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Chapter 1

Introduction

Electromagnetic phenomena are among the most widely researched ones in physics. One active
research subject is that of optical traps. Using focussed laser beams, small dielectric particles in
the micro and nano meter range are trapped by the surrounding electromagnetic fields. The first
observation of this trapping force using a single beam was in the mid 1980s [1].

The trapping of these small particles has a wide range of applications. One can think of sep-
aration of particles with different sizes or electric properties on a so-called lab-on-a-chip, or the
fabrication of miniature devices. For example in [16] devices are proposed that no longer need me-
chanical components for certain tasks such as switching a signal, but use a moving particle instead,
that ’steers‘ a signal beam. This particle is controlled by an optical trap.

Of course for applications like this it is important that the particles react as is expected, so it
is necessary to fully understand the forces acting on it, with high accuracy. As of now this is still
the subject of ongoing research.

The two most important things that determine the expression of the total force on the particle
are the model used for the electromagnetic field generated by the beam, and the expressions used
to determine the total force on a particle given this background field. Additionally there is the
question whether the electromagnetic force is the only force acting on the particle or there are more
forces involved.

In practice the incoming beam is modelled as a Gaussian beam, with its parameters either
deduced theoretically from the properties of the lens system, or determined empirically. As we
will see later on, the Gaussian beam is an approximation that will only hold for certain choices of
parameters. This is important to keep in mind when using this model.

To determine the total electromagnetic force on a particle, the force is split in a relatively large
conservative part and a small non-conservative part. The conservative part is the so-called gradient
force, proportional to the gradient of the electric field intensity. The non-conservative part is the
so-called scattering force and points in the direction of propagation of the beam. Trapping then
occurs because the gradient force is dominant compared to the scattering force, and the particle is
trapped near the point of maximum intensity. Although the splitting of the total force in a gradient
and scattering force is conceptually convenient, it is somewhat arbitrary, and in general incorrect.
A more thorough analysis would make use of the Maxwell stress tensor and the conservation of
total momentum. In [4] multiple expression for the total force on a particle inside an optical trap
are compared. For larger particles these expressions deviate significantly, but for small particles,

1



2 CHAPTER 1. INTRODUCTION

within the Rayleigh regime, all expression result in the same total force.
In [22] an experiment is described in which the total force on small particles is measured directly.

Here the non-conservative part of the trapping force is investigated. A deviation between the
empirical force field and the theoretical force field based on the Gaussian beam approximation is
observed.

One possibility is that there are more forces acting on the particle than just the electromagnetic
force. In [20] the effect of thermophoresis is investigated. Thermophoresis is the phenomenon of an
apparent force on particles submerged in a mixture of different mobile particles under influence of
a temperature gradient.

We now come at the main subject of this thesis. We will investigate a phenomenon, that, if
present, can lead to yet another force on the particles. We already know that particles with an
electric contrast with respect to the background medium, will feel an electromagnetic force. This
is the force responsible for the whole trapping to begin with. We will apply the same reasoning
to the background medium itself. We determine the electromagnetic field and derive an expression
for the force density corresponding to the Maxwell stress tensor. One important detail is that
this stress tensor is not uniquely defined. As can be read in [6], when working in homogeneous
solid media all choices will lead to the same result, since internal forces will only result in local
displacements, creating internal stresses. In our case we are looking at fluids, which, by definition,
cannot withstand internal stress and will start moving when forces are applied. We choose the
stress tensor to be independent of the medium, assuming that all the electromagnetic reactions of
the medium can be thought of as current densities induced on a vacuum background. We then use
the Lorentz force expressions to determine the corresponding force density, which will result in the
fluid starting to move.

1.1 Outline of this thesis

Besides the introduction this thesis consists of seven chapters and one appendix. In Chapter 2
we will investigate the electromagnetic field in general. The Maxwell equations are stated, both
in vacuum and inside a medium. We will derive the complex Maxwell equations that we will use
for the simulations. Also we will derive the time-averaged force density, and the heat dissipation
resulting from conduction.

In Chapter 3 we discuss different external sources used to model the propagating laser beam
that is used in a typical trapping experiment. We first consider the Gaussian beam approximation,
after which we will discuss the so-called Gaussian dipole array, designed to reflect the properties of
the Gaussian beam, without violating the Maxwell equations.

Chapter 4 focusses on the Navier-Stokes equations. Using the different conservation laws we
derive the equations governing the fluid flows. These equations explicitly depend on the force
density and heat dissipation terms determined in Chapter 2.

To perform the simulations themselves we need to choose a medium and domain of interest. In
Chapter 5 we define the domain that we will use, and the parameters corresponding to our medium
of choice, pure water, are discussed.

The numerical experiments themselves are discussed in Chapter 6. First the accuracy of the
Gaussian beam source and the convergence properties of the quantities of interest for different grid
sizes are investigated. Then the results of the simulations themselves are reviewed.

Finally in Chapter 7 and Chapter 8 conclusions are drawn based on the results of the simulations.
Also some topics of future research are proposed.
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In Appendix A some notation considering four-vectors is introduced, which is used in Chapter
2 to determine the Maxwell equations inside a possibly moving fluid.

Appendix B contains information about the software implementation used for the simulations.
Some general information on the OpenFOAM package is given and the specific considerations for
our implementation are mentioned.
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Chapter 2

The electromagnetic field

It is well known that electromagnetic fields satisfy the Maxwell equations. In this chapter we will
first consider the Maxwell equations in vacuum and derive expressions for the conversation of energy
and momentum of the fields. Then we will consider the so-called macroscopic Maxwell equations in
matter, where polarization of the medium will change the behaviour of the field. Also, conduction
will lead to the dissipation of electromagnetic energy, resulting in exponential decay of the fields.
Throughout this work we will assume that the mediums reaction to the magnetic field is negligible.
This is true for most materials, particularly for water at the frequencies we will consider.

2.1 Maxwell equations in vacuum

From [7] we have the Maxwell equations in vacuum given by the coupled partial differential equations

−∇×B+ µ0ε0
∂E

∂t
= −µ0J, (2.1)

∇×E+
∂B

∂t
= 0, (2.2)

where E = E(x, t) is the electric field, B = B(x, t) is the magnetic field and J = J(x, t) is the
(total) electric current density, and x ∈ R

3 is a vector in the domain of interest. The constants
ε0 and µ0 are the permittivity of free space and permeability of free space respectively. These are
considered constants by nature. We will see later on that when we consider electromagnetic fields
in matter, we can model them with similar equations, with different values of these parameters.
The reason there is no term at the right-hand side of the second equation is the lack of magnetic
monopoles in nature. Sometimes a non-zero term is stated, which can be due to an induced magnetic
source, or the application of certain mathematical techniques.

The electric current density consists of the movement of charged particles. When we consider
the equations in matter, we will split the current density in different terms, corresponding to
polarization and conduction. Furthermore we will have an external part, which acts as source of
the initial fields. This is the part we control as part of a physical experiment.

From these two equations we can derive two compatibility equations. We assume electric charge
is (locally) conserved, which can be formulated as the continuity equation

5



6 CHAPTER 2. THE ELECTROMAGNETIC FIELD

∂ρe

∂t
= − divJ, (2.3)

where ρe = ρe(x, t) is the (total) electric charge density. We use the subscript e to distinguish
it from the mass density of the medium, which we will use in the Navier-Stokes equations. Taking
the divergence of (2.1) and (2.2), and noting that the divergence of a curl is always zero, we end
up with the equations

ε0 div
∂E

∂t
= − divJ, (2.4)

div
∂B

∂t
= 0. (2.5)

Using (2.4) we can write

ε0 divE = ε0

∫ t

−∞

d

dt
divE dt =

∫ t

−∞

ε0 div

(

∂E

∂t

)

dt = −
∫ t

−∞

divJdt =

∫ t

−∞

∂ρe

∂t
dt = ρe,

where we assume we can interchange the order of integration and differentiation and that there
exists a t0 such that E = 0 and ρe = 0 for t ≤ t0, or so to say, the external source is switched on at
some point in time. Using the same assumptions on the second equation leads to the compatibility
equations

divE =
ρe

ε0
, (2.6)

divB = 0. (2.7)

Note that the first equation is well-known as Gauss’s law or Gauss’s flux theorem. To make the
Maxwell equations more symmetric, we change to the magnetic field

H =
1

µ0
B.

Since we assume our medium of interest does not react magnetically, we can use the H with a
constant coefficient. In the literature there is some debate which term belongs to which quantity.
When there is a magnetic reaction of the medium to distinguish the different quantities. In this
work we will work mostly with H, and will refer to this quantity as the magnetic field. When a
different quantity is implied, this will be explicitly mentioned.

Substitution in (2.1), (2.2) and (2.7) results in field equations

−∇×H+ ε0
∂E

∂t
= −J, (2.8)

∇×E+ µ0
∂H

∂t
= 0, (2.9)

and the compatibility equations
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divE =
ρe

ε0
, (2.10)

divH = 0. (2.11)

2.1.1 Subscript notation

Sometimes it is cumbersome to work with the equations in vector notation. Especially when a lot
of derivatives appear in the formulas, the notation gets quickly complex and sometimes ambiguous.
For this reason, we will sometimes switch to subscript notation. This is specially suited for longer
derivations, such as conservation laws. The subscript notation and vector notation are (obviously)
equivalent. In subscript notations, the different components of a vector quantity are denoted with
the subscripts 1, 2 and 3, or a letter, when a random component is referred. The partial derivative
is replaces by the symbol ∂ with as subscript the special component to which the derivative is taken,
or t for derivation with respect to time.

The wave equations in subscript notation are given by

− ǫijk∂jHk + ε0∂tEi = −Ji, (2.12)

ǫijk∂jEk + µ0∂tHi = 0, (2.13)

where ǫijk is the Levi-Civita symbol. The compatibility relations are given by

∂iEi =
ρe

ε0
, (2.14)

∂iHi = 0. (2.15)

We use the Einstein summation convention, which means we sum over repeated indices in one
term.

2.1.2 Conservation of energy

By manipulating the Maxwell equations we can derive a conservation of energy statement for the
electromagnetic fields. It turns out we can define a certain volumetric energy density and an energy
flux density.

If we multiply (2.12) with Ei and (2.13) with Hi and add the results, we get as left-hand side

Ei (−ǫijk∂jHk + ε0∂tEi) +Hi (ǫijk∂jEk + µ0∂tHi)

= ε0Ei∂tEi + µ0Hi∂tHi − ǫijkEi∂jHk + ǫijkHi∂jEk

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

− ǫijkEi∂jHk + ǫijkHi∂jEk

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

+ ǫijkEj∂iHk + ǫijkHk∂iEj

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

+ ∂i(ǫijkEjHk),
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where we have used ǫijk = −ǫjik, and relabelled the dummy indices. As right-hand side we get

−EiJi.

We define the electromagnetic energy density as

uem =
1

2
(ε0EiEi + µ0HiHi) , (2.16)

and the Poynting vector as

Si = ǫijkEjHk. (2.17)

Then we can write the conservation of energy equation as

∂tuem = −∂iSi − EiJi, (2.18)

or in vector notation

∂uem

∂t
= − divS−E · J. (2.19)

This is the conservation of electromagnetic energy in vacuum. We see that when electric currents
are present and have a component in the same direction as the electric field, the electromagnetic
energy will decrease, since the current is induced by the field present. This mechanism happens
when matter is present. The other way around, if the electric field and the electric current have a
component in the opposite direction, the energy increases and we have a source of electromagnetic
energy. This is the idea behind the external source that will be introduced later on.

2.1.3 Conservation of (linear) momentum

It is well known that a charged particle in an electromagnetic field experiences a force, the Lorentz
force. This force is given by

F = qE+ v ×B, (2.20)

where q is the electric charge of the particle and v is its velocity.
When we consider a continuous charge density and current density, we can express the Lorentz

force as a force density, given by

f = ρeE+ J×B. (2.21)

Switching to subscript notation and using the H field, the force density is given by

fi = ρeEi + µ0ǫijkJjHk. (2.22)

We can to rewrite this force density as function of the fields only by substituting (2.14) to
eliminate ρe, and (2.12) to eliminate Jj . This results in

fi = ε0(∂jEj)Ei + µ0ǫijk (ǫjlm∂lHm − ε0∂tEj)Hk,

= ε0Ei∂jEj + µ0ǫijkǫjlmHk∂lHm − ε0µ0ǫijkBk∂tEj ,

= ε0Ei∂jEj + µ0ǫjkiǫjlmHk∂lHm − ε0µ0∂t(ǫijkEjHk) + ε0µ0ǫijkEj∂tHk. (2.23)
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If we use the identity

ǫjkiǫjlm = δklδim − δkmδil,

we can write

ǫjkiǫjlmHk∂lHm = ∂l(ǫjkiǫjlmHkHm)−Hm∂l(ǫjkiǫjlmHk),

= ∂l((δklδim − δkmδil)HkHm)−Hm∂l((δklδim − δkmδil)Hk),

= ∂l(δklδimHkHm)− ∂l(δkmδilHkHm)−Hm∂l(δklδimHk)−Hm∂l(δkmδilHk),

= ∂k(HkHi)− ∂i(HkHk)−Hi∂kHk +Hk∂iHk,

= Hk∂kHi +Hi∂kHk − ∂i(HkHk)−Hi∂kHk +
1

2
∂i(HkHk),

= Hk∂kHi −
1

2
∂i(HkHk).

Substituting in (2.23) and using (2.17) results in

fi = ε0Ei∂jEj + µ0Hk∂kHi −
1

2
µ0∂i(HkHk)− µ0ε0∂tSi + µ0ε0ǫijkEj∂tHk.

The last term on the right-hand side can be rewritten using (2.13). This results in

ε0µ0ǫijkEj∂tHk = ε0ǫijkEj(−ǫklm∂lEm),

= ε0ǫkjiǫklmEj∂lEm,

= ε0Ej∂jEi −
1

2
ε0∂i(EjEj),

where we have used the identity we have just derived in terms ofHi. Substituting this expression,
adding a term

µ0Hi∂jHj = 0,

and rearranging and relabelling the terms results in the expression

fi = ε0 (Ei∂jEj + Ej∂jEi)+µ0 (Hi∂jHj +Hj∂jHi)−
1

2
∂i (ε0EjEj + µ0HjHj)−µ0ε0∂tSi. (2.24)

We want to write this force density as divergence of some stress tensor. This can be accomplished
by defining the symmetric Maxwell stress tensor T , with components

Tij = ε0

(

EiEj −
1

2
δijEkEk

)

+ µ0

(

HiHj −
1

2
δijHkHk

)

, (2.25)

with respect to the standard basis. We see that for the divergence of the stress tensor we have
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∂jTij = ∂j

(

ε0

(

EiEj −
1

2
δijEkEk

)

+ µ0

(

HiHj −
1

2
δijHkHk

))

,

= ε0

(

Ei∂jEj + Ej∂jEi −
1

2
δij∂jEkEk

)

+ µ0

(

Hi∂jHj +Hj∂iHi −
1

2
δij∂jHkHk

)

,

= ε0

(

Ei∂jEj + Ej∂jEi −
1

2
∂iEjEj

)

+ µ0

(

Hi∂jHj +Hj∂iHi −
1

2
∂iHjHj

)

.

Comparison with (2.24) results in

fi = ∂jTij − µ0ε0∂tSi, (2.26)

the conservation of electromagnetic momentum. Note fi can be interpreted as the time derivative
of the momentum density. Then ∂jTij is the momentum density flux in the different directions,
and µ0ε0Si the momentum density.

In vector notation we would write the Maxwell stress tensor as

←→
T = ε0E⊗E+ µ0H⊗H− 1

2

(

ε0‖E‖2 + µ0‖H‖2
)←→

I ,

with
←→
I the identity tensor. Then the conservation of momentum can be expressed as

f = div
←→
T − µ0ε0

∂S

∂t
. (2.27)

We will see that inside matter we can derive a similar conservation equation.
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2.2 Maxwell equations in matter

When we consider electromagnetic fields in matter, it is convenient to work with a different set
of equations. Matter reacts in a certain way to electromagnetic fields. The reaction is a combi-
nation of polarization, magnetization and conduction. As mentioned earlier we assume that the
magnetization is negligible, but in the derivation of the equations we will include this possibility.
Furthermore we are not interested in the microscopic properties of these reactions, but will con-
sider them from a macroscopic point of view, considering the medium as a continuum with smoothly
varying properties.

2.2.1 Polarization and magnetization

For the analysis of the effect of polarization and magnetization we follow [7] and define two new
quantities, the volumetric polarization density P and the volumetric magnetization density M.

A polarization density gives rise to a bounded volume charge and a bounded surface charge.
The bounded volume charge density is given by

ρb = − divP, (2.28)

and the bounded surface charge density is given by

σb = P · n̂, (2.29)

where n̂ is the outward pointing normal unit vector. The surface is the boundary of the medium
in which polarization takes place. Furthermore, changing polarization gives rise to a polarization
current, because of the bound charge moving around. The corresponding polarization current
density is given by

Jp =
∂P

∂t
. (2.30)

A magnetization density gives rise to a bounded volume current and a bounded surface current.
The bounded volume current density is given by

Jb = ∇×M, (2.31)

and the bounded surface current density is given by

Kb = M× n̂, (2.32)

where again n̂ is the outward pointing normal unit vector. The surface is the boundary of the
medium in which magnetization takes place.

Together with the polarization density and magnetization density, we can define two new fields,
the electric displacement field

D = ε0E+P, (2.33)

and the auxiliary magnetic field

H =
1

µ0
B−M. (2.34)
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In order to determine the electromagnetic field we have to know how the matter will react on
applied fields, that is we need to know the constitutive relations.

Using the Maxwell equations for vacuum, we will derive a new set of equivalent equations, in
terms of the fields D and H. The (total) current density can now be split in three parts, the current
densities induced by the polarization and magnetization respectively and the free current density.
That is we have

J = Jp + Jm + Jf

=
∂P

∂t
+∇×M+ Jf. (2.35)

Likewise the charge density can be written as the sum of the charge density caused by the
polarization and a free charge density. We have

ρe = ρp + ρf

= − divP+ ρf. (2.36)

Substituting (2.33), (2.34) and (2.35) into (2.1) and rearranging terms results in the so-called
Maxwell equations in matter,

−∇×H+
∂D

∂t
= −Jf, (2.37)

∇×E+
∂B

∂t
= 0. (2.38)

Substituting (2.36) and (2.34) in (2.10) results in the compatibility equations

divD = ρf, (2.39)

divB = 0. (2.40)

To be able to solve this system of equations we need so-called constitutive relations for the
displacement field, the auxiliary field and the free current density. These will be discussed in the
next section.

2.2.2 Constitutive relations for fluids

The simplest way to model how matter reacts to applied electromagnetic fields, assumes linear
polarization and magnetization. We assume the fields consist of a single frequency, so that there
is no dispersion. In general the parameters for polarization and magnetization depend on the
frequency of the field. For linear materials we have

P = ε0χeE (2.41)

M = χmH. (2.42)
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The constants χe and χm which are called the electric susceptibility and magnetic susceptibility
respectively. Substituting these relations in (2.33) and (2.34) in (2.10) results in the constitutive
relations

D = εE (2.43)

B = µH, (2.44)

where ε = ε0 (1 + χe) is the electric permittivity and µ = µ0 (1 + χm) the magnetic permeability.
For conducting media we assume Ohm’s law applies, which says that

Jf = σE, (2.45)

where the constant σ is called the electric conductivity. In general this constant also depends on
the frequency. We will see that the conduction and polarization can be modelled by one complex
parameter when we consider the fields in the frequency domain.

It is interesting to note that these constitutive relations are only valid in reference frames
where the medium is in rest. For non-fluid media this will usually be no problem, but when
considering fluids, different material parts in general have different velocities. We will need to
find the expressions for the constitutive relations in the stationary lab frame. That is we need to
transform the constitutive relations from the instantaneous rest frame, to the lab frame. Following
[12] we will use the four-vector framework of special relativity to determine these transformations.
The notation and different tensors are defined in Appendix A.

To determine the correct constitutive relations, we will determine tensor equations, which in
the instantaneous rest frame of a certain fluid particle reduce to the ordinary constitutive relation
for linear media. Since by definition all the tensors obey the transformation rules, these equations
will be correct in all (inertial) reference frames, in particular in the lab frame.

From (A.2) we notice that when the regular velocity is zero, the velocity four-vector is equal to

V µ =
(

c 0 0 0
)

,

suggesting that the correct form for the polarization is

DµνVν = c2εFµνVν .

In vector notation this is equal to

(

0 cD

−cD · ×H

)(

−γc
γv

)

= c2ε

(

0 1
c
E

− 1
c
E · ×B

)(

−γc
γv

)

.

Writing out the two equations results in

γcD · v = c2ε
1

c
γE · v, (2.46)

γc2D+ γv ×H = c2εγE+ c2εγv×B. (2.47)

Clearly this reduces to linear polarization if we substitute v = 0. Likewise for the magnetization
we have a similar expression in terms of the dual field tensors,
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µHνµVν = GνµVν ,

In vector notation this is equal to

µ

(

0 H

−H −c(· ×D)

)(

−γc
γv

)

=

(

0 B

−B − 1
c
(· ×E)

)(

−γc
γv

)

.

Writing out the equations results in

γµH · v = γB · v, (2.48)

γµcH− γµcv ×D = γcB− γ 1
c
v ×E. (2.49)

Again we see that the equations reduce to the expected equations when v = 0 is substituted.
Rewriting (2.47) and (2.49) results in the constitutive relations

D = εE+ εv ×B− 1

c2
v ×H, (2.50)

B = µH− µv ×D+
1

c2
v ×E. (2.51)

Rewriting (2.47) and (2.49) results in the corresponding compatibility relations

D · v = εE · v, (2.52)

B · v = µH · v. (2.53)

We see that (2.50) and (2.51) are coupled. They both depend on three fields. If we assume the
fluid velocity is not too large, we can simplify the expressions by neglecting higher order terms. At
this point we will only consider the first correction term and neglect all terms much smaller than
µ0ε0 = 1

c2
. Substituting (2.50) and (2.51) into each other results in

D = εE+ εv ×
(

µH− µv ×D+
1

c2
v ×E

)

− 1

c2
v ×H

= εE+ (µε− µ0ε0)v ×H− µεv × (v ×D) + εµ0ε0v × (v ×E) ,

≈ εE+ (µε− µ0ε0)v ×H− µεv × (v ×D) ,

= εE+ (µε− µ0ε0)v ×H− µεv ×
(

v ×
(

εE+ εv ×B− 1

c2
v ×H

))

,

≈ εE+ (µε− µ0ε0)v ×H.

Likewise we get the same result for B,

B ≈ µH− (µε− µ0ε0)v ×E.
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Finally we need the free current density. In non-conducting media this will of course be zero.
When we have positive electric conductivity, we again construct a tensor equation that reduces to
the correct equation for v = 0. It is clear that the correct expression is given by

σFµνVν = (Jf)
µ.

In vector notation this is equal to

σ

(

0 1
c
E

− 1
c
E · ×B

)(

−γc
γv

)

=

(

cρf
Jf

)

Working out these equations results in

γ
1

c
σE · v = cρf,

γσE+ γσv ×B = Jf.

Rewriting results in the in the equations

ρf = γ
1

c2
σE · v,

Jf = γσE+ γσv ×B.

We see that for v = 0 this reduces to Jf = σE and ρf = 0. For low velocities we have γ ≈ 1,

and ‖v‖
c2
≈ 0, so we can write

ρf ≈ 0,

Jf ≈ σ (E+ v ×B) .

Finally we want to know the induced current in terms of the H field instead of the B field. If
we substitute for B and only keep the largest term we get as result

Jf = σ (E+ µv ×H) .

So to conclude we have the constitutive relations

D = εE+ (µε− µ0ε0)v ×H, (2.54)

B = µH− (µε− µ0ε0)v ×E, (2.55)

Jf = σ (E+ µv ×H) , (2.56)

ρf = 0. (2.57)

where we have only kept the lowest order term involving the fluids velocity. In general we see
that the velocity field has an effect on the electromagnetic field. This interaction is responsible
for energy and momentum exchange between the electromagnetic field and the fluids particles, in
particular the electromagnetic energy is changed in kinetic energy because the Lorentz force will
do work on the fluid particles.
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2.2.3 Modified Maxwell equations in fluids

We will now substitute all the constitutive relations in the field equations to derive the final equa-
tions governing the electromagnetic field inside a (possibly) moving fluid. If we substitute the
relations (2.54) and (2.56) into equation (2.37) we get

−∇×H+
∂

∂t
[εE+ (µε− µ0ε0)v ×H] = −σ (E+ µv ×H) .

We assume that the velocity field is constant in time, so that the time derivative of the velocity
disappears. Rewriting then results in

−∇×H+ ε0
∂E

∂t
= −(ε− ε0)

∂E

∂t
− (µε− µ0ε0)

(

v × ∂H

∂t

)

− σ (E+ µv ×H) .

Likewise, if we substitute (2.55) in (2.38) we get

∇×E+
∂

∂t
(µH− (µε− µ0ε0)v ×E) = 0,

which results in

∇×E+ µ0
∂H

∂t
= − (µ− µ0)

∂H

∂t
+ (µε− µ0ε0)

(

v × ∂E

∂t

)

.

We now define the induced electric and magnetic current densities. They are minus the right-
hand sides of the modified Maxwell equations we have just derived. So we have

− Jind = −(ε− ε0)
∂E

∂t
− (µε− µ0ε0)

(

v × ∂H

∂t

)

− σ (E+ µv ×H) , (2.58)

−Kind = − (µ− µ0)
∂H

∂t
+ (µε− µ0ε0)

(

v × ∂E

∂t

)

. (2.59)

We see that if the fluid is moving this creates an induced current. These terms, depending on
v, create a coupling between the velocity field governed by the Navier-Stokes equations and the
Maxwell equations, and this system of coupled equations is highly non-linear and hard to solve.

In addition to the induced currents there will be external currents. These are controlled currents,
independent of the fields. It are these currents that deliver the field’s energy and momentum in the
first place. The final Maxwell equations governing the fields are given by

−∇×H+ ε0
∂E

∂t
= −Jind − Jext, (2.60)

∇×E+ µ0
∂H

∂t
= −Kind −Kext. (2.61)

We will also derive the corresponding compatibility relations. Taking the divergence of (2.60),
results in (2.4) so we get the corresponding compatibility equation

divE =
ρe

ε0
.
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Although magnetic monopoles do not exist, we have seen that in matter magnetic currents can
be induced, and we need (induced) magnetic charge to keep the framework complete. Stipulating
local conservation of magnetic charge, we define

ρm = − divK, (2.62)

which is a continuity equation like (2.3). Now taking the divergence of (2.61) results in

µ0 div
∂H

∂t
= − divK. (2.63)

Following the exact same derivation for the first equation and assuming, by causality, that K = 0
for t ≤ t0 for certain t0, we arrive at the compatibility relation

divH =
ρm

µ0
. (2.64)

We will see in Chapter 6 that the velocities will be so small that the induced currents depending
on the velocity can be neglected for our purposes.

2.2.4 Boundary conditions

In order to determine the electromagnetic field in a certain region of space, we need appropriate
boundary conditions.

We have boundaries where the material properties are not continuous or there are surface
currents. We assume the boundaries are fixed in space and time.

The derivation of the boundary conditions can be found for example in [7]. They follow directly
from the Maxwell equations. Here we will only state the results.

At a boundary we can write the electric and magnetic field as the sum of a orthogonal and
tangential component,

E = Eort +Etan,

H = Hort +Htan.

Furthermore at a boundary we have two separate regions A and B, each on one side of the
boundary. We denote by n̂ the unit normal vector pointing from region B to A. On the boundary
itself we have possibly electric and magnetic charge densities σe and σm, and current densities Jsurf

and Ksurf. The four boundary conditions for the field components are then given by

EA,tan −EB,tan = Ksurf × n̂, (2.65)

EA,ort −EB,ort =
σe

ε0
, (2.66)

HA,tan −HB,tan = Jsurf × n̂, (2.67)

HA,ort −HB,ort =
σm

µ0
. (2.68)

These four boundary conditions together with the Maxwell equations and the charge and current
densities completely determine the fields.

Of course in cases with certain symmetries we can consider different boundary conditions, so
that we can reduce the geometry.



18 CHAPTER 2. THE ELECTROMAGNETIC FIELD

2.3 Energy and momentum inside a fluid

We have derived the field equations inside a (possibly moving) fluid. We will now derive equations
for the energy and momentum conservation. We proceed as in the vacuum case.

2.3.1 Energy equation

For simplicity we will use subscript notation here. If we multiply (2.60) with Ei and (2.61) with
Hi and add the results, we get as left-hand side

Ei (−ǫijk∂jHk + ε0∂tEi) +Hi (ǫijk∂jEk + µ0∂tHi)

= ε0Ei∂tEi + µ0Hi∂tHi − ǫijkEi∂jHk + ǫijkHi∂jEk

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

− ǫijkEi∂jHk + ǫijkHi∂jEk

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

+ ǫijkEj∂iHk + ǫijkHk∂iEj

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

+ ∂i(ǫijkEjHk),

where we have used ǫijk = −ǫjik, and relabelled the dummy indices. As right-hand side we get

−EiJi −HiKi.

If we now define the energy density as

uem =
1

2
(ε0EiEi + µ0HiHi) , (2.69)

and the Poynting vector

Si = ǫijkEjHk, (2.70)

we can write the equation as

∂tuem = −∂iSi − EiJi −HiKi, (2.71)

or in vector notation

∂uem

∂t
= − divS−E · J−H ·K. (2.72)

This is the conservation of electromagnetic energy in matter. Although the expression does not
explicitly depend on the velocity v, the currents do, so the energy density also depends on the fluid
velocity.
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2.3.2 Momentum equation

We can also derive the momentum equation, from which the force density follows. Multiplying
(2.60) by µ0 and taking the cross product with H results in

−µ0ǫijkǫklmHj∂lHm + µ0ε0ǫijkHj∂tEk = −µ0ǫijkHjJk.

Rewriting using the identity

ǫijkǫklmHj∂lHm = −Hk∂kHi +
1

2
∂i(HkHk),

results in

µ0Hk∂kHi −
1

2
µ0∂i(HkHk) + µ0ε0ǫijkHj∂tEk = µ0ǫijkJjHk.

Using (2.64) we have

µ0Hk∂kHi = µ0∂k(HkHi)− µ0Hi∂kHk,

= µ0∂k(HkHi)− ρmHi.

Rearranging terms and relabelling results in the equation

∂j

[

µ0HjHi −
1

2
µ0δijHkHk

]

− µ0ε0ǫijk(∂tEj)Hk = ρmHi + µ0ǫijkJjHk. (2.73)

Likewise multiplying (2.61) by ε0 and taking the cross product with E results in

ε0ǫijkǫklmEj∂lEm + µ0ε0ǫijkEj∂tHk = −ε0ǫijkEjKk,

which we can rewrite to

−ε0Ek∂kEi +
1

2
ε0∂i(EkEk) + µ0ε0ǫijkEj∂tHk = ε0ǫijkKjEk.

Using (2.63) we have

ε0Ek∂kEi = ε0∂k(EkEi)− ε0Ei∂kEk,

= ε0∂k(EkEi)− ρeEi.

Rearranging terms and relabelling results in the equation

− ∂j
[

ε0EjEi −
1

2
ε0δijEkEk

]

+ µ0ε0ǫijkEj∂tHk = −ρeEi + ε0ǫijkKjEk. (2.74)

Defining the stress tensor Tij by

Tij = µ0(HjHi) + ε0(EjEi)−
1

2
µ0δij(HkHk)−

1

2
ε0δij(EkEk), (2.75)

subtracting (2.74 from (2.73) and using (2.70) we can write
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fi = ∂jTij − ∂tSi, (2.76)

where fi is the force density given by

fi = ρeEi + ρmHi + µ0ǫijkJjHk − ε0ǫijkKjEk. (2.77)

Equation (2.76) is the expression of momentum conservation in the medium, and couples the
stress tensor to the forces exerted on the fluid particle.

In vector notation this force density is equal to

f = ρeE+ ρmH+ µ0J×H− ε0K×E. (2.78)

This force density is exerted by the electromagnetic field on the fluid particles, and will be used
as source term in the Navier-Stokes equations.

2.4 Maxwell in the frequency domain

Up until now we have only considered the fields and equations in the time domain. Using Fourier
transforms in the time variable we can switch to the frequency domain. This transformation works
well with the Maxwell equations because they are linear in the field components. In the frequency
domain we can investigate the interesting phenomenon of the electric permittivity being a function
of the frequency. As we will see this leads to distortion of a wave and dissipation.

2.4.1 Complex fields

In general the fields will be a superposition of several frequency components, and using Fourier
transformations, we can write the (real) fields in the time domain as an integral over a complex
field, which is a function of the space coordinates and the frequency variable ω. For an arbitrary
field f(x, t) we can write

f(x, t) =
1

2

∫ +∞

−∞

f̂(x, ω)e−iωt dω.

Note that the constant coefficient is just a convention, so that the expression we will use have
a simpler form. Since the time-domain fields are real-valued, we have the relation

f(x, t) = f̄(x, t) =
1

2

∫ +∞

−∞

¯̂
f(x, ω)eiωt dω =

1

2

∫ +∞

−∞

¯̂
f(x,−ω)e−iωt dω,

so we see for the complex field that we have f̂(x, ω) =
¯̂
f(x,−ω). Using this relation we can

write
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f(x, t) =
1

2

∫ +∞

−∞

f̂(x, ω)e−iωt dω

=
1

2

[∫ 0

−∞

f̂(x, ω)e−iωt dω +

∫ +∞

0

f̂(x, ω)e−iωt dω

]

=
1

2

[

∫ +∞

0

¯̂
f(x,−ω)e−iωt dω +

∫ +∞

0

f̂(x, ω)e−iωt dω

]

= Re

{∫ +∞

0

f̂(x, ω)e−iωt dω

}

, (2.79)

So to determine the time-domain fields we need to take the real part of the complex fields. For
our electromagnetic fields we have the expressions

Ei(x, t) =
1

2

∫ +∞

−∞

Êi(x, ω)e
−iωt dω, (2.80)

Hi(x, t) =
1

2

∫ +∞

−∞

Ĥi(x, ω)e
−iωt dω, (2.81)

Di(x, t) =
1

2

∫ +∞

−∞

D̂i(x, ω)e
−iωt dω, (2.82)

Bi(x, t) =
1

2

∫ +∞

−∞

B̂i(x, ω)e
−iωt dω. (2.83)

Likewise we can write the electric and magnetic current densities as integrals over the frequency
parameter.

2.4.2 Dispersion of the permittivity

Up until now we have assumed that matter reacts the same to any applied electromagnetic field,
regardless how fast the fields change in time. One of the consequences of this property is that polar-
ization and conduction occur instantaneously, that is, given a certain change in the electromagnetic
fields, the matter instantaneously rearranges itself to retain the linear relationships D = εE and
Jf = σE. Of course such an instantaneous reaction cannot occur on physical grounds, so a more
complex mechanism has to govern the polarization. Following [12] we assume the polarization is
not only a function of the present electric field strength but of all values in the past. In general this
means we can write

Di(x, t) = ε0Ei(x, t) + ε0

∫ ∞

0

f(τ)Ei(x, t− τ) dτ. (2.84)

This means that the polarization is not local any more in the temporal variable. In the space
variables we assume it still to be local. The precise way in which the medium reacts depends on
our choice of f(τ). Note that for the special choice

f(τ) = χeδ(τ),



22 CHAPTER 2. THE ELECTROMAGNETIC FIELD

we get the original model with instantaneous response back.

To further analyse the dispersion relation, we consider the complex fields. If we substitute (2.82)
and (2.80) into (2.84) and interchange the order of integration we get as result

∫ +∞

−∞

D̂i(x, ω)e
−iωt dω =

= ε0

∫ +∞

−∞

Êi(x, ω)e
−iωt dω + ε0

∫ ∞

0

f(τ)

[∫ +∞

−∞

Êi(x, ω)e
−iω(t−τ) dω

]

dτ,

= ε0

∫ +∞

−∞

Êi(x, ω)e
−iωt

[

1 +

∫ ∞

0

f(τ)eiωτ dτ

]

dω,

=

∫ +∞

−∞

ε0Êi(x, ω)

[

1 +

∫ ∞

0

f(τ)eiωτ dτ

]

e−iωt dω,

so we see that for the complex field vectors we have the relation

D̂i(x, ω) = ε̂(ω)Êi(x, ω), (2.85)

where we have defined the complex electric permittivity by

ε̂(ω) = ε0

[

1 +

∫ ∞

0

f(τ)eiωτ dτ

]

. (2.86)

We see that when we assume the permittivity is local in the space coordinates we get a linear
complex permittivity relation. Through the function f(τ) this relation depends on the specific
media. We will not dig in the microscopic properties of matter to determine f(τ), instead we will
take the values of ε̂(ω) for the media of our interest from the literature.

It is interesting to see how we can relate the real permittivity and conductivity to the complex
permittivity. Consider (2.60) together with (2.58) and assume v = 0. Then we have

−ǫljk∂jHk + ε0∂tEl = −(ε− ε0)∂tEl − σEl − Jext
l .

Rewriting and substituting (2.80 results in

−ǫljk∂lĤk − iω
(

ε+ i
σ

ω

)

Êl = −Ĵext
l .

Comparing with (2.85) we can identify

ε̂(ω) = ε′(ω) + iε′′(ω) = ε(ω) + i
σ(ω)

ω
,

where we made the frequency dependency explicit. We see that the imaginary part of the com-
plex permittivity can be associated with conductivity. This suggests intuitively that it is associated
with energy dissipation from the electromagnetic fields to the medium.
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2.4.3 Complex Maxwell equations

To determine the equations governing the complex fields we substitute the fields written as integrals
over the frequency parameter in both sides of the Maxwell equations (2.60) and (2.61). After
interchanging the integration and differentiation and performing the time derivation, we get for
each fixes ω the equations

− εijk∂jĤk − iωε0Êi = −Ĵ ind
i − Ĵext

i , (2.87)

εijk∂jÊk − iωµ0Ĥi = −K̂ ind
i − K̂ext

i . (2.88)

In order to determine the complex induced currents, we take the same steps for (2.58) and
(2.59), and we use that σ = ωε′′ and write ε = ε′ for the real permittivity. This results in

− Ĵind = ıω(ε′ − ε0)Ê+ ıω(µε′ − µ0ε0)v × Ĥ− ωε′′
(

Ê+ µv × Ĥ
)

. (2.89)

−K̂ind = ıω(µ− µ0)Ĥ− ıω(µε′ − µ0ε0)(v × Ê). (2.90)

If we assume µ = µ0, and write ε̂ = ε′ + ıε′′ we get after rearranging the terms the equations

−∇× Ĥ− ıωε̂Ê = ıωµ0 (ε̂− ε0)v × Ĥ− Ĵext, (2.91)

∇× Ê− ıωµ0Ĥ = −ıωµ0(ε− ε0)v × Ê− K̂ext. (2.92)

Notice that at the right-hand side of (2.92) we only need the real part of the permittivity. We
expect the fluid velocity to be small, so that the first terms on the right-hand side of the equations
can be neglected. This results in the equations

−∇× Ĥ− ıωε̂Ê = −Ĵext, (2.93)

∇× Ê− ıωµ0Ĥ = −K̂ext, (2.94)

which is the form we will use most of the time. Taking the divergence on both sides results in
the compatibility relations

ıω∇ · (ε̂Ê) = ∇ · Ĵext, (2.95)

ıωµ0∇ · Ĥ = ∇ · K̂ext, (2.96)

We see that for each frequency component the complex fields satisfy these complex Maxwell
equations. It is important to realize that the induced currents in general are functions of the
frequency ω. Since a lot of real-life sources are highly localized in the frequency domain, that is
their intensity is centred around one frequency, we will approximate these sources as if they consist
of only one frequency, and we write f̂(x, ω′;ω) = δ(ω − ω′)f(x). Substitution in (2.79) results in
the expression

f(x, t) = Re
{

f̂(x)e−ıωt
}

. (2.97)
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In Chapter 3 we will use these single frequency fields most of the time.
If we split the equations in real and imaginary parts, we end up with four equations. For

equation (2.93) this results in

−∇×H′ + ω (ε′′E′ + ε′E′′) = −Re
{

Ĵext
}

, (2.98)

−∇×H′′ − ω (ε′E′ − ε′′E′′) = −Im
{

Ĵext
}

. (2.99)

For (2.94) we get as equations

∇×E′ + ωµ0H
′′ = −Re

{

K̂ext
}

, (2.100)

∇×E′′ − ωµ0H
′ = −Im

{

K̂ext
}

. (2.101)

We will use these equations in a later stage to see how well the calculated fields satisfy the
Maxwell equations on different grids.

2.4.4 Complex index of refraction

Up until now we have mostly worked with the complex permittivity parameter. In optics the
complex index of refraction n̂ and the complex wave number k̂ are often used. We define the
complex index of refraction n̂ = n+ ıκ by

ε0n̂
2 = ε̂, (2.102)

where we take the root with positive imaginary part, so that κ ≥ 0. Furthermore we define the
complex wave number k̂ = k + ıα by

k̂ =
ω

c
n̂. (2.103)

We will use these quantities often, specially because the properties of the medium we will use
are can be found in terms of these parameters in the literature.

2.5 Time-averaged quantities

Our main goal is to couple the Maxwell equations with the Navier-Stokes equations. It is important
to realize that there are two temporal scales in this situation. On one hand there is the time scale
at which the electromagnetic fields oscillate, on the other hand there is the time scale on which the
fluid reacts, and the particles move and accelerate as response to the forces. When we focus on
electromagnetic fields with wavelengths in the micrometer region, the frequencies are of the order
1013 s−1 and higher. We are not interested in the field properties, such as energy transfer or Lorentz
forces, at this time scale, but in the time-averaged properties.

We will focus on single frequency sources, so that the time-domain fields and frequency-domain
fields are related by (2.97). We see that the time-domain fields are periodic in t, with period T = 2π

ω
.

In order to determine the time-averaged values, we integrate from −T
2 to T

2 . The time-averaged
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value of a periodic quantity we denote by 〈·〉. We will first focus on two arbitrary fields f and g.
For the field intensity itself we have

〈f(x, t)〉 =
1

T

∫ T
2

−T
2

Re
{

f̂(x)e−ıωt
}

dt,

=
1

T
Re

{

[

− 1

ıω
f̂(x)e−ıωt

]
T
2

T
2

}

,

=
1

T
Re

{

− 1

ıω
f̂(x)

(

e−
ıωT
2 − e ıωT

2

)

}

= 0,

which is intuitively clear since the field intensity is consists of an oscillating sine and cosine.
More interesting is the result for quantities that are the product of two complex fields, such as the
components of the Poynting vector or the Maxwell stress tensor. We have

〈f(x, t) · g(x, t)〉 =
1

T

∫ T
2

−T
2

Re
{

f̂(x)e−ıωt
}

·Re
{

ĝ(x)e−ıωt
}

dt,

=
1

4T

∫ T
2

−T
2

[

f̂(x)e−ıωt +
¯̂
f(x)eıωt

]

·
[

ĝ(x)e−ıωt + ¯̂g(x)eıωt
]

dt,

=
1

4T

∫ T
2

−T
2

[

f̂(x)ĝ(x)e−2ıωt + f̂(x)¯̂g(x) +
¯̂
f(x)ĝ(x) +

¯̂
f(x)¯̂g(x)e2ıωt

]

dt,

=
1

4

[

f̂(x)¯̂g(x) +
¯̂
f(x)ĝ(x)

]

,

=
1

2
Re
{

f̂(x)¯̂g(x)
}

,

where in the fourth line we used that the integration is over two periods of the complex expo-
nential. We see that although the two field quantities integrate to zero their product is not zero in
general. This time-averaged non-zero value will give rise to the heat dissipation and force term we
will need. One final quantity we need to average is the time derivative of the product of two field
quantities. We have

〈

∂

∂t
[f(x, t) · g(x, t)]

〉

=
1

T

∫ T
2

−T
2

∂

∂t

[

Re
{

f̂(x)e−ıωt
}

· Re
{

ĝ(x)e−ıωt
}

]

dt, (2.104)

=
1

T

[

Re
{

f̂(x)e−ıωt
}

· Re
{

ĝ(x)e−ıωt
}

]
T
2

−T
2

, (2.105)

= 0. (2.106)

In the last line we again use that the complex exponential is periodic.

We can now determine the time-averaged versions of the conservation equations we have derived
earlier. For the Poynting vector we get
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〈S〉 = 〈E×H〉 = 1

2
Re
{

Ê× H̄
}

.

This equality will be our motivation to define the complex Poynting vector as

Ŝ =
1

2
Ê× H̄. (2.107)

If we time-average (2.72) we see that the left-hand side vanishes because of the time derivative,
and after rearranging terms we end up with the conservation equation

divRe
{

Ŝ
}

= −1

2
Re
{

Ê · J̄
}

− 1

2
Re
{

Ĥ · K̄
}

.

Substituting (2.89) results for the first term on the left-hand side in

−1

2
Re
{

Ê · J̄
}

=
1

2
Re
{

Ê ·
(

−ıω(ε′ − ε0)Ē− ıωµ0(ε
′ − ε0)v × H̄− ωε′′

(

Ē+ µ0v × H̄
))

}

,

=
1

2
Re
{

Ê ·
(

−ıωµ0(ε
′ − ε0)v × H̄− ωε′′

(

Ē+ µ0v × H̄
))

}

,

=
1

2
ωµ0(ε

′ − ε0)Im
{

(v × H̄) · Ê
}

− 1

2
ωµ0ε

′′Re
{

(v × H̄) · Ê
}

− 1

2
ωε′′Ê · Ē,

= −ωµ0(ε
′ − ε0)Im

{

Ŝ
}

· v + ωµ0ε
′′Re

{

Ŝ
}

· v − 1

2
ωε′′Ê · Ē.

Likewise if we substitute (2.90) in the second term we get

−1

2
Re
{

Ĥ · K̄
}

= −1

2
Re
{

Ĥ ·
(

ıωµ0(ε
′ − ε0)(v × Ē)

}

)

,

=
1

2
ωµ0(ε

′ − ε0)Im
{

(v × Ē) · Ĥ
}

,

= −ωµ0(ε
′ − ε0)Im

{

Ŝ
}

· v.

This results in the equation

divRe
{

Ŝ
}

= −2ωµ0(ε
′ − ε0)Im

{

Ŝ
}

· v + ωµ0ε
′′Re

{

Ŝ
}

· v − 1

2
ωε′′Ê · Ē.

We see when we neglect the back-action of the velocity of the fluid we get

divRe
{

Ŝ
}

= −1

2
ωε′′Ê · Ē,

which we can identify with the heat dissipation generated by the conductance of the fluid. This
dissipation term will be denoted by

qem =
1

2
ωε′′Ê · Ē, (2.108)

which is the energy conservation equation for the time-averaged fields.
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For the force we also want to determine the time-averaged value. If we again neglect the current
terms depending on v and assume we have a homogeneous medium, we have ρe = 0 and ρm = 0.
Furthermore K̂ = 0, so we end up with

〈f〉 = 1

2
µ0Re

{

Ĵind × H̄
}

.

We assume the back-action of the fluid on the fields is negligible. Substituting (2.89) with v = 0
then results in

〈f〉 = −1

2
ωµ0Re

{

ı(ε̂− ε0)Ê× H̄
}

,

= ωµ0Im
{

(ε̂− ε0)Ŝ
}

,

= ωµ0

[

ε′′Re
{

Ŝ
}

+ (ε′ − ε0)Im
{

Ŝ
}]

.

So when we are considering the Navier-Stokes equations, we have as external force density the
term

fem = ωµ0

[

ε′′Re
{

Ŝ
}

+ (ε′ − ε0)Im
{

Ŝ
}]

. (2.109)

The first term is proportional to ε′′, which is the parameter associated with heat dissipation,
so we refer to this term as fdis. The second term is proportional to ε′, which is associated with
polarization, and we refer to this term is fpol. So we can write the electromagnetic force density as

fem = fpol + fdis. (2.110)

Which term is dominant will depend on the properties of the medium. In particular, for trans-
parent frequencies fdis will be very small.

We can also express the moment conservation from (2.76) in terms of the time-averaged fields.
This results in

fem = ∇ · 〈←→T 〉, (2.111)

where the time-averaged stress tensor is given by time-averaging (2.75), resulting in

〈Tij〉 =
1

2
Re
{

ε0EiE
∗
j + µ0HiH

∗
j

}

− 1

4
δij
(

ε0EiE
∗
j + µ0HiH

∗
i

)

.

We now have all the (theoretical) information we need regarding the electromagnetic properties
of our problem. In order to run a simulation we need to determine the (complex) fields using
equations (2.93) and (2.94). With these field we can determine the complex Poynting vector using
(2.107). Then we can determine the electromagnetic heat dissipation and electromagnetic force
term using (2.108) and (2.109) respectively. In order to proceed we still need to choose the external
sources, which will be the subject of the next chapter.
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Chapter 3

External electromagnetic sources

In the previous chapter we derived the equations governing the electromagnetic fields, but we still
need to choose an external source to create the fields in the first place. There are different kind of
sources, and they can be modelled in multiple ways. We will first consider the so-called Gaussian
beam approximation, which is used frequently because it is a good model for the fields create by a
laser, and it has good properties to use in combination with lenses. The main down-side is that it
is only an approximate solution for the Maxwell equations, so we cannot expect the resulting fields
and other quantities depending on the fields to be exact. Since we are interested in the force field,
we need to make sure the approximations are good enough for our purpose.

As an alternative method we will create a source that does satisfy the Maxwell equations. We
will model an aperture with an external current density using an array of perfect dipoles. We will
see that this source does satisfy the Maxwell equations exact.

3.1 Gaussian beam approximations

On approximation that is regularly used for modelling the electromagnetic field of a laser is the
so-called Gaussian beam. We will not assume an explicit external source, but solve for the potential
in a more general setting. We will derive the Gaussian beam solution of the paraxial approximation
of the Maxwell equations in a linear, homogeneous, non magnetic, lossy medium. From Section
2.4.3 we have the frequency domain Maxwell equations given by

− ǫijk∂jHk − ıωε̂Ei = 0, (3.1)

ǫijk∂jEk − ıωµ0Hi = 0, (3.2)

with ε̂ = ε′ + ıε′′ the complex permittivity. For non-magnetic media we have ε̂ = n̂2ε0, so that
ε′ = (n2 − κ2)ε0 and ε′′ = 2nκε0. Taking divergence on both sides results in the compatibility
relations

∂iEi = 0, (3.3)

∂iHi = 0. (3.4)

29
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Following [3] we will express the equations in terms of a vector potential and solve for the
potential instead of the fields. Then we can derive the field variables from the solution of the
potential. The main advantage of the method is that we can assume the potential only has one
non-zero component, orthogonal to the direction of propagation, while for the fields themselves this
is not possible. We define the vector potential Ai such that

Hi = ǫijk∂jAk, (3.5)

which is possible because H is divergent-less. Substitution in (3.2) and rewriting results in

ǫijk∂j (Ek − ıωµ0Ak) = 0.

We know that when the curl of a vector field vanishes there exists a scalar field such that the
vector field is equal to the gradient of the scalar field, so there exists V such that

Ei = ıωµ0Ai − ∂iV. (3.6)

Substitution in (3.1) results in

−ǫijk∂j(ǫklm∂lAk)− ıωε̂ (ıωµ0Ai − ∂iV ) = 0.

This can be rewritten to

−∂i(∂jAj) + ∂2jAi + ıωε̂∂iV + ω2µ0ε̂Ai = 0.

Choosing the Lorenz gauge, such that

∂jAj = ıωε̂V, (3.7)

the equation reduces to

∂2jAi + ω2µ0ε̂Ai = 0.

Using (2.103), we can write this equation as

∂2jAi + k̂2Ai = 0,

the Helmholtz equation with complex coefficient. We have k̂ = k+ıα, the complex wave number.
We assume our vector potential has non-zero component A = A2 and A1 = A3 = 0, so that we end
up with the equation

∂21A+ ∂22A+ ∂23A+ k̂2A = 0. (3.8)

We assume the laser beam propagates in the x3 direction, and we write A as

A = ψ(x1, x2, x3)e
ık̂x3 . (3.9)

Note that
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∂23A = ∂23

(

ψeık̂x3

)

,

= ∂3

[

eık̂x3

(

∂3ψ + ık̂ψ
)]

,

= eık̂x3

(

∂23ψ + ık̂∂3ψ + ık̂∂3ψ − k̂2ψ
)

,

Substitution in (3.8) results in

eık̂x3

[

∂21ψ + ∂22ψ + ∂23ψ + 2ık̂∂3ψ
]

= 0.

Dividing by eık̂x3 results in the equation

∂21ψ + ∂22ψ + ∂23ψ + 2ık̂∂3ψ = 0. (3.10)

We now define a characteristic length scale w0 which later on will be identified as the waist size
of the beam. We also define l̂ = k̂w2

0 , and transform to the coordinates

x1 → w0x1,

x2 → w0x2,

x3 → l̂x3.

The partial derivatives transform as

∂1 →
1

w0
∂1,

∂2 →
1

w0
∂2,

∂3 →
1

l̂
∂3.

Substitution in (3.10) and multiplying by w2
0 results in

∂21ψ + ∂22ψ + 2ı∂3ψ + ŝ2∂23ψ = 0, (3.11)

with ŝ = w0

l̂
= 1

k̂w0
. We want to approximate the solution ψ by expanding it around ŝ and

solving for the first term. This will give us an accurate approximation for |ŝ| ≪ 1. We write

ψ =
∞
∑

n=0

ψnŝ
n. (3.12)

Substituting in (3.11) and using linearity results in

∞
∑

n=0

[

∂21ψn + ∂22ψn + 2ı∂3ψn

]

ŝn + ∂23ψnŝ
n+2 = 0. (3.13)
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Equating terms of equal power in ŝ results for n = 0 in the equation

∂21ψ0 + ∂22ψ0 + 2ı∂3ψ0 = 0. (3.14)

Note that higher order equations depend on lower order solutions. For n = 2 for example we
have

∂21ψ2 + ∂22ψ2 + 2ı∂3ψ2 = −∂23ψ0.

In order to solve (3.14) we substitute the solution

ψ0 = exp

(

ıP (x3) + ı
1

2

ρ2

q(x3)

)

, (3.15)

with ρ2 = x21+x
2
2, and q(x3) a function of x3 that we will make explicit later. For the derivatives

we have

∂1ψ0 = ψ0 · ı
x1

q
,

∂21ψ0 = ψ0

[

ı
1

q
− x21
q2

]

,

∂22ψ0 = ψ0

[

ı
1

q
− x22
q2

]

,

∂3ψ0 = ψ0

[

ı∂3P − ı
1

2

ρ2

q2
∂3q

]

.

Substitution in (3.14) results in

0 = ψ0

[

ı
1

q
− x21
q2

]

+ ψ0

[

ı
1

q
− x22
q3

]

+ 2ıψ0

[

ı∂3P − ı
1

2

ρ2

q2
∂3q

]

,

=

[

2ı
1

q
− x21 + x22

q2
− 2∂3P +

ρ2

q2
(∂3q)

]

ψ0.

Setting ∂3q = 1 makes the terms in ρ2 vanish, and we end up with the condition

∂3P =
ı

q
. (3.16)

We will consider both terms in the exponential of (3.15) separately. First we focus on the second
term, then on the first term.

3.1.1 Second term

Focussing on the second term in the exponential of (3.15), we choose

q(x3) = (x3 − z0)− q0, (3.17)
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with z0 and q0 constants, so that ∂3q = 1. We have z0 the (transformed) point of focus.
Furthermore we write

q0 = ı
zR

w2
0 k̂
,

with zR the Rayleigh range given by

zR =
w2

0

2
k. (3.18)

This choice of parameters coincides with the choices in the literature. If we transform back to
the original variables, we can write

1

q(x3)
=

1

(x3 − z0)− q0
→ 1

1

w2
0 k̂
(x3 − z0)− ı zR

w2
0 k̂

=
w2

0 k̂

(x3 − z0)− ızR
.

Substitution in the second term of the exponential in (3.15) and using x1 → 1
w0
x1 and x2 →

1
w0
x2, so that ρ2 → 1

w2
0
ρ2, results in

exp

(

ı
1

2

ρ2

q(x3)

)

= exp

(

ık̂
1

2

ρ2

(z − z0)− ızR

)

,

= exp

(

ı(k + ıα)
1

2
ρ2

(z − z0) + ızR

(z − z0)2 + z2R

)

.

We define the radius of curvature as

R(z) = (z − z0)
[

1 +

(

zR

z − z0

)2
]

, (3.19)

and the spot size

w(z) = w0

√

1 +

(

z − z0
zR

)2

, (3.20)

both in the original coordinates. Note that

1

R(z)
=

z − z0
(z − z0)2 + z2R

,

and

w2
0

w(z)2
=

z2R
(z − z0)2 + z2R

,

so we have

(z − z0) + ızR

(z − z0)2 + z2R
=

1

R(z)
+ ı

w2
0

w(z)2
1

zR
.
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Substitution results in

exp

(

ı
1

2

ρ2

q(x3)

)

= exp

(

ı(k + ıα)
1

2
ρ2
[

1

R(z)
+ ı

w2
0

w(z)2
1

zR

])

,

= exp

(

ı(k + ıα)
ρ2

2R(z)

)

exp

(

−(k + ıα)
1

2
ρ2

w2
0

w(z)2
1

zR

)

,

= exp

(

ı(k + ıα)
ρ2

2R(z)

)

exp

(

−k 1
2
ρ2

w2
0

w(z)2
2

w2
0k

)

exp

(

−ıα1
2
ρ2

w2
0

w(z)2
2

w2
0k

)

,

= exp

(

ı(k + ıα)
ρ2

2R(z)

)

exp

(

− ρ2

w(z)2

)

exp

(

−ıα
k

ρ2

w(z)2

)

,

So finally we can write the second term as

exp

(

ı
1

2

ρ2

q(x3)

)

= exp

(

ı(k + ıα)
ρ2

2R(z)

)

exp

(

− ρ2

w(z)2

)

exp

(

−ıα
k

ρ2

w(z)2

)

. (3.21)

Furthermore we have

∂3R
−1(z) =

z2R − (z − z0)2
((z − z0)2 + z2R)

2
, (3.22)

and

∂3w(z) =
w2

0

zR

z − z0
zR

1

w(z)
. (3.23)

An interesting result with respect to the Gaussian beam solution in a lossless medium is the

extra phase shift −α
k

ρ2

w(z)2 . So we can not just replace the wave number k with a complex wave

number k̂ in the usual expression for the Gaussian beam solution.

3.1.2 First term

We will now focus on the first term in the exponential of (3.15). Using (3.16) and (3.17) we have

ı∂3P = − 1

z − z0 − q0
.

The anti-derivative is given by

ıP = −Log
(

1− z − z0
q0

)

,

where the constant of integration will later on be added as the complex overall constant A0

giving the amplitude and phase. Note that transferring back to the dimensioned coordinates we
have

(

1− z − z0
q0

)

→
(

1− z − z0
k̂w2

0

w2
0 k̂

ızR

)

=

(

1 + ı
z − z0
zR

)

.
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We see that the real part of the argument of the complex logarithm is strictly positive, so we
are on the principal branch for every value of z and the integration is valid. We can now rewrite
the expression as

−Log
(

1 + ı
z − z0
zR

)

= − log





√

1 +

(

z − z0
zR

)2


− ıArg
(

1 + ı
z − z0
zR

)

,

= − log

(

w(z)

w0

)

− ı arctan
(

z − z0
zR

)

.

We have as final result for this term

exp (ıP ) = exp

(

− log

(

w(z)

w0

)

− ı arctan
(

z − z0
zR

))

=
w0

w(z)
exp

(

−ı arctan
(

z − z0
zR

))

. (3.24)

3.1.3 Total result

Finally if we substitute (3.24) and (3.21) in (3.15) we get as solution of (3.14) the expression

ψ0 =
w0

w(z)
exp

(

ık̂
ρ2

2R(z)
− ρ2

w(z)2
− ıα

k

ρ2

w(z)2
− ıζ(z)

)

. (3.25)

Substitution of (3.25) in (3.9) results in the vector potential

A(x1, x2, x3) ≈ A0
w0

w(z)
exp

[

ık̂x3 + ık̂
ρ2

2R(z)
− ρ2

w(z)2
− ıα

k

ρ2

w(z)2
− ıζ(z)

]

, (3.26)

with the Gouy phase given by

ζ(z) = arctan

(

z − z0
zR

)

, (3.27)

and A0 the complex amplitude determined by the total power and phase. We see that the
extinction coefficient not only governs the extinction of the potential but also induces a phase shift.
Note that the derivative for the Gouy phase is given by

∂3ζ(z) =
zR

z2R + (z − z0)2
. (3.28)

3.1.4 Electric field

From the vector potential we can determine the electric field. Combining (3.6) and (3.7) we get

Ei = ıωµ0Ai + ı
1

ωε̂
∂i∂jAj ,

which using A1 = A3 = 0 results in
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E1 = ı
1

ωε̂
∂1∂2A2,

E2 = ı
1

ωε̂
∂22A2 + ıωµ0A2,

E3 = ı
1

ωε̂
∂3∂2A2.

Substituting

A2 = A0 exp(ık̂x3)ψ(x1, x2, x3)

and using ε̂ = ε0n̂
2 results for the first component in

E1 = ı
1

ε0n̂2ω
A0 exp(ık̂x3)∂1∂2ψ,

→ ı
ω

ε0c2k̂2w
2
0

A0 exp(ık̂
2w2

0x3)∂1∂2ψ,

= ıωµ0A0ŝ
2 exp

(

ı
x3

ŝ2

)

∂1∂2ψ.

Defining

E0 = ıωµ0A0 (3.29)

results in

E1 = E0ŝ
2 exp

(

ı
x3

ŝ2

)

∂1∂2ψ.

Likewise for the second component we get

E2 = E0

[

ŝ2 exp
(

ı
x3

ŝ2

)

∂22ψ + exp(ık̂x3)ψ
]

.

For the third component we get

E3 = ı
1

ε0n̂2ω
A0∂3

(

exp(ık̂x3)∂2ψ
)

,

→ ı
ω

ε0c2k̂2
A0

1

k̂w2
0

∂3

(

exp(ık̂2w2
0)

1

w0
∂2ψ

)

,

= ıωµ0A0ŝ
3∂3

(

exp
(

ı
x3

ŝ2

)

∂2ψ
)

,

= E0

[

ŝ3 exp
(

ı
x3

ŝ2

)

∂3∂2ψ + ıŝ exp
(

ı
x3

ŝ2

)

∂2ψ
]

.

If we now substitute (3.12) in these expressions and neglect all terms of order ŝ2 and higher, we
obtain
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E1 = 0,

E2 = E0 exp
(

ı
x3

ŝ2

)

ψ0,

E3 = ıŝE0 exp
(

ı
x3

ŝ2

)

∂2ψ0.

In the original coordinates this finally results in expressions of the electric field components
given by

E1 = 0, (3.30)

E2 = E0 exp(ık̂x3)ψ0, (3.31)

E3 = E0 exp
(

ık̂x3

)

ψ0

[

− 1

R(z)
− 2ı

k̂w(z)2
+

2α

kk̂w(z)2

]

x2, (3.32)

where we have used

∂2ψ0 = ψ0

[

ık̂

R(z)
− 2

w(z)2
− 2ıα

kw(z)2

]

x2.

3.1.5 Magnetic field

For the magnetic field components we use (3.5). Since A1 = A3 = 0 we see directly that H2 = 0.
For H1 we have

H1 = −∂3A2,

= −∂3
[

A0 exp
(

ık̂x3

)

ψ
]

,

→ − 1

k̂w2
0

A0∂3

[

exp

(

ı
1

ŝ
x3

)

ψ

]

,

= −k̂ŝ2A0

[

ı
1

ŝ2
exp

(

ı
1

ŝ
x3

)

ψ + exp

(

ı
1

ŝ
x3

)

∂3ψ

]

,

= −ık̂A0 exp

(

ı
1

ŝ2
x3

)

ψ − k̂ŝ2A0 exp

(

ı
1

ŝ
x3

)

∂3ψ.

For H3 we get as results

H3 = ∂1A2,

= ∂1

[

A0 exp
(

ık̂x3

)

ψ
]

,

→ 1

w0
A0 exp

(

ı
1

ŝ2
x3

)

∂1ψ,

= k̂ŝA0 exp

(

ı
1

ŝ2
x3

)

∂1ψ,
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Substitution in (3.12), using (3.29) and neglecting all terms of order ŝ2 and higher, we obtain

H1 = − k̂

ωµ0
E0 exp

(

ık̂x3

)

ψ0, (3.33)

H2 = 0, (3.34)

H3 = −ı 1

ωµ0
E0 exp

(

ık̂x3

)

∂1ψ0. (3.35)

Substituting the expression

∂1ψ0 = ψ0

[

ık̂

R(z)
− 2

w(z)2
− 2ıα

kw(z)2

]

x1,

results in the magnetic field components

H1 = − k̂

ωµ0
E0 exp

(

ık̂x3

)

ψ0, (3.36)

H2 = 0, (3.37)

H3 = − 1

ωµ0
E0 exp

(

ık̂x3

)

ψ0k̂

[

− 1

R(z)
− 2ı

k̂w(z)2
+

2α

kk̂w(z)2

]

x1. (3.38)

3.1.6 Implementation

When implementing these quantities we need to separate the real and imaginary parts. We have

ψ0 = exp

[

log(
w0

w(z)
) + ık̂

ρ2

2R(z)
− ρ2

w(z)2
− ıα

k

ρ2

w(z)2
− ıζ(z)

]

,

=
w0

w(z)
exp

[

−α ρ2

2R(z)
− ρ2

w(z)2

]

exp

[

ı

(

k
ρ2

2R(z)
− α

k

ρ2

w(z)2
− ζ(z)

)]

We define the quantities

B(x1, x2, x3) = E0 exp(ık̂x3)ψ0,

and

C(x1, x2, x3) = − 1

R(z)
− 2ı

k̂w(z)2
+

2α

kk̂w(z)2
,

= − 1

R(z)
− 2(ık + α)

(k2 + α2)w(z)2
+

2α(k − ıα)
k(k2 + α2)w(z)2

,

= − 1

R(z)
− ı 2

(k2 + α2)w(x3)2

(

α2

k
+ k

)

.
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and

D(x1, x2, x3) = k̂

[

− 1

R(z)
− 2ı

k̂w(z)2
+

2α

kk̂w(z)2

]

,

= − k̂

R(z)
− 2ı

w(z)2
+

2α

kw(z)2
,

= − k

R(z)
+

2α

kw(z)2
− ı
[

α

R(z)
+

2

w(z)2

]

,

and assume E0 is real so that

Re {B} = E0
w0

w(z)
exp

[

−αx3 − α
ρ2

2R(z)
− ρ2

w(z)2

]

cos

(

kx3 + k
ρ2

2R(z)
− α

k

ρ2

w(z)2
− ζ(z)

)

,

Im {B} = E0
w0

w(z)
exp

[

−αx3 − α
ρ2

2R(z)
− ρ2

w(z)2

]

sin

(

kx3 + k
ρ2

2R(z)
− α

k

ρ2

w(z)2
− ζ(z)

)

,

and

Re {C} = − 1

R(z)
,

Im {C} = − 2

(k2 + α2)w(x3)2

(

α2

k
+ k

)

.

Split in real and imaginary parts the fields are then given by

E′
2 = Re {B} ,

E′′
2 = Im {B} ,
E′

3 = (Re {B}Re {C} − Im {B} Im {C})x2,
E′′

3 = (Re {B} Im {C} + Im {B}Re {C})x2,

H ′
1 = − 1

ωµ0
(kRe {B} − αIm {B}) ,

H ′′
1 = − 1

ωµ0
(αRe {B}+ kIm {B}) ,

H ′
3 = − 1

ωµ0
(Re {B}Re {D} − Im {B} Im {D}) x1,

H ′′
3 = − 1

ωµ0
(Re {B} Im {D}+ Im {B}Re {D}) x1,

and E1 = H2 = 0. This is the form of the equations as we will use them in the implementation.
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3.1.7 Accuracy

We saw that, by design, the Gaussian beam solution only satisfies the Maxwell equations approx-
imately. To get physically significant results we must ensure that this approximation is accurate
enough, and we need some measure to see how well the solution satisfies the equations, and also
how accurate the derived quantities are. Since we have determine the Gaussian beam solution by
expanding the Maxwell equations around ŝ, we know that for |ŝ| small the solution should satisfy
the original equation well. Using (2.102) we can write

ŝ =
c

ωw0

1

n̂
=

λ0

2πw0n̂
. (3.39)

We can determine what the corresponding requirement for the waist size w0. We have

|ŝ| = λ0

2πw0

1√
n2 + κ2

.

For a good approximation we must have |ŝ| ≪ 1, which results in the relation

w0 ≫
λ0

2π

1√
n2 + κ2

,

between the waist size and the wave length.
From (3.18) we see that a larger waist size results in a larger Rayleigh range. We then see from

(3.20) that the spot size as function of the direction of propagation gets closer to w0, its value at
the point of focus. This implies that there is less focus in the direction of propagation, so this poses
a problem for us. The more accurate we want to model the electromagnetic fields, the less focussing
we can have in the direction of propagation. Furthermore, on of the purposes of this project is to
see the influence of flows on Rayleigh particles that are captured using optical tweezers, so we need
wavelengths that are relatively high compared to the size of these particles, and again for higher
wavelengths, the Gaussian beam approximation gets less accurate. This is the reason why in the
next section we will develop an external source that satisfies the Maxwell equation exactly, and still
had focussing properties.

Since we have the analytic solution, we can in principle determine what the analytic residual will
be. Furthermore once we have chosen a grid on which we determine the fields, we can also calculate
numerically the residual. We will determine the numerical residual by using central difference
schemes for the derivatives in the Maxwell equations.

For the analytical residual, we use (3.2). We first choose a grid with grid points xi, on which
we calculate the analytical expression for all the derivatives of the electric field. Then we determine
both the real and imaginary part of the residual, given by

R′(xi) = ∇×E′(xi) + ωµ0H
′′(xi),

R′′(xi) = ∇×E′′(xi)− ωµ0H
′(xi).

Then the scalar residual is given by

R(xi) = R′(xi) ·R′(xi) +R′′(x)i ·R′′(xi).

This quantity we integrate numerically over the whole domain, where we use a midpoint rule.
This results in the total residual
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R =
∑

xi∈V

R(xi)Vi,

where Vi is the volume of the corresponding cell. To normalize we determine the norm of the
second term of (3.2),

N = ω2µ2
0

∑

xi∈V

(H′(xi) ·H′(xi) +H′′(xi) ·H′′(xi))Vi.

The relative residual is then given by

Rrel =

√

R

N
.

In order to determine R′ and R′′, we need the derivatives of E′ and E′′ with respect to all the
spatial coordinates. Using the expressions derived in the previous section, we can easily determine
the derivatives, which results in

∂1B
′ = −B′′

[

kx1

R(x3)
− 2

κ

n

x1

w(x3)2

]

−B′

[

α
x1

R(x3)
+

2x1
w(x3)2

]

,

∂1B
′′ = B′

[

k(x1 − x0)
R(x3)

− 2
κ

n

(x1 − x0)
w(x3)2

]

−B′′

[

α
(x1 − x0)
R(x3)

+
2(x1 − x0)
w(x3)2

]

,

∂2B
′ = −B′′

[

kx2

R(x3)
− 2

κ

n

x2

w(x3)2

]

−B′

[

α
x2

R(x3)
+

2x2
w(x3)2

]

,

∂2B
′′ = B′

[

k(x2 − y0)
R(x3)

− 2
κ

n

(x2 − y0)
w(x3)2

]

−B′′

[

α
(x2 − y0)
R(x3)

+
2(x2 − y0)
w(x3)2

]

,

∂3B
′ = − 1

w(x3)
B′∂3w(x3) +

[

−α− αρ2

2
∂3R

−1(x3) +
2ρ2

w(x3)3
∂3w(x3)

]

B′

−
[

k + k
ρ2

2
∂3R

−1(x3)−
2κ

n

ρ2

w(x3)3
∂3w(x3)− ∂3ζ(x3)

]

B′′,

∂3B
′′ = − 1

w(x3)
B′′∂3w(x3) +

[

−α− αρ2

2
∂3R

−1(x3) +
2ρ2

w(x3)3
∂3w(x3)

]

B′′

+

[

k + k
ρ2

2
∂3R

−1(x3)−
2κ

n

ρ2

w(x3)3
∂3w(x3)− ∂3ζ(x3)

]

B′.

Substitution in the field expressions derived in the previous section results directly to analytical
expressions of the derivatives of the fields, which are used in the next section to calculate the
residuals.

Since the electromagnetic field components are accurate up to order |ŝ|, we expect the analytical
approximation of E and H to be of order O(|ŝ|2). In Chapter 6 we will check this by calculating
the fields for different parameters.

We will also determine the numerical residual, in exactly the same way. We will check both
Maxwell equations (3.1) and (3.2). The rotations are now determined using central differencing,
and for the integral we again use a midpoint rule. We expect for wavelengths small compared to
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the grid size that the numerical error due to the central differencing will be dominant, while for
larger wavelengths, the error will be dominated by the fact that we are using the Gaussian beam
approximation. Again we will investigate this in Chapter 6.



3.2. GAUSSIAN DIPOLE ARRAY 43

3.2 Gaussian dipole array

At the end of Section 3.1 we saw that using the Gaussian beam approximation, we get solutions
that do not satisfy the Maxwell equations, and for tighter and tighter focussing this approximation
gets worse and worse. In this section we will construct fields that do satisfy the Maxwell equations
exactly, and still have highly focussing behaviour. We will construct our external source density as
an array of perfect dipoles in a source plane. We orientate these dipoles so that they are proportional
to the field of an incoming Gaussian Beam in that source plane. Then, suggested by the Huygens
principle, we get a resulting electromagnetic field, mimicking a Gaussian beam. We will use a
Green’s function method to construct the expressions for the fields. We will first derive the Green’s
function and its derivatives, and develop expressions for the electric and magnetic fields. Then we
will describe how we model our Gaussian type beam.

3.2.1 Green’s function

We assume the external current is zero everywhere inside the domain of interest. Then, from (2.96)
we have ∇·H = 0. It is well-known that a divergence-less vector field can be written as the rotation
of another vector field, so we can define A such that

H = ∇×A.

Substitution in (2.94) results in

∇× (E− ıωµ0A) = 0,

where we have assumed there is no magnetic current density.
It is also well-known that every curl-less vector field can be written as the gradient of a scalar

potential, so there exists a scalar function V such that

E− ıωµ0A = −∇V. (3.40)

Substitution in (2.93) results in

−∇× (∇×A)− ıωε̂(ıωµ0A−∇V ) = −Jext,

or

−∇(∇ ·A) +∇2A+ ω2µ0ε̂A+ ıωε̂∇V = −Jext.

Again we choose the Lorenz gauge, given by (3.7),

∇ ·A = ıωε̂V,

so that the equation simplifies to

∇2A+ ω2µ0ε̂A = −Jext.

Here we have assumed the permittivity is homogeneous throughout the whole medium. The
equation for the potential can now be written as
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∇2A+ k̂2A = −Jext. (3.41)

The electric field is then obtained by substituting (3.7) in (3.40). Rewriting results in

E = ıωµ0A−
1

ıωε̂
∇(∇ ·A).

The fields can now be written as

E = ıωµ0

[

A+
1

k̂2
∇(∇ ·A)

]

, (3.42)

H = ∇×A. (3.43)

Taking the Fourier transform of (3.41) results in

−(m2
1 +m2

2 +m2
3)Ã+ k̂2Ã = −J̃ext,

where mi are the spatial Fourier coordinates. Solving for Ã results in

Ã =
1

‖m‖2 − k̂2
J̃ext.

We now formally define the Fourier transform of the Green’s function as

g̃(m) =
1

‖m‖2 − k̂2
.

Given that the inverse exists, the potential is given by taking the inverse Fourier transform,

A(x) =

∫

y∈R3

g(x− y)Jext(y) dV, (3.44)

where we have used the convolution theorem. To determine g(x), we perform the inverse inte-
grations explicit in spherical coordinates. We have

g(x) =
1

(2π)3

∫

m∈R3

ĝ(m)eım·x dV. (3.45)

For fixed x 6= 0 we define as basis for m-space a right-handed orthonormal basis {m̂1, m̂2, m̂3},
such that m̂1 = x

‖x‖ . We parameterize the vectors (m1,m2,m3) as

m1 = r cos θ,

m2 = r sin θ cosφ,

m3 = r sin θ sinφ,

with 0 ≤ r, 0 ≤ θ < π and 0 ≤ φ < 2π. Note that this is just a form of spherical coordinates,
with the Jacobian of this transformation given by J = r2 sin θ. Furthermore note that

x ·m = ‖x‖m̂1 ·m = ‖x‖m̂1 · (m1m̂1) = ‖x‖r cos θ,
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and ‖m‖2 = r2, so we can write (3.45) as

g(x) =
1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

1

r2 − k̂2
eı‖x‖r cos θ(r2 sin θ) dφdθ dr.

Performing the integration over φ and changing parameter to y = cos θ results in

g(x) =
1

(2π)2

∫ ∞

0

∫ 1

−1

r2

r2 − k̂2
eı‖x‖ry dy dr.

Performing the integration over y results in

1

(2π)2

∫ ∞

0

∫ 1

−1

r2

r2 − k̂2
eı‖x‖ry dy dr =

1

(2π)2

∫ ∞

0

[

1

ı‖x‖r
r2

r2 − k̂2
eı‖x‖ry

]1

−1

dr,

= − ı

(2π)2‖x‖

∫ ∞

0

r

r2 − k̂2
[

eı‖x‖r − e−ı‖x‖r
]

dr,

= − ı

(2π)2‖x‖

∫ ∞

−∞

r

r2 − k̂2
eı‖x‖r dr.

This final integral can be determined by considering it a complex contour integral around a
semi-disk in the upper half of the complex plane, centred around the origin. By using Jordan’s
lemma and assuming k̂ has positive imaginary part, the integral over the semi-circle vanishes in
the limit of the radius going to infinity. The only pole in the upper half-plane is at z0 = k̂ where
we take the root with positive imaginary part. Using z as complex parameter, we can write the
integrand as

z

(z − z0)(z + z0)
eı‖x‖z.

Using the residue theorem from complex calculus we then know that

∫ ∞

−∞

r

r2 − k̂2
eı‖x‖r dr = 2πıRes

(

z

(z − z0)(z + z0)
eı‖x‖z, z0

)

,

= 2πı lim
z→z0

z

z + z0
eı‖x‖z,

= ıπeı‖x‖z0 .

This finally results in the expression for the Green’s function,

g(x) =
1

4π‖x‖e
ık̂‖x‖. (3.46)

Expressions for the derivatives

In this section we will derive the expressions for the derivatives of the Green’s function that we
need. Since in (3.44) we have the expression g(x− y), we will focus on this expression. Note that
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the derivatives are taken with respect to x. We define r = x − y, and r = ‖x − y‖. The Green’s
function then becomes

g(r) =
1

4πr
eık̂r.

Notice that in Cartesian coordinates

∂ir =
ri

r
,

or in vector notation,

∇r = r

r
= r̂.

We now have

∂ig(r) = g(r)

[

ık̂ − 1

r

]

ri

r
,

or in vector notation

∇g(r) = g(r)

[

ık̂ − 1

r

]

r̂. (3.47)

The second derivatives are given by the symmetric tensor with Cartesian coordinates

∂j∂ig(r) = g(r)
rirj

r2

(

ık̂ − 1

r

)2

+ g(r)
r2δij − rirj

r3

(

ık̂ − 1

r

)

+ g(r)
rirj

r4
,

= g(r)

[

−k̂2 rirj
r2

+
1

r2

(

3
rirj

r2
− δij

)

+
ık̂

r

(

δij − 3
rirj

r2

)

]

,

where we have used the expression

∂j r̂i =
r2δij − rirj

r3
. (3.48)

In vector notation we can write this tensor as

∇∇g(r) = −g(r)
[

k̂2r̂⊗ r̂+
ık̂

r
(3r̂⊗ r̂− I)− 1

r2
(3r̂⊗ r̂− I)

]

, (3.49)

with I the identity operator.

3.2.2 Perfect dipole

Before focussing on complex external current densities, we will first consider as external source an
oscillating perfect electric dipole, given by

Jext(x, t) = δ(x− xs)I0 cos(ωt− ϕ)d̂,
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with I0 the strength, ϕ the phase factor and d̂ the orientation. The orientation d̂i determines the
polarization of the resulting fields. We see that if we define the complex, time harmonic, external
source as

Jext(x) = δ(x − xs)I0e
ıϕd̂, (3.50)

we have

Jext(x, t) = Re
{

Jext(x)e−ıωt
}

.

Substituting (3.50) in (3.44) results in the expression for the potential

A(x) = g(x− xs)I0e
ıϕd̂. (3.51)

For simplicity we will absorb the phase factor ϕ in the Green’s function g, which results in

g(r) =
1

4πr
eı(k̂r+ϕ),

so that we can write

A(x) = g(x− xs)I0d̂. (3.52)

Note that this does not alter any of the derivatives. We now define r = x−xs and r = ‖x−xs‖.
From (3.52) we can derive the electric and magnetic fields. Substituting (3.52) in (3.42) and using
(3.49) results in

E = ıωµ0

[

g(r)I0d̂+
1

k̂2
∇(∇ · (g(r)I0d̂))

]

,

= ıωµ0I0

[

g(r)d̂+
1

k̂2
(d̂ · ∇)(∇g(r))

]

,

= ıωµ0I0g(r)

[

d̂− (d̂ · r̂)r̂− ı

k̂r

(

3(d̂ · r̂)r̂− d̂
)

+
1

k̂2r2

(

3(d̂ · r̂)r̂− d̂
)

]

.

We want to split this field in a real and imaginary part. First notice that

1

k̂
=

k − ıα
k2 + α2

,

and

1

k̂2
=
k2 − α2 − 2ıkα

(k2 + α2)2
.

The electric field can now be written as

E = ωµ0I0g(r)

[

ı
(

d̂− (d̂ · r̂)r̂
)

+

(

1

k̂r
+

ı

k̂2r2

)

(

3(d̂ · r̂)r̂− d̂
)

]

.

= ωµ0I0g(r)

[

ı
(

d̂− (d̂ · r̂)r̂
)

+

(

k − ıα
(k2 + α2)r

+
ı(k2 − α2) + 2kα

(k2 + α2)2r2

)

(

3(d̂ · r̂)r̂− d̂
)

]

.(3.53)
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Splitting in a real and imaginary part results in

E′ = −ωµ0I0 (g
′′v1 − (c1g

′ + c2g
′′)v2) , (3.54)

E′′ = ωµ0I0 (g
′v1 + (c1g

′′ − c2g′)v2) , (3.55)

where we have defined the vectors

v1 = d̂− (d̂ · r̂)r̂,
v2 = 3(d̂ · r̂)r̂− d̂,

and the scalars

c1 =
k

(k2 + α2)r
+

2kα

(k2 + α2)2r2
,

c2 =
α

(k2 + α2)r
− k2 − α2

(k2 + α2)2r2
.

For the magnetic field we substitute (3.52) in (3.43) and use (3.47), which results in

H = I0∇g(r) × d̂,

= I0

(

g(r)

[

ık̂ − 1

r

]

r̂

)

× d̂,

= I0g(r)

(

ık̂ − 1

r

)

r̂× d̂. (3.56)

Splitting in real and imaginary part we get as expression for the magnetic field

H′ = −I0
((

α+
1

r

)

g′ + kg′′
)

r̂× d̂, (3.57)

H′′ = −I0
((

α+
1

r

)

g′′ − kg′
)

r̂× d̂. (3.58)

So we now have expressions for the electric and magnetic field of a perfect dipole, which satisfy
the Maxwell equations exactly.

3.2.3 Gaussian source plane as array of dipoles

In the previous section we constructed a simple exact solution for the Maxwell equations. We can
now use this solution to construct more interesting fields, by using the superposition principle.
We can place multiple perfect dipoles at different spatial locations, and we know by linearity of
the Maxwell equations that the total electromagnetic field will be the sum of the partial fields.
It is important to notice that is it only the fields that can be added, not the derived quantities
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such as the heat dissipation or the Poynting vector. To determine these we first determine the
total electromagnetic field and then calculate the derived quantity. We will work with the vector
potential, using (3.44). Once we have determined the vector potential for our solution, we can
easily calculate the electric and magnetic fields by (3.42) and (3.43).

For an arbitrary external electric current density Jext(x), we have

A(x) =

∫

D

g(x− y)Jext(y) dy, (3.59)

where D is the region where the current density is non-zero. We assume we are interested in
the field values at locations x, so that r = ‖x− yi‖ is not too small, that is, we look at points not
too close to the source region. In this case we do not need to take care of the singularity in the
Green’s function. Since the Green’s function contains a factor exp ıkr, it also oscillates over D, so
when discretizing (3.59), we have to make sure our grid is fine enough. Furthermore the spatial
variation of the current density have to be taken into account when determining the grid size. We
will approximate the integral by using the second order midpoint scheme. If we divide the volume
D in cells with label i, and denote the volume Vi and centres yi, we can approximate the integral
as

A(x) ≈
∑

i

g(x− yi)J
ext(yi)Vi, (3.60)

where x is the fixed point where we want to determine the field values.
We now have to determine the current density to use. We will apply the same idea behind

the Huygens-Fresnel principle, which says that the fields of a propagating wave are equal to the
superposition of the fields resulting of point sources in a plane through which the wave front travels.
We will use this principle, by choosing a source plane, through which the beam enters. Then we use
the Gaussian beam approximation to determine the electric field components in this plane, and we
use as external electric currents point sources that are proportional to the (complex) field values at
those point. Mathematically, we choose a plane S, orthogonal to the direction of propagation, which
in Section 3.1 was the z direction, so for each vector y ∈ S, we have z = zs, where s is the subscript
for the source. We will denote the center of the beam in the source plane as xs = (xs, ys, zs).

Using (3.30) and the proportionality requirement we can thus write the external electric current
density as

J1 = 0,

J2 ∝ exp(ık̂z)ψ0,

J3 ∝ exp
(

ık̂z
)

ψ0

(

− 1

R(z)
− 2ı

k̂w(z)2
+

2α

kk̂w(z)2

)

y.

We will determine the strength of the currents not directly, but through a normalization proce-
dure as described in Section 5.1.1. Since z = zs is fixed, we only have to consider factors depending
on x and y. It is essential that we look at the complex field values, because in general the different
components do not have to be in phase with each other. Using (3.25) we have

ψ0 ∝ exp

(

− ρ2

w(zs − zf)2
+ ık̂

ρ2

2R(zs − zf)
− ıα

k

ρ2

w(zs − zf)2
)

,



50 CHAPTER 3. EXTERNAL ELECTROMAGNETIC SOURCES

where we have substituted z = zs − zf, the (oriented) distance between the source plane and
the focal plane and ρ2 = (x− xs)2 + (y − ys)2, with (xs, ys) the axial line through the center of the

beam. If we now define complex parameters β̂ and γ̂ = γ̂(ρ) such that

β̂ = − 1

R(zs − zf)
− 2ı

k̂w(zs − zf)2
+

2α

kk̂w(zs − zf)2
,

= − 1

R(zs − zf)
− ı 2

kw(zs − zf)2
, (3.61)

γ̂ = exp

(

− ρ2

w(zs − zf)2
+ ık̂

ρ2

2R(zs − zf)
− ıα

k

ρ2

w(zs − zf)2
)

, (3.62)

we can write Jext
2 ∝ γ̂ and Jext

3 ∝ γ̂β̂y. Note that although γ̂ occurs in both components, we
can not divide by it, because of the dependence on ρ. Denoting the normalization constant as I0,
we can write the external current as

Jext
1 = 0,

Jext
2 = γ̂I0δ(z − zs),
Jext
3 = γ̂β̂(y − ys)I0δ(z − zs),

where the δ function reflects that the source only acts in a plane. Substitution in (3.59) and
applying the discretization that has lead to (3.60) results in the discretized expresions for the vector
potential,

A1 = 0,

A2 = I0
∑

i

γ̂ig(x− yi),

A3 = I0β̂
∑

i

(yi − ys)γ̂ig(x− yi),

where the δ function is taken into account by fixing z = zs in the integration vector y, changing
from a volume integral to an area integral and we added a subscript to γ̂ to denote its dependency
on ρ. Furthermore we have assumed the cells are of equal area, and absorbed this into the I0
parameter, which will be normalized by the procedure explained in Section 5.1.1. So for our final
discretized vector potential we can write

A(x) = I0

n
∑

i=1

γ̂ig(x− yi)
[

ŷ + β̂(yi − ys)ẑ
]

, (3.63)

where ŷ and ẑ are the standard unit basis vectors. If we compare the expression for this vector
potential with (3.51) we see that it is a superposition of perfect dipoles, with two dipoles with
orthogonal orientation for each source vector yi. This means that in order to determine the vector
potential, and the resulting electric and magnetic fields, we can directly use the expressions derived
in Section 3.2.2, substituting I0e

ıϕd̂ = I0γ̂iŷ and I0e
ıϕd̂ = I0γ̂iβ̂yẑ, for the y and z component

respectively.
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We still need to address the discretization domain. We will assume the domain is a square
patch in the source plane, centred around xs = (xs, ys, zs) and having length L in both directions.
The dimensions of this square are determined by how fast the amplitude of the external current
density decays. Since I0 is constant on the whole domain we ignore its values, since it is the relative
contribution we are interested in. The amplitude for the y component is then given by |γ̂|. For the
z component we have |β̂||γ̂|y. From (3.62) it is easily seen that

|γ̂| = exp

(

− ρ2

w(zs − zf)2
− α ρ2

2R(zs − zf)

)

,

so the coefficient decays exponentially in ρ2, which means the amplitude for the y component is
a decreasing function for all ρ. For the z component special care is needed because of the factor y.
Of course we know because of the exponential decay eventually the amplitude starts decreasing. For
fixed y we again have exponential decay in |x− xs|2 for all x. In the y direction the amplitude will
initially grow towards a maximum after which it starts decaying. It is important that our domain
contains this maximum. In order to determine the location we calculate the partial derivative with
respect to y. We have

∂

∂y

(

|β̂||γ̂|y
)

= |β̂|
(

∂|γ̂|
∂y

y + |γ̂|
)

= |β̂||γ̂|
(

1− 2y2

w(zs − zf)2
)

.

At the maximum this partial derivative will equal zero, so we have

y = ymax =
1√
2
w(zs − zf).

For y > ymax the amplitude will again be a decreasing function of ρ, so we will always choose
the length of the source domain such that

L > 2ymax =
√
2w(zs − zf). (3.64)

The amplitudes depend on both w0 and zs − zf. To determine a specific value of L, we choose
a tolerance 0 < ǫs < 1. Now we will choose L such that the relative amplitudes in both directions
are smaller than this tolerance, that is, we have |γ̂| < ǫs and |β̂||γ̂|L2 < ǫs, in addition to (3.64).
We will always choose ǫs = 0.001 except when stated otherwise. Such a small value will ensure
that extending the source domain will not lead to significantly changing the resulting fields. Using
this approach, we choose the model the complete Gaussian source beam. It could be that in a
experimental situation, the incoming beam is larger than the aperture on which it is pointed, in
which case it would be more suitable to cut off the source domain at the appropriate value, so that
the modelled fields will approach the physical ones more closely, introducing side lobes from the
edge of the aperture. We will not use this approach here and we will model the complete beam.

Finally we have to make sure the discretization of the grid is fine enough. We already noticed
that the Green’s function oscillates. This is due to the complex exponential exp(ıkr). When
evaluating the integral over the source plane, x is considered constant, so the period of oscillation
depends on how r varies over the source plane with respect to this fixed x. In the limiting case
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z → zs the component of r outside the source plane will tend to zero, and we see that r will approach
ρ, resulting in a factor exp(ıkρ), which oscillates in the source plane with period 2π

k
. This gives a

lower bound for the period.
From 3.62) we see that the external current density will also oscillate over the source plane, due

to the complex exponential

exp

[

ı

(

k
ρ2

2R(zs − zf)
− α

k

ρ2

w(zs − zf)2)

)]

.

We see that the period increases for increasing ρ, so by fixing L, the size of the source domain,
we implicitly fix some lower bound for this period.

We will not further analyse this oscillating behaviour analytically. Instead, in Chapter 6 we
will show the consequences of different grid sizes for the source domain, and we will quantitative
estimate the errors involved, to make sure we will choose a grid fine enough for the simulations.



Chapter 4

Navier-Stokes equations

In this chapter we will outline the different equations governing the flow of a fluid. All the equations
follow from the different conservation laws. In particular we use the conservation of mass, linear
momentum, angular momentum and energy.

We have v the velocity of the fluid, which in general is a function of position and time, so
v = v(x, t). We will now determine the equations for v in terms of the material properties and
other variables.

4.1 Conservation of mass

For the fluid in motion we assume that mass is (locally) conserved. From [2] we have the continuity
equation given by

∂ρ

∂t
+ div (ρv) = 0, (4.1)

where ρ(x, t) is the mass density and v(x, t) the velocity of the fluid. In subscript notation this
becomes

∂tρ+ ∂j(ρvj) = 0. (4.2)

Expanding the differentiation results in

∂tρ+ ρ∂jvj + vj∂jρ = 0. (4.3)

This equation can be simplified using certain assumptions on the flow, such as incompressibility.
If we introduce the operator

D

Dt
=

∂

∂t
+ v · ∇, (4.4)

called the material derivative, we can write the continuity equation as

1

ρ

Dρ

Dt
= − divv. (4.5)

53
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The material derivative is the derivative along the path of a fluid particle. It can be applied to
field variables, that is variables that are functions of u and t. In subscript notation we will write
Dt, so we can write

1

ρ
Dtρ = −∂ivi. (4.6)

We see that if the material derivative of the mass density is zero, the divergence of the velocity
vanishes.

4.2 Conservation of (linear) momentum

Using conservation of (linear) momentum and following the derivation from [2], we arrive at the
general expression for conservation of linear momentum,

ρDtvi = ∂jTij + fb
i , (4.7)

where fb
i (x, t) is the volumetric body force density and Tij the stress tensor.

Writing out the material derivative results in

ρ (∂tvi + vj∂jvi) = ∂jTij + fb
i . (4.8)

We have to determine the relation between the stress tensor and the other quantities that
describe the flow of the fluid. First of all we write the stress tensor as the sum of an isotropic part
and a non-isotropic part

Tij = −pδij + T ′
ij , (4.9)

with p the mechanical pressure and T ′
ij the non-isotropic part of the stress tensor or the deviatoric

stress tensor. If we consider the fluid to be a Newtonian fluid, the deviatoric stress tensor can be
written as

T ′
ij = 2µ

(

eij −
1

3
∆δij

)

, (4.10)

where µ is the dynamic viscosity, eij is given by

eij =
1

2
(∂jui + ∂iuj) ,

and ∆ = ekk = ∂kvk, with summation over k implied. In general the dynamic viscosity is a
function of the temperature.

Substitution of (4.10)and (4.9) in (4.8) results in

ρ (∂tvi + vj∂jvi) = ∂j

[

−pδij + 2µ

(

eij −
1

3
∆δij

)]

+ fb
i ,

= −∂ip+ 2∂j(µeij)−
2

3
∂i(µ∆) + fb

i ,

= −∂ip+ ∂j (µ (∂jvi + ∂ivj))−
2

3
∂i(µ∂jvj) + fb

i .
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This is the most general form for Newtonian fluids. If we assume temperature differences are
small, then the viscosity is homogeneous and can be taken out of the derivatives. This results in
the simpler form

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2j vi +
1

3
µ∂i(∂jvj) + fb

i , (4.11)

where we have interchanged the order of differentiation to combine two terms.
A final important simplification is to consider the flow incompressible. This means that the

material derivative of the mass density of the fluid is zero. From (4.6) it follows directly that

∂ivi = 0.

If we substitute this in (4.11) we have as result the incompressible Navier-Stokes equations with
constant viscosity,

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2j vi + fb
i . (4.12)

We can write this slightly different if we use

vj∂jvi = ∂j(vjvi)− vi∂jvj = ∂j(vjvi).

The result then is

ρ (∂tvi + ∂j(vjvi)) = −∂ip+ µ∂2j vi + fb
i . (4.13)

In general the Navier-Stokes equation together with the continuity equation are four equations
in five unknowns, vi, ρ and p, so our system is not complete yet. In the incompressible case, the
equation Dtρ = 0 is this final equation. When we consider compressible flow we need to take into
account an energy equation and a thermodynamic relation too. We will consider incompressible
flow throughout this work, but since we do expect there to be heating in the fluid we need these
extra equations, to take care of the heat dissipation.

4.3 Conservation of energy

When the fluid contains heat sources, and heat transfer plays a role we have to take conservation of
energy into account. In general we define the total energy density as the sum of the internal energy
and the kinetic energy,

E = ρ

(

e+
1

2
vivi

)

, (4.14)

with e the specific internal energy (per unit mass). Since we assume our fluid is incompressible,
additional heat will have no effect on the density, and we consider only the internal energy. Of
course under this assumption there will be no interaction between the internal and kinetic energy
at all, but in order to investigate whether heat driven currents exists we need a heat equation.
Further details can be found in Section 4.4. The specific internal energy can be written as

e = cpT,
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where in general cp is a function of T . We assume that the temperature differences will be small,
so that we can assume cp is constant.

If we consider a control volume V we can then write for the internal energy,

d

dt

∫

V

ρcpT dV = −
∫

S

ρcpTvin̂i dA+Q. (4.15)

The first term on the right-hand side is the convection term, in the second term Q is the sum
of the heat source and heat flux through the surface of the control volume. We can write Q as

Q =

∫

V

q dV −
∫

S

q∗i n̂i dA, (4.16)

with q the heat source density and q∗i the heat flux. For the heat flux we use Fourier’s law,

q∗i = −k∂iT,

with k ≥ 0 the heat conduction coefficient. In general k = k(T ), but we assume the temperature
differences are small enough to consider k constant.

If we substitute (4.16) in (4.15), interchanging the integration and differentiation in (4.15) and
apply the divergence theorem, we get the integral heat equation

∫

V

∂t(ρcpT ) dV = −
∫

V

∂i(ρcpTvi) dV +

∫

V

∂i(k∂iT ) dV +

∫

V

q dV.

Since we have chosen V arbitrarily, the integrands have to be equal. Taking out the constant
parameters and using the incompressibility results in the heat equation,

ρcp∂tT = −ρcpvi∂iT + k∂2i T + q. (4.17)

This is the heat equation we will work with.

4.4 Boussinesq approximation

Since we have a heat source density q generally not equal to zero, it is possible that temperature
differences might lead to small currents, under the influence of gravity. This effect called natural
convection is small for small temperature differences, but since we expect our external electromag-
netic forces to be small too, we want to take them into account so that we can investigate which
effect is dominant for different electromagnetic properties. In order to achieve this we use the
Boussinesq approximation.

In general when gravity is taken into account, we have as one of the body forces ρgi, with gi
the gravity acceleration. In the Boussinesq approximation, we assume the density is constant in all
the terms, except this one. Following [13] and [5] we write the density and the temperature as the
difference between a reference value and a small deviation, ρ = ρ0 + ρ′ and T = T0 + T ′. Since ρ′

is small, we can write it as

ρ′ =

(

∂ρ0

∂T

)

p

T ′ = −ρ0βT ′,
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with β the thermal expansion coefficient. Using this expression we have for the density the
expression

ρ = ρ0 (1− β(T − T0)) . (4.18)

We now define the modified pressure as

p′ = p+ ρgx2, (4.19)

where we assume gravity works in the negative x2 direction. Substitution in the two important
terms of the left-hand side of the momentum equation results in

−∂ip− ρgx̂2 = −∂i(p′ − ρgx2)− ρgx̂2 = −∂ip′ + ρgx̂2 + gx2∂iρ− ρgx̂2 = −∂ip′ + gx2∂iρ.

Substitution in (4.13) results in the modified Navier-Stokes equation

ρ0 (∂tvi + ∂j(vjvi)) = −∂ip′ + gx2∂iρ+ µ∂2j vi + fb
i , (4.20)

where from fb
i gravity is now excluded.

In [5] it is stated that for water the errors introduced by using this approximation are approx-
imately 1% for temperatures differences of 2K or smaller. For larger differences this error grows,
and the solutions can even become qualitatively different. This is important to keep in keep, and
we always have to check whether we are still in the domain of validity of this approximation.

4.5 Steady-state equations

We have derived a number of conservation equations and other relations that govern the flow of
the fluid. Also we made a number of assumptions on our fluid and flow. In particular we assume
the density is constant and equal to ρ0. We will now state the final equations that we will use to
determine the steady-state flows in our fluid. As a consequence, the partial time derivatives are
equal to zero. From (4.2), (4.20) and (4.17) we have

∂ivi = 0, (4.21)

ρ0vj∂jvi = −∂ip′ + gx2∂iρ+ µ∂2j vi + f em
i , (4.22)

ρ0cpvi∂iT = k∂2i T + qem, (4.23)

with the modified pressure p′ given by (4.19) and the variable density by (4.18). Furthermore
we have identified the heat source and the body force with the expression from (2.109) and (2.108).
If we divide the second equation by ρ0 we see we get as coefficient for the viscous term

ν =
µ

ρ0
.

This quantity is called the kinematic viscosity, and is it usually stated in the literature.
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4.6 Boundary conditions

In order to solve the equations stated earlier we need boundary conditions for the velocity and
temperature. Information about the boundary conditions can be found in [5]. For the velocity at
a solid boundary there are two common possibilities. In the inviscid case we assume the velocity is
parallel to the boundary, that is, no fluid particle penetrates the boundary,

v · n̂ = 0,

with n̂ the unit normal vector. In case of a viscous fluid, we assume the no-slip boundary
condition, which says that the fluid ‘sticks’ to the boundary and its velocity is zero,

v = 0.

This boundary condition we will use for the simulations.
For the temperature we can either assume the boundary is perfectly insulated, so that the

normal derivative of the temperature is zero, or that a certain heat flux is present. The latter is
implemented by using a reference temperature and possibly a certain heat coefficient, modelling
the walls heat properties.

For boundaries where fluid is allowed to cross we need different boundary conditions. The most
common situation we will consider is a domain with an inflow and an outflow boundary. At the
inflow we prescribe a certain velocity and temperature. At the outflow we assume the normal
gradient of these quantities is zero.

Notice that we did not specify the pressure. The value of the pressure will usually follow from
the equations. In case that the velocity at an inflow is not known we can prescribe the pressure.
The velocity at the boundary then follows from the equations.

4.7 Discrezation and the SIMPLE algorithm

In order to solve our system of equations we need to discretize the equations and use an algorithm
to obtain the steady-state solutions of the different quantities. The two difficulties are that the
momentum equation is non-linear, and coupled with the pressure. The non-linearity will be solved
by using the velocity field of the previous iteration for one of the terms. The coupling of the
pressure is handled by using the momentum equation to determine a predictor of the velocity field
and solving the pressure equation to determine the pressure field, and create a correction for the
velocity field which obeys the continuity equation. Since we are interested in steady-state solutions
we will use the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm, which
is described in [15]. Details about the implementation used can be found in [10]. We will give an
overview of the procedure.

First a prediction is made for the velocity components, by solving the momentum equation. Than
this prediction is used to determine a new temperature and density field. Using these predicted
fields, the pressure field is determined by solving a pressure equation, and using the new pressure
field, the velocity field is corrected so that it is divergence free, and the continuity equation is
satisfied. This procedure is iterated until certain conditions are met, which in practice means the
residuals of all the fields involved are smaller than a certain tolerance.

We will use an equidistant rectangular co-located grid. Quantities in the centre of a control
volume have the superscript c, where as quantities in the centre of the faces have the superscript f .
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To obtain quantities at the face centres, second order linear interpolation is used. For differentiation
we use the second order central differencing.

The whole procedure starts with a initial pressure field and velocity field, for example uniform.

4.7.1 Momentum equation

The predicted velocity is determined by solving the discretized momentum equation (4.22). The
whole equation is divided by ρ0. We integrate both sides over the control volume. For the flux
terms the divergence theorem is applied. For the right-hand side term we get

∫

V

vj∂jvi dV =

∫

V

∂j(vjvi) dV =

∫

S

vjvin̂j dS ≈
∑

Ajv
f
iv

f
j n̂

f
j ,

with Aj the area of the corresponding face. For vj we use the velocity field of the previous
iteration. For the viscous term we write ν = µ

ρ0
and we get

ν

∫

V

∂2j vi dV = ν

∫

S

∂jvin̂j dS ≈ ν
∑

Aj(∂jvi)
fn̂f

j .

The quantity in parentheses is determined using central differencing with the values in neigh-
bouring cell centres. For the external force term, the electromagnetic force, we use a second order
mid-point scheme, so that

1

ρ0

∫

V

f em
i dV ≈ V

ρ0
· (f em

i )c,

with V the volume of the control volume. For the pressure term and the extra buoyancy term
special care is needed. If we would determine the gradient using the scheme

∫

V

∂iφdV =

∫

S

φn̂i dA ≈
6
∑

j=1

Ajφ
f
j(n̂i)

f
j ,

and use linear interpolation for φfj we see that because the (n̂i)
f
j are oriented in opposite direction

for faces with the same orientation, the contribution of φc cancels. This decoupling can lead to
so-called checker board oscillations. See [15] for more details. The solution we use is to use so-called
Rhie and Chow interpolation [18], where the gradient value in the cell centre is determined as a
weighted average of the estimated values on the cell faces,

∫

V

∂iφdV ≈
V

A

6
∑

j=1

Aj(∂iφ)
f
j ,

where A is the summed area of the faces. The (∂iφ)
f
j terms are determined with linear interpo-

lation between the value in the control volume and the different neighbouring volumes.
All the terms of the momentum equations are now described, and we can assemble the whole

system in the matrix system

Ckvk = rk,

where the coefficients of Ck depend on vk−1 and the coefficients of rk on pk−1 and ρk−1.
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This equation is solved iteratively. We use a diagonal incomplete-LU preconditioned bi-conjugate
gradient method. We iterate until the residual is smaller than a certain tolerance. For the exact
definition of the residual, and the normalisation see ([10] page 173-181). This gives a prediction of
the velocity field.

4.7.2 Energy equation

The energy equation resembles the momentum equation almost completely. Both are forms of a
more general transport equation. As a result the numerical treatment is almost equal. The equation
is divided by ρ0cp, and rewriting results in

∂i(viT ) =
k

ρ0cp
∂2i T +

1

ρ0cp
qem.

The convective term on the left-hand side is handled exactly as the convective term in momentum
equation, where for the velocity field the values of the previous iteration are used, so that continuity
is assured. Furthermore the conductive term is also implemented the same way as the viscous term
in the momentum equation. The source term is approximated by a second order mid-point scheme,
like the external force term in the momentum equation. This results in a matrix equation

AkTk = sk,

where again the coefficient of the matrix Ak depends on the solution of the velocity field at
the previous iteration, vk−1. Again we use a diagonal incomplete-LU preconditioned bi-conjugate
gradient method so solve the system.

From the new temperature field we can determine the updated density using (4.18).

4.7.3 Pressure equation

After solving the velocity predictor we can now determine the new pressure field. We write the
momentum equation in the semi-discretized form

Av = −∇p′ + f .

We now split A in the diagonal and non-diagonal part and write for the corrected velocity field
ṽ and substitute the corrected field, resulting in

Dv′ +Bv = −∇p′ + f .

Since D is diagonal the inverse is simple and we can solve for v′, resulting in

v′ = −D−1Bv −∇D−1p′ +D−1f . (4.24)

Taking the divergence on both sides and assuming that ∇·v′ = 0 results in the Poisson equation

∇2
[

D−1p′
]

= −∇ ·
[

D−1Bv −D−1f
]

.

Solving this equation results in a corrected pressure p′. Once this pressure is obtained we can
determine the corrected velocity by substitution in (4.24). Having determined the new fields we
can go on to next iteration.
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4.7.4 Under relaxation

In order to use the iterative methods, the system matrix should be diagonally dominant. For time-
dependent problems this dominance is taken care of by the discretization of the time-derivative.
For steady-state problems we need to enhance the diagonal dominance of the system, which is done
through implicit under relaxation. Following ([10] page 115) we have for each system Ax = b we
define the relaxation parameter 0 < α ≤ 1. We split A in the diagonal and non-diagonal parts
A = D +B. Then to both sides of the equation we add a term resulting in

(D +B)xn +
1− α
α

Dxn = b+
1− α
α

Dxn−1,

where xn is the solution vector and xn−1 is the solution vector of the previous iteration. Note
that once steady-state is reached, both terms will coincide. The resulting system is

(
1

α
D +B)xn = b+

1− α
α

Dxn−1,

and we see that the diagonal dominance of the system matrix is higher. The down-side is that
more iterations are needed in general to obtain the steady-state solution. For the moment and
energy equation we use the value α = 0.7. For the pressure equation α = 0.3 is used.

∂ivi = 0, (4.25)

ρ0vj∂jvi = −∂ip′ + gx2∂iρ+ µ∂2j vi + f em
i , (4.26)

ρ0cpvi∂iT = k∂2i T + qem, (4.27)
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Chapter 5

Choice of medium and domain

In the previous chapters we have determined all the equations governing the electromagnetic fields,
and the fluid flows that we want to investigate, but we still have to determine the domain in which
we want to determine these quantities and the parameters we want to choice. In this short chapter
we will determine the domain we use to investigate the flows, and the parameters we use for the
numerical experiments.

5.1 Domain and boundary

The domain we consider will be a three dimensional square box, with sides of 10µm. We define
our axis so that the (x, y, z) = (0, 0, 0) point coincides with one of the lower corner points of the
boundary of the box, and (x, y, z) = (10 µm, 10µm, 10µm) will be the opposite corner point.

We choose the y direction as the vertical one, so that gravity is working in the negative y
direction. The positive z direction will be the direction of propagation of our electromagnetic
fields, and we place the source at negative z, centred around (x, y) = (5 µm, 5µm). Whenever we
use a focussed source, we will use the middle point (x, y, z) = (5 µm, 5µm, 5µm) as point of focus.

See Figure (5.1) for a schematic overview of our system.
We assume the fluid satisfies the no-slip boundary condition at all boundaries, so that we have

v = 0 at all points on the boundary. As mentioned before we do not need to impose a boundary
condition for the pressure. Furthermore we assume the domain is in thermal equilibrium with
the environment, so that the boundaries are at constant temperature. We choose T0 = 300K, as
reference temperature. All the parameters are determined corresponding to either 20◦ Celsius or
25◦ Celsius, corresponding to 293K and 298K, close to the reference temperature. In the end it is
only the gradient of the temperature that is essential, so we choose a rounded reference temperature,
so that differences are easy to determine.

5.1.1 Electromagnetic normalization

When simulating the electromagnetic source, we assume the whole space has the electric properties
of water, so that we can assume the permittivity of the whole space is homogeneous. This was one
of the assumptions made in the derivations of the analytic expressions for the sources. Of course
one of the consequences is that in a medium with losses the fields start already decaying outside
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Figure 5.1: Schematic overview of domain and source.

the domain of interest. Furthermore is it hard to determine an analytic expression for the radiated
energy of the sources in the first place, specially when there is no symmetry in the plane of the
source perpendicular to the direction of propagation. Otherwise the total energy radiated in the
direction of propagation would be half the total radiated energy. To coop with this problem, we
determine numerically the total power through the boundary patch through which the beam enters,
then we normalize the fields so that this power equals the number of mW we want. We already
saw that the real part of the complex Poynting vector gives a measure for the power flow, so that
the total amount of power through a patch is given by

P0 =

∫

S

Re {S} · n̂ dA,

where S is the patch of interest and n̂ is the normal vector orientated in the direction of
propagation. See Figure (5.2) for a schematic overview of this normalization. The integral is taken
over the blue shaded patch, with the normal vector orientated in the positive z direction. Since the
Poynting vector is the product of the electric and magnetic field vectors, we know that the total
power is proportional to I20 when a dipole source is used, and E2

0 when we consider a Gaussian
beam source.

5.2 Parameters

The parameters depend on the properties of the fluid we use. For this project we will only consider
liquid water. The main reason is that most experimental set-ups use this fluid. Furthermore most
biological particles dwell well inside water, since that is their natural habitat. Most parameters
we will use are for purified water, and they will change for water containing minerals. We are not
too concerned with the exact parameters, since we do not expect flow results to be significantly
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Figure 5.2: Normalization of the electromagnetic field.

property symbol value unit

density ρ0 997 kgm−3

specific heat (at constant pressure) cp 4.18× 103 J kg−1 K−1

coefficient of thermal expansion β 2.57× 10−4 K−1

kinematic viscosity ν 9.02× 10−7 m2 s−1

thermal conductivity k 6.01 Wm−1 K−1

Table 5.1: Parameter values in SI units.

different if the parameters vary slightly. Of course when highly accurate quantitative experiments
are performed, the accuracy of parameters will become more important.

5.2.1 Dynamic parameters

For the dynamic parameters, we use [9] as reference. Although this book is mostly about water in
natural occurrences, it also contains values for pure water. The thermal conductivity is taken from
[17], where we linearly interpolated the value. We will use three significant digits, and the reference
temperature of 25◦ Celsius. The values can be found in Table 5.1. All values are in SI units.

5.2.2 Electric parameters

As already mentioned we assume the liquid does not respond magnetically to an electromagnetic
field. For water this is a good approximation. The only medium parameter we need for water is then
the index of refraction n̂. In general this will be a complex number, depending on the frequency of
the fields. We use the data from [8], which is compiled from several experimental sources. Values
are tabulated for vacuum wavelengths between 0.2µm and 200µm. All the values are determined
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for the reference temperature of 25◦ Celsius. Figure (5.3) shows the real and imaginary part of the
complex index of refraction n̂ = n+ ıκ.

0 500 1000
0

0.25

0.5

λ
0
 [nm]

 

 
n−1
κ

Figure 5.3: Overview of the refractive index in water for vacuum wavelengths up to 1µm. Both the
real and complex part are shown, and the real part is shifted down by 1.

We see that in the micrometer range there are two spikes that are interesting. Both are a
consequence of the vibrational modes of the water molecules. We will focus on the first absorption
spike, stretching from 2.4µm to 3.8µm. Furthermore we will investigate one small wavelength, for
which the absorption is very small. From (2.109) we see that the coefficients for the two force terms
are

ω

c2

(

ε′

ε0
− 1

)

=
ω

c2
δε′rel and

ω

c2
ε′′

ε0
=
ω

c2
ε′′rel.

Figure (5.4) shows the values of δε′rel and ε′′rel. Furthermore four vacuum wavelengths are
highlighted, 1.2µm, 2.4µm, 2.8µm and 3.2µm respectively. These are the wavelengths we will
investigate.

At the first point, only the force term proportional to δε′rel will contribute. Furthermore the
absorption will be low, so that the motion due to buoyancy will also be low. For the second and
third wavelengths, the absorption will be comparable. Furthermore at the second wavelength the
two force term are of equal scale, while for the third point we will have the maximum total force. It
is important to note that these are vacuum wavelengths. Inside the medium, the wavelength will be
different, depending on the real index of refraction. In Figure (5.5) we plotted the same region but
now as function of the wavelength inside the water. Note that the function is no longer single valued,
as a result of the dependency on the index of refraction itself. This means that we have different
vacuum wavelengths with the same wavelength inside the water, but with different absorption
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Figure 5.4: Absorption spike and points of interest, 1.2µm, 2.4µm, 2.8µm and 3.2µm respectively.
The difference of the real and imaginary part of the relative permittivity compared to the vacuum
are shown.

values. The corresponding wavelengths inside the water are 0.91µm, 1.88µm, 2.45µm and 2.17µm
respectively. Table 5.2 shows the different parameter values for each of these frequencies.

In Chapter 6 we will investigate the forces and the resulting flows for sources with frequencies
corresponding to these three points of interest.

λ0 [µm] λ [µm] n [-] κ [-] k [m−1] α [m−1] δε′rel [-] ε′′rel [-]

1.20 0.91 1.32 9.89× 10−6 6.93× 106 5.18× 101 0.753 2.62× 10−5

2.40 1.88 1.28 9.56× 10−4 3.35× 106 2.50× 103 0.635 0.0024
2.80 2.45 1.14 1.15× 10−1 2.56× 106 2.58× 105 0.291 0.2627
3.20 2.17 1.48 9.24× 10−2 2.90× 106 1.81× 105 1.176 0.2731

Table 5.2: Parameter values for the wavelengths of interest. The wavelength inside the medium is
shown together with the refractive index, the wave number and the (relative) permittivity.
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Figure 5.5: The permittivity of the wavelengths of interest as function of the fluid wavelengths,
0.91µm, 1.88µm, 2.45µm and 2.17µm respectively. We see that different vacuum wavelengths can
have similar fluid wavelengths because of the index of refraction.



Chapter 6

Numerical results and simulations

In this chapter we will first investigate the numerical properties of the electromagnetic fields gen-
erated by the two different external sources we have discussed in Chapter 3. We will see what the
residuals are for different parameters, and how we have to choose them to get accurate results.

Once this is settled we will investigate the flows generated by the electromagnetic fields, and
again investigate the convergence behaviour of the solutions of the Navier-Stokes equations for
different grid sizes.

Once we have obtained accurate enough velocity fields we will investigate what the result of the
induced flow will be on small particles suspended in the fluid.

6.1 Gaussian beam accuracy

As explained in Section 3.1, the Gaussian beam approximation only satisfies the Maxwell equations
approximately, and the error is of order |ŝ|2, with

ŝ =
λ0

2πw0n̂
.

We will now investigate this approximation, by looking at both the analytical and numerical
residual of the Maxwell equations. We determine both the numerical and analytical residual for the
wavelengths 2.4µm, 2.8µm and 3.2µm. The waist size w0 varies from 1µm to 5µm. The residuals
are determined on grids consisting of 32, 64, 96 and 128 grid points. Figure (6.1) shows the results.

We see that in both cases the residual decreases for smaller |ŝ| values. This is expected since the
analytical error will become less and less. In Figure 6.1(b) we see the analytical residual. For values
|ŝ| < 0.2 the residuals coincide for all different grid sizes. Furthermore the order of this residual is
converging to O(|ŝ2|), which can be seen fro the reference line, which is parallel to the |ŝ2| lines.
This is exactly the order we expect from the theoretical derivation. For all lines, the residual passes
0.01 at approximately |ŝ| = 0.09. This corresponds to a waist size

w0 ≈ 1.77
λ0

|n̂| .

So for highly focussed beams we cannot expect the Gaussian beam model to give very accurate
results, while these beams are exactly the ones we are interested in. In Figure 6.1(b) the numerical
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(a) Analytical residual.
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(b) Numerical residual.

Figure 6.1: Residuals for the Gaussian beam approximation.
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residuals can be found for two vacuum wavelengths, the full lines correspond to λ0 = 3.2µm and
the dashed lines to λ0 = 2.4µm. We see that the larger wavelength is in general better than the
smaller wavelength, on a constant grid, which is a results of the fields of the smaller wavelength
oscillating with a smaller period. We see that for large |ŝ| for all grid sizes the residuals seem to
follow the reference line, suggesting that in this region of |ŝ| the analytical error is dominant over
the numerical error. Then, for decreasing |ŝ| this decrease in residual starts to stagnate, resulting
in no further decrease. The point at which this stagnation starts depends on the grid size, reflecting
that it is the numerical error that ‘kicks in’. When |ŝ| decreases more, the residuals will converge
to a value depending on both λ0 and the grid size. If we focus on the encircled point in Figure
6.1(b) and plot them as function of the grid size we get as result Figure 6.2.
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Figure 6.2: Numerical error for small |ŝ| values.

We see that in the |ŝ| → 0 limit, the error gets of constant order in the grid size. Using
least squares to fit a linear line to both lines results in orders −1.89 and −1.81 for λ0 = 2.4µm
and λ0 = 3.2µm respectively, close to the theoretical value −2, reflecting that all the numerical
procedures are of order O(h2) in the cell size h.

Until now we have looked at the field values them selves. For our purposes we are more interested
in the derived force density. We can quantitatively estimate how accurate this force density is
by considering how well momentum conservation from (2.111) is satisfied. We will do this by
integrating the force density directly using the midpoint integration scheme, and applying the
divergence theorem to the term containing the time-averaged stress tensor. This transforms the
volume integral of the divergence of the stress tensor to a surface integral of the normal component
of the stress tensor. More precisely we have

∫

V

∇ ·←→T dV =

∫

S

n̂ · ←→T dA,
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where V is the specific control volume, and S is its surface, consisting of six faces. The integration
is performed by using a midpoint scheme for each face and adding the result. Finally the sum of all
absolute values is taken over the control volumes, and this quantity is normalized, using the sum
of the absolute values of the force density. The momentum residuals are plotted as function of |ŝ|,
resulting in Figure 6.3.
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Figure 6.3: Numerical residual of the momentum equation.

We see that for all grid sizes that lines almost coincides, suggesting that the analytical error is
dominant for these choice of parameters. Furthermore the error decreases following the reference
line of order O(|ŝ|2), also pointing towards the analytical error. The reason why for the same range
of |ŝ| values we do not see any numerical error, is that the force density is smoother than the field
quantities them selves. From (2.24) we see that the force density is the product of a field component
multiplied with the conjugate of another field component. This means that the exp(ıkz) factor,
which is highly oscillatory in the propagation direction is cancelled by a factor exp(−ıkz) from the
conjugate field component. The result is much smoother function. This will be illustrated in a later
section for specific choices of parameters. The jumpy behaviour of the momentum residual implies
a dependency on a parameter other than |ŝ|, most likely λ or w0.

We have seen that not only in the fields themselves but also the derived quantities such as the
force density the analytical error is dominant for our choices of parameters. This strengthens our
motivation for using a different external source.

6.2 Discretization of Gaussian dipole array

As mentioned in Section 3.2.3 we have to make sure the discretization grid for the Gaussian plane
is fine enough. We will compute the fields for four different grid sizes to show the effect of the
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discretization of the source domain. We will use as wavelength λ0 = 2.4µm, and the aperture
will be a square patch of 15λ× 15λ, with λ the wavelength in the medium. The distance between
the source plane and the domain of interest is 2µm. We will use as number of dipoles the values
nd = 8, 16, 32, 64. For the domain on which we determine the fields we have chosen n = 128 grid
points. Figure 6.4 shows the electric field intensity, |E|2, in the xz-plane for y = ys.
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Figure 6.4: Intensities for different source resolutions.

We see that for nd = 8 the result is completely different from the other cases, suggesting that
the discretization is too crude. For nd = 16 the qualitative result looks much like the nd = 32
and nd = 64 result, although the intensity is smaller, and side loops are still visible. The results
for nd = 32 and nd = 64 are almost equal. If we calculate the difference of the intensity fields
compared to the results of nd = 64, using

end
=

√

∑

i (|E
nd

i |2 − |E64
i |2)

∑

i |E64
i |2

,

we get e8 = 0.903, e16 = 0.469 and e32 = 4.57× 10−6, so we see the difference for the finest two
grids are also quantitatively very small, showing that nd = 32 already is fine enough to determine
the fields. This confirms that even though the resolution is only about 2 dipoles per wavelength this
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is not a problem since the source current in the source plane does not oscillate with this wavelength,
but has a higher period as we noticed earlier. For our simulations we will use nd = 32 unless stated
otherwise.

6.3 Convergence on different grids

In this section we will investigate the convergence of the resulting velocity and temperature fields
given by the Navier-Stokes equations, for different grid sizes and wavelengths. In order to make
quantitative estimates, we select four grid sizes, with 32, 64, 96 and 128 grid points in each direction.

Of course we expect the values to be more accurate for finer and finer grids, but due to time
and memory limitation we cannot keep improving the grid size. We want to see how the (average)
quantities behave as function of the grid size. First some notation will be introduced, after which
we will define quantitatively how we will compare different quantities on the different grids, and
finally the results for different cases are presented.

6.3.1 Grid notation and error definition

We are working with a rectangular grid, with equal dimensions in all three directions. We denote
the number of cells in each direction as n. We will investigate the convergence properties for
n = 32, 64, 96, 128.

The complete domain is denoted D and for each n it is divided into n3 control volumes so that

D =

n3
⋃

i=1

D
(n)
i .

Each control volume has volume V
(n)
i .

To investigate the convergence properties, we will consider as reference volumes Ci the control

volumes on the coarsest grid, so Ci = D
(32)
i . We denote the volume of Ci as Vi. For the different grid

sizes these reference volumes consist of a number of control volumes. To make this more explicit,

we (implicitly) relabel the D
(n)
i control volumes, so that

Ci =

mn
⋃

j=1

D
(n)
i,j ,

with m32 = 1, m64 = 23 = 8, m96 = 33 = 27, and m128 = 43 = 64. In particular we have

D
(32)
i = D

(32)
i,1 and Vi = V

(32)
i . We now have a way of identifying the (constant) references volumes

for each grid size. See Figure (6.5) for a two dimensional illustration of the division of the grid.
To be able to quantify how well our solutions coincide for the different grid sizes, we need to

identify analytical quantities related to the reference volumes, that are invariant with respect to
the grid size, and for which we have estimates for each of the different grids. Since we are using a
finite volume method, these quantities naturally arise as the average values of the different physical
quantities. If we consider an arbitrary quantity u(x), x ∈ D, we define the average for each reference
volume Ci as

ūi =
1

Vi

∫

Ci

u(x) dx.
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Figure 6.5: Division of grid for the different grid sizes.

Now for each grid size we have an estimate for these values, given by

ũi =
1

Vi

∫

Ci

u(x) dx =
1

Vi

mn
∑

j=1

∫

D
(n)
i,j

u(x) dx =
1

Vi

mn
∑

j=1

u
(n)
ij V

(n)
ij .

Note that this method is valid for arbitrary grids, as long as we can write each reference volume
as a finite union of disjoint control volumes.

We now define the error for each reference volume as

ei = |ūi − ũi|.
The total error is defined as the sum of these errors over all the reference volumes,

E =

mn
∑

i=1

|ūi − ũi|.

A motivation for this choice is that is resembles the standard 1-norm on the function space,
although we have the inequality

∑

i

∣

∣

∣

∣

∫

Di

(v − ṽ) dx
∣

∣

∣

∣

≤
∑

i

∫

Di

|v − ṽ| dx =

∫

D

|v − ṽ| dx = ‖v − ṽ‖1.

The idea is that for grids fine enough both sides of the inequality are close to each other, that
is, the quantities do not vary too much on the scale of the control volumes.
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One difficulty is that value ūi is unknown. This would be the exact value, as given by the exact
solution u(x). To tackle this problem, we assume that the estimates ũi for the finest grid are close
to the analytical value, and we use this estimate as reference value. Since we run our simulations
for four different grid sizes, this means we get error estimates for the coarsest three.

After we have determined the error, we normalize is by dividing by the mean values of the finest
grid, so our final expression for the error will be

Eh =

∑mn

i=1 |ūi − ũi|
∑mn

i=1 |ūi|
, (6.1)

where the h denotes the implicit dependency on the grid size.

6.3.2 Error results

We will determine the error for the velocity field and temperature field. We investigate four different
wavelengths, λ0 = 1.2µm, λ0 = 2.4µm, λ0 = 2.8µm and λ0 = 3.2µm. The corresponding wave-
lengths in the medium are respectively λ = 0.91µm, λ = 1.88µm, λ = 2.45µm and λ = 2.17µm.
The Gaussian dipole model is used, with a beam width parameter w0 = 1 µm and the aperture
extended to catch the full source current profile in the source plane, located at zs = −1.0µm. The
power is normalized to P0 = 1mW.

Figure (6.6) shows the result for the velocity and temperature fields. We see that all errors are
dropping for finer grids. The very small errors in the temperature for the wavelengths λ0 = 1.2µm
and λ0 = 2.4µm are a result of the small values of κ and thus ε′′ for these wavelengths, resulting in
almost zero heat dissipation. It is interesting to see that the error in the x and y component of the
velocity is small for λ0 = 1.2µm compared to the other wavelengths, while in the z it is relatively
large. There is no direct explanation for this, but it is likely to be a result of the difference in the
scale of the velocity in the direction of propagation and the radial plane.

The errors in all the quantities are dropping for finer grids, with the maximum discrepancy
between the n = 96 and n = 128 grid already being less than 0.0014, the value for the z component
of the velocity, for λ0 = 1.2µm. This is the smallest wavelength we will use, giving us confidence
that our resulting fields are close enough to the real solutions. We will always use grid sizes between
n = 96 and n = 128 for the simulations.
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Figure 6.6: Convergence of the velocity and temperature for different wavelengths.
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6.4 Simulations

We have now covered all the numerical aspects of the discretizations, and are confident that they
are accurate enough, and that the fields and flows we calculate are indeed the solutions to the
equations we have derived in the previous chapters.

6.4.1 General setting

In Chapter 5 we have already discussed the domain they we are looking at, and the parameters of
the fluid, purified water, we will consider.

Figure 6.7: Schematic overview including the source domain and parameter values. All coordinates
are in µm.

Figure 6.7 is similar to Figure 5.1, but some details are added to further clarify the choices of
parameters. The grey plane is the source plane, located at zs = −2.5µm. As focussing point we
chose xs = (5µm, 5µm, 5 µm). Notice that since we are not using the Gaussian beam approximation,
this choice does not automatically means the point of highest intensity will be located at this
parameter value. We will see that it usually is located at slightly smaller z value. The value w0

is the parameter we choose as waist size. In the Gaussian beam approximation this would be the
radius at which the intensity drops by a factor exp(−2), but again we cannot expect this to be true
for our dipole model, particularly for small values of w0, at which the Gaussian beam approximation
does not hold. We will choose w0 = 1 µm as default value. The blue plane, one of the boundaries
of our domain, is used to normalize the incoming time-averaged power to P0 = 1mW. The domain
is divided in n = 101 grid points in each direction. The values stated here are the default values
used, unless mentioned otherwise.
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λ0 (µm) λ (µm) wf,x (µm) wf,y (µm)

1.2 0.91 0.98 1.01
2.4 1.88 1.03 1.22
2.8 2.45 1.49 1.88
3.2 2.16 1.15 1.48

Table 6.1: Waist size at focal point.

6.4.2 Intensities for different wavelengths

We will now determine the electromagnetic fields for the different wavelengths mentioned in Chapter
5. Figure 6.8 shows the electric field intensity, |E|2 in the different planes through the focal point.
The normalization is equal for all images. We can see from the figures of the xz-plane and yz-plane
that the focal points in general do not coincide with the parameter value zf = 5µm. For larger
wavelengths the focal point moves to smaller z values. The point of highest intensity are found at
z = 4.2µm, z = 2.9µm, z = 1.4µm and z = 1.9µm respectively. This shows that how smaller the
wavelength in the fluid, the closer the focal point is at the values prescribed by the parameter. Table
6.1 shows the wavelength inside the medium. This seems reasonable, for as smaller the wavelength
in the medium, the closer we get to the Gaussian beam approximation.

The red lines are equipotential lines which show the waist size as function of ρ =
√

x2 + y2.
This is the distance from the axial line at which the intensity has dropped by a factor exp(−2).
For λ0 = 1.2µm we see the shape resembles the Gaussian beam approximation, while for the other
wavelengths we see some distortion for small z. This distortion is the contribution of the near-
and intermediate field. Even though the distance to the source plane is equal for each wavelength,
the distance expressed in number of wavelengths gets smaller for larger wavelengths, resulting in a
larger contribution of the terms proportional to kr−1 and k2r−2.

In the xy-plane plots we see that for the smallest wavelength the equipotential lines of the
intensity are circles centred around the axial line. For larger wavelengths they get more spread
out in the y direction, resulting in an inhomogeneity of the intensity with respect to the radial
angle. The electric field is polarized in the y direction, so we see that the intensity is spread out
in the direction of polarization. As we will see later this results in smaller gradient forces on the y
direction compared to the x direction.

We estimate the waist size for each wavelength at the point of focus in both the x and y

direction. The results can be found in Table 6.1. To determine this values we interpolated the
intensity values along the (x, yf, zf and (xf, y, zf lines and determined how far from the axial line
the intensity dropped by a factor exp(−2). The interpolation is done using splines.

6.4.3 Force density on fluid

Given the electric and magnetic fields, we can determine the complex Poynting vector, and use
(2.109) to determine the force density on the fluid. From Figure 6.8 we see that the intensities are
concentrated around the focal point, and drop off quickly when moving away from this point. This
suggest that the force density is also largest around the focal point and quickly drops off.

Figure 6.9 shows the total force density in the xy-plane at the focal point. We see indeed that
most of the contribution is centred around the focal point, and it quickly dies off. The figures show
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Figure 6.8: Electric field intensities for different wavelengths, all coordinates are in µm.



6.4. SIMULATIONS 81

4 5 6

x 10
−6

3.5

4

4.5

5

5.5

6

6.5
x 10

−6 λ
0
 = 1.2

x

y

4 5 6

x 10
−6

3.5

4

4.5

5

5.5

6

6.5
x 10

−6 λ
0
 = 2.4

x

y

4 5 6

x 10
−6

3.5

4

4.5

5

5.5

6

6.5
x 10

−6 λ
0
 = 2.8

x

y

4 5 6

x 10
−6

3.5

4

4.5

5

5.5

6

6.5
x 10

−6 λ
0
 = 3.2

x

y

Figure 6.9: Force density on the fluid in the xy-plane, through the focal point. In the x direction
the force is pointing towards the centre, while in the y direction, the direction of polarization of
the electric field, is it pointing away from the centre. The red lines are streamlines, showing the
additional stationary point for the larger wavelengths.
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patches of 3µm × 3 µm. The focal point itself is a stationary point. The most important feature
is that the force density is in opposite direction for the x and y direction. In the x direction it is
pointed towards the middle, while in the y direction, the direction of polarization of the electric
field, the force density is pointing away from the centre. This suggests that there will be a flow
that is pointing away from the focal point, the point which is used as trapping point for particles.
We will see that indeed this flow will occur, and later on we will estimate the force this will exert
on particles. Another important feature is that for the larger wavelengths we see that there are
additional stationary points, located on the line with x = xf going through the focal point. The
location depends on the wavelength, the larger is it the closer the point is to the focal point. The
red lines are stream lines showing one of these additional points. It is important to realise this is
only a projection of the force field on the xy-plane, so the z component is likely to be non-zero at
these points.

In Figure 6.10 the force density in the xz- and yz-plane for λ0 = 1.2µm and λ0 = 2.4µm are
shown. The z axis is centred around the focal point. We see that the z component is relatively
small, especially for λ0 = 1.2µm and around the focal point, where it nearly vanishes. In the xz-
plane the force density is directed towards the centre while in the yz-plane it is directed away from
the centre, showing that the force density in the vicinity of the focal point has the same structure as
we saw in Figure 6.9. On the axial line the force density is nearly zero, which is a result of the small
value of ε′′ for these wavelengths, so that fdis is negligible. These force densities in combination
with the no-slip boundary conditions suggest that the fluid will start moving away from the axial
line in the y-direction and start moving towards the axial line in the x direction, creating loops in
each of the four quadrants defined by the lines x = y = 5 µm in Figure 6.9. We will see that this is
indeed what will happen.

For the two larger wavelengths the force density in the xz- and yz-plane is shown in Figure 6.11.
Here we see a different structure. For these wavelengths there is a significant z component of the
force density, suggesting that the fdis term from (2.110) starts to contribute due to the relatively
large values of ε′′ for these wavelengths. Again we see the x component in the xz-plane pointing
towards the centre while the y component is pointing away from the center. This suggest that again
there will be a rotating behaviour of the fluid, but due to the relatively large z component is it
likely that the flow will follow a spiral movement instead of loops.

6.4.4 Velocity profiles

Until now we have looked only at the electromagnetic fields and quantities that are derived from
them. We will now consider the resulting velocity fields, which are determined using the SIMPLE
algorithm described in Section 4.7. We will show the same planes as for the force density in the
previous section.

Figure 6.12 shows the velocity in the xy-plane through the focal point for each wavelength. The
red lines are streamlines. We see for λ0 = 1.2µm and λ0 = 2.4µm that velocity fields look alike,
and form closed loops in this plane, implying a zero z component in this plane. For λ0 = 3.2µm
we also see a loop structure but here the streamlines are not closed, but converge to a singular
point, implying a non-zero z component of the velocity. For λ0 = 2.8µm we do not see any loop-
like streamlines at all. This confirms what we conjectured earlier from the force density. For the
wavelengths with relatively large values of ε′′ the z component of the velocity gets dominant. The
two streamlines for λ0 = 1.2µm and λ0 = 2.4µm seem to coincide very closely, but it is important
to note that all four quiver plots are independently normalized, so they can differ in magnitude.
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Figure 6.10: Force density in the xz- and yz-plane for λ0 = 1.2µm and λ0 = 2.4µm, centred around
the focal points. We see that the z component is relatively small, especially for λ0 = 1.2µm. In
the xz-plane the force density is direction towards the centre while in the yz-plane it is direction
away from the centre.
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Figure 6.11: Force density in the xz- and yz-plane for λ0 = 2.8µm and λ0 = 3.2µm. For these
wavelengths there is a significant z component of the force density, suggesting that the fdis term
from (2.110) starts to contribute due to the relatively large values of ε′′ for these wavelengths.
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Figure 6.12: Resulting velocity field in the xy-plane, through the focal point. The red lines are
streamlines. We see for λ0 = 1.2µm and λ0 = 2.4µm that velocity fields look alike, and form closed
loops. For λ0 = 3.2µm we also see a loop structure but here the streamlines are not closed, implying
a non-zero z component of the velocity. For λ0 = 2.8µm we do not see any loop-like streamlines at
all.
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Indeed we find as maximum velocity components in this plane the values 87µms−1, 64µms−1,
11µms−1 and 39µms−1 respectively.
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Figure 6.13: Magnitude of the velocity corresponding to the two closed loops in Figure 6.12, for
λ0 = 1.2µm and λ0 = 2.4µm. The curves are traversed counter-clockwise in time by the fluid
particles. We see that the shape for both wavelengths is alike.

Figure 6.13 shows the magnitude of the velocity for the closed loops in Figure 6.12. The larger
velocity corresponds to λ0 = 1.2µm while the smaller velocity corresponds to λ0 = 2.4µm. We see
that except for the magnitude, the shape of the two curved is identical. The curved in 6.12 are
traversed clockwise by the velocity field, so increasing speeds correspond to decreasing x values.
This means the curves in 6.13 are traversed counter-clockwise in time.

In Figure 6.14 we see the velocity field in the xz- and yz-plane for the wavelengths λ0 = 1.2µm
and λ0 = 2.4µm. Near the focal point we have zero z component in all plots. As for the force
density, in the xz-plane the velocity is pointing toward the central axis, while in the yz-plane it is
pointing away from the axis, following our conjecture based on the force density. At the central axis
the velocity is zero in both planes, and it is growing to a maximum when moving radially outward,
after which it quickly gets smaller again. The maximum magnitude in these planes are again
87µms−1 and 64µms−1 respectively, just as in the xy-plane, which implies that this maximum
magnitude is attained at the radial axes going through the focal point.

In Figure 6.15 shows the velocity fields in the same planes but now for the wavelengths λ0 =
2.8µm and λ0 = 3.2µm. We see a qualitatively different picture. The most important feature is that
the z component is dominant near the focal axis. This confirms our conclusions from Figure 6.12,
that the fdis term starts contributing for these wavelengths. Because this non-zero z component
we now see circulation in both the xz- and yz-plane. This suggest that in contrast to the smaller
wavelengths, where the circulation is in the xy-plane, we now have circulation in all three directions.
Furthermore we see that the flow in the y direction is no longer away from the central axis for all
z values. For small z values it is actually flowing towards the centre.

Figure 6.16 shows some streamlines for the different wavelengths. For λ0 = 1.2µm and λ0 =
2.4µm the streamlines show circulation in the xy-plane just was predicted earlier from Figure
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Figure 6.14: Velocity field in the xz- and yz-plane, through the focal point for λ0 = 1.2µm and
λ0 = 2.4µm. Near the focal point we have a zero z component in all the plots. Also in the xz-plane
we have the velocity pointing towards the central axis while in the yz-plane is it pointing away from
the central axis.
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Figure 6.15: Velocity field in the xz- and yz-plane, through the focal point for λ0 = 2.8µm and
λ0 = 3.2µm. For these wavelength we have a large z component at the focal axis, pointing away
from the source. This is the contribution of the fdis force density term.
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Figure 6.16: Velocity field in the xz- and yz-plane, through the focal point for λ0 = 1.2µm and
λ0 = 2.4µm. Near the focal point we have a zero z component in all the plots. Also in the xz-plane
we have the velocity pointing towards the central axis while in the yz-plane is it pointing away from
the central axis, following our conjecture based on the force density.
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6.12. Furthermore they do not pass through the planes x = xf and yf, confining the flow to a
specific quadrant in the xy-plane. Although the streamlines for the larger wavelengths move in
the z direction, they are still confined to a specific quadrant in the xy-plane, like with the smaller
wavelengths. This suggest that in the plane defined by x = xf, the x component of the velocity
is (nearly) zero for all the wavelengths. Also the y component in the plane defined by y = yf will
be nearly zero. Because of this none of the streamlines passes through these planes. This means
that the fluid is circulating through a specific region of the domain, not passing, or barely passing,
certain ‘boundary’ planes. This is exactly what we see in 6.16 for λ0 = 2.8µm and λ0 = 3.2µm,
where all the streamlines fall in the quadrant with x > xf and y > yf. The reason why for these
wavelengths the streamlines are not confined in the z direction is because of the significant fdis
term, which has a large z value, pointing in positive z direction.

As a particular example we will investigate the y component of the velocity through the plane
y = yf = 5 µm. Figure 6.17 shows this component for all four wavelengths. Each wavelength
is scaled independently to show the structure of the velocity component. For λ0 = 1.2µm and
λ0 = 2.4µm the order of the velocity is 10−10ms−1 and 10−9ms−1 respectively, which is negligible
compared to the velocities we saw earlier, in the order of 10−5ms−1. The apparent asymmetry in
the x direction is a numerical artefact because of these small values. For the larger wavelengths,
λ0 = 2.8µm and λ0 = 3.2µm we see that the velocity component is two orders larger, and more
local. This is a consequence of the heat dissipation and the buoyancy flow induced because of
the resulting temperature differences. But still velocities of the order of 10−8ms−1 are very small
compared to the maximum velocities 11µms−1 and 39µms−1 we saw earlier for these wavelengths.

6.4.5 Temperature increase due to dissipation.

Up until now we have focussed on the resulting velocity fields for the different wavelengths. In
Section 4.4 we described the Boussinesq approximation for modelling buoyancy flows induced by
density differences, resulting from temperature differences. In Figure 6.17 we saw the first signs of
this phenomenon. For the larger wavelengths, with larger values of the ε′′, which is proportional
to the heat dissipation, we saw a relatively large flow in the y direction, compared to the smaller,
transparent, frequencies. From (2.108) we see that the heat dissipation is proportional to |E|2.
Figure 6.8 shows that the heat dissipation is highly localized at the point of focus. Using a midpoint
scheme to numerically integrate qem we can determine the total (time-averaged) absorbed power
for each wavelength. This results in

Q =

∫

V

qem dV,

with V the total domain.

In Table 6.2 the results are stated, together with the maximum temperature deviation from
the reference temperature. The reference temperature is set to 300K in all cases. We see that for
the small wavelengths the absorption is low and also the temperature difference is very small. For
λ0 = 2.4µm, we are under the 2K difference mentioned at the end of Section 4.4. For the larger
wavelengths the temperature differences are much larger, and is it here where our approximation
loses its validity. For wavelengths having such a high heat dissipation, we have to look beyond the
Boussinesq approximation in order to get the right, physical, flows. One of the possibilities would
be to consider the flow compressible, so to allow density variations along the streamlines.
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Figure 6.17: Velocity field in the xz- and yz-plane, through the focal point for λ0 = 1.2µm and
λ0 = 2.4µm. Near the focal point we have a zero z component in all the plots. Also in the xz-plane
we have the velocity pointing towards the central axis while in the yz-plane is it pointing away from
the central axis, following our conjecture based on the force density.

λ0 [µm] Q [mW] max. ∆T [K]

1.2 0.001 0.047
2.4 0.053 1.906
2.8 0.998 37.653
3.2 0.110 42.654

Table 6.2: Heat dissipation and temperature difference for all four wavelengths. We see that for
the larger wavelengths the temperature differences are significantly higher, making the Boussinesq
approximation invalid in these cases.
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6.4.6 Higher power beams

All simulation are run using a normalization power of P0 = 1mW. In most experimental set-
ups more powerful laser beams are used, varying from less than 5mW up to 50mW [19]. In
the previous section we saw that for the larger wavelengths, λ0 = 2.8µm and λ0 = 3.2µm the
temperatures already rise above the limits of our approximation. We will now focus on λ0 = 1.2µm
and λ0 = 2.4µm, and examine the resulting velocity and temperature fields when we rise the ingoing
power to P0 = 50mW. Of course we expect the total heat absorbed to increase, and so also the
resulting temperatures. We have to be careful to stay within the boundaries of the Boussinesq
approximation. When increasing the incoming power, the fields will have the same structure, only
multiplied by a constant, since P0 ∝ I20 , so for the field structure we refer to the previous sections.
Since |E|2 ∝ I20 and S ∝ I20 , both qem and fem will be 50 times larger when we increase the power
from P0 = 1mW to P0 = 50mW.
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Figure 6.18: Resulting velocity field in the xy-plane, through the focal point. The red lines are
streamlines. The velocity fields look very similar to the two corresponding plots in Figure 6.12.

Figure 6.18 shows the resulting velocity profile in the xy-plane. It looks very similar to the
two corresponding plots in Figure 6.12. Also the curves of the magnitude of the velocity of the
streamlines outlined has the exact same shape but is multiplied by approximately 50, the factor
with which the power increased. Table 6.3 shows the minimum and maximum velocity magnitude
for the streamlines outlined in Figure 6.18 compared to the corresponding ones in Figure 6.12. The
values in parentheses are for P0 = 1mW. All values are exactly multiplied by 50, showing that in
this regime the flow is linear in the external force density fem, confirming that we are in the laminar
Stokes regime.

As mentioned earlier, with larger power comes larger heat dissipation and higher temperatures.
Figure 6.19 shows the temperature distribution in the xy-plane through the focal point, with z = zf.
For λ0 = 1.2µm the maximum temperature rise is 2.34K, still small enough for the Boussinesq
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λ0 [µm] umin [µms−1] umax [µms−1]

1.2 790 (15.8) 3975 (79.5)
2.4 614 (12.3) 2889 (57.8)

Table 6.3: Minimum and maximum velocity magnitudes for the streamlines from Figure 6.18 and
Figure 6.12. The values in parentheses are for the P0 = 1mW case. The values are proportional
with a factor 50.
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Figure 6.19: Temperature in the xy-plane through the focal point. For λ0 = 1.2µm the increase is
about 2K, still small enough for the Boussinesq approximation to be valid, but for λ0 = 2.4µm the
increase is almost 100K, so our assumption is not valid in this case.
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approximation to be valid, but for λ0 = 2.4µm the increase is 95.2K, so our assumption is not
valid in this case, and the resulting flow is not the one we expect physically. This implies that our
suggestion that the flow is linear in the external force density is only valid for the most transparent
wavelengths. For wavelengths at which heat dissipation is significant, non-linear phenomena can
occur, resulting in (possibly quantitatively) different flows.

6.4.7 Influence of boundaries

The domain size we are using is relatively small, having length L = 10µm in each direction. The
result is that the no-slip boundary condition can be of big influence to the resulting flow. On
obvious solution to rule this out would be to enlarge the domain, but using a similar grid size
this means we would need to solve a larger system. This becomes quickly infeasible, since we are
working with a three dimensional domain. One option we will explore is to double the domain
size, without changing the number of cells, thus effectively we will have cells that are twice as large
in each direction. We then have L = 20µm. It is not likely that the flow patterns will change
qualitatively, we already saw that away from the focal axis the velocity gets smaller quickly. This
is why we will focus on the amplitude of the velocity, especially near the focal point. We will also
consider the results of the Stokes equations. The Stokes equations follow from the Navier-Stokes
equations if we assume the non-linear advective term vj∂jvi from (4.22) is negligible. Furthermore
the buoyancy is neglected. This results in the linear equations

∂ip = µ∂2j vi + f em
i .

These equations are valid for small Reynolds numbers. The Reynolds number is given by

Re =
vL

ν
,

where v and L are the characteristic velocity and length respectively. We will consider the
smallest wavelength λ0 = 1.2µm, with power P0 = 1mW, so that the velocity is relatively small,
and the effect of the buoyancy is negligible since the total absorbed heat is very small. For our
case we have Re ≪ 1, so the Stokes equations can be used to approximate our solution. In order
to solve them we use the corresponding Green’s function, the so-called Stokeslet. Here we assume
there are no physical boundaries, so we have an infinite domain. The Green’s function is derived
in [11].

In Figure 6.20 we see the velocity in plane z = zf for the three cases with L = 10µm, L =
20µm and the Stokes flow. We translated the coordinates so that the focal planes coincide at
xf = yf = 10µm. The x component it taken for y = yf and vice-versa the y component it taken
for x = xf, so both are evaluated on a line through the focal point. All three cases coincide near
the focal point itself, but the maximum values differ slightly. For the full Navier-Stokes equations
the maximum amplitudes are smaller than for the Stokes flow, so ignoring the advective term leads
to larger velocities. This can be understood because the advective term states that the velocity is
‘carried away by itself’, resulting in smaller velocity values. For points further away from the focus
we see that the velocity is larger when the boundaries are further away. The difference between
L = 10µm, L = 20µm are relatively large, so indeed the close boundaries do temper the flow. The
larger domain is already getting close to the Stokes flow. Although the amplitudes to change with
a changing domain, overall qualitative picture seems to coincide in all cases. For the Stokes flow
this is as expected since we are in the Stokes domain with small Reynolds numbers.
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Figure 6.20: Velocity components along two lines through the focal point. The x component is
shown as function of x for y = yf and z = zf, and likewise the y component is shown as function
of y for x = xf and z = zf. We see that for the full Navier-Stokes equations the amplitude drops
slightly for the bigger domain, while for the approximation of the Stokes flow it increases slightly.
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Chapter 7

Conclusions

Using the Maxwell equations and the Navier-Stokes equations we have formulated a number of
equations to simulate fluid flows induced by electromagnetic fields, in particular those produced by
laser beams.

Our first concern was which electromagnetic source to use. An often used approximation for
laser beams is the Gaussian beam approximation. We have showed that this approximation leads
to large analytical errors for the most interesting parameters choices, and this might lead to non-
physical force densities. To circumvent this problem we have designed the dipole approximation,
which is an exact solution of the Maxwell equations. We also showed that the numerical accuracy
is high enough for our choice of parameters. Also for small wavelengths we get resulting fields much
alike the Gaussian beam, suggesting that our model is an adequate one, and the derived quantities
are indeed similar to the physical ones.

Using these dipole sources we have run several simulations, for four different wavelengths, the
relatively transparent short wavelengths, λ0 = 1.2µm and λ0 = 2.4µm and the more absorbing
wavelengths λ0 = 2.8µm and λ0 = 3.2µm. For the different wavelengths we noticed different flows
and resulting temperatures.

For the smaller wavelengths the force density has no component in the direction of propagation.
In the plane orthogonal to this propagation direction, the component in the direction of polarization
of the electric field is pointing away from the focal axis, while the component orthogonal to the
polarization direction is pointing towards the focal axis.

For the low power beams the heat dissipation is very small and the resulting temperatures
are within the Boussinesq approximation, but the resulting buoyancy flow does not lead to any
significant effect. The flow generated by the force density is highly dominant and leads to circulation
in the planes orthogonal to the direction of propagation of the beam. The direction of the circulation
depends on the polarization of the electric field as described earlier. As a consequence of this
circulating motion the streamlines are confined to a specific quadrant in the planes orthogonal to
the propagation direction.

For the high power beams we see two different things. For the smallest wavelength, λ0 = 1.2µm,
the resulting flow is nearly proportional, suggesting that the flow is linear in the force density. This
shows that we have a Stokes flow with small Reynolds number. Again the resulting temperatures
are within the Boussinesq approximation, but there is not significant flow because of the buoyancy.

For λ0 = 2.4µmwe see the same proportionality with the high power beam, but now the resulting
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temperature rise is large, and we are far outside the Boussinesq regime, so this proportional flow is
not necessarily the physical flow we would expect, and a more thorough model is needed to coop
with the large temperature differences. The fluid density will become inhomogeneous, and also the
variation in viscosity might become significant. We conclude that for this wavelength at higher
powers our model is not and we need a more complete approach.

The fact that we use a limited domain has some influence on the flow, but leads to the same
qualitative results. Away from the focus, the magnitude of the velocity will drop off more slowly in
larger domains, but near the focus the results are similar. Since this is the region of most interest
to us, using a smaller domain is not a real drawback for investigating these flows.

For the larger wavelengths we see qualitatively different results. These wavelengths are much less
transparent, leading to big losses of electromagnetic energy to heat. The most obvious consequence
is that the beams do not penetrate the domain very far, and the focal point is closer to the source
plane. Furthermore the contribution of the dissipative term of the force density, which was negligible
for the shorter wavelengths, is now significant, leading to a large force component in the direction
of propagation. The non-dissipative force term is still there, and the total force density, which is
the sum of these two contributions, leads to a complicated flow pattern. The streamlines are still
confined to a specific quadrant in the xy-plane, but will move in the direction of propagation.

As a consequence of the large heat dissipation, the resulting temperatures are much higher than
for the smaller wavelengths. Even for the low power beam the temperatures are well above the
Boussinesq regime, so our approximation is not valid for these wavelengths. As a consequence we
cannot claim that the flows we observe are physical. The large temperature differences can lead to
different flows that are not captured in our model. Again a variable density and viscosity is needed
to model these situations adequately.

Finally there is the question of the force density itself. Although derived in a very thorough
manner, there are still assumptions about the interaction of the electromagnetic field with the
matter inside the medium that we cannot answer by any simulations. In particular, the correct
form of the stress tensor that governs all these forces. Thorough experimental investigation is
needed to see whether the flows we predict are indeed there, to confirm that these assumptions are
correct.



Chapter 8

Future work

As mentioned in the previous chapter, there is still a lot of interesting work to be done in this
research area. Considering the flows we have investigated, the most important next step would be
to drop the Boussinesq approximation and work with the full compressible Navier-Stokes equations.
The large temperature differences due to heat absorption lead to significant differences in density.
Also the viscosity changes with temperature and should be taken as a variable quantity.

Another interesting point would be the boundary conditions for the temperature. We assumed
the boundaries were at a constant ambient temperature, while in a physical set-up there would be
some heat transfer coefficient governing the temperatures at the boundary of the domain. This
might be of particular interest when the focal point if very close to one of the sides of the domain.

An important next step will be an experimental set-up where the induced flows we predict can
be measured directly. This will settle the question of the electromagnetic stress tensor and would
justify further investigation of this phenomenon. One thing that is needed to model such a set-up
is a more complex domain. A difficulty might be the electromagnetic boundary conditions. When
a domain with small scale structure is introduced the permittivity could start varying over the
domain, leading to inhomogeneous heating, scattering and all sorts of electromagnetic phenomena.
A different way to model the fields is then needed. A possible way to overcome these electromagnetic
difficulties is to use a solid material with equal index of refraction as the liquid, a so-called index-
matching material. The electromagnetic field will then be unaltered by the solid material, but the
flows will be channelled by the geometry of the solid.

As we saw in Chapter 6, for the high frequency beams, with low losses, we have a very distinctive
structure of the force density near the focal point. In the polarization direction the force is pointing
away from the focal point, while in the orthogonal direction it is pointing towards the focal point.
This is also the region where the force density is at its maximum magnitude, so it is a logical choice
to focus on this region. A problem is that the loops created by this force density depend on the size
of the domain. To overcome this, we could use the index matching material to create a channel to
guide the fluid around. This channel could for example coincide with one of the closed loops from
Figure 6.16. There is still the matter of measuring the velocity through this small channel.

Finally we have neglected the possible back-action of the fluid to the fields. Since the fluid
velocities are small the terms involved in this interaction are small too, but at some point they
might no longer be neglected. Especially when certain parameters such as the density are considered
variable, since the permittivity depends on this quantity.
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Appendix A

Four-vector notation

In order to determine the right constitutive relations, and energy and momentum equations, we
will use the four-vector notation from special relativity. Since the Maxwell equations are Lorentz
invariant, we can get compact notation in this way. Once we have the correct expressions for the
constitutive relations and energy and momentum equations, we will make assumptions about the
fluid velocity being non-relativistic, in order to simplify things

We change to the coordinates x0 = ct and xi = xi for i = 1, 2, 3. We use the notations of [7]
and [21]. The partial derivatives are now given by

∂µ =
(

1
c
∂t ∂1 ∂2 ∂3

)

.

We will use the so-called (−+++) convention, meaning that the metric tensor is given by

ηµν = ηµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (A.1)

We will need the four-vectors for the velocity and the electric and magnetic current densities.
For the velocity we have

V µ =
(

γc γv1 γv2 γv3
)

, (A.2)

where γ is the famous gamma factor, given by

γ =
1

√

1− ‖v‖2

c2

.

For ordinary velocities we have γ ≈ 1, and we will use this simplification when applicable. We
define the electric current density four-vector

Jµ =
(

cρe J1 J2 J3
)

, (A.3)

and the magnetic current density four-vector
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Kµ =
(

cρm K1 K2 K3

)

, (A.4)

where Ji and Ki are the components of the normal current densities. If we separate the vector
in a time and space part, we can write the space part in vector notation. We then get

V µ =
(

γc γv
)

, Jµ =
(

cρe J
)

andKµ =
(

cρm K
)

.

We can now define the field tensor F νµ as

Fµν =









0 E1

c
E2

c
E3

c

−E1

c
0 µ0H3 −µ0H2

−E2

c
−µ0H3 0 µ0H1

−E3

c
µ0H2 −µ0H1 0









, (A.5)

and the dual field tensor Gνµ as

Gµν =
1

2
ǫµνρσF ρσ =









0 µ0H1 µ0H2 µ0H3

−µ0H1 0 −E3

c
E2

c

−µ0H2
E3

c
0 −E1

c

−µ0H3 −E2

c
E1

c
0









. (A.6)

In vector notation these tensors are equal to

F νµ =

(

0 1
c
E

− 1
c
E · × (µ0H)

)

and

Gνµ =

(

0 µ0H

−µ0H · × (1
c
E)

)

,

where · ×E means that vector with which is multiplied is inserted in the curl operator.
The Maxwell equations can now be stated as

∂νF
µν = Jµ, (A.7)

∂νG
µν = Kµ. (A.8)

Conversation of electric and magnetic charge are expressed as

∂µJ
µ = 0, (A.9)

∂µK
µ = 0. (A.10)

Further expression can be derived for the Lorentz force and Poynting theorem as the gradient
of the energy-stress tensor. At this point we will not need these results since we already derived
them directly from the Maxwell equations.



Appendix B

Implementation

In this appendix we will discuss how we have implemented the simulations. We have mainly
used OpenFOAM, a free open-source software package written in C++. OpenFOAM is originally
developed for numerically solving fluid mechanics problems, but applications include for example
electro-hydrodynamics or partial differential equations in general. The main advantages of using
OpenFOAM is that it contains the algorithms needed to solve the fluid dynamics equations, and it
gives the possibility to use high-level syntax for manipulating scalar and vector fields on the mesh,
using concepts such as operator-overloading. One major disadvantage is the lack of support for
complex numbers, which is the reason why we have split all expressions in a real and imaginary
part in Chapter 2 and Chapter 3.

The OpenFOAM package consists of a number of libraries, responsible for certain physical mod-
els, algorithms or general tasks such as mesh control or the implementation of boundary conditions.
These libraries are used by the executable programs themselves, usually referred to as the solvers.
The package comes with a number of basic solvers that can be used out-of-the-box. For exam-
ple there are solvers for solving problems with incompressible flow, with or without turbulence.
Also there are solvers for compressible flow, and solvers for certain specific problems containing for
example natural convection.

Each problem, or case, consist of a file-tree containing configuration files, or dictionary files, to
control the process of solving. Furthermore they contain the value of the parameters used by the
specific solver. Through these dictionary files the user has a lot of flexibility in solving the problem.
Almost everything can be tweaked to meet the needs of the specific case problem. For example the
convergence criteria for the solving algorithm, in our case the SIMPLE algorithm, the discretization
schemes used to discretized the differential operators in the equations, the algorithms used to solve
the linear systems that need to be solved during the whole process, and what pre-conditioners are
used.

Furthermore OpenFOAM comes with basic meshing and post-processing tools. For simple
domains, such as the one we have used, the blockMesh tool can be used. This tool can create
meshes consisting of one or more rectangular boxes. For more complicated domains, there are tools
specifically designed for this task, and OpenFOAM can handle most common formats (or has tools
to convert them to a format it can handle). For data gathering there is the sample tool, that
extracts user-defined data points from the solution fields, using the interpolation method of the
user’s choice.
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A lot of information on the general settings and the solvers and tools that come with OpenFOAM
can be found in the user guide [14].

For our simulations we have developed several solvers for the different tasks. First the electro-
magnetic fields are calculated on the mesh points. For both the Gaussian beam model and the
dipole array we have analytic expressions of the electric and magnetic fields for all positions in the
domain. This means that we can determine all the field components explicitly given the position
vectors of the grid. This is where the advantage of the high-level syntax comes in. For example, to
calculate the real part of the Green’s function from (3.46),

Re {g(r)} = 1

4π‖r‖e
−α‖r‖ cos k‖r‖,

we use three lines of code,

volVectorField x = mesh.C();

volScalarField dr = Foam::mag(x - y);

volScalarField g = 0.25 / Foam::constant::mathematical::pi / dr *

Foam::exp(-alpha * dr) * Foam::cos(k * dr);

The volVectorField and volScalarField objects are defined in an OpenFOAM library and
contain a vector and scalar field, defined in all the centres of the grid points of the mesh. The mesh
itself is contained in the mesh object. The expression mesh.C() simply returns the coordinates of
the centres of all the grid points in the mesh as a volVectorField. After the total electric and
magnetic fields are determined, the derived quantities such as the Poynting vector and the intensity
of the electric field are calculated. This is easily done using the lines

volVectorField S_real = 0.5 * ((E_real ^ H_real) + (E_imag ^ H_imag));

volVectorField S_imag = 0.5 * ((E_imag ^ H_real) - (E_real ^ H_imag));

volScalarField E_sq = (E_real & E_real) + (E_imag & E_imag);

Here we see how the operator over-loading works. Where normally in C++ the ^ and & opera-
tors are bitwise operators on the integer types, OpenFOAM defines them on the volVectorField

and surfaceVectorField objects, their meaning being the cross-product and the inner-product
respectively. Again we see the explicit splitting in real and imaginary part.

Two other useful objects are the surfaceVectorField and surfaceScalarField. These also
contain vector and scalar fields over the mesh, but now defined in the centres of all the faces of
each grid point. There is also support for tensor fields over the mesh, where a distinction is made
between symmetric and non-symmetric tensors.

OpenFOAM also takes care of the creation of the linear systems used during the different
stages of the solving algorithm. In order to achieve this there are expressions that convert a
differential operator on a field quantity and other explicit terms to a discrete system of the famous
form Ax = b. Here a distinction is made between implicit and explicit discretization. Implicit
discretization means the field considered is actually the field that is solved for and is treated as
unknown. The discretization scheme defined through the dictionary files is applied and the term is
added to the system matrix A. Explicit discretization works similar in that again the discretization
scheme from the dictionary files is applied, but now the field itself is considered to be known. In
simple words, the values of the previous iteration are substituted and the contribution goes to the b
term. Of course when explicit discretization is used, it is essential that the field is initialized to some
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initial value for the first step. The implicit discretization terms are found in the name-space fvm and
the explicit discretization terms in the name-space fvc. The programmer does not manipulate the
system matrices directly. However there are procedures available to manipulate them, for example
to apply the relaxation described in Section 4.7.

Another advantage of the fact that OpenFOAM is open-source, and you compile and link your
own solvers is that it is easy to combine it with functionalities from other libraries. For example
when implementing the dipole array explained in Section 3.2, the fields of a lot of individual dipoles
are needed to be calculated and in the end all their contributions need to be summed. Since for
each dipole the calculations are alike, except a different source vector y is used, these calculations
are very suitable to perform in parallel. During the project a small CUDA implementation was
developed and linked with the solver. This results in significantly higher performance. Other useful
applications might be for example the use of LAPACK routines for certain tasks.

As mentioned earlier OpenFOAM can handle complicated meshes that are created using other
tools. It can solve the fluid dynamical equations governing the flows in these complex domains. One
thing that is not supported at this point is to solve the (full) Maxwell equations on such complex
meshes. In order to achieve this, either an external method has to be used, or such a Maxwell solver
has to be implemented in OpenFOAM.

Our implementation of the fluid dynamics solver is based on existing solvers in OpenFOAM. We
used the standard incompressible flow solver without a turbulence model, and added the buoyancy
concepts from the natural convection solver. The essential part of the SIMPLE algorithm is given
by the lines

while (simple.loop())

{

// --- Pressure-velocity SIMPLE corrector

{

#include "UEqn.H"

#include "TEqn.H"

#include "pEqn.H"

}

runTime.write();

}

The included files contain the solution procedures of the different equations. The code for the
momentum equation is given by

// Momentum predictor

tmp<fvVectorMatrix> UEqn

(

fvm::div(phi, U)

- fvm::laplacian(nu, U)

== f_em / rho_0

);
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UEqn().relax();

if (simple.momentumPredictor())

{

solve

(

UEqn()

==

fvc::reconstruct

(

(

- ghf*fvc::snGrad(rhok)

- fvc::snGrad(p_rgh)

) * mesh.magSf()

)

);

}

Here we see how in the first lines the implicit part containing the velocity field is created and
relaxed. In the second part the explicit terms containing the (modified) pressure are added. The
energy equation given by (4.23), can be rewritten as

∂i(viT )− T∂ivi −
k

ρ0cp
∂2i T =

qem

ρ0cp
.

The discretization of this equation in our implementation is given by the lines

fvScalarMatrix TEqn

(

fvm::div(phi, T)

- fvm::Sp(fvc::div(phi), T)

- fvm::laplacian(k / rho_0 / c_p, T)

// Added source term, divided by correct quantities

== H

);

TEqn.relax();

TEqn.solve();

rhok = 1.0 - beta*(T - T_0);

We see that the temperature field is discretized implicitely in all three terms. The expression
phi is the fluid flux, determined in the pressure equation. Also the new density is determined. The
pressure equation takes more effort. The code is given by

{

volScalarField rAU("rAU", 1.0/UEqn().A());
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surfaceScalarField rAUf("(1|A(U))", fvc::interpolate(rAU));

U = rAU*UEqn().H();

UEqn.clear();

phi = fvc::interpolate(U) & mesh.Sf();

adjustPhi(phi, U, p_rgh);

surfaceScalarField buoyancyPhi(rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());

phi -= buoyancyPhi;

while (simple.correctNonOrthogonal())

{

fvScalarMatrix p_rghEqn

(

fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)

);

p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));

p_rghEqn.solve();

if (simple.finalNonOrthogonalIter())

{

// Calculate the conservative fluxes

phi -= p_rghEqn.flux();

// Explicitly relax pressure for momentum corrector

p_rgh.relax();

// Correct the momentum source with the pressure gradient flux

// calculated from the relaxed pressure

U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rAUf);

U.correctBoundaryConditions();

}

}

#include "continuityErrs.H"

p = p_rgh + rhok*gh;

if (p_rgh.needReference())

{

p += dimensionedScalar

(

"p",
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p.dimensions(),

pRefValue - getRefCellValue(p, pRefCell)

);

p_rgh = p - rhok*gh;

}

}

We see the modified pressure being determined and the pressure equation being solved. After
this the velocity field is corrected. The final part makes sure the reference value for the pressure is
taken into account.
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