation subroutines. As
defined in the algorithm 5, the deflation can be carried out in three phases using
following subroutines/functions. In red color we show how each subroutine is com-
puted in parallel and in red we mark communication detail across MPI processes.

• Deflation Init:

– Construction of 𝐴𝑍: local exchange of linear deflation vector across neigh-
boring subdomains,

– Construction of 𝐸 matrix using 𝐴𝑍: global communication of local 𝐸 using
MPI_Allgather,

– Sparse 𝐿𝑈 decomposition of 𝐸 matrix: same computation in parallel by
all MPI processes,

– Dot product to set the RHS of linear system solve: global communication
of local dot products using MPI_Allgather,

– Forward and backward substitution: same computation in parallel by all
MPI processes,

– Multiplication of 𝐴𝑍 with 𝑞 : individual computation by each MPI pro-
cesses,

– Residual and solution vector update: individual computation by each MPI
processes.

• Deflation Runtime:

– Dot product to set the RHS of linear system solve: global communication
of local dot products using MPI_Allgather,

– Forward and backward substitution: same computation in parallel by all
MPI processes,

– Multiplication of AZ with 𝑞( ) :individual computation by each MPI pro-
cesses,

– Vector 𝑣( ) update: individual computation by each MPI processes.
• Deflation End:

– Matrix vector multiplication individual computation by each MPI pro-
cesses involving local communication of the vector,

– Dot product to set the RHS of linear system to solve: global communication
of local dot products using MPI_Allgather,

– Forward and backward substitution: same computation in parallel by all
MPI processes,

– Multiplication of Z with 𝑞 : individual computation by each MPI pro-
cesses,
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– Two vector updates of solution vector 𝑢( ): individual computation by
each MPI processes .

We give implementation details of above subroutines in the serial and parallel
case for a 1D Poisson problem. Out of subroutines mentioned above, construction
of 𝐸 is the most complicated, so we show this with a simple example. For other
subroutines, we state the procedure but do not give an accurate example.

For simplicity we assume two subdomains, each containing three grid points as
shown in figure 5.5. Further we assume homogeneous Dirichlet boundary condi-
tions, i.e. 𝑢(𝛼) = 0 and 𝑢(𝛽) = 0. We approximate the harmful eigenvector using
one constant and one algebraic deflation vector per subdomain.

Ω Ω
𝛼

1 2 3 4 5 6

𝛽

Figure 5.5: Global grid numbering

5.5.1. Serial Implementation of E
The coefficient matrix 𝐴 (assuming ℎ = 1) and the Deflation matrix 𝑍 is given as

𝐴 =
⎛
⎜
⎜

⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

⎞
⎟
⎟

⎠

, 𝑍 = [𝑧 𝑧 𝑧 𝑧 ] (5.20)

We define the columns of the matrix 𝑍 as

𝑧 =
⎛
⎜
⎜

⎝

1
1
1
0
0
0

⎞
⎟
⎟

⎠

, 𝑧 =
⎛
⎜
⎜

⎝

1
2
3
0
0
0

⎞
⎟
⎟

⎠

for Ω ; 𝑧 =
⎛
⎜
⎜

⎝

0
0
0
1
1
1

⎞
⎟
⎟

⎠

, 𝑧 =
⎛
⎜
⎜

⎝

0
0
0
1
2
3

⎞
⎟
⎟

⎠

for Ω ; (5.21)

From equation 5.20 and 5.21, we obtain

𝐴𝑍 =
⎛
⎜
⎜

⎝

1 0 0 0
0 0 0 0
1 4 −1 −1
−1 −3 1 0
0 0 0 0
0 0 1 4

⎞
⎟
⎟

⎠

, 𝐸 = 𝑍 𝐴𝑍 = (
2 4 −1 −1
4 12 −3 −3
−1 −3 2 4
−1 −3 4 12

) . (5.22)
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5.5.2. Parallel Implementation of E
The subdomain Ω is processed by the process 𝑃 , where 𝑖 = 1, 2. From figure 5.6,
we notice that update of grid point 3 requires the information from grid point 4,
therefore ghost grid point 4 is allocated for process 𝑃 . Similarly, ghost grid point
3 is allocated for process 𝑃 .

𝑃 , Ω 𝑃 , Ω
𝛼

1 2 3 4 3 4 5 6

𝛽

Figure 5.6: Global grid numbering

Locally each process maintains local grid numbering as shown in the figure 5.7.
In this numbering, the ghost points (4 for 𝑃 and 1 for 𝑃 ) are also counted. Usually,
we differentiate the ghost points from non-ghost points with a flag. (called IXMAP
in PKS: refer section 4.6)

𝑃 , Ω 𝑃 , Ω
𝛼

1 2 3 4 1 2 3 4

𝛽

Figure 5.7: Local grid numbering

For the remaining part of this subsection, we will use the grid numbering from
figure 5.7. Locally for 𝑖 = 1 and 2, process 𝑃 has a matrix 𝐴 and a constant defla-
tion vector 𝑧 and a linear deflation vector 𝑧 . in the deflation vectors, 𝑐 denotes
constant and 𝑙 denotes linear in 𝑥-direction. All the deflation vectors have zero
value at ghost grid points.

The local matrices are given by

𝐴 = (
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

) for 𝑖 = 1, 2. (5.23)

The local deflation vectors are given by

𝑧 = (
1
1
1
0
) , 𝑧 = (

1
2
3
0
) for Ω ; 𝑧 = (

0
1
1
1
) , 𝑧 = (

0
1
2
3
) for Ω ; (5.24)
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From 5.23 and 5.24, we have

𝐴 𝑧 = (
1
0
1
−1
) , 𝐴 𝑧 = (

0
0
4
3
) for Ω ; 𝐴 𝑧 = (

−1
1
0
1
) , 𝐴 𝑧 = (

−1
0
0
4
) for Ω ;

(5.25)
Now we need to construct the matrix 𝐸 ∈ ℝ × . The first two rows of 𝐸 are

constructed by 𝑃 and remaining two rows by 𝑃 . The general structure of 𝐸 is given
as

𝐸 = [𝐸 𝐸
𝐸 𝐸 ] , 𝐸 ∈ ℝ × , for 𝑖, 𝑗 = 1, 2 (5.26)

The matrix 𝐸 and 𝐸 denotes the local coupling in 𝑃 and 𝑃 respectively.
Using 5.24 and 5.25, they are given as

𝐸 = [𝑧 𝐴 𝑧 𝑧 𝐴 𝑧
𝑧 𝐴 𝑧 𝑧 𝐴 𝑧 ] = [2 4

4 12] (5.27)

𝐸 = [𝑧 𝐴 𝑧 𝑧 𝐴 𝑧
𝑧 𝐴 𝑧 𝑧 𝐴 𝑧 ] = [2 4

4 12] (5.28)

The matrix 𝐸 and 𝐸 denotes the global coupling in 𝑃 and 𝑃 respectively.
For example, in order to compute the entries in 𝐸 , we need to extend the deflation
vectors 𝑧 and 𝑧 over the subdomain Ω . Since 𝑧 and 𝑧 have a non-zero at
the global grid index 4, it needs to be communicated to process 𝑃 . We define
local vectors denoted by 𝑧 → (read this as 𝑧 extended for Ω ) and 𝑧 → for
subdomain Ω . These vectors have zero value at all non-ghost points. Similarly to
compute 𝐸 , we extend 𝑧 and 𝑧 for Ω denoted by 𝑧 → and 𝑧 → respectively.
They are defined as:

𝑧 → = (
0
0
0
1
) , 𝑧 → = (

0
0
0
1
) for Ω ; 𝑧 → = (

1
0
0
0
) , 𝑧 → = (

3
0
0
0
) for Ω ;

(5.29)
Multiplying the extended deflation vectors in 5.29 with the local matrices 𝐴 and

𝐴 results in

𝐴 𝑧 → = (
0
0
−1
2
) , 𝐴 𝑧 → = (

0
0
−1
2
) for Ω ; 𝐴 𝑧 → = (

2
−1
0
0
) , 𝐴 𝑧 → = (

6
−3
0
0
) for Ω ;

(5.30)
Using 5.29 and 5.30, the global coupling matrices are constructed as
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𝐸 = [𝑧 𝐴 𝑧 → 𝑧 𝐴 𝑧 →
𝑧 𝐴 𝑧 → 𝑧 𝐴 𝑧 →

] = [−1 −1
−3 −3] (5.31)

𝐸 = [𝑧 𝐴 𝑧 → 𝑧 𝐴 𝑧 →
𝑧 𝐴 𝑧 → 𝑧 𝐴 𝑧 →

] = [−1 −3
−1 −3] (5.32)

Substituting the local coupling matrices 𝐸 and 𝐸 from 5.27 and 5.28, and
the global coupling matrices 𝐸 and 𝐸 from 5.31 and 5.32 into 5.26, we get the
𝐸 matrix. This 𝐸 is same as the matrix 𝐸 given in the serial implementation in 5.22.

In the context of parallel programming, part of 𝐸 is computed by different pro-
cessors. In this example, the process 𝑃 and 𝑃 computes 𝐸 ∈ ℝ × and 𝐸 ∈ ℝ ×

𝐸 = [𝐸 𝐸 ] , 𝐸 = [𝐸 𝐸 ] (5.33)

𝐸 and 𝐸 are gathered using MPI_Allgather subroutine. It ensures that
same copy of 𝐸 is available to all the processors.

We give general form of 𝐸 for 𝑃 number of processes when we approximate the
harmful eigenvector using only constant deflation vector. Let 𝐴 be the local matrix,
and 𝑧 be the constant deflation vector available for 𝑖-th processor locally. Let the
𝑧 → be 𝑗-th deflation vector extended for subdomain Ω . The matrix 𝐸 ∈ R × is
constructed as

𝐸 = {
𝑧 𝐴 𝑧 , if 𝑖 = 𝑗
𝑧 𝐴 𝑧 → , if 𝑖 ≠ 𝑗, |𝑖 − 𝑗| = 1
0. if 𝑖 ≠ 𝑗, |𝑖 − 𝑗| ≠ 1

(5.34)

When we approximate the harmful vector using constant and linear deflation
vector in 1D domain, the structure of 𝐸 is block-wise tridiagonal given as

𝐸 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐸 𝐸 0 … 0

𝐸 𝐸 𝐸 0 0

0 𝐸 𝐸 𝐸 0

⋮ ⋱ ⋱ ⋱ ⋱

0 0 0 ⋱ 𝐸

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.35)

The diagonal block matrices 𝐸 and non-diagonal block matrices 𝐸 are global
coupling terms defined as
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𝐸 = (𝑧 𝐴 𝑧 𝑧 𝐴 𝑧
𝑧 𝐴 𝑧 𝑧 𝐴 𝑧 ) , 𝐸 = (𝑧 𝐴 𝑧 → 𝑧 𝐴 𝑧 →

𝑧 𝐴 𝑧 → 𝑧 𝐴 𝑧 →
) , 𝑖, 𝑗 = 1…𝑝 (5.36)

The diagonal block matrices in 𝐸 are computed locally by 𝑖-th processor. Ex-
tending the deflation vector of a non-neighboring subdomain on Ω , we get 𝑧 → ,
and since it is a non-neighboring subdomain, the ghost grid point value is also zero
in 𝑧 → along with non-ghost values. It makes the vector 𝐴 𝑧 → zero. Therefore,
the block matrices 𝐸 corresponding to non-neighboring subdomain becomes zero.
In the neighboring subdomains, the ghost value in 𝑧 → is not zero, hence 𝐴 𝑧 → is
also not a zero vector, and it makes 𝐸 non-zero.

Each process constructs a local 𝐴𝑍 matrix while assembling the 𝐸 matrix. The
first 𝑑 columns in the 𝐴𝑍 comes from the local coupling in each process. The
remaining columns originate from the global coupling. For the subdomain Ω , we
only store the 𝐴𝑧 → vector only when 𝑗 is the neighboring subdomain to 𝑖. When 𝑗 is
non-neighboring subdomain the vector 𝐴𝑧 → vanishes. Hence, we do not explicitly
store these redundant columns in the 𝐴𝑍 matrix. For the neighboring subdomains,
we also store the rank of the process 𝑗 along with 𝐴𝑧 → . In the figure 5.7, the 𝐴𝑍
matrix is given as

𝐴𝑍 = [𝐴 𝑧 𝐴 𝑧 𝐴 𝑧 → 𝐴 𝑧 → ] , 𝑖, 𝑗 = 1, 2, 𝑖 + 𝑗 = 2 (5.37)

We observe in 5.35 that the structure of 𝐸 is quite sparse, so we use a sparse
𝐿𝑈 decomposition to generate the lower triangular matrix 𝐿 and upper triangular
matrix 𝑈.

5.5.3. Computation of Other Subroutines
In order to from the vector 𝑍 𝑟( ) in 𝐸𝑞 = 𝑍 𝑟( ) in Deflation Init, each process
constructs a small vector of 𝑑 elements consisting of local dot products of deflation
vector 𝑧 and 𝑟( ). All these small vectors are gathered with MPI_Allgather and
thus the vector 𝑍 𝑟( ) is available to all the processes.

The equation 5.14 is solved using forward and backward substitution in parallel
by all the processes to yield 𝑞 .

Forward substitution: solve for 𝑦 in 𝐿𝑦 = 𝑍 𝑟( )
Backward substitution: solve for 𝑞 in 𝐿𝑞 = 𝑦

This 𝐴𝑍 computed in the Deflation Init subroutine is used to compute 𝐴𝑍𝑞 and
𝐴𝑍𝑞( ) in Deflation Init and Deflation Runtime respectively. In the Deflation end
subroutine, we require a matrix vector product 𝐴𝑢( ) to set the right-hand side
𝑍 𝐴�̃� in equation 5.19.
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5.6. Connection with the PKS package
In this section, we present the connection of this chapter with the PKS package.
We also give implantation detail.

5.6.1. Choosing Deflation Vectors for NHI SS model
We have implemented CDPCG and LDPCG in the PKS solver. In this section, we
describe how we choose the constant and linear deflation vectors on the domain of
the Netherlands used in NHI SS model in chapter 7.

We allocate the deflation vectors in each subdomain. However, to illustrate the
deflation vectors in one subdomain, we extract the east-south part of the Nether-
lands from the top layer 𝐿 (refer the figure 5.8). This layer needs one layer (ghost
layer) of grid points from left and adjacent top subdomain. We have colored these
ghost layers in brown as shown in figure 5.8b.

(a) Layer in the domain of Netherlands (b) One subdomain from layer in a)

Figure 5.8: Extraction of one subdomain from the domain of the Netherlands

We show the constant and linear deflation entries in the figure 5.9. All the
deflation vectors have zero entries in the ghost cells (shown in brown stripes).
Constant deflation vectors have value 1 at all the interior points. The linear deflation
vectors are defined in 3 directions: 𝑥, 𝑦 and 𝑧. The linear-𝑥 (refer figure 5.9b)
varies linearly only in the 𝑥 direction, being constant in 𝑦 and 𝑧 direction. Similarly,
the linear-𝑦 and linear-𝑧 deflation vectors vary linearly only in 𝑦 and 𝑧 direction
respectively and being constant in remaining two directions. Since the 𝑧 direction
values are constant for layer 𝐿 , we also observe that the entries in linear-𝑧 deflation
vector (refer the figure 5.9d) is constant. For instance, th linear-𝑧 deflation vector
entries will be 2 at all the interior points in 𝐿 . The deflation vector entries in other
layers of the NHI SS model (refer to chapter 7 ) are defined similar way as the layer
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𝐿 .

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

(a) constant deflation vector

0 0 0 0 0 0 0 0

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

0 2 3 4 5 6 7 8

(b) linear-x deflation vector

0 0 0 0 0 0 0 0

0 2 2 2 2 2 2 2

0 3 3 3 3 3 3 3

0 4 4 4 4 4 4 4

0 5 5 5 5 5 5 5

0 6 6 6 6 6 6 6

0 7 7 7 7 7 7 7

0 8 8 8 8 8 8 8

0 9 9 9 9 9 9 9

(c) linear-y deflation vector

0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

(d) linear-z deflation vector

Figure 5.9: Deflation vector entries in the subdomain taken from the figure 5.8b

5.6.2. Development of Deflation in the PKS Package
FORTRAN 90 implementation of CDPCG and LDPCG methods have been success-
fully completed in the PKS package in the iMOD [10] software. PKS solver related
variables are defined in a FORTRAN module called PKS7MODULE. A flag called DE-
FLATION has been added to the PKS7MODULE which can be set to true or false.
If it is set to false, the PCG solver (no deflation) is called. If it is set to true, either
CDPCG or LDPCG is called. To differentiate among deflated solvers, another inte-
ger variable called NDECVEC (number of deflation vectors), has been added in the
PKSMODULE. NDECVEC can be set to 1, 2, 3 and 4 in 3D models. The description
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of the NDEFVEC variable is given below:

• When NDEFVEC is 1, the CDPCG solver is called for both 2D and 3D models.

• When NDEFVEC is set to 2, 3 and 4, LDPCG solver is called for 3D models. For
2D models NDEFVEC should only be set to 2, 3. The code terminates when
NDEFVEC is set to 4 for 2D (one layer) models since for one layer models,
there is no 𝑧 direction.

• For 3Dmodels, setting NDEFVEC= 2, LDPCG uses constant and linear deflation
vectors in 𝑥 directions. We also denote it by linear-𝑥 deflation in the report.

• For 3Dmodels, setting NDEFVEC= 3, LDPCG uses constant and linear deflation
vectors in 𝑥 and 𝑦 directions. We also denote it by linear-𝑥𝑦 deflation in the
report.

• For 3Dmodels, setting NDEFVEC= 4, LDPCG uses constant and linear deflation
vectors in 𝑥, 𝑦 and 𝑧 directions. We also denote it by linear-𝑥𝑦𝑧 deflation in
the report.

Different groundwater models can be simulated using an executable created
after compiling the FORTRAN code. Hydrologists use the executable with another
input file, called RUNFILE. The RUNFILE contains a description of various model
parameters such as coordinates specifying the domain, cell-size, boundary condi-
tion, solver settings, etc. Deflation and NDEFVEC flag will be added in the RUNFILE
in the near future.

5.6.3. Efficient Storage of Deflation Vectors
For the larger number of subdomains, the structure of Deflation matrix 𝑍 gets very
sparse. Initially, we stored the matrix slices in each subdomain representing sub-
matrices of 𝑍. It stores redundant zeros in the columns of subdomain matrix 𝑍
that comes from an extension of deflation vectors from other subdomains. This
approach becomes memory inefficient for smaller cell sizes (finer model).

In our current implementation, we do not store these zeros. We allocate defla-
tion vector (called ZDEF in PKS) instead of storing slices of Deflation matrix 𝑍 in
each subdomain. For example in CDPCG solver, we store only 1’s in each subdomain
at non-ghost points.



6
Numerical Experiments for

the Model Problem

6.1. Introduction
In this chapter, we apply the deflation method described in the preceding chapter,
to 2D and 3D Poisson and two layer unit model problems. The aim to do this is to
gain insights into the effect of deflation on the number of CG iterations. The De-
flation methods have been coded in the iMOD software in FORTRAN. Experiments
are carried out on the Dutch National Supercomputer Cartesius [7]. The numerical
experiments are done one a 24 core CPU Intel® Xeon® Processor E5-2690 v3 [12].
We have considered the steady-state simulation in this chapter.

The structure of this chapter is as follows. We give the information about batch
file options in section 6.2. We do experiments for Poisson problem and 2 layer iMOD
unit case in section 6.3 and 6.4 respectively.

6.2. Running Jobs on Cartesius
Jobs used to carry out all the numerical experiments in current and succeeding chap-
ter are run on the Dutch National Supercomputer Cartesius [7] using job scheduling
system Slurm [15]. The Slurm Workload Manager (formerly known as Simple Linux
Utility for Resource Management or SLURM), is a free and open-source job sched-
uler for Linux and Unix-like kernels. Slurm is the workload manager on about 60 %
of the TOP500 [1] supercomputers.

The batch files are submitted to the slurm using sbatch command, as the name
sbatch stands for. The batch script may be given to sbatch through a file name on
the command line, or if no file name is specified, sbatch will read in a script from
standard input. The batch script may contain options preceded with ”#SBATCH”

65
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before any executable commands in the script. Our batch file include the following
options:

Runtime Command used is #SBATCH -t <HH:MM:SS> . It sets the maximum
job duration to HH hours, MM minutes and SS seconds. The jobs will be killed
once the job duration is over, even if it has not finished.

Job output Command used is #SBATCH –output=<scriptname>_%j.out.
where %j stands for job id: all the jobs on cartesius are identified with a
uniques id called job id. After completion of the job the output file will be
created with name <scriptname>_%j.out. We use the command #SBATCH
–output=<scriptname>_%j.out to see if the job has encountered any
error during run. After completion of the job the error file will be created with
name =<scriptname>_%j.err. The error file is usually empty if the job run
was successful.

Node type Cartesius consists of a large number of batch nodes and a small num-
ber of special purpose nodes. For the batch nodes, cartesius differentiates
between so-called thin nodes and fat nodes. Fat nodes are used for the jobs
requiring more memory whereas thin nodes are used to run normal or small
jobs. Each fat node has 256 GB memory and 32 physical cores. Each thin
node has 64 GB memory and 24 physical cores. The command used in job
script is given below:

#SBATCH -p <node type>

where <node type> is thin for all experiments for NHI SS model and <node
type> is fat for 50m california miamore model since the domain decomposition
algorithm (RCB partitioning) requires more memory.

Node constraint Processesors in thin nodes consists of two types: Haswell and
Ivy Bridge. The Haswell is Intel’s 4th generation micro-architecture whereas
Ivy Bridge is 3rd generation micro-architecture. For consistency, our all jobs
are run only on the Haswell node. It can be done in the script by adding the
following :

#SBATCH –constraint=haswell

If we do not specify any constraint, the job can run on any combination of
nodes within the partition.

Numer of processes We can specify the number of nodes by writing the following
in the job script:

#SBATCH -N <number of nodes>

We can specify the number of total processes by writing the following in the
job script:

#SBATCH -n <number of processes>
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Distribution We use block for at the placeholders <type 1> and <type 2> in our
job script as follows:

#SBATCH –distribution= <type 1> : <type 2>

The block distribution method defined for the placeholder <type 1>, dis-
tributes tasks in a job to a node such that consecutive tasks share a node.
For example, consider an allocation of three nodes each with two CPUs. A
four-task block distribution request will distribute those tasks to the nodes
with tasks one and two on the first node, task three on the second node, and
task four on the third node. Block distribution is the default behavior if the
number of tasks exceeds the number of allocated nodes. block is used in the
following.

The block distribution method defined for the placeholder <type 2>, dis-
tributes tasks to sockets such that consecutive tasks share a socket.

We have added a sample job script file in the appendix section at the end of this
report.

6.3. Poisson Problem
As our first experiment, we consider the Poisson Problem given in equation 6.2
since we want to know the behavior of deflation on the number of iterations in the
first Picard iteration. In the deflation method, we use constant and linear deflation
vectors in our experiments.

6.3.1. Model Description
We start with a one layer model. We denote this layer by 𝐿 . The description of
the model parameters are given below:

• The domain of the model represents an area of size 2.5 km ×2.5 km with
the coordinates 𝑥min = 200000m, 𝑥max=202500m, 𝑦min = 400000m and 𝑦max
is 402500m. Here 𝑥min denotes starting coordinate in 𝑥 direction and 𝑥max
denotes ending coordinate in 𝑥 direction, similar notation for 𝑦-direction as
well. We can vary size of the cell. For instance in the figure 6.1, if we keep
the cell size to 250 meter, we get 10 cells both in 𝑥 and 𝑦 direction.

• There are no no-flow cells in the layer. In the left and right side stripe (column
1 and 10 in figure 6.1), there are constant head cells with head value 1 meter
with IBOUND -1. All other cells are variable-head cells with IBOUND 1.

• The transmissivity is 100 m per day, and vertical resistance is 50 days.

• The active modules are well, river, drainage, recharge, overflow, and constant-
head.
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• There are two discharge (pumping) wells: first at coordinate (201225m,401275m)
and second at (200600m,400650m). Both the wells pump water at 2500 cubic
meter per stress period.

• The starting head value at all variable-head cells is 1 meter.

Figure 6.1: Hydraulic head in 2D square domain with 10 ×10 cells and cell-size 250 meter

Figure 6.2: Non zero pattern of matrix in the grid from figure 6.1

6.3.2. 2D Poisson Equation Setup
Let us recall the PDE from chapter 2 that governs the movement of steady state
groundwater:

∇ ⋅ (𝐾Δ𝑢) +𝑊 = 0 (6.1)
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For simplicity, we consider the the two dimensional (2D) Poisson problem on a
square domain represented in the figure 6.1:

−Δ𝑢(𝑥, 𝑦) = 1
ℎ , (𝑥, 𝑦) ∈ Ω ≡ (0, 2500) × (0, 2500),

𝑢(0, 𝑦) = 𝑢(0, 𝑦) = 1
(6.2)

where ℎ is the distance between the node of two neighboring cell centered cells.
ℎ turns out to be the size of the cell. In equation 6.2, we have divided the right-hand
side constant vector 1 by ℎ to nullify the ℎ term which arises in the denominator
of the coefficients in the Poisson matrix 𝐴 after approximating the Δ𝑢 with second
order finite difference scheme. It ensures that the 5 point stencil for the discretized
Poisson matrix 𝐴 will be independent of the cell size ℎ. The stencil is defined as

−1
−1 4 −1

−1 (6.3)

Keeping in mind the complexity of the FORTRAN code in iMOD [10] due of par-
allel subroutines, we have created 2D Poisson test case also in the iMOD software.
However, we observe from section 2.5 that the entries in the MODFLOW matrix 𝐴
comes from the conductance values CR, CC, and CV of the neighboring cells. To
make the discretized matrix coefficients similar to the 2D Poisson matrix, we need
to update the matrix coefficients. Approximating the second order partial deriva-
tives in equation 6.2 with central finite difference [8] yields the five point stencil
given in equation 6.3. Therefore, we overwrite all the diagonal entries by 4 and
non-diagonal entries by −1 in the FORTRAN Code. We also notice from chapter
2 that, the right-hand side in the LSE depends upon various parameters such as
specific storage, cell size, etc. For simplicity, we assume the right hand side vector
is 1 in equation 6.2. In iMOD, it means to set the initial right-hand side vector for
interior and cell adjacent to boundary cells to 1. The right-hand side vector for cells
adjacent boundary cells is computed with non-homogeneous boundary condition
as given in equation 6.2.

For the remaining experiments in the section 6.3, we want to see the variation of
total CG iterations with increasing number of subdomains. By total CG iterations we
mean, inner CG Schwarz iterations for all Picard iterations. We need a substantial
computational intensive problem, so we need to make the cell size small. We fix
our cell size 2.50 meter, so we have 1000 cells both in 𝑥 and 𝑦 direction. Since the
left and right side strip in 𝐿 contains constant head cells, they are not counted in
the LSE unknown variables. we have 998 ×1000 cells variables to solve for in 𝐿 .
We choose, head change termination criteria (HCLOSE) to be 10 , and residual
change closing criteria (RCLOSE) to be 10 . To control the termination criteria of
the PCG solver, PKS has a variable called ICNVGOPT. Depending on the value of
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ICNVGOPT, the different termination criteria can be used such as infinity norm, L2
norm. In all our observation in this chapter, we have set ICNVGOPT to 0 that means
infinity norm termination criterion for all the solvers.

6.3.3. Variation of Solver Iterations with Number of Subdo-
mains

Figure 6.3: Increase of iteration in 1000 ×1000 grid cell with increasing number of subdomains in 1st
picard iteration

To solve the computational intensive problem, we divide a big problem into
small subproblems, which are computed in parallel and we expect that this pro-
cedure scales well, in our case, it means that when we increase the number of
subdomains/processes, the number of iterations should not increase. However, we
inspect the growth in the number of iterations with growing subdomains as shown
in the figure 6.3. As we increase the number of subdomains, we increase the sub-
domain interfaces. Therefore, it takes more iterations to transfer/propagate the
information.

We approximate the harmful eigenvector using constant deflation vectors as
defined in section 5.2. We observe that the CG iterations do not increase with
increasing subdomains as shown in figure 6.4. We then approximate the harmful
eigenvector using linear deflation vectors, first only in the 𝑥-direction, and then in
𝑥 and 𝑦-directions. We observe that the linear deflation scheme performs better
than the constant deflation scheme.
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Figure 6.4: Increase of iteration in 1000 ×1000 grid cell with increasing number of subdomains in 1st
picard iteration

6.3.4. Variation of Residual Norm with Global Iteration
To check the convergence of any iterative method, one should look into the resid-
ual. From the figure 6.5, we see that the residual norm decreases faster in DPCG
with constant deflation vectors than the original PCG method. Also within DPCG,
the residual norm decreases faster for linear deflation vectors than the constant de-
flation vectors. We also see that the residual norm decrease is more rapid in DPCG
than PCG method for the higher number of subdomains. In the initial iterations,
we observe from the zoomed figures that the infinity norm of the deflated residual
vectors is higher than the corresponding not deflated residual vectors. This incre-
ment is due to computation of initial residual of the deflated system in the deflation
pre processing phase.
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(a) 4 subdomains

(b) 100 subdomains

(c) zoom of a) (d) zoom of b)

Figure 6.5: Decease of residual infinity norm for 2D poisson 1000 ×1000 grid cell
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6.4. 2 Layer iMOD Unit Case
Now since we know the how deflation works for the synthetic Poisson PDE, we want
to get insight into real life case. Since the actual models are three dimensional, we
want to gain insight into the effect of deflation on 3D models.

Figure 6.6: Non zero pattern of matrix in the grid 10 ×10 ×2 representing layer iMOD unit case

6.4.1. Model Description and Setup
To construct a 3D unit case in iMOD, we add one layer below the layer 𝐿 in the
existent model described in the section 6.3.1. We denote this layer by 𝐿 . model
description about the layer 𝐿 is same. The extra information about this 3D unit
case is given below:

• The domains of layer 𝐿 is same as that of layer 𝐿 . The number of cells is
also same in 𝐿 and 𝐿 .

• No-flow cells are absent in the layer 𝐿 like layer 𝐿 . Unlike 𝐿 layer, the left
and right side stripe are also variable-head (active) cells. So all the cells in 𝐿
layer are active cells with IBOUND value 1.

• The transmissivity is 100 in layer 𝐿 like 𝐿 .

• The starting head value at cells is 1 meter.

• Boundary conditions are not specified in the layer 𝐿 . They are only specified
in the top (here 𝐿 ) layer.

We are interested in computing the hydraulic head ℎ in the following steady
state PDE 6.4 (refer to chapter 2).

𝜕
𝜕𝑥 (𝐾

𝜕ℎ
𝜕𝑥) +

𝜕
𝜕𝑦 (𝐾

𝜕ℎ
𝜕𝑦) +

𝜕
𝜕𝑧 (𝐾

𝜕ℎ
𝜕𝑧 ) +𝑊 = 0 (6.4)
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We fix the cell size to 25 meters, so we have 100 cells both in 𝑥 and 𝑦 direction.
Since the left and right side strip in 𝐿 contains constant head cells, they are not
counted in the LSE unknown variables. we have 98 ×100 cells variables to solve for
in 𝐿 . All the cells are active in 𝐿 , so we have to solve for 100 ×100 cells variables.
In total, we solve the LSE for 19800 unknown variables. Like Poisson 2D problem,
We choose the head change termination criteria (HCLOSE) to be 10 , and residual
change closing criteria (RCLOSE) to be 10 .

6.4.2. Variation of Solver Iterations with Number of Subdo-
mains

In the figure 6.7, we observe that introduction of deflation reduces the number of
CG iteration in the first Picard iteration and also the total iteration (using all the
Picard iterations).

In our experiments, we have used 30 inner iterations by default. However,
the faster convergence is achieved in DPCG than PCG for each outer iterations.
We would like to see the effect of deflation in each outer iteration. In figure 6.8
we plot the number of inner iteration in each Picard iteration. We observe that
for the small number of subdomains (4 subdomains in the figure 6.8a), there is not
much difference in the number of inner iterations in PCG, CDPCG and LDPCG solver.
However, for the larger number of subdomains (100 subdomains in the figure 6.8c),
we see that the CDPCG take less inner iteration than PCG in each Picard iteration.
LDPCG even takes lesser inner iterations than the CDPCG method. In the figure
6.8b, we see the it is somewhere between the figure 6.8a and figure 6.8c as far as
inner iteration decrease is concerned in the Deflated solver. From this experiment
we draw two conclusions:

• Difference in inner iterations in Deflated and PCG method is higher for higher
number of subdomains.

• For higher number of subdomains, the LDPCG method takes less inner itera-
tions than the CDPCG method for initial Picard iterations.
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(a) first Picard iteration

(b) Full simulation

Figure 6.7: Increase of iterations in 100 ×100 ×2 model grid-cell with increasing number of subdomains
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(a) 4 subdomains

(b) 36 subdomains

(c) 100 subdomains

Figure 6.8: Number of inner iteration required in each Picard iteration in 100 ×100 ×2 model grid-cell
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6.4.3. Variation of Residual Norm with Global Iterations
Now to check the rate of convergence of the PCG, CDPCG and LDPCG method, we
plot the residual in first 100 global iterations in figure 6.9. We call the iteration
number including Picard and inner CG iteration as global iteration. We observe the
following:

• At the end of each Picard iteration (global iteration number 30, 60 and 90),
the residual norm increases in all the solvers since new residual is computed
at construction of new linear system.

• The residual decrease is faster in Deflated solvers than PCG solver for higher
number of subdomains.

• For higher number of subdomains, the LDPCG method converges faster than
the CDPCG method in all Picard iterations.
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(a) 4 subdomains

(b) 36 subdomains

(c) 100 subdomains

Figure 6.9: Variation of residual norm with global iteration in 100 ×100 ×2 model grid-cell



7
Numerical Experiments for

the Real Life Models

7.1. Introduction
In this chapter, we apply constant and linear deflation on Nederlands Hydrologisch
Instrumentarium (NHI) steady state model. Experiments are carried out on the
Dutch National Supercomputer Cartesius [7]. The numerical experiments are done
24 core CPU Intel® Xeon® Processor E5-2690 v3 [12].

The structure of this chapter is as follows. We give NHI model description and
briefly mention scalasca profiler [14] in section 7.2. We present numerical results
for NHI model with various cell sizes in section 7.3, 7.4 and 7.5. We give numerical
results for the California model in section 7.6. During the development of Deflation
in the PKS package, we started with an inefficient implementation. However, we
improved our code after taking the scalasca profiler readings. We present two such
examples in section 7.8.

7.2. Setup Description
In this section, we familiarize the reader with NHI model.

7.2.1. Introduction to NHI SS Model
National and regional water authorities develop long-term plans for sustainable wa-
ter use and safety under changing climate conditions in the Netherlands. Based on
available data and state-of-the-art technology, the decisions about investments are
supported by the Netherlands Hydrological Instrument (NHI).

NHI is the collection of software and data for the development of groundwater
and surface water models for the Netherlands on a national and regional scale. The

79



7

80 7. Numerical Experiments for the Real Life Models

NHI is intended to bundle knowledge of specialists at water managers, institutes,
and consultants to achieve quality tools for sustainable development. The NHI
models have been developed with the collaboration of various research institutes
such as Deltares, Rijkswaterstaat, STOWA, PBL, and Alterra. The national applica-
tions of NHI include Landelijk Hydrologisch Model (LHM) [13]. Different software
component simulates various hydrological regions such as MODFLOW for saturated
ground water, METSWAP for the unsaturated zone, etc., as shown in the figure 7.1.
We have considered only groundwater simulation in the MODFLOW code. Also, our
research focuses only on the solver (Picard and CG-Schwarz) since we have used
one stress loop and one time-step loop (SS Model).

For the saturated zone, the NHI model contains 7 layers representing hydrolog-
ical information about different layers such as sand and clay layer. For example,
representation of the various layers beneath the subsurface between Amsterdam
and Utrecht can be found in the figure 7.2. The data has been taken from the
publishing portal of TNO called DINOloket Geological Service Netherlands [4]. The
hydrological data is publicly available at DINOloket for free.

Figure 7.1: Different models present in the LHM

7.2.2. Model Description
The description of the model parameters is given below [33]:

• The domain of the model (the rectangle in figure 7.3) represents an area of
size 300 km ×325 km with the coordinates 𝑥min = 0 m, 𝑥max=300000 m, 𝑦min
= 300000 m and 𝑦max is 625000 m. Here 𝑥min denotes starting coordinate in 𝑥
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Figure 7.2: Distribution of 7 layers underneath the ground between Amsterdam and Utrecht

Figure 7.3: Domain of top layer (left) and bottom layers to (right)

direction and 𝑥max denotes ending coordinate in 𝑥-direction, similar notation
for 𝑦-direction as well. We can vary size of the cell. The cell size in the current
NHI model is 250 meter. It leads to 1200 cells in 𝑥-direction and 1300 cells
in 𝑦-direction. Thus the total number of cells (active and inactive) are 10.92
million (1200 ×1300 ×7).

• The model contains 7 layer denoted as 𝐿 , 𝐿 …𝐿 in order. The topmost
layer is present on earth’s surface, denoted by 𝐿 , and the bottommost layer
is denoted by 𝐿 . The cells shown in the gray background in the figure 7.3
are inactive cells (no flow cells) with IBOUND 0. The cells shown in the blue
are active cells (variable-head cells) with IBOUND 1. The number of active
cells in layer 𝐿 is lesser than the number of active cells in layer 𝐿 . Number
of active cells in all the layers beneath 𝐿 is same and equal to the number of
active cells in 𝐿 . The total number of active cells are 6, 292, 108. Therefore,
57.62 % of the cells active in this 7 layer NHI model.

• number of drains: 960,586, Number of rivers: 1,340,376, Number of wells:
62,752 .
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• General head boundaries: 176,243, Anisotropy cells (Deltares package): 87,291,
Horizontal flow barriers: 3623.

• Old starting heads are used as initial head values in the first Picard iteration.
In the consecutive Picard iteration, the solution obtained from the previous
Picard iteration is used.

• We choose, head change termination criteria (HCLOSE) to be 10 , and resid-
ual change closing criteria (RCLOSE) to be 10 .

• In all our observation in this chapter, we have set the flag ICNVGOPT to 0
that means infinity norm termination criterion has been selected for all the
solvers.

Figure 7.4: Domain decomposition consisting of × subdomains using Recursive Coordinate Bisection
partitioning

7.2.3. Scalasca Profiling
Scalasca is a software tool that supports the performance optimization of parallel
programs by measuring and analyzing their runtime behavior. The analysis identi-
fies potential performance bottlenecks and offers guidance in exploring their causes.
Thus, we can improve the performance of the parallel codes by addressing to the
bottlenecks reported by scalasca profiler.

To profile the code using scalasca, we append scalasca -analyze before
the string in the line, which contains codes to run the executable. It generates a
folder starting with name scorep. This folder contains a file with extension cubex.
The cubex file contains information of various subroutines such as time taken, MPI
communication etc. We use this information to optimize our parallel code. To launch
the Graphical User Interface (GUI) of scalasca, one needs to use scalasca keyword
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square before the folder starting with scorep. Scalasca has been used to decrease
the wall clock time, during the development of CDPCG and LDPCG method.

7.3. 250m NHI SS model
To support the decision makers in solving hydrological problems, detailed high-
resolution models are often needed. These models typically consist of a large num-
ber of computational cells. Such large models have very long computational hours
when solved on a serial computer. For instance, at the start of the development of
NHI models in 2006, the serial run took about 20 days to run all the models (figure
7.1) in LHM for a thirty-year duration. The Parallel Krylov Solver (PKS) package was
developed to reduce the run time of the simulation. Preliminary results with PKS
show that increasing the number of subdomains results in increasing the number of
CG iterations. Maximum 18% increase in the number of CG iterations is observed
until 120 subdomains [26] in the current implementation with cell-size 250 meters.

Currently, other groundwater models of Deltares, such as IBRAHYM for the
province of Limburg, have a cell-size of 25 meter for modeling at a regional scale.
To obtain consistency in the data generated by regional and national (NHI) ground-
water models, Deltares has the ambition to increase the horizontal resolution to 25
m. The current approaches include upscaling in which, the information known at
regional model can be used to make predictions about national scale (NHI) models.
However, it is not so straightforward to obtain. It would be best for Deltares if the
performance of the PKS package is improved so that computational time can be
reduced to achieve 25 meter resolution for NHI model. For coupled NHI models
(MODFLOW + METASWAP), load imbalance across subdomains is one of the impor-
tant issues.

Subdomain Index ‖𝑢_𝑃𝐶𝐺 − 𝑢_𝐶𝐷𝑃𝐶𝐺‖ ‖𝑢_𝑃𝐶𝐺 − 𝑢_𝐿𝐷𝑃𝐶𝐺‖
0 7.16E-007 1.30E-006
1 1.89E-006 1.35E-005
2 3.04E-005 5.35E-006
3 2.89E-006 4.57E-006
4 9.52E-006 2.06E-005
5 8.29E-006 2.23E-005
6 5.96E-006 1.50E-005
7 3.95E-004 9.53E-004
8 1.66E-005 2.23E-005

Table 7.1: head difference in × subdomain given in figure 7.4

The increase of total PCG solver iterations with increasing number of subdo-
mains is one of the bottlenecks in the current implementation in the PKS package.
The growth in a number of subdomains reduces the global coupling in the entire
domain. Deflation can achieve the global coupling. In our first experiments with the
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NHI 250 SS model, we observe that the number of iterations does not increase with
the increasing number of subdomains after applying coarse space correction defla-
tion (refer figure 7.5). As mentioned in the model description, we use HCLOSE value
10 , RLOSE value 10 and the 30 inner iterations (ITER1) per outer iteration. We
compared the head values in the original and deflated solution using infinity(max)
norm in each subdomain decomposition. For 3 ×3 decomposition corresponding to
the figure 7.4, the difference in head values (in meter) in each subdomain is given
in table 7.1. We denote the computed solution from PCG solver by 𝑢_𝑃𝐶𝐺. We
denote the solution obtained with constant deflation vectors by 𝑢_𝐶𝐷𝑃𝐶𝐺 whereas
the solution obtained with constant and 𝑥, 𝑦, 𝑧 linear deflation vectors by 𝑢_𝐿𝐷𝑃𝐶𝐺.

Correctness in CDPCG and LDPCG: To check the correctness of the Deflated
algorithms, we present the absolute maximum of the head difference between
PCG and Deflated PCG across all the subdomains in table 7.2. We notice that
an accuracy of order E-003, i.e., 10 is obtained.

#Subdomains ‖𝑢_𝑃𝐶𝐺 − 𝑢_𝐶𝐷𝑃𝐶𝐺‖ ‖𝑢_𝑃𝐶𝐺 − 𝑢_𝐿𝐷𝑃𝐶𝐺‖
1 1.46E-003 2.53E-003
4 3.07E-004 6.19E-004
9 3.95E-004 9.53E-004
16 8.04E-004 1.91E-003
25 3.97E-004 6.13E-004
36 2.93E-004 1.91E-003
49 1.52E-004 7.42E-004
64 1.06E-003 2.72E-003
81 1.75E-003 2.48E-003
100 2.81E-003 1.95E-003
121 4.48E-003 1.88E-003
144 5.03E-004 3.09E-003

Table 7.2: Difference between the head values in PCG and Deflated PCG solvers
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Figure 7.5: Variation of total iterations with increasing number of subdomains in 1200 ×1300 ×7 grid
cell in 250m NHI SS model

The number of total iterations includes outer Picard iterations and inner CG it-
erations. One linear system of equations is created in each Picard iteration. Also,
the Deflation method is used in each Picard iteration. We want to gain insight into
the number of inner iteration used in each outer iteration in the PCG and DPCG
method. From figure 7.5, we also observe that the iteration difference between
PCG and DPCG increases with increasing number of subdomains. We investigate
the effect on one lower (4) and one higher (100) number of subdomains.

In figure 7.6a, we notice that until about 70 Picard iterations, both PCG and DPCG
method takes 30 number of inner iterations. In the remaining Picard iterations,
also both PCG and DPCG takes about the same number of inner iterations. Since
the number of iteration is small, the global coupling ( global information) is not
completely lost in 4 subdomains. Therefore, both the PCG and DPCG algorithm
takes about the same number of total iterations. However, we observe in 7.6b
that after 38th Picard iteration, the DPCG method with linear deflation vectors takes
fewer inner iterations than the PCG method. After 54th Picard iteration, the DPCG
method with constant deflation vector also takes fewer inner iterations than the
PCG method. To understand the number of iterations, we need to look into the
residual in PCG and DPCG method.
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(a) 4 subdomains

(b) 100 subdomains

Figure 7.6: Number of inner iteration required in each outer (Picard) iteration 1200 in ×1300 ×7 grid
cell in 250m NHI SS model
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(a) 4 subdomains

(b) 100 subdomains

Figure 7.7: Variation of Infinity residual norm with initial Picard iterations in 1200 ×1300 ×7 grid cell
in 250m NHI SS model
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(a) global iteration number 1000- 1300

(b) global iteration number 1300- 1600

Figure 7.8: Variation of residual norm with global iteration number using 100 subdomains in 1200 ×1300
×7 grid cell in 250m NHI SS model
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Each MPI process (subdomain) computes its local residual using infinity norm.
Then the global infinity norm is calculated by communicating local residual norm
across all the process and selecting the maximum of them. To check the residual
norm for initial iterations, we plot the residual norm for initial 5 Picard iterations in
4 and 100 subdomains in the figure 7.7a and 7.7b respectively. We observe that
the residual decreases for first 30 iterations (first Picard iteration) in PCG and DPCG
method. However, since the RCLOSE termination criteria are not met, so the linear
system of equations are again constructed and solved in the second Picard itera-
tion. The initial residual at 1st inner iteration in 2nd Picard iteration (global iteration
number 31) is computed using the solution computed at the end of 1st Picard iter-
ation and matrix formed at the beginning of the second Picard iteration. Therefore,
we observe an increase in the residual norm at 31st global iteration. A similar in-
crease in residual is seen at the beginning of 3rd, 4th and 5th Picard iteration (global
iteration: 61, 91 and 121 respectively. We also observe a behavior that the resid-
ual norm in the DPCG method (both constant and linear deflation) is higher than
the PCG method. This effect goes away after few initial picard iterations. We do
not completely understand it yet but we expect that it is due to the deflation set up.

To get an overview of the convergence of the NHI SS simulation, we plot the
residual norm for higher global iterations in figure 7.8. From figure 7.8a, we observe
that the residual norm decreases faster in the DPCG method than the PCG method.
Furthermore, we see in the illustration 7.8b that the LDPCG method has converged
at the global iteration 1496.
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7.4. 100m NHI SS Model
In this section we present plots of iteration and residual similar to 250 m case.
Behavior of the results are similar to 250 m case so we do not explain them in
details. Improvement in the iterations can be found in appendix. The wall clock
improvement is tabulated below.

subdomains PCG CDPCG LDPCG
1 5 HH, 9 MM, 3 SS 5 HH, 38 MM, 10 SS 8 HH, 26 MM, 37 SS
4 2 HH, 20 MM, 13 SS 2 HH, 48 MM, 17 SS 2 HH, 3 MM, 19 SS
16 53 MM, 2.015 SS 1 HH, 2 MM, 35 SS 2 HH, 16 MM, 52 SS
36 24 MM, 8.431 SS 24 MM, 11.912 SS 32 MM, 26.582 SS
64 13 MM, 57.191 SS 21 MM, 32.596 SS 10 MM, 23.553 SS
100 21 MM, 15.975 SS 7 MM, 26.627 SS 5 MM, 15.601 SS
144 6 MM, 39.927 SS 4 MM, 42.409 SS 3 MM, 59.860 SS
196 5 MM, 19.766 SS 3 MM, 56.918 SS 3 MM, 34.621 SS

Table 7.3: Wall clock time in 3000 ×3250 ×7 grid cell in 100m NHI SS model

Figure 7.9: Variation of total iterations with increasing number of subdomains in 3000 ×3250 ×7 grid
cell in 100m NHI SS model
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(a) 4 subdomains

(b) 196 subdomains

Figure 7.10: Number of inner iteration required in each outer (Picard) iteration in 3000 ×3250 ×7 grid-
cell in 100m NHI SS model
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(a) 4 subdomains

(b) 196 subdomains

Figure 7.11: Variation of residual norm with global iteration number in 3000 ×3250 ×7 grid-cell in 100m
NHI SS model
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7.5. 50m NHI SS model
In this model, the cell size is 50 meter, so we solve the system of equations for
6000 ×6500 ×7 grid. Since the model is bigger than previously discussed models,
we take 50 inner iteration in this model. We tabulate the total number of iterations
in the appendix. Wall clock time has been tabulated below.

#subdomains PCG CDPCG LDPCG
36 4 HH, 25 MM 3 HH, 8 MM, 11 SS 5 HH, 29 MM, 35 SS
64 2 HH, 6 MM, 27 SS 1 HH, 19 MM, 51 SS 1 HH, 26 MM, 12 SS
81 2 HH, 32 MM, 52 SS 1 HH, 28 MM, 53 SS 56 MM, 14 SS
100 1 HH, 15 MM, 32 SS 1 HH, 32 MM, 25 SS 27 MM, 53.054 SS
120 1 HH, 2 MM, 50 SS 40 MM, 55 SS 35 MM, 15 SS
144 1 HH, 36 MM, 60 SS 45 MM, 4.024 SS 48 MM, 0.842 SS
192 31 MM, 34.777 SS 16 MM, 7.648 SS 23 MM, 7.590 SS

Table 7.4: Variation of wall clock with subdomains in 6000 ×6500 ×7 grid cell in 50m NHI SS model

In figure 7.12a and 7.12a we observe that the iteration decreases with increas-
ing number of subdomains in DPCG solvers. For 100 subdomains we observe a
speed of about factor 4. It is the best iteration decrease that we have seen until
now in all the coarser runs. From the current trends of using different cell sizes, we
observe that that Deflation works better for small cell sizes. Therefore, we expect
an iteration decrease by more than factor of 4 for NHI SS 25 meter model.

In figure 7.13a and 7.13b, we observe reduction in inner iteration in each Picard
iteration. Like other coarser runs, we observe that Deflation wins a lot for higher
number of subdomains (here 100).

In figure 7.14a, we observe that the residual norm in 2nd Picard iteration is lower
in PCG compared to DPCG. However, the effect seems to go away for higher Picard
iterations. The figure 7.14b shows a plot of the decrease of global residual. We
can see that the convergence in CDPCG and LDPCG is faster compared to the PCG
method.
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(a) Total iterations

(b) Picard iterations

Figure 7.12: Variation of iterations with subdomains in 6000 ×6500 ×7 grid cell in 50m NHI SS model
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(a) subdomains

(b) subdomains

Figure 7.13: Variation of inner iterations with Picard iteration in 6000 ×6500 ×7 grid cell in 50m NHI SS
model
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(a) global iteration:

(b) Full simulation

Figure 7.14: Variation of logarithm of residual norm with global iteration in 6000 ×6500 ×7 grid cell in
50m NHI SS model
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7.5.1. Scalasca Profiling
To understand the wall clock time of PCG, CDPCG and LDPCG solvers, we need to
look into time taken by all the subroutines. Here, we present the time measure-
ments in the solvers for 100 subdomain.

(a) Time taken in MPI_Allreduce

(b) Communication distribution across MPI
processes on one node in the MPI_Allreduce
subroutine given in a)

Figure 7.15: Scalasca snapshot illustrating load imbalance in 6000 ×6500 ×7 grid cell in 50m NHI SS
model in PCG method

The RCB partitioning method provides load balance by ensuring that almost
equal number of active (interior) cells are assigned to all the MPI processes. How-
ever, each MPI process also includes the active cells from its ghost layer. The
number of ghost layer active cells are different for each process due to irregular



7

98 7. Numerical Experiments for the Real Life Models

boundary of the Netherlands. Therefore, the total number of active cells (includ-
ing ghost layer cells) differs across each subdomain. It creates a load imbalance.
The fraction of ghost layer active cells increases for higher number of subdomains.
Hence, the load imbalance is higher for higher number of subdomains. Our initial
inspection for 50 m NHI model shows that 23.49% time of the entire simulation
is taken in computing the global interior products of vectors using MPI_Allreduce
(refer figure 7.15a. We show in the figure 7.15b that, the MPI_Allreduce commu-
nication time varies significantly across all the process on a cartesius node: from
171.39 seconds to 1396.34 seconds.

In the CDPCG and LDPCG method, construction of matrix 𝐸 and vector 𝑍 𝑟( ),
𝑍 𝑟( ) (refer DPCG algorithm in chapter 5 for notations) introduces additional wait
across the MPI processes. Therefore, we expect that load imbalance introduces
overhead in wall clock time. For 100 subdomains, we notice that, the number of
iterations reduces by about a factor of two in CDPCG compared to PCG method.
However, the wall clock time increases from 75 minutes to 92 minutes. To inves-
tigate this behavior, we show the scalasca snapshot in figure 7.16a. We observe
that MPI_Allreduce wall clock time fraction has increased upto 29.26% compared to
23.49% from PCG. Furthermore, we see from figure 7.16b that, the MPI_Allreduce
communication time has become worse across all the process on a cartesius node:
starting from 7.45 seconds (MPI Rank 4) to 1928.37 seconds (MPI Rank 15) .

Subroutine PCG CDPCG LDPCG
Perform one iteration 99.97% 97.5% 97.58%
Deflation init NA 5.67% 14.34%
Deflation runtime NA 19.51% 23.35%
Preconditioner 26.48% 13.71% 11.84%
Global dot product 23.5% 29.26% 23.85%
Matrix vector multiplication 15.88% 7.63% 7.33%
Vector update (𝑎𝑥 + 𝑏𝑦) 11.79% 5.24% 3.72%

Table 7.5: Fraction of run times of most time consuming subroutines in × × grid cell in 50m
NHI SS model

In table 7.4, we present % run times of most time consuming subroutines. We
note that the global dot product (load imbalance) fraction has increased in CDPCG
compared to the PCG. However, it remains same in the LDPCG solver since the
load imbalance has moved in the Deflation init subroutine. 8.78% out of 14.34%
Deflation init time is due in MPI wait (load imbalance).
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(a) Time taken in MPI_Allreduce

(b) Worse communication distribution in CD-
PCG compared to PCG

Figure 7.16: Scalasca snapshot illustrating 6000 ×6500 ×7 grid cell in 50m NHI SS model in CDPCG
method. It is even worse than PCG method.
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7.6. Miamore California Model
The description of the model parameters is given below:

• The models parameters have been calculated using Digital elevation model
[3].

• The domain of the model (the rectangle in figure ) represents an area of
size 1227.2 km ×1398.7 km with the coordinates 𝑥min = −0.1388220𝐸 + 08
m, 𝑥max= −0.1265500𝐸 + 08 m, 𝑦min = 3794800 m and 𝑦max is 5193500 m.
Here 𝑥min denotes starting coordinate in 𝑥 direction and 𝑥max denotes ending
coordinate in 𝑥-direction, similar notation for 𝑦-direction as well. We choose
50 and 100 meter as cell size.

• For 100 meter cell size, the dimension of model grid is 12272 ×13987 ×1,
171.64million cells (active and inactive) . For 50meter cell size, the dimension
of model grid is 24544 ×27974 ×1, 686.59 million cells (active and inactive).

• The model contains one layer denoted as 𝐿 . The active modules in the model
are river and recharge.

• We choose, head change termination criteria (HCLOSE) to be 10 , and resid-
ual change closing criteria (RCLOSE) to be 10 .

• We use maximum 50 inner iteration in each Picard iteration.

• we have set the flag ICNVGOPT to 0 that means infinity norm termination
criterion has been selected.

Since the domain of this model is quite large, The RCB partitioning requires a
lot of memory. Therefore, we ran the jobs for 50m cell size on fat nodes. Our
job did not complete successfully for 50m cell-size in for linear deflation (𝑥 and 𝑦
directions).

No deflation Constant deflation Linear-xy-deflation
Total iterations 1714 1485 1383
Time to run (secs) 133 132 144

Table 7.6: Observations for miamore 100m model on 10 thin nodes (240 processes)

No deflation Constant deflation
Total iterations 3342 2703
Time to run 16 min, 55 secs 16 min, 33 secs

Table 7.7: Observations for miamore 50m model on 5 fat nodes (160 processes)
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(a) Inner iteration per outer picard iteration

(b) Variation of the residual norm with subdomains

Figure 7.17: Observation for the 12272 ×13987 grid-cell in 100m miamore model using 240 subdomains
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(a) Inner iteration per outer picard iteration

(b) Variation of the residual norm with subdomains

Figure 7.18: Observation for the 24544 ×27974 grid-cell in 50m miamore model using 160 subdomains
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7.7. Results
In this section we present important results for NHI SS model.

7.7.1. Gain in iterations
We observe that the optimal number of subdomains for performance improvement
of PCG using Deflation is 100. The gain in iterations for various cell sizes are tabu-
lated below:

PCG CDPCG LDPCG LDPCG Speedup
Cell Size (m) Iters Iters Speed up Iters Speed up vs CDPCG Speedup
250 2527 1768 1.43 1496 1.69 1.18
100 10775 5209 2.07 3313 3.25 1.57
50 20927 10244 2.04 4966 4.21 2.06

Table 7.8: Speed up in iterations (Iters) for NHI SS model with subdomains

7.7.2. Gain in wall clock time
The speed up factor of CDPCG and LDPCG with respect to PCG is shown below.
We observe that the LDPCG performs better than CDPCG for higher number of
subdomains in 100m NHI SS model. The improvement of Deflation is higher for
intermediate number of subdomains (shown with red circle).

Huge decrease in iterations 
Setup time: LDPCG 

Figure 7.19: Wall clock time speed up factor in 3000 ×3250 ×7 grid cell in 50m NHI SS model
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For 50m NHI SS model, the LDPCG works better than CDPCG for intermediate
number of subdomains as shown below (shown with yellow circle).

Set up time

Communication overhead

Huge iteration decrease

Figure 7.20: Wall clock time speed up factor in 6000 ×6500 ×7 grid cell in 50m NHI SS model
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7.8. Code Optimization with Scalasca Profiler
During the code development of Deflation in the PKS solver, we took several Scalasca
Profiler readings to understand the code bottlenecks. We improved the run time of
the deflated solver(s) after fixing the issue(s).

7.8.1. Storing 𝐴𝑍 Matrix
A matrix 𝐴𝑍 is obtained by multiplying the matrix 𝐴 with the deflation matrix 𝑍. 𝐴𝑍
is used in deflation pre-processing phase and deflation run-time phase. In our initial
implementation, we did not explicitly store the 𝐴𝑍 matrix in deflation pre-processing
phase and computed it again in the deflation run-time phase. Therefore, we did
not gain any run time in the Deflated codes.

We see in figure 7.21a that, the time taken in CGmatrix vector product (spks_cmatvec_)
is 2.68 seconds, which is about same as time taken in matrix vector product used
(2.65 seconds) in Deflation run time phase (spks_cmatvec3_) before the optimiza-
tion. To resolve this issue, we store 𝐴𝑍 matrix in deflation pre-processing phase.
We see from figure 7.21b that, the matrix vector product time in Deflation run time
phase (spks_compute_azx_) has reduced to 0.71.

We could resolve this problem only after checking the scalasca profiling report.

(a) Before optimization (b) After optimization

Figure 7.21: Scalasca snapshots describing runtime for × × iMOD unit case in CDPCG method

7.8.2. Sparse 𝐿𝑈 Decomposition of 𝐸
𝐿𝑈 decomposition of matrix 𝐸 is performed in Deflation pre processing phase. The
entries in matrix 𝐸 is zero corresponding to non-neighboring subdomains connec-
tions in CDPCG method. As the number of subdomains increases, the number of
zero entries in 𝐸 increases. For LDPCG method, the size of 𝐸 is 4 times bigger than
the size of 𝐸 in CDPCG method. Therefore, matrix 𝐸 in LDPCG gets bigger and
becomes more sparse.
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To decompose, the matrix 𝐸 into 𝐿 and 𝑈, we initially wrote a subroutine called
spks_getlu_ in the PKS solver. It does not utilize the sparsity in 𝐸 and computes
redundant pivots (whose value is zero) and redundant row updates in 𝑈. In scalasca
profiler figure 7.22a, we observe that the subroutine spks_getsplu_ takes 11.42%
of the whole simulation time. We wrote a subroutine called spks_getsplu_,
in which we skip the row updates in 𝑈 corresponding to the zero pivots. It has
drastically reduced the 𝐿𝑈 decomposition time from 11.42% to 1.17% (see figure
7.22b).

(a) Before optimization (b) After optimization

Figure 7.22: Scalasca snapshots describing runtime for × × NHI SS model in LDPCG method
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Conclusions and

Recommendations

8.1. Conclusions
In our Master’s project research, we have successfully implemented the CDPCG and
LDPCG method in the PKS package. The primary goals have been achieved, and
the research questions have been answered. In the speedup figure below, the base
time in PCG, CDPCG and LDPCG is the respective serial run time, i.e serial speed
up is 1 in PCG, CDPCG and LDPCG.

Figure 8.1: Speed up in wall clock time for m NHI SS model
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We conclude the following from our research:

• Deflation method works better for the higher number of subdomains. We
have found that Deflation performs the best for 100 subdomains.

• The groundwater simulation time can be reduced by a factor 4 using Deflation
preconditioner (using linear deflation vectors).

• The wall clock improvement is obtained due to huge decrease in iterations.

• Linear deflation vectors seems to be the optimal choice in the deflation pre-
conditioner.

8.2. Recommendations
• Investigate the serial solver convergence: by changing the maximum number
of inner iterations, checking accuracy of ILU(0) subdomain solve.

• We have considered only steady state simulation in our research. We rec-
ommend checking the performance of Deflated PCG code for NHI transient
simulation.

• The number of iterations in SEAWAT (coupled groundwater and solute trans-
port) code increase by almost a factor of two. We recommend using LDPCG
method to see significant improvement in iterations.

• Construction of 𝐴𝑍 matrix in Deflation pre-processing phase involves local
communication of linear deflation vectors. The linear deflation vector entries
can be constructed locally using a global index in the domain.

• Two global communications can be combined to reduce time in the Deflation
pre processing phase.

• The performance of Deflation needs to be checked for 25meter NHI SS model.

• Investigate the load imbalance in PCG and deflated PCG.

• We use both active and inactive cell indexes to calculate linear deflation vector
entries in a structured grid. We recommend checking the effect LDPCG using
indexes using only active cells.

• AS preconditioner has been used in the current implementation. What would
be the impact when RAS is combined with Deflation?

• Two flags need to be added in input run-file to include CDPCG and LDPCG
solvers in the next release of iMOD: DEFLATION and NDEFVEC. DEFLATION
can be set to true or false. NDEFVEC can be set to 1 or 4 for 3𝐷 models to
include CDPCG and LDPCG respectively.
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Matrix A
We have done some experiments on the exported large matrix 𝐴 from MODFLOW.
We denote 𝐴 by 𝐴 . For the Netherlands Hydrological Instrument (NHI) model,
we have made a coarser model to the experiments. In the current coarser model,
the grid size is 1000 × 1000 × 7. The observations for 1 time step and 1 Picard
iteration are:

• The square matrix 𝐴 is symmetric.

• Dimension of the matrix 𝐴 is 389429 × 389429.

• Largest eigenvalue (𝜆 ) = 4.65 ∗ 10 .

• Smallest eigenvalue (𝜆 ) = 2.65 ∗ 10 .

• Condition number of matrix (𝒦) = 17520.65.

• From above observations the matrix is SPD.

Diagonal Dominant
A square matrix A is said to be diagonally dominant if for every row of the matrix,
the magnitude of the diagonal entry in a row is larger than or equal to the sum of
the magnitudes of all the other (non-diagonal) entries in that row. More precisely,
the matrix 𝐴 is diagonally dominant if

|𝑎 | ≥∑|𝑎 | for all 𝑖, (8.1)

A Strictly diagonal dominant matrix have favorable properties, which helps to
converge the iterative methods faster. We want to see the fraction of rows which
are diagonally dominant in 𝐴 , in the observations below:

• Fraction of diagonal dominant rows in Transient Simulation: 0.998041.

• Fraction of diagonal dominant rows in Steady State Simulation: 0.6825.

ILU Fill-in
Time taken and iterations to converge were noted for 𝐴 with cg tolerance 10 ,
droptol denotes fill-in, droptol = 0 means full fill-in.
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Case Iterations Time(s) to form M Time(s) in CG loop
No Preconditioner 815 NA 12.6
ILU(0) 27 0.06 0.91
ILU, droptol = 0.002 31 2.51 0.95
ILU, droptol = 0.001 23 4.84 0.75
ILU, droptol = 0.00075 21 7.48 0.70
ILU, droptol = 0.0005 18 17.89 0.66
ILU, droptol = 0.0002 10 111.0 0.40

Table 8.1: Time and iterations for varying drop-tolerance

Overlap
For 1D Poisson’s problem, we have computed the condition number of precondi-
tioned system in Additive Schwarz (AS) and Restricted Additive Schwarz (RAS) for
different overlap. We conclude that RAS performs best for higher value of overlap.

• Number of grid points: 1000

• Number of subdomains: 2

Ovelap 5 10 50 100 300
cond(𝑀 𝐴) 7.85 ∗ 10 4.06 ∗ 10 1.06 ∗ 10 626 322
cond(𝑀 𝐴) 7.59 ∗ 10 4.24 ∗ 10 761 351 89

Table 8.2: Effect of overlap on condition number
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NHI SS 250m Model
Here, LDPCG stands for linear deflation vectors in 𝑥, 𝑦 and 𝑧 directions.

subdomains PCG CDPCG LDPCG
1 1963 2114 2033
4 2193 2246 2178
9 2052 2055 1944
16 2192 2168 2102
25 2054 2029 1537
36 2168 2158 1720
49 2207 1776 1716
64 2377 2238 1540
81 2313 1673 1517
100 2527 1768 1496
121 2563 1607 1557
144 2504 1943 1523

Table 8.3: Total iterations in 250 m NHI SS model

subdomains PCG linear-X-deflation linear-XY-deflation
1 1963 2127 2088
4 2193 2206 2178
9 2052 2074 2082
16 2192 2133 2132
25 2054 1985 1985
36 2168 1831 1900
49 2207 1912 1911
64 2377 1567 1592
81 2313 1584 1586
100 2527 1589 1606
121 2563 1589 1643

Table 8.4: Total iterations in 250 m NHI SS model
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NHI SS 100m Model

subdomains PCG CDPCG LDPCG
1 9967 10005 9501
4 10245 8967 7675
16 10410 10559 10561
36 10350 8811 9025
64 10770 9631 4837
100 10775 5209 3313
144 10905 6292 3420
196 11315 6658 3240

Table 8.5: Total iterations in 100 m NHI SS model

subdomains PCG CDPCG LDPCG
1 5 HH, 9 MM, 3 SS 5 HH, 38 MM, 10 SS 8 HH, 26 MM, 37 SS
4 2 HH, 20 MM, 13 SS 2 HH, 48 MM, 17 SS 2 HH, 3 MM, 19 SS
16 53 MM, 2.015 SS 1 HH, 2 MM, 35 SS 2 HH, 16 MM, 52 SS
36 24 MM, 8.431 SS 24 MM, 11.912 SS 32 MM, 26.582 SS
64 13 MM, 57.191 SS 21 MM, 32.596 SS 10 MM, 23.553 SS
100 21 MM, 15.975 SS 7 MM, 26.627 SS 5 MM, 15.601 SS
144 6 MM, 39.927 SS 4 MM, 42.409 SS 3 MM, 59.860 SS
196 5 MM, 19.766 SS 3 MM, 56.918 SS 3 MM, 34.621 SS

Table 8.6: Wall clock time in 100 m NHI SS model
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NHI SS 50m Model

#subdomains PCG CDPCG LDPCG
36 19230 15094 11470
64 19242 13874 6537
81 19792 9978 6608
100 20927 10244 4966
120 21342 12712 7971
144 18662 11505 5468
192 18090 7390 5674

Table 8.7: Variation of total iterations with subdomains in 6000 ×6500 ×7 grid cell in 50m NHI SS model

#subdomains PCG CDPCG LDPCG
36 4 HH, 25 MM 3 HH, 8 MM, 11 SS 5 HH, 29 MM, 35 SS
64 2 HH, 6 MM, 27 SS 1 HH, 19 MM, 51 SS 1 HH, 26 MM, 12 SS
81 2 HH, 32 MM, 52 SS 1 HH, 28 MM, 53 SS 56 MM, 14 SS
100 1 HH, 15 MM, 32 SS 1 HH, 32 MM, 25 SS 27 MM, 53.054 SS
120 1 HH, 2 MM, 50 SS 40 MM, 55 SS 35 MM, 15 SS
144 1 HH, 36 MM, 60 SS 45 MM, 4.024 SS 48 MM, 0.842 SS
192 31 MM, 34.777 SS 16 MM, 7.648 SS 23 MM, 7.590 SS

Table 8.8: Variation of wall clock with subdomains in 6000 ×6500 ×7 grid cell in 50m NHI SS model



8

114 Appendix

Sample batch file
A sample batch file to run a PCG solver job on Cartesius on 100 MPI processes using
5 nodes is given below:
#!/ b in / bash
#SBATCH −t 01:00:00
#SBATCH −−output=nhiss_n100sca_no_def . out
#SBATCH −−e r ro r=nhiss_n100sca_no_def . e r r
#SBATCH −p normal
#SBATCH −−con s t r a i n t=haswel l
#SBATCH −N 5
#SBATCH −n 100
#SBATCH −−d i s t r i b u t i o n=block : b lock
module load sca lasca
cp −r $HOME/ imodflow_pks / only_modflow / t e s t s / nh i ss /* $TMPDIR
cd $TMPDIR
begint ime=$( date +%s%N)
export SCOREP_EXECUTABLE=$HOME/ imodflow_pks / only_modflow / b in /
imodflow−sca
sca lasca −analyze srun $HOME/ imodflow_pks / only_modflow / b in /
imodflow−nhi100m−nodef nhi_100m . run
endtime=$( date +%s%N)
echo ” runt ime : $ ( echo ” sca l e =3;(${endtime} − ${ begint ime } ) /
(1*10^09)” | bc ) seconds ”
based i r=$HOME/ imodflow_pks / only_modflow / t e s t s / j obsnh i s s /100m/
r e s u l t s
d i r=no_def_100
mkdir −p ${ based i r }/${ d i r }
cp $TMPDIR/ r e s u l t s / head /* _ l1 *. i d f ${ based i r }/${ d i r }
cp $TMPDIR/ r e s u l t s / head /* _ l2 *. i d f ${ based i r }/${ d i r }
cp $TMPDIR/ r e s u l t s /mf2005_tmp /* . l i s t * ${ based i r }/${ d i r }
cp $TMPDIR/ r e s u l t s /mf2005_tmp /* . dat ${ based i r }/${ d i r }
based i r2=$HOME/ imodflow_pks / only_modflow / t e s t s / j obsnh i s s /
100m/ g l oba l r e s
cp $TMPDIR/*RES*. dat ${ based i r2 }
based i r3=$HOME/ imodflow_pks / only_modflow / t e s t s / j obsnh i s s /
100m/ i i t e r _ p e r _ o i t e r
cp $TMPDIR/* i i t r * . dat ${ based i r3 }
s co r ed i r=$( echo score *)
cp −r $ s co red i r ${ based i r }/${ d i r }
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Iterations 2D Poisson Problem
Termination criteria for Residual is Inf Norm, (ICNVGOPT=0 in MODFLOW).

S.No. Subdomains PCG CDPCG ‖x_PCG - x_DPCG‖
1 1 35 35 6.1 ∗ 10
2 2 55 58 4.43 ∗ 10
3 4 66 62 3.79 ∗ 10
4 8 73 72 3.34 ∗ 10
5 16 81 59 6.56 ∗ 10
6 32 94 62 8.1 ∗ 10
7 64 104 41 7.14 ∗ 10
8 128 117 42 𝑂(10 )
9 256 124 26 𝑂(10 )

Table 8.9: Variation of inner iteration for 1st Picard iteration in 100 ×100 ×1 Poisson problem





Nomenclature

Abbreviations
1D One dimensional

2D Two dimensional

3D Three dimensional

AS Additive Schwarz

ASM Additive Schwarz Method

BiCGSTAB Bi-Conjugate Gradient Stabilized

BIM Basic Iterative Method

CDPCG Deflated Preconditioned Conjugate Gradient with constant deflation vec-
tors

CG Conjugate Gradient

DD Domain Decomposition

DPCG Deflated Preconditioned Conjugate Gradient method, general term to de-
note CDPCG and LDPCG method

GWF Ground Water Flow

HCLOSE Solver closing criteria using head

ICNVGOPT Option to select different norms for solver convergence in PKS

ILU Incomplete LU Decomposition

LDPCG Deflated Preconditioned Conjugate Gradient with linear deflation vectors
in 𝑥, 𝑦 and 𝑧 direction

LHM Landelijk Hydrologisch Model

LSE Linear System of Equations

MPI Message Passing Interface

NHI Nederlands Hydrologisch Instrumentarium

PCG Preconditioned Conjugate Gradient
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PDE Partial Differential Equation

PKS Parallel Krylov Solver

RAS Restrictive Additive Schwarz

RCB Recursive coordinate bisection

RCLOSE Solver closing criteria using residual

SLURM Simple Linux Utility for Resource Management

SPD symmetric positive definite

SS Steady State

USGS United States Geological Survey
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