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Chapter 1

Introduction

For every animal’s survival it is vital for its body to be able to repair injured
parts. When injured the body responds with a series of events, beginning with
containing the damage and working towards recovery. The biological model de-
scribed in [1] and summarized below describes the various stages of the wound
healing process.

In medicine the cutaneous wound healing process is generally divided into
three overlapping stages. These stages mainly consist of (1) inflammation, (2)
granulation tissue formation and (3) wound closure. In the inflammation stage
the body attempts to contain the damage. The inflammatory process tries to
either destroy, dilute or wall off the injurious agent. Along with removing the
cause of the injury it starts off the healing process, [1].

In stage two granulation tissue is formed in the wound. Fibroblast invade
the wound area and contract the surrounding tissue (extra cellular matrix) to
ensure that new small blood vessels, capillaries, can be formed (angiogenesis).
As new blood capillaries are formed, oxygen and nutrients can once again be
transported to the wound side.

Finally when the tissue is provided with enough oxygen and nutrients the
process of wound closure starts. Cells in the epidermis, which consist of mainly
keratinocytes, start regenerating the upperlayer of the wound. Usually the skin
can not be replaced fully and some marks are left where the wound was located,
like scars.

The processes of granulation tissue forming and wound closure do not take
place at the same place in the wound. The former is located in the dermis,
the latter is limited to the epidermis. The epidermis and the dermis consist of
different type of cells and are seperated by a so-called basal membrane, see also
Figure 1.1.

In this literature thesis we present a selection of the currently available math-
ematical models that seek to describe the biological processes of wound healing
as well as possible. The healing process is very complex and many factors con-
tribute to it, therefore simplifications have to be made. In Chapter 2 we give a
detailed description to which mathematical wound healing models this has led.
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Figure 1.1: A schematic of the events during wound healing. The dermis
and epidermis are illustrated. The picture was taken with permission from
http://www.bioscience.org/2006/v11/af/1843/figures.htm

Such models could give more insights on how the process of wound healing
works. These insights might lead to treatments that reduce healing time, e.g.
the use of certain hormones to speed up the healing process. Also scars and
other deformations due to incomplete healing might be prevented.

For some of the models, one for each stage of the wound healing process,
we have done simulations. The results are shown and discussed in Chapter 3.
Finally, in Chapter 4, possible improvements of the models are put forward as
we discuss future work that can be done in this topic.
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Chapter 2

Mathematical Models

The mathematical model for wound healing is usually seperated in three dis-
tinct parts respresenting the three stages of wound healing. There are several
approaches on how to model each different stage, some of which will be dis-
cussed in the following chapter. The three stages that are modelled are wound
contraction, angiogenesis and wound closure. The inflammation stage mentioned
in Chapter 1 is not taken into account, since it contains the damage and only
after inflammation the real healing process starts.

First two wound contraction models, see section 2.1, will be presented. The
second model extends the first by adding an extra aspect of wound contraction.
Next, see section 2.2, two models on angiogenesis will be discussed. They differ
greatly in the way they try to model the growth of new blood vessels in the
wound. For the third fase, wound closure, also two models are presented in
section 2.3. In section 2.4 a study that attempts to combine models of the three
stages is briefly discussed.

2.1 Wound contraction

In the wound contraction phase fibroblast invade the wound and contract the
extracellular matrix (ECM). This process is vital to assure that new blood
vessels can be formed in the wound during angiogenesis. Also it decreases the
area of contact between the wound and its surroundings, thus reducing the
chance of contamination. This process is located in the dermis.

2.1.1 Murray and Tranquillo

Aside from the (slightly adapted) linear viscoelastic equations, which model the
displacement of the ECM, the model due to Tranquillo covers the change of both
the fibroblast concentration and the ECM density over time. The ECM density
is assumed to be affected only by ECM production and by passive movement
due to its own displacement, [2]. The first process is assumed to be proportional
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to the fibroblast concentration and the difference between the equilibrium ECM
density and the ECM density itself, [8]. The resulting equation for the ECM
density then becomes

∂ρ

∂t
+∇ · (utρ) = bn(ρ0 − ρ), (2.1)

where ρ represents the ECM density, n the fibroblast concentration, u the dis-
placement vector, ρ0 the equilibrium ECM density, b the ECM production rate
and where the term ∇ · (utρ) accounts for the passive movement.

The equation for the fibroblast concentration is similar to (2.1). It differs in
the fact that fibroblast are also assumed to move actively due to diffusion, [2].
This gives us the equation for the fibroblast concentration as

∂n

∂t
+∇ · (utn−Dn∇n) = rn(n0 − n), (2.2)

where Dn denotes the diffusion coefficient, r the fibroblast production rate and
n0 the equilibrium fibroblast concentration.

As said, to model the displacement of the ECM the linear viscoelastic equa-
tions are used. These equations are slightly adapted to also incorporate cell
traction. Cell traction is assumed to be proportional to both the ECM density
and the fibroblast concentration, [8]. The force equilibrium is thus given by

∇ ·
[
µ1εt + µ2θtI +

E

1 + ν

(
ε+

ν

1− 2ν
θI

)
+

τρn

1 + λn2

]
= sρu, (2.3)

where µ1, µ2, E and ν denote respectively dynamic and kinematic viscosity,
Young’s modulus and Poisson’s ratio. Furthermore ε = 1

2 (∇u +∇uT ) denotes
the strain tensor and θ = ∇ · u the dilation. Also s is known as the tethering
elasticity coefficient and λ is a parameters which quantifies how the cell traction
depends on n, [2].

At time t = 0 all variables are assumed to be zero inside the wound, i.e.

n(x, 0) = 0

ρ(x, 0) = 0

u(x, 0) = 0

for x ∈ Ωw. This corresponds to all fibroblasts and extra cellurar matrix being
removed instantaneously from the wound side. Outside the wound area, x ∈
Ωu = Ω \ Ωw, the displacement u is assumed to also be zero. Both the ECM
density and fibroblast concentration outside the wound are initially assumed to
be at its equilibrium, i.e.

n(x, 0) = n0

ρ(x, 0) = ρ0

for x ∈ Ωu.
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At the boundaries it is assumed that the displacement u is zero and that
there is no transport of fibroblasts possible, i.e the flux is zero. The ECM density
satisfies a first order hyperbolic equation and thus no boundary conditions can
be prescribed, [8]. This is due to the fact that we impose a homogeneous dirichlet
boundary condition on u. Then ut is always zero on the boundary and thus so is
the second term on the left hand side of (2.2). Note that if we would not impose
that u is zero on some part of the boundary, we would have to prescribe a
boundary condition for ρ on that part. In that case a no-flow boundary condition
should be imposed.

2.1.2 Olsen et al

The model for wound contraction proposed by Olsen et al. in [3] differs from
Tranquillo’s model in two ways. First it deals with the presence of myofibrob-
lasts. These non motile cells differentiate from fibroblasts and transmit and
amplify the traction forces generated by the fibroblasts, [8]. Second, the model
incorporates the effects of a growth factor that triggers wound contraction.

In addition to a new equation for both the myofibroblast and growth factor
concentration some differences are found in the other equations. The equation
concerning the fibroblast concentration n becomes

∂n

∂t
+∇ ·

(
utn−Dn∇n+

an
(bn + c)2

n∇c
)

=(
rn +

rn,maxc

C1/2 + c

)(
1− n

K

)
n− k1,maxc

Ck + c
n+ k2m− dnn, (2.4)

where c and m respectively denote the growth factor and myofibroblast concen-
tration.

In addition to the model due to Tranquillo there is an extra term (see the
fourth) on the left hand side which accounts for cell movement due to chemo-
taxis. The terms on the right hand side account respectively for proliferation
(growth factor stimulated), differentiation to and from myofibroblasts and cell
death.

The equation for the myofibroblast concentration is similar to the one for
fibroblast concentration. But since myofibroblast are non motile, they will only
move passively due to displacements in the ECM. The myofibroblast concentra-
tion thus solves

∂m

∂t
+∇ · (utm) = εr

(
rn +

rn,maxc

C1/2 + c

)(
1− m

K

)
m

+
k1,maxc

Ck + c
n− k2m− dmm, (2.5)

where rn, εr, K, k1, k2, dm and Ck are known constants.
The ECM density ρ is effected by both fibroblasts and myofibroblasts, fur-

thermore it is chemically enhanced by the growth factor concentration, [8]. The
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equation for the ECM density is thus modelled by

∂ρ

∂t
+∇ · (utρ) =

(
rρ +

rρ,maxc

Cρ + c

)
n+ ηbm

R2
ρ + ρ2

− dρ(n+ ηdm)ρ, (2.6)

where the first term on the right hand side accounts for growth factor enhanced
ECM production and the second term for ECM decay.

The growth factor is produced by both fibroblasts and myofibroblasts, fur-
thermore it moves both actively as well as passively through the ECM. The
resulting equation for the growth factor concentration then is

∂c

∂t
+∇ · (utc−Dc∇c) =

kc(n+ ζm)c

Γ + c
− dcc, (2.7)

where the last term on the right hand side respresents growth factor decay.
As in the model due to Tranquillo the displacement in the ECM is still mod-

elled via adapted linear viscoelastic equations. The effect of the myofibroblasts
can be found in that the last term on the right hand side in (2.3) is changed. The
cell traction stresses are generated by fibroblasts, amplified by myofibroblasts
and inhibited at high ECM densities, [8]. This results in an adapted term for
the cell traction as

τ0(1 + ξm)nρ

R2
τ + ρ2

I. (2.8)

The force equilibrium is thus given by

∇ ·
[
µ1εt + µ2θtI +

E

1 + ν

(
ε+

ν

1− 2ν
θI

)
+
τ0(1 + ξm)nρ

R2
τ + ρ2

I

]
= sρu, (2.9)

The initial and boundary conditions are similar to those of the model due
to Murray and Tranquillo. The myofibroblasts are absent everywhere at the
time of injury and only appear due to differentation from fibroblasts, [8]. The
growth factor concentration is at its equilibrium inside the wound, it has been
accumulated there during inflammation. Both the myofibroblast and the growth
factor concentration are assumed to satisfy no-flow boundary conditions.

2.2 Angiogenesis

Angiogenesis is the wound healing phase that succeeds and partly overlaps
wound contraction. During this phase new capillaries are formed in the wound
area to supply the wound with the oxygen and nutrients needed to heal. This
process, which takes place in the dermis, is modelled in two very different ways.

2.2.1 Maggelakis

The model due to Maggelakis, proposed in [4], assumes a positive relation be-
tween the lack of oxygen in the wound and the growth of new capillaries. The
shortage of oxygen activates macrophages in the wound area, which in their turn
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start the production of a growth factor that stimulates capillary regeneration,
[8]. In return, the growth of new capillaries reduces the shortage of oxygen due
to transport.

If we let u1, u2 and u3 denote respectively the oxygen concentration, the
MDGF (macrophage derived growth factor) concentration and the capillary
density, the model due to Maggelakis follows as

∂u1

∂t
= D1∆u1 − λ11u1 + λ13u3 (2.10)

∂u2

∂t
= D2∆u2 − λ22u2 + λ21Q(u1) (2.11)

∂u3

∂t
= D3∆u3 + λ33u2u3

(
1− u3

ueq
3

)
. (2.12)

Here the Di are the diffusion coefficients, whereas the terms λ11u1 and λ22u2

respectively represent the oxygen consumption and the decay of the growth
factor. The MDGF production rate Q depends on the oxygen concentration in
the following way

Q(u1) =


0, if x ∈ Ωu
0, if u1 ≥ uθ
1− u1

uθ
, if u1 < uθ,

where uθ is some threshold value for the MDGF production and Ωu = Ω \ Ωw,
the unwouded skin surrounding the wound area. So the production of MDGF
drops linearly to zero when the oxygen concentration is below the threshold
value uθ and rising.

The last term in (2.12) stands for the formation of new capillaries, where
ueq

3 is the equilibrium cappilary density. New capillaries are more easily formed
if there are already capillaries present, furthermore the presence of MDFGs also
triggers the production. The term λ13u3 in (2.10) captures the transport of
oxygen towards the wound, which is larger if there are more capillaries.

Initially the oxygen concentration is zero inside the wound are, i.e. Ωw, and
at its equilibrium in the rest of the computational domain, Ωu = Ω \ Ωw. The
same is assumed for the capillary density and also both u1 and u3 satisfy no-
flux boundary conditions. The MDGF concentration, u2, is assumed to be zero
throughout the entire computational domain at time t = 0, furthermore it also
satisfies a no-flux boundary condition.

2.2.2 Gaffney et al

The model proposed in [5] by Gaffney et al. takes a completely different strategy
to model angiogenesis. It models the relation between the tip concentration and
the endothelial cell density, which is a building block for new blood capillaries,
[8]. I does not take into account the relation between shortage of oxygen and
growth of new capillaries.

The model tries to capture the process where endothelial cells migrate out of
blood vessels facing the wound. As they migrate they form a tube that extends
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from the parent vessel, [8]. At the tips of these tubes cells proliferate to form
new capillaries that extend into the wound area. Tips branch and join and thus
form a new network of capillaries, from which the process is repeated.

If we let n(x, t) and b(x, t) be the tip concentration and the endothelial cell
density respectively, then the partial differential equations of this model read

∂n

∂t
= ∇ · {D1∇n+D2n∇b}+ f(n, b) (2.13)

∂b

∂t
= λ1∇ · {D1∇n+D2n∇b}+ g(n, b). (2.14)

The first term on the right hand side in both equations denotes transport as well
as an additional migration towards a decreasing blood vessel density, [8]. The two
functions f and g both depend on the tip concentration and the endothelial cell
density. They represent production and decay of n(x, t) and b(x, t) respectively.

For the tip concentration n(x, t) growth is due to tip branching, the splitting
of tips into new tips. Decay can either be a result of two tips meeting at one
point or a tip meeting a capillary. Since the probability that a tip is located at
a certain point is proportional to n, the growth term is also proportional to n.
Decay due to two tips meeting then is proportional to n2, whereas decay from
a tip meeting a capillary is proportional to nb. All this combined results in f
being of the form

f(n, b) = λ2n− λ3n
2 − λ4nb. (2.15)

The function g(n, b) can be split into four seperate terms. The first denoting
proliferation due to logistic growth of the endothelial cell density, [8]. The second
term accounts for extra growth due to the presence of tips, which are build from
endothelial cells. The third and fourth term are taken together and represent
growth due to two tips joining or one tip merging with a capillary (compare to
the last two terms in (2.15)). The whole function g is thus given by

g(n, b) = λ6ab(b0 − b) + λ6χnb(b1 − b) + λ5(λ3n
2 + λ4nb). (2.16)

At the boundary of the computational domain Ω it is assumed that no trans-
port takes place of both tips and endothelial cells, so they both satisfy a no-flux
boundary condition. Furthermore it is assumed that inside the wound area,
x ∈ Ωw, there are no tips and endothelial cells present initially. Outside the
wound area, the endothelial cell concentration is at its equilibrium due to the
undamaged capillaries. The tip concentration is everywhere zero, except for a
small strip facing the wound area.

2.3 Wound closure

The final stage of the healing process is closure of the wound. When the wounded
area has been sufficiently supplied with oxygen and nutriciens, cells in the epi-
dermis start dividing and so regenerate the lost skin as good as possible. This
process is triggered by numerous growth factors, but in the following two models
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it is assumed that only one generic growth factor influences wound closure, [8].
Note that this process takes place in the epidermis, unlike wound contraction
and angiogenesis.

2.3.1 Sherratt and Murray

If the density of epidermal cells is low, the production of the epidermal cell
derived growth factor is high. And under the influence of the growth factor the
production of epidermal cells increases. Those are the basics for the model due
to Sherratt and Murray proposed in [6]. As the wound heals, the production of
epidermal cells descreases to a point where the proliferation rate is in balance
with the decay rate, [8].

If we let u4 denote the epidermal cell density then its balance is given by

∂u4

∂t
= D4∆u4 + s(u5)u4

[
2− u4

ueq
4

]
− λ44u4, (2.17)

where the terms on the right hand side account for diffusive transport, prolif-
eration and cell death respectively. The growth factor concentration is denoted
by u5 and s is a nonlinear function of this concentration describing the mitotic
rate.

Sherratt and Murray consider two different types of growth factors, activa-
tors and inhibitors. The function s(u5) is different in both cases and reads

s(u5) =
2cm(h− β)u5

c2m + u2
5

+ β (2.18)

for the activator and

s(u5) =
(h− 1)u5 + h

2(h− 1)u5 + 1
(2.19)

for the inhibitor, here h and cm are known constants and

β =
1 + c2m − 2hcm

(1− cm)2

The function s(u5) is plotted in Figure 2.1 for h = 10 and cm = 40.
The growth factor concentration behaves similarly to (2.17) and thus for u5

we obtain
∂u5

∂t
= D5∆u5 + f(u4)− λ55u5. (2.20)

Here the function f is a nonlinear function of u4, which is also different in the
activator and inhibitor case. For the activator case it is given by

f(u4) =
u4(1 + α2)

u2
4 + α2

, (2.21)

where α is a constant, and for the inhibitor it is given by

f(u4) = u4. (2.22)
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Figure 2.1: The function s(u5) for an activator (left) and an inhibitor (right).

Figure 2.2: The function f(u4) for an activator (left) and an inhibitor (right).
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The function f(u4) is plotted in Figure 2.2 for α = 0.1.
For both the epidermal cell density and the growth factor concentration the

initial value is zero inside the wound and both are at their equilibrium outside
the wound are, i.e.

u4(x, 0) =

{
0, for x ∈ Ωw
ueq

4 , for x ∈ Ωu

u5(x, 0) =

{
0, for x ∈ Ωw
ueq

5 , for x ∈ Ωu.

Furthermore it is assumed that there is no transport of both epidermal cells and
growth factor over the boundaries of the computational domain. Thus a no-flux
boundary condition is induced on both u4 and u5.

2.3.2 Adam

The model due to Adam, proposed in [7], takes a somewhat different approach
as it only considers the dynamics of the growth factor concentration. Then based
on the presence of the growth factor the healing process is described, [8].

Firstly, the computational domain Ω is split up in three subdomains Ω1(t),
Ω2(t) and Ω3(t). They denote the wound area, the active layer and the outer
(healthy) tissue respectively and are functions of time since the wound is healing.

The presence of growth factor is influenced by diffusive transport, decay and
production. If we denote its concentration by c, the partial differential equation
for the growth factor is given by

∂c

∂t
= ∇ · (D∇c)− λc+ P1Ω2 , (2.23)

where D, λ and P are the diffusion coefficient, decay factor and production rate
respectively. Furthermore

1Ω2
=

{
1, for x ∈ Ω2(t)
0, for x ∈ Ω1(t) ∪ Ω3(t),

(2.24)

the indicator function of Ω2(t). On the boundary ∂Ω we assume no transport
of the growth factor and thus a no-flux boundary condition is imposed. Initially
the growth factor is assumed to be absent in the entire computational domain,
[8].

If we denote the interface between Ω1(t) and Ω2(t) by W (t),

W (t) = Ω̄1(t) ∪ Ω̄2(t), (2.25)

then healing at a certain location on W (t) implies that the inward normal com-
ponent of the velocity, vν , is positive, [8]. The model due to Adam, see [7], says
that this is so when the growth factor concentration exceeds a certain value, i.e.
vν 6= 0 if and only if c(x, t) > ĉ, for x on the interface W (t).
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Figure 2.3: The geometry of the model with the dermis and the epidermis. This
figure was taken, with permission, from [9].

Furthermore it is assumed that the healing rate is proportional to the local
curvature κ of the wound. Then the velocity component in the outward (from
Ω1(t)) normal direction is given by

vν = −(α+ βκ)w(c(t,x)− ĉ). (2.26)

Here α and β are positive constants, prohibiting growth of the wound if κ ≥ 0,
and w(s) falls within the family of Heaviside functions.

So to know if the wound is healing at a certain location along the interface
W (t), one needs to know the growth factor concentration there. To know the
rate of healing, one must look at the curvature of the wound.

2.4 Vermolen and Javierre

The models described in the previous sections all account for a single stage in
the wound healing process. In fact these stages (partially) overlap each other in
the healing process and thus are also influenced by one another. Furthermore
where wound contraction occurs in the whole wound, angiogenesis and wound
closure are dermal and epidermal processes respectively.

In [9] an attempt is made to combine models of the three stages to get more
insight in the wound healing process, such as geometry influences. The model due
to Murray and Tranquillo, see section 2.1.1, is used for wound contraction. For
angiogenesis and wound closure the model due to Maggelakis, see section 2.2.1,
and Sherratt and Murray, see section 2.3.1, are used respectively. Furthermore
they consider a computational region in which there is a clear difference between
the dermis and the epidermis, so that angiogenesis and wound closure can be
simulated in seperate regions. In Figure 2.3 the computational region is depicted.

The results in [9] show a clear sequence of the above mentioned stages of
wound healing. Also, they partially overlap (although the amount of overlapping
does depend on the choice of parameters) and thus might influence one another,
see Figures 2.4 and 2.5. These influences are not yet taken into account in this
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Figure 2.4: The concentration in the upper left part of the wound: capillary,
ECM and fibroblast densities in the dermis, epidermal cell density in the epi-
dermis. Here the capillary diffusity was taken Dc = 0.01 cm2/s. This figure was
taken, with permission, from [9].

model and are topics for future research. For more details and results we refer
to [9].
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Figure 2.5: The concentration in the upper left part of the wound: capillary,
ECM and fibroblast densities in the dermis, epidermal cell density in the epi-
dermis. Here the capillary diffusity was taken Dc = 0.001 cm2/s. This figure
was taken, with permission, from [9].
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Chapter 3

Simulations of wound
healing

In this section we present some computational results done on the models de-
scribed in Chapter 2. For each stage in wound healing simulations have been
done with one model. First the model due to Murray and Tranquillo is consid-
ered, second the model due to Maggelakis and finally the model due to Sherrat
and Murray. This was done to give some understanding on how each stage in
the wound healing process evolves.

The solutions have been obtained using the numerical methods described in
Section 3.1 and the programming has been done in Matlab c©.

3.1 Numerical methods

In this section we show, using one equation as an example, how the computations
on the models have been done. We consider the nonlinear reaction-diffusion
equation

∂u

∂t
= D∆u+ λu(1− u) for (x, t) ∈ Ω× [0, T ], (3.1)

subject to

∂u

∂n
= 0 for (x, t) ∈ ∂Ω× [0, T ],

u(0,x) = u0(x).

Here D and λ are constants and n denotes the outward normal vector. Further-
more note that u is in no way related to any of the variables used in the models
described in Chapter 2.

To discritize the equation we are going to use the Finite Element Method
(FEM). We multiply (3.1) by a testfunction η and integrate over the computa-
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tional domain Ω to obtain∫
Ω

∂u

∂t
η∂Ω =

∫
Ω

Dη∆u+ λu(1− u)η∂Ω. (3.2)

To the first term on the right hand side we apply the product rule for differenta-
tion and Gauss’ Theorem, which gives us∫

Ω

∂u

∂t
η∂Ω =

∫
Ω

−D∇η · ∇u+ λu(1− u)η∂Ω +D

∫
∂Ω

η∇u · n∂Γ, (3.3)

where the last term on the right hand side is equal to zero due to the boundary
condition.

Now we use Galerkin’s method and approximate u by

uN =

N∑
j=1

uj(t)φj(x). (3.4)

The function φj(x) must be sufficiently smooth and must satisfy the same
boundary conditions as u. Furthermore we also want the testfunction η to be a
linear combination of φj(x), i.e.

η =

N∑
j=1

bjφj(x). (3.5)

This is natural since the testfunction is in the same space as u. As η is chosen
arbitrarily, we can assume that all bj are equal to zero except for one bi = 1.
Using this and substituting (3.4) and (3.5) into (3.2) results in

d

dt

N∑
j=1

uj

∫
Ω

φjφi∂Ω = −D
N∑
j=1

uj

∫
Ω

∇φj · ∇φi∂Ω + λ

N∑
j=1

uj

∫
Ω

(1− u)φjφi∂Ω

(3.6)
for i = 1 . . . N . The term 1 − u in the right hand side will be evaluated at the
previous timestep.

Note that (3.6) can be written in matrix-vector form

M
dū

dt
= S(u)ū+ f, (3.7)

where ū = [u1, u2, . . . , uN ]T . We will omit the bar from now on and just write
u. The matrix M (time matrix) contains the integrals in the left hand side of
(3.6),

Mij =

∫
Ω

φiφj∂Ω,

whereas S(u) (mass matrix) contains the integrals on the right hand size

S(u)ij = −D
∫

Ω

∇φj · ∇φi∂Ω + λ

∫
Ω

(1− u)φiφj∂Ω.
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In this case f = 0. Now we split the domain Ω up into (triangular) elements
ek and can construct the time and mass matrix using element matrices, see [10]
for more details.

Let us denote the element time and mass matrix by Me and Se respectively.
For the φj(x) we have used the linear basisfunctions. The elements of Me are
then given (for i, j = 1 . . . 3), using Newton-Cotes for a triangle with linear
basisfunctions, by

M ij
e =

∫
e

φiφjde

=

3∑
k=1

φi(xk)φj(xk)

∫
e

φkde

= δij
|∆|
6
,

where we have used local numbering (x1, x2 and x3 denote the corners of the
triangle) and ∆ denotes the surface of the element. The elements of Se are given
by

S(u)ije = −D
∫
e

∇φi · ∇φjde+ λ

∫
e

(1− u)φiφjde, (3.8)

for i, j = 1 . . . 3. In a similar way as done with the elements of Me we can use
Newton-Cotes to approximate the elements of Se and find

S(u)ije = −D |∆|
2

(ai1a
j
1 + ai2a

j
2) + λ(1− u(xi))

|∆|
6
δij , (3.9)

where akl (k = 1 . . . 3, l = 1, 2) are derivatives of the linear basisfunctions and
can be found in [10] at page 105.

We have now constructed the matrices M and S(u) from the matrix-vector
equation (3.7). In this case the vector f = 0 and we are left with

M
du

dt
= S(u)u. (3.10)

To solve u from this matrix-vector equation we now must integrate in time. We
will denote um as the solution at time t = tm = m∆t, where ∆t is the timestep.
Using Crank-Nicolson for the time integration yields(

M − 1

2
∆tS(um)

)
um+1 =

(
M +

1

2
∆tS(um)

)
um. (3.11)

Note that S is a function of the solution at the previous timestep, this is due to
the nonlinear term 1− u in (3.1). This leaves us with a matrix-vector equation
for each timestep. This type of equation is easily solved in Matlab, especially as
M and S are sparse matrices.
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production rates b, r 1, 1
equilibrium values ρ0, n0 1, 1
diffusive coefficient Dn 0.1
Young’s modulus E 106

Poisson ratio ν 0.25
shear and bulk viscosity µ1, µ2 106, 106

thetering elasticity coefficient s 106

other constants τ, λ 0.5, 1
timestep ∆t 0.01

Table 3.1: Parameters used in simulation of the model due to Murray and Tran-
quillo.

3.2 Model due to Murray and Tranquillo

In this section we discuss the results of the simulation of the model due to
Murray and Tranquillo. We consider the computational domain (dermis) Ω =
[0, 1] × [0, 1] and a wound region Ωw = {x : |x| < 0.5}. Further parameters
values can be found in Table 3.1. Initially both fibroblasts and the extra cellular
matrix (ECM) are absent inside the wound. As time progresses fibroblasts invade
the wound, see Figure 3.1. Due to diffusive transport the fibroblast concentra-
tion decreases in the surrounding (healthy) tissue, whereas the concentration
increases inside the wound.

Shortly after the fibroblast have entered the wound ECM starts forming.
As the ECM is non-motile (it only moves due to passive movement) the density
outside the wound remains at its equilibrium. Inside the wound the ECM density
starts increasing in a similar way as the fibroblast concentration, see Figure 3.2.

The computation shows what one would expect to happen. After the injury
has occured, the wound is void of both fibroblast and ECM. The fibroblast then
move in to restore the ECM, so that angiogenesis can take place.

3.3 Model due to Maggelakis

For the angiogenesis stage of the healing process we have chosen to use the
model due to Maggelakis. This model, unlike the model due to Gaffney et al,
incorporates the effects of lack of oxygen on the growth of new capillaries. This
is considered as an important aspect of angiogenesis.

We consider the same computational domain (dermis) and wound area as in
Section 3.2. The parameters values used in the simulation can be found in Table
3.2.

Figure 3.3 shows the MDGF (macrophage derived growth factor) concentra-
tion at three different (successive) timesteps. Initially this concentration is zero
everywhere in the computational domain. Due to the lack of oxygen it starts
increasing, but only in the wound area (in the undamaged tissue there is no lack
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Figure 3.1: Fibroblast concentration after respectively 20 (top), 50 (middle) and
100 (bottom) time steps.
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Figure 3.2: ECM density after respectively 20 (top), 50 (middle) and 100 (bot-
tom) time steps.
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diffusive coefficients D1, D2, D3 0.01, 0.1, 0.01
decay factors λ11, λ22 0.02, 1
oxygen transport rate λ13 1
MDGF production rate λ21 10
capillary production rate λ33 10
capillary density equilibrium ueq

3 0.1
oxygen concentration equilibrium uθ 5
timestep ∆t 0.01

Table 3.2: Parameters used in simulation of the model due to Maggelakis.

diffusive coefficients D4, D5 5 · 10−4, 0.45
decay factors λ44, λ55 1, 1
epidermal cell density equilibrium ueq

4 1
growth factor concentration equilibrium ueq

5 1
other constants cm, h, α 40, 10, 0.1
timestep ∆t 0.01

Table 3.3: Parameters used in simulation of the model due to Sherratt and
Murray.

of oxygen). As a result of diffusive transport the MDGF spreads over the entire
domain, but remains at its peak in the wound area.

The capillary density inside the wound is zero at t = 0 (there are no blood
vessels remaining after injury). When the MDGF concentration rises it triggers
the production of new capillaries and so the capillary density increases. Already
after 50 timesteps the capillary density is almost at its equilibrium, as can be
seen in Figure 3.4. When it has reached a stable state (after 80 timesteps) the
growth of new capillaries is stopped and the density remains at its equilibrium.

When new capillaries are formed oxygen can once again be transported to
the wounded area. Initially the concentration is zero inside the wound, but as
more capillaries are formed the concentration increases. Although this process
happens rather slowly, it can be seen in Figure 3.5 that the oxygen concentration
does rise towards an equilibrium.

3.4 Model due to Sherratt and Murray

In this section we consider the wound closure model due to Sherratt and Murray.
This model describes the relation between the growth factor concentration and
the epidermal cell density. We chose to compute the model with an activator
as growth factor, then the growth factor triggers the profileration of epidermal
cells.

We consider the computational domain (epidermis) Ω = [0, 1]× [0, 1] and a
wound region Ωw = {x : |x| < 0.5}. Further parameter values that were used
in the computation can be found in Table 3.3.
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Figure 3.3: MDGF concentration after respectively 20 (top), 50 (middle) and 80
(bottom) time steps.
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Figure 3.4: Capillary density after respectively 20 (top), 50 (middle) and 80
(bottom) time steps.
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Figure 3.5: Oxygen concentration after respectively 20 (top), 50 (middle) and
80 (bottom) time steps.
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The growth factor concentration is assumed to initially be at its equilib-
rium outside the wound and zero inside the wound. The concentration drops
somewhat at first, but starts rising again to even above the equilibrium. The
concentration has an elevation at the wound edge where the skin starts recorver-
ing first, see Figure 3.6.

The epidermal cell density also drops somewhat at first, see Figure 3.7.
But after some time it starts rising througout the domain, but mostly at the
wound edge. Since the growth factor concentration is elevated at here, the most
proliferation takes place at the wound edge. So just as one would expect, the
wound closes from the edge towards the center.
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Figure 3.6: Growth factor concentration after respectively 100 (top), 200 (mid-
dle) and 300 (bottom) time steps.

27



Figure 3.7: Epidermal cell density after respectively 100 (top), 200 (middle) and
300 (bottom) time steps.
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Chapter 4

Conclusions and future
work

The wound healing process can be divided in three stages, i.e. wound contrac-
tion, angiogenesis and wound closure. For each separate stage there are currently
several different models available. These are to some extent reasonable depic-
tions of the real process.

In reality, of course, these seperate stages overlap, as is already shown in
[9]. Furthermore they influence each other, e.g. epidermal cells proliferate much
more slowly with a lack of oxygen. Also angiogenesis might have significant
influences on wound contraction. Such coupling between the models of seperate
stages are topics for future study.

Another issue concerns the two different models for angiogenesis. The model
due to Maggelakis approaches angiogenesis as a process where oxygen shortage
results in growth of new capillaries via a (growth factor based) trigger mech-
anism. The model due to Gaffney et al ignores the effects of oxygen shortage
on capillary growth. But it does capture quite well the process on how new
capillaries are formed out of other, already present, blood vessels.

It might be interesting to combine these two models, so that both aspects of
capillary growth are incorporated. This could give a better insight on how the
process of angiogenesis works.

As said, a lot of work can still be done on the topic of wound healing. For
future research we would recommend

1. Combination of the models for angiogenesis due to Maggelakis and Gaffney
et al.

2. Combination of the new model for angiogenesis with the model for wound
conctraction.

3. Combination of the angiogenesis and wound contraction model with wound
closure.
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4. Modelling of the position of the basal membrane, which separtes the der-
mis from the epidermis.
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