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Introduction

The goal of my thesis project is to investigate what the influence of an electromagnetic field inside
a fluid is. Since a fluid cannot withstand any stresses and it is known that an electromagnetic field
exerts stresses on matter, it is expected that the fluid will start to flow. It are these induced flows
that are the main interest of this project.
As first part of my thesis project I have completed this literature review. The first aim was to
investigate the Maxwell equations, and see how they behave inside matter. Since we are interested
in the stresses exerted on the fluid, it is important to determine what kind of currents there are,
and as a consequence how the Maxwell stress tensor looks like. Because of the movement of the
fluid, there will be feedback to the electromagnetic field itself. The aim here is to determine this
feedback.
The second part consists of a study of the Navier-Stokes equations. First the general equations are
stated, after which simplifications are made. Since, for now, the fluid of main interest will be water,
and the flow velocities are expected to be small compared to the speed of sound, the incompressible
equations are used. It is expected that heat dissipation of the electromagnetic field to the fluid
will significantly contribute to the flow, so the equations need to be modified in order to allow
temperature driven flows to exist.
In the final part a brief summary of the relevant equations can be found, as well as the research
questions for the second stage of this project.
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Chapter 1

Electromagnetic field

It is well known that the electromagnetic fields satisfy the Maxwell equations. In this chapter
we will first consider the Maxwell equations in vacuum and derive conversation of energy and
momentum for the electromagnetic fields. After this we will consider the so-called macroscopic
Maxwell equations in matter, where polarization and magnetization play a roll.
We will first derive the equations for the fields in a stationary linear medium, and expressions for
the constitutive relations. Later on we consider a non-stationary fluid, where we assume a certain
velocity field is known. It turns out that the use of contra-variant formulation of the Maxwell
equations simplifies the equations when we are dealing with a fluid in motion and we need to
transform between different reference frames, that is the lab frame in which the fluid was originally
at rest and the instantaneous rest frame. The consequence of this formulation is that all equations
satisfy the framework of special relativity. At some point we can make assumptions about the
non-relativistic fluid velocity to simplify the expressions.

1.1 Maxwell equations in vacuum

From [3] we have the Maxwell equations in vacuum given by

−∇×B+ µ0ε0
∂E

∂t
= −µ0J, (1.1)

∇×E+
∂B

∂t
= 0, (1.2)

where E = E(x, t) is the electric field, B = B(x, t) is the magnetic field and J = J(x, t) is the
(total) electric current density. The constants ε0 and µ0 are the permittivity of free space and
permeability of free space respectively.
The current density consists of the movement of charged particles. Later on, when we consider the
equations in matter, we see that it can be split in a free and an induced part. Furthermore we have
an external part, which acts as source of the initial fields.
From these two equations we can derive two compatibility equations. To derive them we will use
the (local) conservation of charge, which can be formulated as the continuity equation
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∂ρe

∂t
= − divJ, (1.3)

where ρe = ρe(x, t) is the (total) electric charge density. Taking the divergence of (1.1) and (1.2)
respectively, and noting that the divergence of a curl is zero, we end up with the equations

ε0 div
∂E

∂t
= − divJ, (1.4)

div
∂B

∂t
= 0. (1.5)

Using the first equation we can derive

ε0 divE = ε0

∫ t

−∞

d

dt
divE dt =

∫ t

−∞

ε0 div

(

∂E

∂t

)

dt = −

∫ t

−∞

divJdt =

∫ t

−∞

∂ρe

∂t
dt = ρe,

where we assume by causality that there exists t0 such that ρe = 0 for t ≤ t0.
Interchanging the order of differentiation in the second equation and assuming that at some point
in time there exists no magnetic field (yet), we immediately see that the divergence of the magnetic
field is zero. So we get the two compatibility equations

divE =
ρe

ε0
, (1.6)

divB = 0. (1.7)

Note that the first equation is usually known as Gauss’s law.
In subscript notation the Maxwell equations are given by

− ǫijk∂jBk + µ0ε0∂tEi = −µ0Ji, (1.8)

ǫijk∂jEk + ∂tBi = 0, (1.9)

where ǫijk is the Levi-Civita symbol. The compatibility relations are given by

∂iEi =
ρe

ε0
, (1.10)

∂iBi = 0, (1.11)

where a repeating index implies summation over that index. The continuity equation for electric
charge will become

∂tρe = −∂iJi. (1.12)

It turns out that this notation is more convenient when considering energy and momentum conser-
vation in the next sections.
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1.1.1 Conservation of energy

By manipulating the Maxwell equations we can derive a conservation of energy statement for the
electromagnetic fields. It turns out we can define a certain volumetric energy density and an energy
flux density.
If we multiply (1.8) with Ei and (1.9) with Bi and add the results, we get as left-hand side

Ei (−ǫijk∂jBk + µ0ε0∂tEi) +Bi (ǫijk∂jEk + ∂tBi)

= µ0ε0Ei∂tEi +Bi∂tBi − ǫijkEi∂jBk + ǫijkBi∂jEk

= ∂t

[

1

2
(µ0ε0EiEi +BiBi)

]

− ǫijkEi∂jBk + ǫijkBi∂jEk

= ∂t

[

1

2
(µ0ε0EiEi +BiBi)

]

+ ǫijkEj∂iBk + ǫijkBk∂iEj

= ∂t

[

1

2
(µ0ε0EiEi +BiBi)

]

+ ∂i(ǫijkEjBk),

where we have used ǫijk = −ǫjik, and relabelled the dummy indices. As right-hand side we get

−µ0EiJi.

If we now divide both sides by µ0 and define the electromagnetic energy density as

uem =
1

2

(

ε0EiEi +
1

µ0
BiBi

)

, (1.13)

and the Poynting vector

Si =
1

µ0
ǫijkEjBk, (1.14)

we can write the equation as

∂tuem = −∂iSi − EiJi, (1.15)

or in vector notation

∂uem

∂t
= − divS−E · J. (1.16)

This is the conservation of electromagnetic energy in vacuum.

1.1.2 Conservation of (linear) momentum

It is well known that a charged particle in an electromagnetic field experiences a force, the Lorentz
force. This force is given by

F = qE+ v ×B, (1.17)

where q is the electric charge of the particle and v its velocity.
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When we consider a continuous charge density and current density, we can express the Lorentz
force as a force density, given by

f = ρeE+ J×B. (1.18)

Switching to subscript notation the force density is given by

fi = ρeEi + ǫijkJjBk. (1.19)

We can rewrite this force density as function of the fields only. We can substitute (1.10) to eliminate
ρe, and (1.8) to eliminate Jj . This results in

fi = ε0(∂jEj)Ei + ǫijk

(

1

µ0
ǫjlm∂lBm − ε0∂tEj

)

Bk,

= ε0Ei∂jEj +
1

µ0
ǫijkǫjlmBk∂lBm − ε0ǫijkBk∂tEj ,

= ε0Ei∂jEj +
1

µ0
ǫjkiǫjlmBk∂lBm − ε0∂t(ǫijkEjBk) + ε0ǫijkEj∂tBk. (1.20)

If we use the identity

ǫjkiǫjlm = δklδim − δkmδil,

we can write

ǫjkiǫjlmBk∂lBm = ∂l(ǫjkiǫjlmBkBm)−Bm∂l(ǫjkiǫjlmBk),

= ∂l((δklδim − δkmδil)BkBm)−Bm∂l((δklδim − δkmδil)Bk),

= ∂l(δklδimBkBm)− ∂l(δkmδilBkBm)−Bm∂l(δklδimBk)−Bm∂l(δkmδilBk),

= ∂k(BkBi)− ∂i(BkBk)−Bi∂kBk +Bk∂iBk,

= Bk∂kBi +Bi∂kBk − ∂i(BkBk)−Bi∂kBk +
1

2
∂i(BkBk),

= Bk∂kBi −
1

2
∂i(BkBk).

Substituting in (1.20) and using (1.14) results in

fi = ε0Ei∂jEj +
1

µ0
Bk∂kBi −

1

2µ0
∂i(BkBk)− µ0ε0∂tSi + ε0ǫijkEj∂tBk.

The last term on the right-hand side can be rewritten using (1.9). This results in

ε0ǫijkEj∂tBk = ε0ǫijkEj(−ǫklm∂lEm),

= ε0ǫkjiǫklmEj∂lEm,

= ε0Ej∂jEi −
1

2
ε0∂i(EjEj),
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where we have used the identity we have just derived in terms of B. Substituting this expression,
adding a term

1

µ0
Bi∂jBj = 0,

and rearranging and relabelling the terms results in the expression

fi = ε0 (Ei∂jEj + Ej∂jEi)+
1

µ0
(Bi∂jBj +Bj∂jBi)−

1

2
∂i

(

ε0EjEj +
1

µ0
BjBj

)

−µ0ε0∂tSi. (1.21)

We want to write this force density as divergence of some stress tensor. This can be accomplished
by defining the symmetric Maxwell stress tensor T , with components

Tij = ε0

(

EiEj −
1

2
δijEkEk

)

+
1

µ0

(

BiBj −
1

2
δijBkBk

)

, (1.22)

with respect to the standard basis. We see that for the divergence of the stress tensor we have

∂jTij = ∂j

(

ε0

(

EiEj −
1

2
δijEkEk

)

+
1

µ0

(

BiBj −
1

2
δijBkBk

))

,

= ε0

(

Ei∂jEj + Ej∂jEi −
1

2
δij∂jEkEk

)

+
1

µ0

(

Bi∂jBj +Bj∂iBi −
1

2
δij∂jBkBk

)

,

= ε0

(

Ei∂jEj + Ej∂jEi −
1

2
∂iEjEj

)

+
1

µ0

(

Bi∂jBj +Bj∂iBi −
1

2
∂iBjBj

)

.

Comparison with (1.21) results in

fi = ∂jTij − µ0ε0∂tSi, (1.23)

the conservation of electromagnetic momentum. Note fi can be interpreted as the time derivative
of the momentum density. Then ∂jTij is the momentum density flux in the different directions,
and µ0ε0Si the momentum density.
In vector notation we would write the Maxwell stress tensor as

←→
T = ε0E⊗E+

1

µ0
B⊗B−

1

2

(

ε0‖E‖
2 +

1

µ0
‖B‖2

)

←→
I ,

with
←→
I the identity tensor. Then the conservation of momentum can be expressed as

f = div
←→
T − µ0ε0

∂S

∂t
. (1.24)

1.2 Maxwell equations in matter

When we consider electromagnetic fields in matter, it is convenient to work with a different set of
equations. Matter reacts in a certain way to electromagnetic fields. The reaction is a combination
of polarization and magnetization. We are not interested in the microscopic properties of these
reactions, but will consider them from a macroscopic point of view.
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1.2.1 Polarization and magnetization

For the analysis of the effect of polarization and magnetization we follow [3] and define two new
quantities, the volumetric polarization density P and the volumetric magnetization density M.

A polarization density gives rise to a bounded volume charge and a bounded surface charge. The
bounded volume charge density is given by

ρb = − divP, (1.25)

and the bounded surface charge density is given by

σb = P · n̂, (1.26)

where n̂ is the outward pointing normal unit vector. The surface is the boundary of the medium
in which polarization takes place. Furthermore, changing polarization gives rise to a polarization
current, because of the bound charge moving around. The corresponding polarization current
density is given by

Jp =
∂P

∂t
. (1.27)

A magnetization density gives rise to a bounded volume current and a bounded surface current.
The bounded volume current density is given by

Jb = ∇×M, (1.28)

and the bounded surface current density is given by

Kb = M× n̂, (1.29)

where again n̂ is the outward pointing normal unit vector. The surface is the boundary of the
medium in which magnetization takes place.

Together with the polarization density and magnetization density, we can define two new fields, the
electric displacement field

D = ε0E+P, (1.30)

and the auxiliary magnetic field

H =
1

µ0
B−M. (1.31)

In order to determine the electromagnetic field we have to know how the matter will react on
applied fields, that is we need to know the constitutive relations.

Using the Maxwell equations for vacuum, we will derive a new equivalent equation, in terms of the
fields D and H. The (total) current density can now be split in three parts, the current densities
induced by the polarization and magnetization respectively and the free current density. That is
we have
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J = Jp + Jm + Jf

=
∂P

∂t
+∇×M+ Jf.

Likewise the charge density can be written as the sum of the charge density caused by the polar-
ization and a free charge density. We have

ρe = ρp + ρf

= − divP+ ρf .

Substituting (1.30) and (1.31) into (1.1) and rearranging terms results in the so-called Maxwell
equations in matter,

−∇×H+
∂D

∂t
= −Jf, (1.32)

∇×E+
∂B

∂t
= 0, (1.33)

with compatibility equations

divD = ρf, (1.34)

divB = 0. (1.35)

To be able to solve this system we need so-called constitutive relations for the displacement field,
the auxiliary field and the free current density. These will be discussed in the next section.

1.2.2 Constitutive relations for fluids

The simplest way to model how matter reacts to applied electromagnetic fields, assumes linear
polarization and magnetization. For now we assume the fields have a low frequency, so that the
medium can be regarded non-dispersive. For linear materials we have

P = ε0χeE (1.36)

M = χmH, (1.37)

with the constants χe and χm which are called the electric susceptibility and magnetic susceptibility
respectively. Substituting these relations in (1.30) and (1.31) results in the constitutive relations

D = εE (1.38)

B = µH, (1.39)

where ε = ε0 (1 + χe) is the electric permittivity and µ = µ0 (1 + χm) the magnetic permeability.
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For conducting media we assume Ohm’s law applies, which says that

Jf = σE, (1.40)

where the constant σ is called the electric conductivity.

It is interesting to note that these constitutive relations are only valid in reference frames where
the medium is in rest. For non-fluid media this will usually be no problem, but when considering
fluids, different material parts in general have different velocities. We will need to find the expres-
sions for the constitutive relations in the stationary lab frame. That is we need to transform the
constitutive relations from the instantaneous rest frame, to the lab frame. Following [4] we will use
the four-vector framework of special relativity to determine these transformations. The notation
and different tensors are defined in Appendix A.
To determine the correct constitutive relations, we will determine tensor equations, which in the
instantaneous rest frame of a certain fluid particle reduce to the ordinary constitutive relation for
linear media. Since by definition all the tensors obey the transformation rules, these equations will
be correct in all (inertial) reference frames, in particular in the lab frame.
From (A.2) we notice that when the regular velocity is zero, the velocity four-vector is equal to

V µ =
(

c 0 0 0
)

,

suggesting that the correct form for the polarization is

DµνVν = c2εFµνVν .

In vector notation this is equal to

(

0 cD

−cD · ×H

)(

−γc
γv

)

= c2ε

(

0 1
c
E

− 1
c
E · ×B

)(

−γc
γv

)

.

Writing out the two equations results in

γcD · v = c2ε
1

c
γE · v, (1.41)

γc2D+ γv ×H = c2εγE+ c2εγv×B. (1.42)

Clearly this reduces to linear polarization if we substitute v = 0. Likewise for the magnetization
we have a similar expression in terms of the dual field tensors,

µHνµVν = GνµVν ,

In vector notation this is equal to

µ

(

0 H

−H −c(· ×D)

)(

−γc
γv

)

=

(

0 B

−B − 1
c
(· ×E)

)(

−γc
γv

)

.

Writing out the equations results in

γµH · v = γB · v, (1.43)

γµcH− γµcv ×D = γcB− γ
1

c
v ×E. (1.44)
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Again we see that the equations reduce to the expected equations when v = 0 is substituted.
Rewriting (1.42) and (1.44) results in the constitutive relations

D = εE+ εv ×B−
1

c2
v ×H, (1.45)

B = µH− µv ×D+
1

c2
v ×E. (1.46)

Rewriting (1.42) and (1.44) results in the corresponding compatibility relations

D · v = εE · v, (1.47)

B · v = µH · v. (1.48)

We see that (1.45) and (1.46) are coupled. They both depend on three fields. If we assume the
fluid velocity is not too large, we can simplify the expressions by neglecting higher order terms. At
this point we will only consider the first correction term and neglect all terms much smaller than
µ0ε0 = 1

c2
. Substituting (1.45) and (1.46) into each other results in

D = εE+ εv ×

(

µH− µv ×D+
1

c2
v ×E

)

−
1

c2
v ×H

= εE+ (µε− µ0ε0)v ×H− µεv × (v ×D) + εµ0ε0v × (v ×E) ,

≈ εE+ (µε− µ0ε0)v ×H− µεv × (v ×D) ,

= εE+ (µε− µ0ε0)v ×H− µεv ×

(

v ×

(

εE+ εv ×B−
1

c2
v ×H

))

,

≈ εE+ (µε− µ0ε0)v ×H.

Likewise we get the same result for B,

B ≈ µH− (µε− µ0ε0)v ×E.

At this point our assumption seems somehow arbitrary. From the numerical results obtained later
on we will see whether they are valid for the situations we will consider.

Finally we need the free current density. In non-conducting media this will of course be zero.
When we have positive electric conductivity, we again construct a tensor equation that reduces to
the correct equation for v = 0. It is clear that the correct expression is given by

σFµνVν = (Jf)
µ.

In vector notation this is equal to

σ

(

0 1
c
E

− 1
c
E · ×B

)(

−γc
γv

)

=

(

cρf
Jf

)

Working out these equations results in
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γ
1

c
σE · v = cρf,

γσE+ γσv ×B = Jf.

Rewriting results in the in the equations

ρf = γ
1

c2
σE · v,

Jf = γσE+ γσv ×B.

We see that for v = 0 this reduces to Jf = σE and ρf = 0. For low velocities we have γ ≈ 1, and
‖v‖
c2
≈ 0, so we can write

ρf ≈ 0,

Jf ≈ σ (E+ v ×B) .

Finally we want to know the induced current in terms of the H field instead of the B field. If we
substitute for B and only keep the largest term we get as result

Jf = σ (E+ µv ×H) .

So to conclude we have the constitutive relations

D = εE+ (µε− µ0ε0)v ×H, (1.49)

B = µH− (µε− µ0ε0)v ×E, (1.50)

Jf = σ (E+ µv ×H) , (1.51)

ρf = 0. (1.52)

where we have changed the approximations to equalities. Later on we will justify this by quantitative
estimations of the approximation errors.

1.2.3 Modified Maxwell equations in fluids

We will now substitute all the constitutive relations in the field equations to derive the final equa-
tions governing the electromagnetic field inside a (possibly) moving fluid. If we substitute the
relations (1.49) and (1.51) into equation (1.32) we get

−∇×H+
∂

∂t
[εE+ (µε− µ0ε0)v ×H] = −σ (E+ µv ×H) .

Rewriting results in

−∇×H+ ε0
∂E

∂t
= −(ε− ε0)

∂E

∂t
− (µε− µ0ε0)

∂

∂t
(v ×H)− σ (E+ µv ×H) .
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Likewise, if we substitute (1.50) in (1.33) we get

∇×E+
∂

∂t
(µH− (µε− µ0ε0)v ×E) = 0,

which results in

∇×E+ µ0
∂H

∂t
= − (µ− µ0)

∂H

∂t
+ (µε− µ0ε0)

∂

∂t
(v ×E) .

We now define the induced electric and magnetic current densities. They are minus the right-hand
sides of the modified Maxwell equations we have just derived. So we have

− Jind = −(ε− ε0)
∂E

∂t
− (µε− µ0ε0)

∂

∂t
(v ×H)− σ (E+ µv ×H) , (1.53)

−Kind = − (µ− µ0)
∂H

∂t
+ (µε− µ0ε0)

∂

∂t
(v ×E) . (1.54)

In addition to the induced currents there will be external currents. These are controlled currents,
independent of the fields. It are these currents that deliver the field’s energy and momentum in the
first place. The final Maxwell equations governing the fields are given by

−∇×H+ ε0
∂E

∂t
= −Jind − Jext, (1.55)

∇×E+ µ0
∂H

∂t
= −Kind −Kext. (1.56)

We will also derive the corresponding compatibility relations. Taking the divergence of 1.55, results
in (1.4) so we get the corresponding compatibility equation

divE =
ρe

ε0
.

Although magnetic monopoles do not exist, we have seen that in matter magnetic currents can be
induced, and we need (induced) magnetic charge to keep the framework complete. Stipulating local
conservation of magnetic charge, we define

ρm = − divK, (1.57)

which is a continuity equation like (1.3). Now taking the divergence of (1.56) results in

µ0 div
∂H

∂t
= − divK. (1.58)

Following the exact same derivation for the first equation and assuming, by causality, that K = 0
for t ≤ t0 for certain t0, we arrive at the compatibility relation

divH =
ρm

µ0
. (1.59)
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1.2.4 Boundary conditions

In order to determine the electromagnetic field in a certain region of space, we need appropriate
boundary conditions.

We have boundaries where the material properties are not continuous or there are surface currents.
We assume the boundaries are fixed in space and time.

The derivation of the boundary conditions can be found for example in [3]. They follow directly
from the Maxwell equations. Here we will only state the results.

At a boundary we can write the electric and magnetic field as the sum of a orthogonal and tangential
component,

E = Eort +Etan,

H = Hort +Htan.

Furthermore at a boundary we have two separate regions A and B, each on one side of the boundary.
We denote by n̂ the unit normal vector pointing from region B to A. On the boundary itself we
have possibly electric and magnetic charge densities σe and σm, and current densities Jsurf and
Ksurf. The four boundary conditions for the field components are then given by

EA,tan −EB,tan = Ksurf × n̂, (1.60)

EA,ort −EB,ort =
σe

ε0
, (1.61)

HA,tan −HB,tan = Jsurf × n̂, (1.62)

HA,ort −HB,ort =
σm

µ0
. (1.63)

These four boundary conditions together with the Maxwell equations and the charge and current
densities completely determine the fields.

Of course in cases with certain symmetries we can consider different boundary conditions, so that
we can reduce the geometry.

1.3 Energy and momentum inside a fluid

We have derived the field equations inside a (possibly moving) fluid. We will now derive equations
for the energy and momentum conservation. We proceed as in the vacuum case.

1.3.1 Energy equation

For simplicity we will use subscript notation here. If we multiply (1.55) with Ei and (1.56) with
Hi and add the results, we get as left-hand side
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Ei (−ǫijk∂jHk + ε0∂tEi) +Hi (ǫijk∂jEk + µ0∂tHi)

= ε0Ei∂tEi + µ0Hi∂tHi − ǫijkEi∂jHk + ǫijkHi∂jEk

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

− ǫijkEi∂jHk + ǫijkHi∂jEk

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

+ ǫijkEj∂iHk + ǫijkHk∂iEj

= ∂t

[

1

2
(ε0EiEi + µ0HiHi)

]

+ ∂i(ǫijkEjHk),

where we have used ǫijk = −ǫjik, and relabelled the dummy indices. As right-hand side we get

−EiJi −HiKi.

If we now define the energy density as

uem =
1

2
(ε0EiEi + µ0HiHi) , (1.64)

and the Poynting vector

Si = ǫijkEjHk, (1.65)

we can write the equation as

∂tuem = −∂iSi − EiJi −HiKi, (1.66)

or in vector notation

∂uem

∂t
= − divS−E · J−H ·K. (1.67)

This is the conservation of electromagnetic energy in matter. Although the expression does not
explicitly depend on the velocity v, the currents do, so the energy density also depends on the fluid
velocity.

1.3.2 Momentum equation

We can also derive the momentum equation, from which the force density follows. Multiplying
(1.55) by µ0 and taking the cross product with H results in

−µ0ǫijkǫklmHi∂lHm + µ0ε0ǫijkHj∂tEk = −µ0ǫijkHjJk.

Rewriting using the identity

ǫijkǫklmHi∂lHm = −Hk∂kHi +
1

2
∂i(HkHk),

results in
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µ0Hk∂kHi −
1

2
µ0∂i(HkHk) + µ0ε0ǫijkHj∂tEk = µ0ǫijkJjHk.

Using (1.59) we have

µ0Hk∂kHi = µ0∂k(HkHi)− µ0Hi∂kHk,

= µ0∂k(HkHi)− ρmHi.

Rearranging terms and relabelling results in the equation

∂j

[

µ0HjHi −
1

2
µ0δijHjHj

]

− µ0ε0ǫijk(∂tEj)Hk = ρmHi + µ0ǫijkJjHk. (1.68)

Likewise multiplying (1.56) by ε0 and taking the cross product with E results in

ε0ǫijkǫklmEi∂lEm + µ0ε0ǫijkEj∂tHk = −ε0ǫijkEjKk,

which we can rewrite to

−ε0Ek∂kEi +
1

2
ε0∂i(EkEk) + µ0ε0ǫijkEj∂tHk = ε0ǫijkKjEk.

Using (1.58) we have

ε0Ek∂kEi = ε0∂k(EkEi)− ε0Ei∂kEk,

= ε0∂k(EkEi)− ρeEi.

Rearranging terms and relabelling results in the equation

− ∂j

[

ε0EjEi −
1

2
ε0δijEjEj

]

+ µ0ε0ǫijkEj∂tHk = −ρeEi + ε0ǫijkKjEk. (1.69)

Defining the stress tensor Tij by

Tij = µ0(HjHi) + ε0(EjEi)−
1

2
µ0δij(HjHj)−

1

2
ε0δij(EjEj), (1.70)

subtracting (1.69 from (1.68) and using (1.65) we can write

fi = ∂jTij − ∂tSi, (1.71)

where fi is the force density given by

fi = ρeEi + ρmHi + µ0ǫijkJjHk − ε0ǫijkKjEk. (1.72)

In vector notation this force density is equal to

f = ρeE+ ρmH+ µ0J×H− ε0K×E. (1.73)
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1.4 Frequency domain

Up until now we have only considered the fields and equations in the time domain. Using Fourier
transforms in the time variable we can switch to the frequency domain. This transformation works
well with the Maxwell equations because they are linear in the field components. In the frequency
domain we can investigate the interesting phenomenon of the electric permittivity being a function
of the frequency. As we will see this leads to distortion of a wave and dissipation.

1.4.1 Fourier transform

We define the Fourier transform of a quantity y(x, t) as

ŷ(x, ω) =

∫ +∞

−∞

y(x, t)e−iωt dt.

We denote this integral operator as F , so we can write

ŷ(x, ω) = F [y(x, t)] .

For this expression to make sense the integral has to convergence, so we have certain restrictions
on the function y(x, t). At this moment we will not dig into the details of this convergence issue,
but since we are working with physical fields we expect them to be smooth and bounded. In terms
of the field components we get the transforms

Êi(x, ω) =

∫ +∞

−∞

Ei(x, t)e
−iωt dt, (1.74)

Ĥi(x, ω) =

∫ +∞

−∞

Hi(x, t)e
−iωt dt, (1.75)

D̂i(x, ω) =

∫ +∞

−∞

Di(x, t)e
−iωt dt, (1.76)

B̂i(x, ω) =

∫ +∞

−∞

Bi(x, t)e
−iωt dt, (1.77)

and corresponding inverse Fourier transforms

Ei(x, t) =
1

2π

∫ +∞

−∞

Êi(x, ω)e
iωt dω, (1.78)

Hi(x, t) =
1

2π

∫ +∞

−∞

Ĥi(x, ω)e
iωt dω, (1.79)

Di(x, t) =
1

2π

∫ +∞

−∞

D̂i(x, ω)e
iωt dω, (1.80)

Bi(x, t) =
1

2π

∫ +∞

−∞

B̂i(x, ω)e
iωt dω. (1.81)
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Likewise we can determine the Fourier transforms of other quantities such as the electric and
magnetic current densities.

One important property of the Fourier transformation that we will use is that

F

[

∂ny

∂tn

]

= (iω)nŷ, (1.82)

so it converts derivatives to ordinary multiplication, that is, it transforms a differential equation
into an algebraic equation. If we take the Fourier transformation on both sides of the Maxwell
equations (1.55) and (1.56), we get

− εijk∂jĤk + iωε0Êi = −Ĵ ind
i − Ĵext

i , (1.83)

εijk∂jÊk + iωµ0Ĥi = −K̂ ind
i − K̂ext

i . (1.84)

We see that there are only spatial derivatives left. In certain situations this form is easier to solve,
although if we need the field components for further analysis we of course need to take the inverse
transform.

1.5 Dispersion of the permittivity

Up until now we have assumed that matter reacts the same to any applied electromagnetic field,
regardless how fast the fields change in time. One of the consequences of this property is that polar-
ization and conduction occur instantaneously, that is, given a certain change in the electromagnetic
fields, the matter instantaneously rearranges itself to retain the linear relationships D = εE and
Jf = σE. Of course such an instantaneous reaction cannot occur on physical grounds, so a more
complex mechanism has to govern the polarization. Following [4] we assume the polarization is not
only a function of the present electric field strength but of all values in the past. In general this
means we can write

Di(x, t) = ε0Ei(x, t) + ε0

∫ ∞

0

f(τ)Ei(x, t− τ) dτ. (1.85)

This means that the polarization is not local any more in the temporal variable. In the space
variables we assume it still to be local. The precise way in which the medium reacts depends on
our choice of f(τ). Note that for the special choice

f(τ) = χeδ(τ),

we get the original model with instantaneous response back.

To further analyse the dispersion relation, we consider the frequency domain, by taking the Fourier
transform of the fields. If we substitute (1.80) and (1.78) into (1.85) and interchange the order of
integration we get as result
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1

2π

∫ +∞

−∞

D̂i(x, ω)e
iωt dω =

= ε0
1

2π

∫ +∞

−∞

Êi(x, ω)e
iωt dω + ε0

∫ ∞

0

f(τ)

[

1

2π

∫ +∞

−∞

Êi(x, ω)e
iω(t−τ) dω

]

dτ,

= ε0
1

2π

∫ +∞

−∞

Êi(x, ω)e
iωt

[

1 +

∫ ∞

0

f(τ)e−iωτ dτ

]

dω,

=
1

2π

∫ +∞

−∞

ε0Êi(x, ω)

[

1 +

∫ ∞

0

f(τ)e−iωτ dτ

]

eiωt dω,

so we see that for the complex field vectors we have the relation

D̂i(x, ω) = ε̂(ω)Êi(x, ω), (1.86)

where we have defined the complex electric permittivity by

ε̂(ω) = ε0

[

1 +

∫ ∞

0

f(τ)e−iωτ dτ

]

. (1.87)

We see that when we assume the permittivity is local in the space coordinates we get a linear
complex permittivity relation. Through the function f(τ) this relation depends on the specific
media. We will not dig in the microscopic properties of matter to determine f(τ), instead we will
take the values of ε̂(ω) for the media of our interest from the literature.

It is interesting to see how we can relate the real permittivity and conductivity to the complex
permittivity. Consider (1.55) together with (1.53) and assume v = 0. Then we

−ǫljk∂jHk + ε0∂tEl = −(ε− ε0)∂tEl − σEl − Jext
l .

Rewriting and taking the Fourier transform w.r.t. t results in

−ǫljk∂lĤk + iω
(

ε− i
σ

ω

)

Êl = −Ĵ
ext
l .

Comparing with (1.86) we can identify

ε̂(ω) = ε′(ω)− iε′′(ω) = ε(ω)− i
σ(ω)

ω
,

where we made the frequency dependency explicit. We see that the imaginary part of the complex
permittivity can be associated with conductivity. This suggests intuitively that it is associated with
energy dissipation from the electromagnetic fields to the medium.
If we now consider general v, and assume µ = µ0, we have the equations

− εljk∂jĤk + iωε̂Êl = −iωµ0 (ε̂− ε0) ǫljkvjĤk − Ĵext
l , (1.88)

εljk∂jÊk + iωµ0Ĥl = iωµ0(ε− ε0)ǫljkvjÊk − K̂ext
l . (1.89)

Notice that at the right-hand of (1.89) we only need the real part of the permittivity. We see that
a non-zero velocity field, can result in a loss or gain in energy, through the complex permittivity.
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1.6 Time-averaged quantities

Considering the fields in the frequency domain, we see them as the superposition of all the modes
with frequencies ω ∈ (−∞,+∞). If we want to determine specific properties of the field, such as the
value of the Poynting vector or the Lorentz force density for a specific location x, we usually are not
interested in the highly oscillatory behaviour, but in the time-averaged values of such quantities.
In this section we will derive some results using time-averaging in the frequency domain, although
these results are not derived firmly, and are only established on an intuitive basis. When used in a
later stage of this research project, more thorough arguments are needed.

If we consider the Lorentz force as divergence of the stress tensor, we have from (1.71) the equality

fl = ∂jTlj − ∂tSl,

with the stress tensor given by (1.70),

Tlj = µ0(HjHl) + ε0(EjEl)−
1

2
µ0δlj(HjHj)−

1

2
ε0δlj(EjEj),

where we change the label i to l because i will now be the imaginary unit. To determine the time-
averaged force per frequency, we need the time-averaged values of EjEi and HjHi. Using (1.78)
and the fact that Ej is real we can write

El(x, t) =
1

2π

∫ +∞

−∞

Re
{

Êl(x, ω)e
iωt

}

dω,

=
1

2π

∫ +∞

−∞

1

2

[

Êl(x, ω)e
iωt + Ēl(x, ω)e

−iωt
]

dω,

so we see that the field frequency density is equal to

1

4π

[

Êl(x, ω)e
iωt + Ēl(x, ω)e

−iωt
]

, (1.90)

which is periodic in t with period T = 2π
ω
. Likewise for the auxilary magnetic field we have frequency

density

1

4π

[

Ĥl(x, ω)e
iωt + H̄l(x, ω)e

−iωt
]

. (1.91)

The time-averaged of a periodic function f(t) is equal to

〈f(t)〉 =
1

T

∫ T

2

−T

2

f(t) dt.

If we want to determine the time average of ElEj , we multiply the corresponding frequency densities,
and integrate over a period. This results in
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〈ElEj〉 =
1

T

∫ T

2

−T

2

1

16π2

(

Êl(x, ω)e
iωt + Ēl(x, ω)e

−iωt
)

·
(

Êj(x, ω)e
iωt + Ēj(x, ω)e

−iωt
)

dt,

=
1

16π2

1

T

∫ T

2

−T

2

(

Êl(x, ω)Ēj(x, ω) + Ēl(x, ω)Êj(x, ω)
)

dt+

1

16π2

1

T

∫ T

2

−T

2

(

Êl(x, ω)Êj(x, ω)e
2iωt + Êl(x, ω)Ēj(x, ω)e

−2iωt
)

dt,

=
1

16π2

(

Êl(x, ω)Ēj(x, ω) + Ēl(x, ω)Êj(x, ω)
)

,

=
1

8π2
Re

{

Êl(x, ω)Ēj(x, ω)
}

.

Doing the same for all the other terms results in a time-averaged stress tensor

〈Tlj〉 =
1

8π2

[

µ0Re
{

ĤlH̄j

}

+ ε0Re
{

ÊlĒj

}

−
1

2
δlj

(

µ0|Ĥl|
2 − ε0|Êl|

2
)

]

,

where we dropped the dependency on x and ω. If we determine the time-average of ∂tSl, the result
is zero. If we apply differentiation w.r.t. t to the product of (1.90) and (1.91) we end up with

〈∂tSl〉 =
1

T

1

16π
ǫljk

∫ T

2

−T

2

∂t

[(

Êje
iωt + Ēje

−iωt
)(

Ĥke
iωt + H̄ke

−iωt
)]

dt,

=
1

T

1

16π
ǫljk

(

Êje
iωt + Ēje

−iωt
)(

Ĥke
iωt + H̄ke

−iωt
)∣

∣

∣

T

2

−T

2

,

=
1

T

1

16π
ǫljk

(

ÊjĤke
2iωt + ÊjH̄k + ĒjĤk + ĒjH̄ke

−2iωt
)∣

∣

∣

T

2

−T

2

,

= 0,

where the last step follows because all terms are periodic in t and vanish. So we now see that for
the time-averaged Lorentz force we have

〈fl〉 = ∂j〈Tlj〉 =
1

8π2
∂j

[

µ0Re
{

ĤlH̄j

}

+ ε0Re
{

ÊlĒj

}

−
1

2
δlj

(

µ0|Ĥl|
2 + ε0|Êl|

2
)

]

.

This expression can be used to determine the force density on the fluid, averaged over time. Since
the electromagnetic field oscillates on a time-scale much smaller than we expect in our flow problems,
this approach makes sense. Of course we will still need to determine whether this approach is valid,
using for example numerical experiments.
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Chapter 2

Navier-Stokes equations

In this chapter we will outline the different equations governing the flow of a fluid. All the equations
follow from the different conservation laws. In particular we use the conservation of mass, linear
momentum, angular momentum and energy.

We have v the velocity of the fluid, which in general is a function of position and time, so v = v(x, t).
We will now determine the equations for v in terms of the material properties and other variables.

2.1 Conservation of mass

For the fluid in motion we assume that mass is (locally) conserved. From [1] we have the continuity
equation given by

∂tρ+ div (ρu) = 0, (2.1)

where ρ(x, t) is the mass density and u(x, t) the velocity of the fluid. In subscript notation this
becomes

∂tρ+ ∂j(ρuj) = 0. (2.2)

Expanding the differentiation results in

∂tρ+ ρ∂juj + uj∂jρ = 0. (2.3)

This equation can be simplified using certain assumptions on the flow, such as incompressibility. If
we introduce the operator

D

Dt
=

∂

∂t
+ u · ∇, (2.4)

called the material derivative, we can write the continuity equation as

1

ρ

Dρ

Dt
= − divu. (2.5)
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The material derivative is the derivative along the path of a fluid particle. It can be applied to field
variables, that is variables that are functions of u and t. In subscript notation we will write Dt, so
we can write

1

ρ
Dtρ = −∂ivi. (2.6)

We see that if the material derivative of the mass density is zero, the divergence of the velocity
vanishes.

2.2 Conservation of (linear) momentum

Using conservation of (linear) momentum and following the derivation from [1], we arrive at the
general expression for conservation of linear momentum,

ρDtvi = ∂jTij + fb
i , (2.7)

where fb
i (x, t) is the volumetric body force density and Tij the stress tensor.

Writing out the material derivative results in

ρ (∂tvi + vj∂jvi) = ∂jTij + fb
i . (2.8)

We have to determine the relation between the stress tensor and the other quantities that describe
the flow of the fluid. First of all we write the stress tensor as the sum of an isotropic part and a
non isotropic part

Tij = −pδij + T ′
ij , (2.9)

with p the mechanical pressure and T ′
ij the non-isotropic part of the stress tensor or the deviatoric

stress tensor. If we consider the fluid to be a Newtonian fluid, the deviatoric stress tensor can be
written as

T ′
ij = 2µ

(

eij −
1

3
∆δij

)

, (2.10)

where µ is the viscosity, eij is given by

eij =
1

2
(∂jui + ∂iuj) ,

and ∆ = ekk = ∂kvk, with summation over k implied. In general the viscosity is a function of the
temperature.
Substitution of (2.10)and (2.9) in (2.8) results in

ρ (∂tvi + vj∂jvi) = ∂j

[

−pδij + 2µ

(

eij −
1

3
∆δij

)]

+ fb
i ,

= −∂ip+ 2∂j(µeij)−
2

3
∂i(µ∆) + fb

i ,

= −∂ip+ ∂j (µ (∂jvi + ∂ivj))−
2

3
∂i(µ∂jvj) + fb

i .
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This is the most general form for Newtonian fluids. If we assume temperature differences are small,
then the viscosity is homogeneous and can be taken out of the derivatives. This results in the
simpler form

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2
j vi +

1

3
µ∂i(∂jvj) + fb

i , (2.11)

where we have interchanged the order of differentiation to combine two terms.
A final important simplification is to consider the flow incompressible. This means that the material
derivative of the mass density of the fluid is zero. From (2.6) it follows directly that

∂ivi = 0.

If we substitute this in (2.11) we have as result the incompressible Navier-Stokes equations with
constant viscosity,

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2
j vi + fb

i . (2.12)

We can write this slightly different if we use

vj∂jvi = ∂j(vjvi)− vi∂jvj = ∂j(vjvi).

The result then is

ρ (∂tvi + ∂j(vjvi)) = −∂ip+ µ∂2
j vi + fb

i . (2.13)

In general the Navier-Stokes equation together with the continuity equation are four equations in
five unknowns, vi, ρ and p, so our system is not complete yet. In the incompressible case, the
equation Dtρ = 0 is this final equation. When we consider compressible flow we need to look at the
energy equation and the thermodynamic relation.

2.3 Conservation of energy

When the fluid contains heat sources, and heat transfer plays a role we have to take conservation
of energy into account. On a particular control volume S there are two forces acting. The work
done by the body force is

∫

S

vif
b
i dV.

The work done by the surface forces are given by

∫

∂S

viTij n̂j dA =

∫

S

∂j(viTij) dS,

where we have used the divergence theorem. Equating them, the change of internal energy by the
forces is equal to

∂j(viTij) + vif
b
i = vi

(

∂jTij + fb
i

)

+ Tij∂jvi.
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To derive the corresponding equation, we define E = E(x, t) the (total) energy density. Consider
a (time dependent) volume V(t). Changes in the total energy density can occur because of forces
doing work, and the production and flow of heat. The forces involved are the body force, with
density fb

i , which acts over the volume V(t) and the force resulting from the stress tensor which
acts over the boundary ∂V(t). The work done by a force fi is given by W = fivi. The force
resulting from the stress tensor over the surface of V(t) is given by Ti = Tij n̂j , where n̂j is the
outward pointing normal vector. We can then write for the conservation of energy

d

dt

∫

V(t)

E dV =

∫

V(t)

fb
i vi dV +

∫

∂V(t)

Tivi dA+Q, (2.14)

where Q is the sum of the heat production and heat flux, which we can write as

Q =

∫

V(t)

q dV −

∫

∂V(t)

q∗i n̂i dA,

with q the heat source density and q∗i the heat flux. The heat flux is usually given by Fourier’s law,

q∗i = −k∂iT,

with T the temperature and k ≥ 0 the heat conduction coefficient. In general k = k(T ), but in
practice the temperature differences are small enough so we can consider k constant.
From the transport equation we have

d

dt

∫

V(t)

E dV =

∫

V(t)

(∂tE + ∂i(Evi)) dV.

If in (2.14) we transform the area integrals over ∂V(t) to volume integrals over V(t) by use of
the divergence theorem, all terms are volume integrals over the arbitrary volume V(t) and we can
conclude the integrands must be equal. So the conservation of energy in differential form states

∂tE + ∂i(Evi) = fb
i vi + ∂j(Tijvi) + q − ∂iq

∗
i ,

= fb
i vi + ∂j(Tijvi) + k∂2

i T + q,

where we consider k constant. Using (2.7) we can write

fb
i vi + ∂j(Tijvi) = fb

i vi + vi∂jTij + Tij∂jvi = ρviDtvi + Tij∂jvi,

so we arrive at the equation

∂tE + ∂i(Evi) = ρviDtvi + Tij∂jvi + k∂2
i T + q. (2.15)

This is the conservation of energy equation, where still have to substitute the stress tensor. Note
that we can write the energy density as the sum of the internal energy and the kinetic energy for
each particle,

E = ρ

(

e+
1

2
vivi

)

, (2.16)

with e the specific internal energy (per unit mass).
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2.4 Thermodynamic relations

Up until now we have three major equations, the continuity equation, the result of conservation of
mass, the Navier-Stokes equation (this is a vector equation, so we can consider this three separate
equation, one for each component), the result of conservation of momentum and the energy equation,
the result of the conservation of energy. The number of unknown quantities is give, we have the
velocity u (technically this are three unknowns), the mass density ρ, the pressure p, the temperature
T and the internal energy e. This means we need two more equations, that give the relation between
the state variables ρ, p and T and the specific internal energy e. In general we need an equation of
state

p = p(ρ, T ), (2.17)

and the relation

e = e(ρ, T ). (2.18)

The functional form of those equations depend on the specific fluid that is considered and the
assumptions that are made. From these two relations we can determine p = p(e, ρ) and T = T (e, ρ).
If we assume that the temperature differences in the fluid are relatively small, we can use the specific
heat capacity. We have to distinguish between the specific heat capacity at constant volume and
constant pressure. Since the compressibility of water is relatively small we will use the specific
heat capacity at constant volume, and because the temperature varies only little we consider it a
constant, despite its dependence on the state variables such as temperature and pressure. This way
we get as relation for the internal energy

e = cpT, (2.19)

where cp is the specific heat at constant pressure, for a certain reference temperature.

2.5 Overview of equations

We have derived a number of equations that governing the flow of a fluid. In general we have the
differential equations











∂tρ+ ∂i(ρvi) = 0,

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2
j vi +

1
3µ∂i(∂jvj) + fb

i ,

∂tE + ∂i(Evi) = ρviDtvi + Tij∂jvi + k∂2
i T + q,

where E is given by (2.16) and Tij by (2.9), together with the relations p = p(e, ρ) and T = T (e, ρ).
We still need to specify fb

i and q, the (body) force density and heat source. As we will see, in our
application, these quantities follow from the Maxwell equations, where fb

i is the force exerted by
means of the Maxwell stress tensor, and q is the heat source resulting from the dissipation of the
electromagnetic field.
For our analysis, we will assume the flow is incompressible. In this case the first equation reduces
to ∂iui = 0.
Furthermore, we assume the temperature to vary only slightly. In the momentum equation we will
assume that the density depends on the temperature, so that temperature differences can induce
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flow. In order to allow this, we follow [5] and write the density and the temperature as the difference
between a reference value and a small deviation, ρ = ρ0 + ρ′ and T = T0 + T ′. Since ρ′ is small, we
can write it as

ρ′ =

(

∂ρ0

∂T

)

p

T ′ = −ρ0βT
′,

with β the thermal expansion coefficient. Using this expression we have for the density the expres-
sion

ρ = ρ0 + ρ′ = ρ0 (1− β(T − T0)) . (2.20)

Finally we need an equation in the temperature T . In the energy equation we assume the density
to be constant, and we use e = cpT . The left-hand side of the energy equation can now be written
as

∂tE + ∂i(Evi) = ∂tE + vi∂iE + E + ∂ivi,

= DtE,

= ρDte + ρDt

(

1

2
vivi

)

,

= ρcpDtT + ρviDtvi,

where in the last line we applied the chain rule. Cancelling equal terms, we arrive at the temperature
equation

ρcp (∂tT + vi∂iT ) = Tij∂jvi + k∂2
i T + q. (2.21)

So the final set of equations we will start our analysis with is given by











∂ivi = 0,

ρ (∂tvi + vj∂jvi) = −∂ip+ µ∂2
j vi + fb

i ,

ρcp (∂tT + vi∂iT ) = Tij∂jvi + k∂2
i T + q,

where ρ is given by (2.20).

2.6 Boundary conditions

So solve the equations stated earlier we need boundary conditions for the velocity and temperature.
Information about the boundary conditions can be found in [2]. For the velocity at a solid boundary
there are two common possibilities. In the inviscid case we assume the velocity is parallel to the
boundary, that is, no fluid particle penetrates the boundary,

v · n̂ = 0,

with n̂ the unit normal vector. In case of a viscous fluid, we assume the no-slip boundary condition,
which says that the fluid ‘sticks’ to the boundary and its velocity is zero,
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v = 0.

For the temperature we can either assume the boundary is perfectly insulated, or that a certain
heat flux is present. The latter is implemented by using a reference temperature and a certain heat
conductivity coefficient.
For boundaries where fluid is allowed to cross we need different boundary conditions. The most
common situation we will consider is a domain with an inflow and an outflow boundary. At the
inflow we prescribe a certain velocity and temperature. At the outflow we assume the normal
gradient of these quantities is zero.
Notice that we did not specify the pressure. The value of the pressure will usually follow from the
equations. In case that the velocity at an inflow is not known we can prescribe the pressure. The
velocity at the boundary then follows from the equations.
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Chapter 3

Research questions

We start the analysis with the assumption that there is no feedback from the moving fluid to the
electromagnetic fields. This means that we assume that the coupling between the Maxwell equations
and the Navier-Stokes equations is one-way. We can solve the Maxwell equations, either in the time
or frequency domain, using the material properties. From the resulting fields the force density can
be determined. In case we are working in the frequency domain, we determine the time-averaged
value of the force density. Furthermore if we assume the material has a positive conductivity, we
determine the dissipation.

After determining the electromagnetic fields, we solve the Navier-Stokes equations, using the force
density and dissipation term determined earlier in the stage.

Analytical solutions can only be determined in the most trivial case, one dimensional. The incom-
pressible Navier-Stokes equations will lead to zero velocity in this case. For higher dimensional
problems with more interesting geometries and dispersion we will need numerical methods.

The first step will be to investigate which software packages are suitable for these particular equa-
tions. Here we will both look at time-domain and frequency-domain methods. Interesting open
source packages are OpenFOAM for the Navier-Stokes equations and Meep for the time-domain
Maxwell equations. Also the commercial package COMSOL will be investigated. The advantage of
the open source packages is that there is more flexibility. With these packages we will first investi-
gate several simple cases, in particular the ones with analytical solutions, to validate the numerical
methods used.

It is important part to investigate how accurate it is to neglect the effect of the flow on the elec-
tromagnetic fields. Since the complete coupled system is likely to hard to solve simultaneously, an
iterative process is most likely to be suitable. We will first determine the electromagnetic fields
and the corresponding force density and dissipation, considering the velocity field constant. From
this we can we can determine the new velocity field, which in turn leads to new solution for the
electromagnetic fields. In this process it is important to determine appropriate time stepping, so
that the computations are still feasible, but the significant phenomena are not suppressed.

The next step will be to consider more complex geometries and electromagnetic sources. This will
hopefully lead to more interesting flow phenomena. Our fluid of main interest is water. For water
there are two regions in the electromagnetic spectrum that are of interest for us. It is well known
that the absorption in the microwave region is large, which we expect to lead to relatively large
temperature induced flow. Another interesting source is that of lasers. Although water is highly
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transparent at the frequency of common lasers, because of their ability to deliver high power it is
still an interesting source of heat.
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Appendix A

Four-vector notation

In order to determine the right constitutive relations, and energy and momentum equations, we
will use the four-vector notation from special relativity. Since the Maxwell equations are Lorentz
invariant, we can get compact notation in this way. Once we have the correct expressions for the
constitutive relations and energy and momentum equations, we will make assumptions about the
fluid velocity being non-relativistic, in order to simplify things
We change to the coordinates x0 = ct and xi = xi for i = 1, 2, 3. We use the notations of [3] and
[6]. The partial derivatives are now given by

∂µ =
(

1
c
∂t ∂1 ∂2 ∂3

)

.

We will use the so-called (− +++) convention, meaning that the metric tensor is given by

ηµν = ηµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (A.1)

We will need the four-vectors for the velocity and the electric and magnetic current densities. For
the velocity we have

V µ =
(

γc γv1 γv2 γv3
)

, (A.2)

where γ is the famous gamma factor, given by

γ =
1

√

1− ‖v‖2

c2

.

For ordinary velocities we have γ ≈ 1, and we will use this simplification later on. We define the
electric current density four-vector

Jµ =
(

cρe J1 J2 J3
)

, (A.3)

and the magnetic current density four-vector
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Kµ =
(

cρm K1 K2 K3

)

, (A.4)

where Ji and Ki are the components of the normal current densities. If we separate the vector in
a time and space part, we can write the space part in vector notation. We then get

V µ =
(

γc γv
)

, Jµ =
(

cρe J
)

andKµ =
(

cρm K
)

.

We can now define the field tensor F νµ as

Fµν =









0 E1

c
E2

c
E3

c

−E1

c
0 µ0H3 −µ0H2

−E2

c
−µ0H3 0 µ0H1

−E3

c
µ0H2 −µ0H1 0









, (A.5)

and the dual field tensor Gνµ as

Gµν =
1

2
ǫµνρσF ρσ =









0 µ0H1 µ0H2 µ0H3

−µ0H1 0 −E3

c
E2

c

−µ0H2
E3

c
0 −E1

c

−µ0H3 −E2

c
E1

c
0









. (A.6)

In vector notation these tensors are equal to

F νµ =

(

0 1
c
E

− 1
c
E · × (µ0H)

)

and

Gνµ =

(

0 µ0H

−µ0H · × (1
c
E)

)

,

where · ×E means that vector with which is multiplied is inserted in the curl operator.
The Maxwell equations can now be stated as

∂νF
µν = Jµ, (A.7)

∂νG
µν = Kµ. (A.8)

Conversation of electric and magnetic charge are expressed as

∂µJ
µ = 0, (A.9)

∂µK
µ = 0. (A.10)

Further expression can be derived for the Lorentz force and Poynting theorem as the gradient of
the energy-stress tensor. At this point we will not need these results since we already derived them
directly from the Maxwell equations.
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