Modelling the interaction between the electromagnetic field and fluids Literature review

Michiel de Reus
March 12, 2012

Introduction

- Electromagnetic field: Maxwell equations
- Fluid dynamics: Navier-Stokes equations
- Coupling through dependent terms:

Induced currents and constitutive relations depend on velocity field;

External force and source term depend on EM fields.

Maxwell equations

Maxwell equations in matter:

$$
\begin{equation*}
-\nabla \times \mathbf{H}+\frac{\partial \mathbf{D}}{\partial t}=-\mathbf{J}^{\mathrm{f}} \tag{1}
\end{equation*}
$$

(2)
(3)
(4)

$$
\begin{aligned}
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =0 \\
\nabla \cdot \mathbf{D} & =\rho_{\mathbf{f}} \\
\nabla \cdot \mathbf{B} & =0
\end{aligned}
$$

Maxwell equations

Fields:

- $\mathrm{E}(\mathrm{x}, t)$, electric field;
- H(x, t), magnetic field;
- $\mathbf{D}(\mathrm{x}, t)$, electric flux field;
- $\mathbf{B}(\mathbf{x}, t)$, magnetic flux field.

Other quantities:

- $\mathrm{J}^{\mathrm{f}}(\mathrm{x}, t)$, free current density,
- $\rho_{\mathrm{f}}(\mathrm{x}, t)$, free charge density.

Constitutive relations

We need relations between the different fields, constitutive relations.

For non-dispersive linear conductive media:

- $\mathbf{D}=\varepsilon \mathbf{E}$,
- $\mathrm{H}=\mu \mathrm{B}$.
- $\rho_{\mathrm{f}}=0$,
- $\mathbf{J}^{\mathbf{f}}=\sigma \mathbf{E}$.

Constitutive relations

Up until now no flow. Assume velocity field v, then using Lorentz invariance:

Constitutive relations

Linearized and solved for E and H:

$$
\begin{aligned}
& \mathbf{D} \approx \varepsilon \mathbf{E}+\left(\mu \varepsilon-\mu_{0} \varepsilon_{0}\right) \mathbf{v} \times \mathbf{H}, \\
& \mathbf{B} \approx \mu \mathbf{H}-\left(\mu \varepsilon-\mu_{0} \varepsilon_{0}\right) \mathbf{v} \times \mathbf{E} .
\end{aligned}
$$

Note:

$$
\mu \varepsilon-\mu_{0} \varepsilon_{0}=\frac{1}{c_{m}^{2}}-\frac{1}{c^{2}} .
$$

Constitutive relations

For electric charge and current:

$$
\begin{aligned}
\rho_{f} & =\gamma \frac{1}{c^{2}} \sigma \mathbf{E} \cdot \mathbf{v}, \\
\mathbf{J}^{f} & =\gamma \sigma \mathbf{E}+\gamma \sigma \mathbf{v} \times \mathbf{B} .
\end{aligned}
$$

If $v \ll c$ and $\sigma \ll 1$:

$$
\begin{aligned}
& \rho_{f} \approx 0, \\
& \mathbf{J}^{f} \approx \sigma \mathbf{E}+\sigma \mathbf{v} \times \mathbf{B} .
\end{aligned}
$$

Maxwell equations

In terms of E and H, with external sources:
(9) $-\nabla \times \mathrm{H}+\varepsilon_{0} \frac{\partial \mathrm{E}}{\partial t}=-\mathrm{J}^{\text {ind }}-\mathrm{J}^{\mathrm{ext}}$,
(10) $\quad \nabla \times \mathbf{E}+\mu_{0} \frac{\partial \mathrm{H}}{\partial t}=-\mathbf{K}^{\text {ind }}-\mathbf{K}^{\mathrm{ext}}$

- Induced currents are functions of the fields,
- External currents are independent of the field (e.g. the lab laser).

EM energy in vacuum

(11) $\quad \partial_{t} u_{e m}=-\nabla \cdot \mathbf{S}-\mathbf{E} \cdot \mathbf{J}-\mathbf{H} \cdot \mathbf{K}$,

EM energy density
(12) $\quad u_{e m}=\frac{1}{2}\left(\varepsilon_{0}\|\mathbf{E}\|^{2}+\mu_{0}\|\mathbf{H}\|^{2}\right)$,

Poynting vector
(13)

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H} .
$$

Lorentz force

Regular form for point charges:

$$
\mathbf{F}=q\left[\mathbf{E}+\mu_{0} \mathbf{v} \times \mathbf{H}\right] .
$$

Continuous form

$$
\mathbf{f}=\rho_{e} \mathbf{E}+\mu_{0} \mathbf{J} \times \mathbf{H},
$$

with electric charge density

$$
\rho_{e}=\varepsilon_{0} \nabla \cdot \mathbf{E} .
$$

Lorentz force

Generalization with magnetic currents:

$$
\mathbf{f}=\rho_{e} \mathbf{E}+\rho_{m} \mathbf{H}+\mu_{0} \mathbf{J} \times \mathbf{H}-\varepsilon_{0} \mathbf{K} \times \mathbf{E} .
$$

with magnetic charge density

$$
\rho_{m}=\mu_{0} \nabla \cdot \mathbf{H} .
$$

From Maxwell equations we can derive:

$$
\mathrm{f}=\nabla \cdot \mathrm{T}-\frac{\partial \mathrm{S}}{\partial t}
$$

Stress tensor

Stress tensor in components:

(14)

$$
\begin{aligned}
T_{i j}= & \mu_{0} H_{i} H_{j}+\varepsilon_{0} E_{i} E_{j}- \\
& \frac{1}{2} \delta_{i j}\left[\varepsilon_{0} E_{i} E_{i}+\mu_{0} H_{i} H_{i}\right] .
\end{aligned}
$$

In general we need 12 quantities.

Currents without velocity

For linear conducting media:
(15)
$\mathrm{J}^{\text {ind }}=\left(\varepsilon-\varepsilon_{0}\right) \frac{\partial \mathbf{E}}{\partial t}+\sigma \mathbf{E}$,
(16)
$\mathrm{K}^{\text {ind }}=\left(\mu-\mu_{0}\right) \frac{\partial \mathbf{H}}{\partial t}$.

- External magnetic currents zero.
- External electric current depend on situation.

EM energy in (linear) matter

(17) $\quad \partial_{t} u_{e m}=-\nabla \cdot \mathbf{S}-\sigma\|\mathbf{E}\|^{2}-\mathbf{E} \cdot \mathbf{J}^{e x t}$

EM energy density
(18) $\quad u_{e m}=\frac{1}{2}\left(\varepsilon\|\mathbf{E}\|^{2}+\mu_{0}\|\mathbf{H}\|^{2}\right)$,

Poynting vector
(19)

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H} .
$$

Currents with velocity

For linear conducting media:

$$
\begin{aligned}
\mathbf{j}^{\text {ind }}= & \left(\varepsilon-\varepsilon_{0}\right) \frac{\partial \mathbf{E}}{\partial t}+\left(\mu \varepsilon-\mu_{0} \varepsilon_{0}\right) \frac{\partial}{\partial t}(\mathbf{v} \times \mathbf{H}) \\
& +\sigma(\mathbf{E}+\mu \mathbf{v} \times \mathbf{H}),
\end{aligned}
$$

$$
\mathbf{K}^{\text {ind }}=\left(\mu-\mu_{0}\right) \frac{\partial \mathbf{H}}{\partial t}-\left(\mu \varepsilon-\mu_{0} \varepsilon_{0}\right) \frac{\partial}{\partial t}(\mathbf{v} \times \mathbf{E}) .
$$

EM energy in fluid

$\partial_{t} u_{e m}=-\nabla \cdot \mathbf{S}-\sigma \mathbf{E} \cdot\left(\mathbf{E}+\mu_{0} \mathbf{v} \times \mathbf{H}\right)-\mathbf{v} \cdot \frac{\partial \mathbf{S}}{\partial t}-\mathbf{E} \cdot \mathbf{J}^{e x t}$, (20)

EM energy density
(21) $u_{e m}=\frac{1}{2}\left(\varepsilon\|\mathbf{E}\|^{2}+\mu_{0}\|\mathbf{H}\|^{2}\right)+2 \mathbf{v} \cdot \mathbf{S}$,

Poynting vector

$$
\mathbf{S}=\mathbf{E} \times \mathbf{H} .
$$

Time averaging

For periodic sources, the fields are periodic. We have

$$
\begin{equation*}
E_{l}(\mathbf{x}, t)=\operatorname{Re}\left\{\hat{E}_{l}(\mathbf{x}) e^{i \omega t}\right\}, \tag{23}
\end{equation*}
$$

angular time frequency ω.
Time averaging:

$$
\langle f(t)\rangle=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) d t
$$

Time averaging

For fields:

$$
\langle\mathbf{E}\rangle=\langle\mathbf{H}\rangle=0,
$$

but:

$$
\begin{aligned}
\left\langle f_{l}\right\rangle= & \partial_{j}\left[\mu_{0} \operatorname{Re}\left\{\hat{H}_{l} \bar{H}_{j}\right\}+\varepsilon_{0} \operatorname{Re}\left\{\hat{E}_{l} \bar{E}_{j}\right\}\right. \\
& \left.-\frac{1}{2} \delta_{l j}\left(\mu_{0}\left|\hat{H}_{l}\right|^{2}-\varepsilon_{0}\left|\hat{E}_{l}\right|^{2}\right)\right] .
\end{aligned}
$$

EM simulations: Meep

- Open source program, developed at MIT;
- Time domain simulations;
- Ability for frequency domain;
- Relatively easy C++ interface, easy to couple with other programs.
- Uses dimensionless Maxwell equations.

Maxwell equations: Dimensionless

Classical EM has four basic units:

- Electric current: I_{0} in ampere,
- Distance: a in meter,
- Velocity: c in meter per second,
- Permittivity: ε in farad per meter.

Maxwell equations: Dimensionless

Dimensionless quantities:

$$
\begin{array}{rl}
E & =\frac{I_{0}}{a c c} E^{\prime}, \\
H & =\frac{I_{0}}{a} H^{\prime}, \\
J & B=\frac{I_{0}}{a c} D^{\prime}, \\
J & \frac{I_{0}}{a c_{0} \varepsilon} B^{\prime}, \\
\sigma & =\frac{\varepsilon}{a}, \\
\sigma & =\frac{I_{0}}{a^{2} c \varepsilon} K^{\prime}, \\
\frac{I^{\prime}}{a} & \sigma_{D} \\
\frac{c}{a} \sigma_{D}^{\prime},
\end{array}
$$

Furthermore:

$$
x=a x^{\prime}, t=\frac{a}{c} t^{\prime} .
$$

Maxwell equations: Dimensionless

Dimensionless equations:

$$
\begin{aligned}
-\epsilon_{i j k} \partial_{j^{\prime}} H_{k}^{\prime}+\partial_{t^{\prime}} E_{i}^{\prime} & =-J_{i}^{\prime}, \text { ind }-J_{i}^{\prime}, \mathrm{ext} \\
\epsilon_{i j k} \partial_{j^{\prime}} E_{k}^{\prime}+\partial_{t^{\prime}} H_{i}^{\prime} & =-K_{i}^{\prime}, \text { ind }-K_{i}^{\prime}, \mathrm{ext}
\end{aligned}
$$

Meep uses this form.

Navier Stokes equations

Conservation laws:

- Continuity equation: mass,
- Navier-Stokes: (linear) momentum,
- Energy equation: energy.

Continuity equation

$$
\partial_{t} \rho+\nabla \cdot(\rho \mathbf{v})=0
$$

- $\rho(\mathbf{x}, t)$ is the mass density,
- $\mathrm{v}(\mathrm{x}, t)$ is the fluid velocity.

Navier-Stokes equations

$$
\rho\left(\partial_{i} v_{i}+v_{j} \partial_{j} v_{i}\right)=-\partial_{i p}+\partial_{j} T_{i j}^{\prime}+f_{i}^{\mathrm{b}} .
$$

- $p(\mathbf{x}, t)$ is the pressure,
- $T_{i j}^{\prime}$ is the deviatoric stress tensor,
- f_{i}^{b} are the body forces.

Stress tensor

For Newtonian fluids we can write:

$$
T_{i j}^{\prime}=2 \mu\left(e_{i j}-\frac{1}{3} \Delta \delta_{i j}\right),
$$

where

- μ is the viscosity,
- $e_{i j}=\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)$,
- $\Delta=e_{k k}=\partial_{k} v_{k}$

Incompressible

When flow is incompressible:

$$
\nabla \cdot \mathbf{v}=0
$$

Navier-Stokes simplifies:

$$
\rho\left(\partial_{t} v_{i}+v_{j} \partial_{j} v_{i}\right)=-\partial_{i} p+\mu \partial_{j}^{2} v_{i}+f_{i}^{\mathrm{b}} .
$$

Energy equation

Conservation of energy:

$$
\partial_{t} E+\partial_{i}\left(E v_{i}\right)=f_{i}^{\mathrm{b}} v_{i}+\partial_{j}\left(T_{i j} v_{i}\right)+k \partial_{i}^{2} T+q
$$

with

- E energy density,
- k thermal conductivity,
- q heat source density.

Energy density

For the energy density we have:

$$
E=\rho\left(e+\frac{1}{2} v_{i} v_{i}\right)
$$

with e the specific internal energy,

$$
e=c_{p} T .
$$

c_{p} is the specific heat (by constant pressure).

Free convection

If ΔT small,

$$
T=T_{0}+\Delta T, \rho=\rho_{0}+\Delta \rho
$$

Using linearisation we have:

$$
\rho^{\prime}=\left(\frac{\partial \rho_{0}}{\partial T}\right)_{p} T^{\prime}=-\rho_{0} \beta T^{\prime}
$$

So for the density:

$$
\rho=\rho_{0}\left(1-\beta\left(T-T_{0}\right)\right) .
$$

Overview of equations

$$
\begin{aligned}
\partial_{i} v_{i} & =0, \\
\rho\left(\partial_{t} v_{i}+v_{j} \partial_{j} v_{i}\right) & =-\partial_{i} p+\mu \partial_{j}^{2} v_{i}+f_{i}^{\mathrm{b}}, \\
\rho c_{p}\left(\partial_{t} T+v_{i} \partial_{i} T\right) & =T_{i j} \partial_{j} v_{i}+k \partial_{i}^{2} T+q, \\
\rho & =\rho_{0}\left(1-\beta\left(T-T_{0}\right)\right) .
\end{aligned}
$$

Six equations, in six unknowns.

Solving the equations

TODO, first approach:

- Using OpenFoam for fluid simulations,
- Using Meep for EM simulations,
- Couple both programs.

Second approach:
Investigate if COMSOL can be of use.
Any suggestions?

Research questions

Once everything runs:

- Are the effects of the EM field significant?
- Which effect dominates, Lorentz force or heat convection?
- See if the model can be validated by experimental data.
- Investigate different materials.

Modelling the interaction between the electromagnetic field and fluids Literature review

Michiel de Reus
March 12, 2012

