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Introduction

laser light

Optical trapping consist of:

@ Focussed laser beam is applied in fluid.
@ Small particles are trapped by electromagnetic force.
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© Maxwell equations
@ Complex Maxwell equations
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Maxwell equations

The macroscopic Maxwell equations in vacuum:

OE
— H — = -
V x +6oat J,
oH
E — = —-K.
V X +'u0(9t

Compatibility relations V-E=0and V-H = 0.

E(x, t), (time domain) electric field,
H(x, t), (time domain) magnetic field,

J(x, t), total electric current density,

K(x, t), total magnetic current density.
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Electric current density

The current density consists of three terms:

@ JP, polarization current,
o Jf free (conduction) current,
o J external current.

Induced current is given by J"d = JP 4+ JF,

The induced currents depend on E, so J"¢ = Jnd(E).
So-called constitutive relations.

The external current is independent of E and H.
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Induced currents

Linear polarization, instantaneous response:

OE

P =ceoXe—-
OXeata

with xe the electric susceptibility.
Free current is proportional to the electric field (Ohm's law):

Jf = oE,

with o the electric conductivity.
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Maxwell equations in (rigid) matter

Substitution results in:

E
-V xH +58— +0E = —Jo
ot

OH
V xE — = 0.
X B+ po ot
Electric permittivity given by:

e = (14 xe)eo-
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Maxwell equations in fluids

Fluid in motion: movement w.r.t. the reference frame.

Induced currents because of charges moving:
I = —(uoe — poco)v x H,
K™ = (s — pioco)v x E,

v < 1, effect will be neglected.
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Energy equation (1)

Define the electromagnetic energy density as
1
tem = (col[EI|* + o[ H]?)
and the Poynting vector as
S=E xH.

Then from the Maxwell equations one can derive:

2uem:—V.S—E-J—H-K.
ot
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Energy equation (2)

For linear polarization we had:

J= (a—so)%—kaE.

This results in:

0 1

_ 0 2 2
~tem = =¥+ = (¢ — o) _|[EJP - o [EJ.

The polarization term in general oscillates.

The conduction term is strictly negative, so acts as an energy
sink.
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Momentum equation

Likewise we can derive the momentum equation:

f=—a+v 7.

Here ? is the Maxwell stress tensor given by

1 1
T = oH@H + cE®E — SHolIHI2L = Seol[EJL

The force density is given by:

f=(V-E)E4+ (V-H)H+ uod x H— 5K x E.
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© Maxwell equations
@ Complex Maxwell equations
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Monochromatic source

External current density of only one frequency:
J¥%(x, t) = J&(x) cos(wt + 0).
Resulting fields are also time-harmonic:
E(x,t) = E(x)cos(wt+ 1),
H(x,t) = H(x)cos(wt+ &),

with a possible phase-shift.
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Complex fields (1)

Notice that we can write:
J¥(x,t) = Re {je"t(x)e_“*’t} :
Like-wise for the fields:

A

E(x,t) = Re {E(x)e_“”} ,
H(x,t) = Re {I:l(x)e_“’”} :

The phase-shifts are absorbed in J®¢, E and H.
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Complex fields (2)

Time derivatives become complex multiplications:

%Re {E(x)e‘“”t} =Re {—zwIAE(x)e_“"t} .

Substitution in the Maxwell equations results in:

Re { [—V x A(x) — zwsoﬁ(x)} et

)
Re { [V x E(x) — zw,uol:l(x)} e_“”t} = 0,
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Complex polarization (1)

Linear polarization, JP = 50Xe% is non-physical.

Better form, temporal dependency, localized in space:
e OE
JP = f(r)=—(x,t —71)dr.
o [ NG e =) er

The complex form is given by:

P = Re {—MO [ /0 () dT] E(x)e—w} .
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Complex polarization (2)

The complex permittivity is defined as & = &’ +1¢”.

The real part gives the polarization current:
o0
(w) = o / F(r)e"" dr.
0
The imaginary part gives the free current:

e'(w) = #.
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Complex Maxwell equations (1)

The (complex) induced current is then given by:

Jind — _405(& — £0)E.

Substitution in the Maxwell equations results in:

Re [—V x H(x) — zwéé(x)] e_“”} = Re {—jeXt(X)e_Wt} ;

Re { [V x E(x) — zwqul(x)] e‘"’”} = 0.
The two separate induced currents form one complex term.
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Complex Maxwell equations (2)

—wt

Finally, drop the real parts, and strip off e

The resulting complex Maxwell equations are:

A

—V x H(x) —wéE(x) = —J%(x),
V x E(x) —wpoH(x) = 0.

The compatibility relations are:

V-H=0and V-E=0.

The equations no longer depend on the time variable t.
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Time Averaging (1)

The frequencies are extremely large compared to all the
movement in the liquid:

f=25-10Hz for A\g = 1.2 um.

The quantities are time-averaged:

(o) =7 [ * Re{ e} a

f(x, t) can be replaced by other quantities.
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Time Averaging (2)

The results for different quantities are:

<E(X,t)> = 0,
(E(x,t) - E(x,t)) = =Re {E(x) : E*(x)} :
(S(x,)) = (E(x,£) x H(x, 1)) = %Re{ﬁ(x)x A (x)}
< [E(x,t)-E(x,t)]> — 0

Sl

3
TUDelft




Time-averaged energy equation (1)

The time-averaged energy equation is given by:
0
g lem =-V-(S)—(E-J).
Using the time-harmonic representation, we have:
J=—w(é—e)E
Also we define the complex Poynting vector

S=_ExHA*
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Time-averaged energy equation (2)

Substitution of the time-averaged expressions results in:
& 1 HNe Ex
0=—V-Re{S} - Zwe"E £,

We have Re {g} the time-averaged energy flux.

The second term shows the time-averaged dissipation:

1 PN
Jem = §CU€”E -E*.

The electromagnetic energy is transformed to heat.
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Time-averaged Lorentz force (1)

The time-averaged Lorentz force is given by
(F) = po(d x H).

Using again the relation J= —w(é — Eo)é, the time-averaged
result is

f) = %uoRe{—zw( —50)EXFI},

3
TUDelft




© Gaussian sources
@ Gaussian beam
@ Gaussian dipole array
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© Gaussian sources
@ Gaussian beam
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GB: properties

Properties of the Gaussian beam model:
o Widely used to model laser beams, analytical solution
available,

@ Transforms easily through lens systems, only the
parameters change,

. —cr2y - . . .
o Gaussian decay (e~ “"") in axial direction,

@ Only an approximation, does not satisfy the Maxwell
equations.
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GB: derivation (1)

The Maxwell equations are rewritten in terms of a vector
potential A.
The potential is assumed to have the form:

A(x,y,z) = (x, y)e’kz
With:
@ z the propagation direction,

@ y the polarization direction,

x>
_M

o k the (complex) wave number, & =
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GB: derivation (2)

1 is expanded around

The zero order term is used:

2 2 2

L P p a p
0= o0 ok~ e Far @)
p is the axial distance \/x2 + y2.

Expected accuracy of order O(|5]?).
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Electric field has two components:

I GB: electric field

Evol = Eoexp(tkz)iy,
Eyop = Eoexp (1kz) vo [— R(lz) = IA(WQ(’Z)z + k/?fvo(éz)2] %
(m—




GB: accuracy
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Figuur: Residual of the Maxwell equations and moment equation.

Accurate to order O(|3/?). We have 0.15 < |3| < 0.4.
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© Gaussian sources

@ Gaussian dipole array

3
TUDelft
Electromagnetically Induced Flows 34 / 56




Gaussian dipole array

The goal is to:

o Create a source that does satisfy the Maxwell equations,

o that resembles a Gaussian beam (focussing, exponential
radial decay).

The idea is to combine a lot of simple, exact solutions for
perfect dipoles.
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Perfect dipole (1)

The perfect dipole is a simple point source.

The external current density is given by:

3¢ (x, t) = 0(x — x4)lo cos(wt — ©)d,
with
@ J(x — xs) localizes the source at xs.
o d is the orientation of the point source.

Using Green's functions we can derive an analytic expression for
the electric and magnetic field for the dipole.
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Perfect dipole (2)

Fields resulting from the dipole:

The Green's function is given by g(r) = ﬁeli", r=X— Xs.
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External current density

The external current density is prescribed such that:

@ It is zero everywhere outside the source plane,
@ The source plane is divided in a rectangular grid,

o For each grid point J®t is proportional to E,p.
g g

(10,10,10)

=25 (0,0,0) 2 =5

The field in the domain is calculated using the Green’s function.
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Resulting field

2= 1.2 um, yz-plane, gb 2y = 1.2 um, yz-plane, dipole

10
> 5= =

0 5
z
2= 2.4 um, yz-plane, gb 2y =24 um, yz-1 plzne dipole
10
> 5= =
0
0 5

This methods results in:

@ Similar fields for small wavelengths.
e Deviations for larger wavelengths: larger |5| value.
o Constant lp: Numerically normalized incoming power.
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@ Incompressible Navier Stokes equations
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Basis of the NS equations.

The equations are based on:
@ Conservation of mass and incompressibility: continuity
equation, V - v = 0.

o Conservation of momentum: Navier-Stokes equations,
including fem.

@ Boussinesq approximation: Gravity driven buoyancy effects
in NS equations.

@ Conservation of energy: temperature equation with source
term gem-
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Incompressible Navier Stokes
equations.

For the simulations we have used the equations:

Oivi = 0,
P0 \/jajv,- = —8,'p, + gydi202p + ,Uajzvi + fiem’
pOCpViaiT = ka,?T‘i‘ dem,

Steady-state equations, with

e p' = p+ pgy the modified pressure,
o p=po(1—B(T = To)).
o fe™M the electromagnetic force density,

@ (Jem the electromagnetic heat dissipation.
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Solving algorithm: SIMPLE (1)

Semi-Implicit Method for Pressure Linked Equations.
Not that simple:

@ Pressure and velocity are coupled,

@ Non-linear system.
Each equation is solved separately. This is iterated until
solution is reached.

Differentiation is discretized using central differences,
Integrations are discretized using a midpoint rule.
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Solving algorithm: SIMPLE (2)

The iterative procedure is given by:
o u™! is solved by using p’" and u’ (to handle the
non-linearity),
T™*1 is solved using u'*1,
p't1is solved using T/+1,
p't1 is solved using u™*! and p'*t.

u't1 is corrected using p/"*! to satisfy the continuity
equation.

Repeated until tolerance is met.
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© Simulations
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Frequencies in water

05|

By lam]

Four wavelengths are selected,

@ One small one, 1.2um, no losses,
@ One larger one, 2.4um, almost no losses,

o Two larger ones, 2.8um and 3.2um, with larger losses.
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Intensities
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Figuur: Intensities for the four different wavelenghts, using the dipole
array method.
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Force density (1)
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Figuur: Force density in plane perpendicular to propagation

@ Polarization direction: Away from the centre,

11UDelﬂ Perpendicular direction: Towards the centre

«O>» «Fr <> 4 §
Electromagnetically Induced Flows 48 / 56



L [ —— 3|l I
o - = 3|t =
= — VoliD—/— o T
L= == Bl et
] e — o =T IZ
R T
3 3 3 2 B

o === . |t|||l
s et N =
Bsenassanbe N i —
T/ &£ e
o -z - S ITD T
v © w w w v 0w © @ w8 ¥
s 3 < © © <

ity (2)
I
:r

Force dens

Figuur: Force density for 1.2;um and 2.4um, z direction.

@ No component in propagation direction.
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Force density (3)
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Figuur: Force density for 2.8pum and 3.2um, z direction.

s _ o Relatively large component in propagation direction.
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Resulting velocity

Velocity in the xy-plane, at the point of focus.
Streamlines indicate circular motion for small wavelengths.
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Temperature rise

For Py = 1mW, maximum temperature rise is given by:

wavelength  Energy absorbed max. AT
1.2 um 0.001 0.047
2.4 um 0.053 1.906
2.8 um 0.998 37.653
3.2 um 0.110 42.654

For Py = 50mW, maximum temperature rise is given by:

wavelength  max. AT
1.2 ym 2.0
2.4 um 95.2

The Boussinesq approximation is only valid for small increases.
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@ Conclusion and future research
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Conclusion

Some conclusions drawn from the simulations:

@ The dipole array is an adequate alternative for the GB,
@ No losses: Force density leads to loops,

@ Losses: Complicated flows, large component in propagation
direction.

@ Temperature increase is too large, Boussinesq not valid,

@ Use of compressible Navier-Stokes to capture total flow.

3
TUDelft

Electromagnetically Induced Flows 54 / 56



Further research

More work needs to be done at:

Establishing whether the correct force is used.

Use compressible NS to capture effect due to heat.

o

o

@ Temperature dependent viscosity.

@ Experimental set-up, to capture characteristic flow.
o

Investigate possible back-action by fluid on fields.
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