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Introduction

• Electromagnetic field: Maxwell equations
• Fluid dynamics: Navier-Stokes equations
• Coupling through dependent terms:

Induced currents and constitutive relations
depend on velocity field;

External force and source term depend on
EM fields.
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Maxwell equations

Maxwell equations in matter:

−∇×H+
∂D

∂t
= −J

f,(1)

∇× E+
∂B

∂t
= 0,(2)

∇ ·D = ρf,(3)

∇ ·B = 0.(4)
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Maxwell equations

Fields:
• E(x, t), electric field;

• H(x, t), magnetic field;

• D(x, t), electric flux field;

• B(x, t), magnetic flux field.

Other quantities:

• J
f(x, t), free current density,

• ρf(x, t), free charge density.
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Constitutive relations

We need relations between the different fields,
constitutive relations.

For non-dispersive linear conductive media:

• D = εE,
• H = µB.
• ρf = 0,

• J
f = σE.
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Constitutive relations

Up until now no flow. Assume velocity field v,
then using Lorentz invariance:

D = εE+ εv ×B−
1

c2
v ×H,(5)

B = µH− µv ×D+
1

c2
v × E.(6)
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Constitutive relations

Linearized and solved for E and H:

D ≈ εE+ (µε− µ0ε0)v ×H,(7)

B ≈ µH− (µε− µ0ε0)v × E.(8)

Note:

µε− µ0ε0 =
1

c2m
−

1

c2
.
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Constitutive relations

For electric charge and current:

ρf = γ
1

c2
σE · v,

J
f = γσE+ γσv ×B.

If v ≪ c and σ ≪ 1:

ρf ≈ 0,

J
f ≈ σE+ σv ×B.
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Maxwell equations

In terms of E and H, with external sources:

−∇×H+ ε0
∂E

∂t
= −J

ind − J
ext,(9)

∇×E+ µ0

∂H

∂t
= −K

ind −K
ext.(10)

• Induced currents are functions of the fields,
• External currents are independent of the field

(e.g. the lab laser).
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EM energy in vacuum

∂tuem = −∇ · S− E · J−H ·K,(11)

EM energy density

uem =
1

2

(

ε0‖E‖
2 + µ0‖H‖2

)

,(12)

Poynting vector

S = E×H.(13)
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Lorentz force

Regular form for point charges:

F = q [E+ µ0v ×H] .

Continuous form

f = ρeE+ µ0J×H,

with electric charge density

ρe = ε0∇ · E.
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Lorentz force

Generalization with magnetic currents:

f = ρeE+ ρmH+ µ0J×H− ε0K× E.

with magnetic charge density

ρm = µ0∇ ·H.

From Maxwell equations we can derive:

f = ∇ ·T−
∂S

∂t
,



March 12, 2012 13

Applied Mathematics

Stress tensor

Stress tensor in components:

Tij = µ0HiHj + ε0EiEj −

1

2
δij [ε0EiEi + µ0HiHi] .(14)

In general we need 12 quantities.
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Currents without velocity

For linear conducting media:

J
ind = (ε− ε0)

∂E

∂t
+ σE,(15)

K
ind = (µ− µ0)

∂H

∂t
.(16)

• External magnetic currents zero.
• External electric current depend on situation.
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EM energy in (linear) matter

∂tuem = −∇ · S− σ‖E‖2 − E · Jext,(17)

EM energy density

uem =
1

2

(

ε‖E‖2 + µ0‖H‖2
)

,(18)

Poynting vector

S = E×H.(19)
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Currents with velocity

For linear conducting media:

J
ind = (ε− ε0)

∂E

∂t
+ (µε− µ0ε0)

∂

∂t
(v ×H)

+σ (E+ µv ×H) ,

K
ind = (µ− µ0)

∂H

∂t
− (µε− µ0ε0)

∂

∂t
(v × E) .
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EM energy in fluid

∂tuem = −∇·S−σE·(E+ µ0v ×H)−v·
∂S

∂t
−E·Jext,

(20)

EM energy density

uem =
1

2

(

ε‖E‖2 + µ0‖H‖2
)

+ 2v · S,(21)

Poynting vector

S = E×H.(22)
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Time averaging

For periodic sources, the fields are periodic. We
have

El(x, t) = Re
{

Êl(x)e
iωt
}

,(23)

angular time frequency ω.

Time averaging:

〈f(t)〉 =
1

T

∫ T

2

−T

2

f(t)dt.
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Time averaging

For fields:

〈E〉 = 〈H〉 = 0,

but:

〈fl〉 = ∂j

[

µ0Re
{

ĤlH̄j

}

+ ε0Re
{

ÊlĒj

}

−
1

2
δlj

(

µ0|Ĥl|
2 − ε0|Êl|

2

)

]

.
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EM simulations: Meep

• Open source program, developed at MIT;
• Time domain simulations;
• Ability for frequency domain;
• Relatively easy C++ interface, easy to couple

with other programs.
• Uses dimensionless Maxwell equations.
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Maxwell equations: Dimensionless

Classical EM has four basic units:

• Electric current: I0 in ampere,
• Distance: a in meter,
• Velocity: c in meter per second,
• Permittivity: ε in farad per meter.
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Maxwell equations: Dimensionless

Dimensionless quantities:

E = I0
aεc

E ′, D = I0
ac
D′,

H = I0
a
H ′, B = I0

ac2ε
B′,

J = I0
a2
J ′, K = I0

a2cε
K ′,

σ = εc
a
σ′, σD = c

a
σ′
D,

Furthermore:

x = ax′, t =
a

c
t′.
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Maxwell equations: Dimensionless

Dimensionless equations:

−ǫijk∂j′H
′
k + ∂t′E

′
i = −J

′,ind
i − J

′,ext
i ,

ǫijk∂j′E
′
k + ∂t′H

′
i = −K

′,ind
i −K

′,ext
i .

Meep uses this form.
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Navier Stokes equations

Conservation laws:

• Continuity equation: mass,
• Navier-Stokes: (linear) momentum,
• Energy equation: energy.
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Continuity equation

∂tρ+∇ · (ρv) = 0,

• ρ(x, t) is the mass density,

• v(x, t) is the fluid velocity.
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Navier-Stokes equations

ρ (∂tvi + vj∂jvi) = −∂ip+ ∂jT
′
ij + fb

i .

• p(x, t) is the pressure,

• T ′
ij is the deviatoric stress tensor,

• fb
i are the body forces.
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Stress tensor

For Newtonian fluids we can write:

T ′
ij = 2µ

(

eij −
1

3
∆δij

)

,

where

• µ is the viscosity,

• eij =
1

2
(∂jui + ∂iuj),

• ∆ = ekk = ∂kvk
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Incompressible

When flow is incompressible:

∇ · v = 0.

Navier-Stokes simplifies:

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2

j vi + fb
i .
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Energy equation

Conservation of energy:

∂tE + ∂i(Evi) = fb
i vi + ∂j(Tijvi) + k∂2

i T + q,

with

• E energy density,
• k thermal conductivity,
• q heat source density.
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Energy density

For the energy density we have:

E = ρ

(

e+
1

2
vivi

)

,

with e the specific internal energy,

e = cpT.

cp is the specific heat (by constant pressure).
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Free convection

If ∆T small,

T = T0 +∆T, ρ = ρ0 +∆ρ.

Using linearisation we have:

ρ′ =

(

∂ρ0

∂T

)

p

T ′ = −ρ0βT
′,

So for the density:

ρ = ρ0 (1− β(T − T0)) .
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Overview of equations

∂ivi = 0,

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2

j vi + fb
i ,

ρcp (∂tT + vi∂iT ) = Tij∂jvi + k∂2

i T + q,

ρ = ρ0 (1− β(T − T0)) .

Six equations, in six unknowns.
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Solving the equations

TODO, first approach:

• Using OpenFoam for fluid simulations,
• Using Meep for EM simulations,
• Couple both programs.

Second approach:

Investigate if COMSOL can be of use.

Any suggestions?
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Research questions

Once everything runs:

• Are the effects of the EM field significant?
• Which effect dominates, Lorentz force or heat

convection?
• See if the model can be validated by

experimental data.
• Investigate different materials.
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