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1
Introduction

When was the last time you took a picture with your mobile phone? Did you realize you used wavelets to store
this picture efficiently? Excuse me, wavelets? Yes wavelets! Wavelets are short wavelike functions which are
used to analyze, decompose and compress signals [18]. This technique is called wavelet analysis and finds its
base in the late 1980’s. The impact of this technique is so large that its main founder, Yves Meyer, won the Abel
prize1 just a few weeks ago [3]. An everyday application of wavelet analysis is the compression of pictures
using the JPG-format [18, 27] which has been the standard format to save pictures efficiently since 1992,
even for the newest mobile phone today. Other examples of applications are the analysis of electric fields
produced by lightning [6], electron spin resonance analysis [35], speech enhancement [19], digital fingerprint
compression by the FBI [27] and the analysis of seismic signals for detecting e.g. earthquakes and oil layers
[39]. These are just a few examples to highlight the large applicability of wavelets.

Wavelet analysis has thus found its way into many research areas. However, in the field of coastal engi-
neering wavelets are virtually unexplored. Deltares is a Dutch independent institute for applied research in
the field of water and subsurface2 that has marked this technique as an opportunity to improve time series
analysis in the coastal engineering field. Coastal researchers and engineers have to deal with complex time
dependent physical processes every day. At Deltares the main focus of research lies within areas where land
and water meet, such as deltas, coastal regions and river basins. Sea level rise threatens economically im-
portant and densely populated areas all over the world, therefore this research is indispensable. Currently,
time series analysis in the field of coastal engineering is mostly performed through Fourier analysis, in com-
bination with noise reducing techniques. Fourier analysis however has its limitations, especially concerning
non stationary signal analysis [15]. This literature study will focus on the analysis of time series in the coastal
engineering field. These signals contain time evolution of wave heights, forces, pressures, etc. The goal of
Deltares’ assignment (see Appendix D) is to research the added value of applying wavelet analysis using ex-
isting wavelets and related techniques to time series, compared to Fourier analysis.

Overview of the thesis
This has been the starting point of this literature thesis, which has been conducted at Deltares in the depart-
ment Coastal Structures and Waves (CSW). After addressing the preliminaries and notation at the end of this
chapter, the second chapter will give a short problem description, with a set of example signals. In Chap-
ter 3, the view of time series analysis is broadened: what ways are there to analyze signals and how do they
relate? In this chapter three techniques are highlighted which will be addressed in Chapter 4, 5 and 6. In these
chapters also the advantages and disadvantages of the different methods are discussed. In Chapter 6 extra
attention is paid to wavelet analysis, for it is the technique that still has to be explored. The applicability and
comparison of these different techniques in a set of signal processing applications is addressed in Chapter 7.
Finally, this thesis concludes with a summary and a conclusion in Chapter 8. In this conclusion the main
research question of my masters thesis: "How can wavelet analysis improve time series analysis in the field of
coastal engineering?", will be presented. Following this main question some research question are derived.

1The Abel prize is considered to be the Nobel prize in mathematics.
2Website Deltares: www.deltares.nl.
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1.1. PRELIMINARIES AND NOTATION 2

1.1. Preliminaries and notation
In this section preliminaries and notation used in this literature thesis are shortly addressed. In the layout of
this thesis, two different blocks can be found.

Example 1.1 Examples are shown in grey boxes; this is an example of an example.

Extra information, such as used code, can be found at the bottom.

And some wavelets are introduced in blue boxes.

Mathematical notation
Functions (of time) or signals (in the time domain) will be given with a lowercase letter, e.g. s(t ) or x(t ).
When discrete signals are addressed, the function is given with hooked brackets, e.g. x[n]. Signals the
other discussed domains, Fourier and wavelet, will be given with capitals: respectively F{x}(ω) = X (ω) and
W{x}(a,b) = X (a,b). Furthermore, matrices will also be expressed with a capital. Here the ω represents the
frequency, a the scale and b the translation. The Greek letter ϕ is used for refinable functions only, and ψ only
for wavelets only. Their Fourier transforms are given by their capitals, respectively Ψ and Φ. Vectors are given
in bold type v = [v1, v2, . . . , vN ]ᵀ.

In both mathematics and computer science, the order symbol O, also known as the Landau O symbol
is used. The letter O is used because it refers to order. The mathematical notation describes the limiting
behavior of a function. In this literature thesis and computer science it is used to express the complexity of
algorithms. It expresses the number of floating point operations (flops) for the parameter going to infinity.

Mathematics
Some complex calculations are stated throughout this thesis, therefore some complex calculus will be shortly
revised. The imaginary number i is defined as i 2 = −1. A complex number z = x + i y consists of a real
part Re(z) = x and an imaginary part Im(z) = y . The modulus |z| =

√
x2 + y2 and the argument θ = arg(z) =

arctan(y/x), such that the complex number can be written in polar form as z = |z|e iθ. The complex conjugate
z = Re(z)− i Im(z). The conjugate transpose of a matrix A is denoted as A∗ = Aᵀ, so (A∗)i j = A j i .

The inner product for two functions f , g ∈ L2 is defined as

〈 f , g 〉 =
∞∫

−∞
f (t )g (t ) dt . (1.1)

The block function 1I (x) is given by

1I (x) =
{

1 if x ∈ I
0 elsewhere

. (1.2)

Furthermore some quantities will be expressed in decibels, which are defined as

xdB = 10 · log10 xmagnitude.

Power decibels are common in signal analysis, those are defined by

xpowerdB = 10 · log10 x2
magnitude = 20 · log10 xmagnitude.

Discrete operations
In Chapter 6 some algorithms will be discussed, which rely on the following discrete operations. If x is a
sequence x = {. . . , x−1, x0, x1, . . .}, the notation (−)x denotes the reverse sequence:

(−)x = {. . . , x1, x0, x−1, . . .} (1.3)

The notation (↓ 2)x stands for down sampling of the sequence, an operation that throws the odd-numbered
vector entries out and renumbers the even-numbered ones, so

((↓ 2)x) = x2k . (1.4)

The opposite operation is upsampling, which is denoted as (↑ 2)x , where between each pair of adjacent en-
tries of the vector a zero is added, and the new vector is renumbered:

((↑ 2)x)2k = xk , (1.5)

((↑ 2)x)2k+1 = 0. (1.6)

LITERATURE THESIS T. DE ROOIJ



1.1. PRELIMINARIES AND NOTATION 3

Programming languages
In this thesis two programming languages are addressed. The MATLAB programming language by The Math-
Works, Inc. will be referred to as Matlab. The MathWorks, Inc. also delivers a tool to apply wavelet analysis
with: Wavelet Toolbox™. To this will be referred to as the Wavelet Toolbox. The other language is Python™
by the Python Software Foundation, simply referred to as Python. No commercial toolboxes using the Python
programming language are used.

LITERATURE THESIS T. DE ROOIJ



2
Problem description

Researchers in the field of coastal engineering want to improve the understanding of physical processes asso-
ciated with waves, wave structure interaction, stability of structures or the influence on morphology recorded
by various measurements techniques like time sampling, lasers scanning and photography. These techniques
are employed to capture instant information on wave conditions, forces, currents, erosion and accretion for
further detailed analysis. In this chapter an overview of the challenges for and questions about time series
analysis concerning these measurements is given. At the end of this literature thesis some of these will be
answered or used as basis of research questions for the masters thesis. The measurements are conducted at
the Deltares facilities or in the field. Sometimes time series are the result of computer models.

Deltares’ main testing facilities are the Zoutzoethal, the Geohal and the Delta Flume. In the Zoutzoethal
scale models of coastal structures such as harbors, dikes, windmill foundations, shipping locks are tested. In
the Delta Flume full size testing for some structures is possible. Tests in the Geohal are of a more geological
nature or concern land structures, which are common not within the field of the department coastal struc-
tures and waves (CSW). The experiments result in continuous measurable quantities which are sampled and
thus discretized in order to save the results. Results from computer models already are discrete. This limits
the scope of this literature thesis to digital signals. A selection of used measurement equipment consists of
cameras, laser distance meters, pressure sensors, force meters, capacitive water height meters etc. The re-
search goals of conducted measurements are very broad. The challenge is to determine underlying signal in
the sometimes noisy measurements. This can vary from determining wave parameters such as speed, direc-
tion, period, height, frequency etc. to the determination of peak values of forces or pressures. In the next
section an example will be discussed. Often encountered problems by data analysts at Deltares are:

• Different analysts use different analyzing methods. Therefore interpretation of results may slightly dif-
fer per analyst.

• Some measured signals have large noise contributions, how can these be filtered out without affecting
the underlying signal?

• What are the effects on the measured signals by known disturbances: e.g. resonance frequency and
power supply frequency (50 Hz)?

• Can such known of expected effects be quantified and filtered from the signal?

• How to identify different types of noise, such as noise contributed by the measurement equipment and
unwanted effects in the measured signal?

• Determine the timing of jumps or discontinuities and reconstruct them.

• The separation of incoming and reflected waves.

Some of these problems are described briefly in the following example section.

2.1. Schelde Flume measurement
There are a lot of different set-ups at the Deltares facilities. In this section one example of a setup in the
Schelde Flume, a flume in which waves with a height of half a meter can be generated, is discussed. The
measurements measure three different quantities at a sample rate of 3 kHz:

4



2.1. SCHELDE FLUME MEASUREMENT 5

• The GHM (Wave Height Meter) is a self build piece of equipment which measures the conduction be-
tween an anode and a cathode, to determine the water (or wave) height. The amplifying filters in the
GHM have cut-off frequencies of 85 Hz and 130 Hz.

• The pressure sensors are made from Wien bridges build with pressure sensitive resistors. Filters applied
to the output have a cut-off frequency about 1000 Hz.

• The force sensors do more or less have the same construction as the pressure sensors.

All equipment is connected to one analog-to-digital converter (ADC) which is connected to the computer.
The output of the pressure and force sensors is amplified by 30 year old amplifiers (KWS), which do not have
any filter implemented to prevent delays between the different signals. A measurement set-up can have over
30 different sensors; for the analysis it is important that the alignment in time is as close to perfect as possible.
An overview is given in Figure 2.1. Measurements start 30 seconds before the experiment starts, to check
whether the measurement equipment is working. This can also be useful in determining off-set and noise
contributions. The duration of a measurement can be over half an hour, which leads to about 6 million
samples.

Figure 2.1: Measurement setup in the Schelde Flume

In Appendix C a set of time signals from the measurements are given in Figure C.1. At the end of the flume
a breakwater is installed, behind this breakwater a transshipment box is placed to catch the water going over
the breakwater. The effects of the waves on the breakwater are measured using force and pressure sensors.
The water height measurement in the Figure C.1 displays the amount of water in the box. Both the pressure
and the force measurement from Figure C.1 are placed in the frontal area of the wall. The peaks in their
signals denote the arrival of a wave.

The spectra of the signals are given in Figure C.2. Although the time series of the force and pressure look
a bit noisy, the spectrum shows little presence. For just 30 seconds of the signal (Figure C.3) the pressure and
force signals still have a noisy appearance. If one looks at the water heights in the flume in Figure C.4, the
water level is much less noisy than the pressure and force measurement. The spectra know large contribu-
tions of low frequency components. This is expected for these measurements. Further we notice that the
noise in the water height measurements has a much smaller signal to noise ratio than the other two shown
measurements.

All spectra (Figure C.2) show a clear peak around 50 Hz. This peak was expected and is the result of the
power supply frequency in the Netherlands: 50 Hz. Furthermore the spectra show some mirrors at (100ℓ+
50) Hz for ℓ ∈ N. The force meters also shows peaks around 100ℓ Hz. In the measured force signal these
mirrors are much more present than in the pressure and wave height measurement. The contribution of this
distortion to the wave height measurement can be neglected on basis of this data. The source of these mirrors
can for instance be the ACDC converter (alternating current to direct current converter) of the measurement
equipment.

LITERATURE THESIS T. DE ROOIJ



2.1. SCHELDE FLUME MEASUREMENT 6

The different data sets have different problem formulations. For the water height in the box, the question
is: how can we apply signal analysis to extract only the jumps in the signal? The goal is to determine the
amount of water transshipped, which is hard to read from the time signal by the sloshing of the water. In the
case of the force and pressure measurements the peak value of the underlying signal is an important design
parameter. This is clearly influenced by some noise. What filter do we need to apply to suppress this noise,
but not affect the underlying ’real’ signal? In this literature thesis the possibilities within the large area of
signal analysis will be explored. Starting with the overview of the area in the following chapter.

LITERATURE THESIS T. DE ROOIJ



3
Analysis of signals

In the last chapter a problem description is given: time series which result from measurements at Deltares
are distorted by all kinds of effects. The question for this literature thesis is to give an overview of the possible
ways for the analysis of these signals. In this chapter different ’observation options’ of temporal information
are presented. These "data types" could also be applied to spatial information, this will not be considered.
The goal is to find an easy retrieval of both temporal and frequency information of a signal x : R → C. An
example comprehensible for readers with different backgrounds will be used here: a guitar player, striking
only just three strings separately.

Time domain
The receiver of a time signal, for instance an ear receiving sound waves, a cellphone receiving the 4G signals
or laser equipment measuring wave heights at Deltares, always receives an amplitude at a given time. Math-
ematically this is seen as a function: x(t ), mostly being referred to as a (time) signal in signal analysis. From
this signal a lot of properties of the transmitter, transmission and receiver can be derived using the right tech-
niques. In Section 3.3 the characteristics retrievable from this time signal x(t ) will be discussed. However, in
transmission the signal x(t ) can be disturbed, making it hard to draw the right conclusions based on the time
signal. An example of a guitar player recording can be found in Figure 3.1c.

Fourier transform
The signal x(t ) does contain more information then just the amplitude at a given time. With the right mathe-
matical transformations, an insight in the different frequencies of the signal can be given. The Fourier trans-
form (FT) is a common and much used transformation to derive the energy density per frequency of a signal.
This transformation represents the signal in the frequency domain and will be discussed in Chapter 4.

Think of the guitar player again. If only the time domain signal of the sound is considered, one cannot
know which notes were played. However we do know at what times the strings were struck, by observing the
amplitude differences in time. If only the Fourier transform of the signal is considered, the representation of
the signal in the frequency domain, one can tell exactly which notes were played, but not in which order. This
can be observed in the spectrum in Figure 3.1d.

Short term Fourier transform
A (practiced) listener however can tell both the notes and the order in which these notes were played! This
is impossible when only the time domain or in the frequency domain of the signal is reviewed. A visual rep-
resentation of these short comings of these domains is shown in Figure 3.1. In the early twentieth century
Gabor [4] was the first to act on these short comings, developing the Gabor transform. He used the combi-
nation of a window function and the Fourier transform to derive a coupling of the temporal and frequency
domain. Hence, this method gives insight in the occurrence of frequencies in distinct time intervals. Later
his work was placed in the framework of the short term Fourier transform (STFT, Figure 3.1e) which will be
covered in Chapter 5. A disadvantage of this method is the relative large loss of both temporal and frequency
information, which is explicable from the uncertainty principle (Section 5.3.1). This can be observed in Fig-
ure 3.1g.

7



3.1. ANALYSIS AND SYNTHESIS 8

(a) Time domain: a high resolution of the energy distribu-
tion over the time axis, no resolution over the frequency
axis.

(b) Frequency domain: opposite of the time domain: high
resolution over frequency axis, no resolution over the
time axis.

(c) Three notes played separately by a guitar player. (d) The spectrum of the notes, showing us that the played
notes are at 200, 500 and 1250 Hz. The spectrum does not
provide any information about the timing of these notes.

Figure 3.1: Schematic view of the four main ways to analyze a signal, including examples.

Wavelet analysis
These losses are minimized by the application of wavelet analysis. In the 1960’s the basis of the wavelet
transform was developed in both mathematics and physics. Wavelet analysis is a tool that cuts the function
x(t ) up into different frequency components, studying each component with a resolution matching its scale
[11], alike the STFT. In the late 1980’s the approaches from different disciplines were combined, which led
to the theory of wavelet analysis as known today. As shown in Figure 3.1f, for different frequencies the time
spacings are different, this again finds its explanation in the uncertainty principle. This results in a different
representation as shown in Figure 3.1h.

Now note that wavelet analysis approach resembles the human interpretation of sounds fairly good: high
pitches are often played short and recognized quickly, where low pitches are usually played longer. In fact,
Daubechies [11] shows the human ear uses a wavelet analysis type of signal processing in the early stages of
analyzing sounds. This makes wavelet analysis a great basis for compression of sounds, undetectable to the
human ear. This is one of the many examples the wavelet transform is very useful for.

3.1. Analysis and synthesis
An important theme in analysis is the representation (or approximation) of a known or unknown function (or
time signal) x(t ) by special known functions [4]. This representation is the basis of Fourier analysis, which in
his term is the basis of the STFT and the wavelet transform. These special functions are chosen from a family
of functions, for instance monomials: t 7→ t k , k ∈ N. These functions are well understood and preferably

LITERATURE THESIS T. DE ROOIJ



3.1. ANALYSIS AND SYNTHESIS 9

(e) Short Term Fourier Transform (STFT): trade off in time
and frequency, less resolution in both time and frequency
direction, but linking the two domains.

(f ) Wavelet transform: same trade off as of the STFT, differ-
ent implementation. Note the areas of the blocks are the
same, only their frequency-time spacing differs.

(g) The spectrogram of the signal from (c): the timing of the
notes can be read.

(h) The scalogram of the signal from (c): the timing of the
notes can be read.

Figure 3.1: Schematic view of the four main ways to analyze a signal, including examples.

easy to compute. Most often their analytical properties tend to show the evident or hidden symmetries of the
considered function x(t ).

In this literature thesis the function
x : R→C

is considered. Often this function is referred to as (time) signal, which is a broader concept of a function or
sequence that represents information [15]. Further a family of so-called basis functions is chosen. The family
given by {eα|α ∈ I } with the basis functions t 7→ eα(t ). The index set I can be discrete (as in the example of the
monomials), but also continuous. An arbitrary function x(t ) then can be represented in the form

x(t ) = ∑
α∈I

cαeα(t ) (3.1)

in the discrete case. This expression (3.1) is called a representation. In the continuous case it can be expressed
as an integral:

x(t ) =
∫

I
c(α)eα(t ) dα.

Here the cα is the coefficient belonging to the basis function eα(t ). The set of coefficients {cα|α ∈ I } is
called the analysis of x with respect to the family {eα|α ∈ I }. The inverse operation that takes a given coeffi-
cients as input and returns the function itself as output is called the synthesis of x by means of eα. There are
tons of different families of basis functions to choose from. The Taylor polynomial for instance uses higher
and higher derivatives of the function x(t ). In this literature thesis two much used different families will be
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3.2. SIGNALS AND SYSTEMS 10

discussed. These both share the property of orthonormality, which makes the coefficients relatively easy to
compute [4]. These two are the Fourier analysis (Chapter 4) and the wavelet analysis (Chapter 6).

3.2. Signals and systems
In the last section a signal was explained as function or sequence that represents information. The goal of
signal analysis is to find information unknown to the receiver. The applications as mentioned in Chapter 2
are all measurement results, done using a computer. x(t ) therefore will not be a continuous signal of function,
but a discrete signal x[n], often in the form of a vector x = {x[n]}n=0,...,N . For the numerical work discretization
is indispensable. On the one hand a computer can only do a finite amount of computations and so handle
a finite amount of basis functions. On the other hand the time signal x[n] will be discrete and finite. In the
following chapters always both the continuous and the discrete cases will be reviewed. The focus however
will be on the discrete cases, for the scope of this literature thesis are mainly digital signals, discrete in both
time and amplitude. Signals are classified deterministic if their behavior is known and can be represented by
e.g. a formula. Stochastic signals are discussed further in Chapter 7: their amplitudes cannot be defined by
formulas or graphical elements. These signals are most described in terms of their expected values (mean,
variance etc.).

So, there are a lot of different characteristics on signals. We have learned that signals represent informa-
tion. So if for instance we have a signal of a measurement of the force on a monopile hit by a single wave. The
input (the wave) and the output (the measurement) together contain information about the monopile, e.g.
its resonance frequency. The monopile in this example is a system, where the formal definition of a system
is: the abstraction of a process or object that puts a number of signals into some relationship [15]. The study of
these systems is called System Theory. This study is complete for so called linear and time-invariant systems.
The different analyzing methods are very good applicable to these type of systems.

Linear
The response of a system is the description of the output for a certain input. This response can be written in
the form of a function. A function f (x) is called linear if the superposition principle is applicable [15]:

f (Ax +B y) = A f (x)+B f (y).

Often the linearity of a system is assumed for simplification, although it is not linear.

Time invariance
A second important characteristic of a system is known as time invariance. This holds that the response to a
delayed input signal results in a corresponding delayed output signal [15]. Systems that are both linear and
time invariant are abbreviated to LTI systems. There are three techniques to model continuous time systems.
The mathematical representation is in the form of a set of differential equations to relate the output to the
input. Block diagrams and state models are both graphical representations of that relationship.

3.3. Time series analysis
Why undertake the hassle of transforming a signal, when we can also derive a lot of information from the
time domain? A lot of information in the time domain is very important. One can think of minimums and
maximums, but also of maximum derivatives, mean load etc. Often this information is wanted, however it
might be distorted by effects that are hard to recognize in the time domain. For instance think of the power
supply effects shown in Chapter 2. There are means to address these issues in the time domain, as will be
elaborated further in Section 7.2.1. These are however applicable in a small set of situations. The feasibility
of these means is discussed in the same section as well. In this literature thesis, deterministic signals are
considered: deterministic signal can be modeled completely as a function of a variable. From Section 7.1
random signals, such as the measurement results, are discussed.

3.3.1. Other analyzing techniques
Of course there are much more analyzing techniques than just the few discussed here. Four important other
techniques are briefly discussed here, starting with the Laplace transform, which can be seen as a predecessor
of Fourier analysis [15]. The Laplace transform is still being used in a lot of engineering fields. This transform
is also only suitable for frequency domain representation of a signal. The second one is the z-transform,
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3.3. TIME SERIES ANALYSIS 11

which is more of a discrete implementation of the Fourier transform. It is not named after a famous math-
ematician, but after the letter z, which is used for the complex frequency variable. The z-transform is im-
portant in digital Fourier analysis and filter design in this field. The third one is the Hilbert transform [15],
which will be shortly addressed in its combination of the Hilbert-Huang transform (Section 7.2.3). Finally the
Wigner-Ville distribution cannot be forgotten. This is also an time-frequency transform, much alike the short
term Fourier transform. It is a technique finding its base in physics from the 1930s. Before the introduction
of wavelet analysis it has found its application is a lot of different sectors, however it suffers greatly from cross
terms and is not used much for this reason [32]. In the next chapter the focus will be on the mathematical
background and practical applicability of Fourier analysis.
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4
Fourier Analysis

In the formal Fourier analysis, the basis functions as described in Chapter 3

t 7→ e i kt = cos(kt )+ i sin(kt ), k ∈Z (4.1)

are chosen. This is a family of 2π-periodic, orthonormal functions. For any
f ∈ L2(R/2π), measurable functions f : R→ C, the formal definition of the
Fourier transform is built. This theory expanded to cover not only these
specific functions, but all functions on R. The resulting sum, known as the
representation (3.1), is called the Fourier series:

f (t ) :=
∞∑

k=−∞
ck e i kt . (4.2)

In this chapter the analysis using this series will be clarified. The next chap-
ter will expand the Fourier Analysis technique to the Short Term Fourier

Transform (STFT). That chapter will conclude with the limitations, advantages and disadvantages of the use
of the Fourier Analysis.

4.1. CFT - Continuous Fourier Transform
The Fourier transform (abbreviated to FT, or CFT where the C stands for continuous) of a time signal, or
function, x ∈ L1 is defined by the integral

F{x(t )}(ω) =Fx(ω) = X (ω) :=
∞∫

−∞
x(t )e−iωt dt , ω ∈R.

Here ω denotes the frequency in Hz (s−1). This transform gives a representation in the complex domain of the
frequency content of the time signal x(t ). Often the modulus of the Fourier transform is displayed against the
frequency ω to indicate the energy density over the spectrum. As discussed before, information concerning
time-localization cannot be read off from X (ω). So it is hard to determine at what time, which frequencies are
present in the signal. However when one is looking out for one frequency, like radars which respond to very
specific frequencies, this characteristic of the Fourier transform is very convenient.

X (ω) is called the two-sided spectrum of x(t ). The original time signal can be calculated form this spec-
trum by using the inverse Fourier transform

x(t ) = 1

2π

∞∫
−∞

X (ω)e iωt dω,

the linear combination of the pure oscillations of all frequencies ω ∈ R. A few important Fourier transform
theorems can be found in Appendix A. Note that for a periodic, continuous time signal the CFT is discrete in
frequencies, for the CFT exists of a finite set of basis functions. But for a general signal it is nor discrete nor
periodic.

12



4.1. CFT - CONTINUOUS FOURIER TRANSFORM 13

Example 4.1 (Spectrum) The CFT of a rectangle pulse is a nice example to show the con-
tinuous Fourier transform. The rectangle pulse is defined as

rect(at ) = 1[−a/2,a/2], for a > 0.

To determine the Fourier transform for the case a = 1, we use the definition:

F{rect(t )}(ω) =
∞∫

−∞
1[−1/2,1/2]e

−iωt dt =
1/2∫

−1/2

e−iωt dt

= 1

−iω
e−iωt

∣∣∣∣1/2

−1/2
=− 1

iω

(
e−iω/2 −e iω/2

)
= sin(ω/2)

ω/2
:= sinc

(ω
2

)
.

This result is known as the sinc function. A plot of the Fourier transform can be found
in Figure 4.1a. If we translate the rectangle pulse with 1/2, we could use the translation
property of the Fourier transform (A.2) to find that

F{rect(t −1/2)}(ω) = e−iω/2sinc(ω/2).

The Fourier transform of this translated pulse is depicted in Figure 4.1b.

Figure 4.1: Example: the CFT of a regular and a shifted rect-function.

(a) The spectrum F{rect(t )}(ω)
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(b) The spectrum F{rect(t −1/2)}(ω)
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(c) The magnitude spectrum of (a) and (b): |F{rect(t )}(ω)| = |F{rect(t −1/2)}(ω)|
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4.1. CFT - CONTINUOUS FOURIER TRANSFORM 14

Spectrum
In the last example we have seen that the Fourier transform of a signal can consists of a real and an imaginary
part. We could decompose it like Fx(ω) = X (ω) = Y (ω)+ i Z (ω). This is known as the Cartesian or quadra-
ture form [7]. An other well known form is the polar form: X (ω) = |X (ω)|e iθ(ω). This is also known as the
magnitude-phase form, where the real functions |X (ω)| and θ(ω) denote the magnitude and the phase of the
signal. To determine whether frequency components are present in a signal, one could examine only the
magnitude spectrum |X (ω)|, often referred to as the spectrum of x(t ).

Example 4.2 (Magnitude spectrum) In Example 4.1 the Fourier transforms of two differ-
ent rect-functions has been shown. When the modulus of these two signals is observed,
something special is exposed in Figure 4.1c. Both the ’regular’ and the shifted rectangle
pulse have the same magnitude spectrum! From this we can conclude that the phase of
the Fourier transform adds information about the time shift of the frequencies. This shift
is added, by the used formula (A.2).

Physical waveforms
Physical waveforms x(t ), of finite energy and length (time duration of the signal is T ), may be represented by
the Fourier series over the interval a < t < a +T :

x(t ) =
∞∑

n=−∞
cne i nω0t , with the Fourier coefficients cn = 1

T

∫ a+T

a
x(t )e−i nω0t dt ,

where ω0 = 2π/T [7]. If x(t ) is a periodic function with period T , this representation is valid for all times, for
the resulting Fourier transform also has period T . This transformation maps the waveform of time T to the
formal Fourier basis (4.1).

Quadrature Fourier Series
The quadrature Fourier series [7] uses the property that the complex exponential can be written as a sum of
a sine and a cosine, which leads to another representation of any physical waveform x(t ) (over the interval
a < t < a +T ):

x(t ) =
∞∑

n=−∞
an cosnω0t +bn sinnω0t (4.3)

where an =


1

T

a+T∫
a

x(t ) dt n = 0

2

T

a+T∫
a

x(t )cosnω0t dt n ≥ 1

and bn =


0 n = 0
2

T

a+T∫
a

x(t )sinnω0t dt n ≥ 1
.

These Fourier series can also be described in polar form [7], but this form is beyond the scope of this literature
thesis. The Fourier transform is sometimes referred to the decomposition of a signal into sines and cosines.
This interpretation comes from the quadrature series.

Convolution
The convolution of two signals x(t ), y(t ) is defined by

(x ∗ y)(t ) :=
∫ ∞

−∞
x(τ)y(t −τ) dτ=

∫ ∞

−∞
x(t −τ)y(τ) dτ= (y ∗x)(t ). (4.4)

What the convolution does is ’mapping’ x(t ) everywhere where y(t ) has a value which is not zero. This is
shown graphically in Figure 4.2a. It is important to notice that the convolution of two signals in the time
domain is equivalent to the multiplication of their transforms in the frequency domain [27], so

F(x ∗ y)(ω) = X (ω) ·Y (ω). (4.5)

This relation is known as the convolution theorem. Computing the convolution may be very time consuming
for the high number of floating point operations needed. Therefore this relationship is sometimes used to
compute the convolution of two signals, by multiplying their Fourier transforms.
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4.1. CFT - CONTINUOUS FOURIER TRANSFORM 15

Cross correlation
An other operation of two signals, very similar to the convolution is the cross correlation [15], which is defined
for complex signals by

(x ⋆ y)(t ) :=
∫ ∞

−∞
x(τ)y(t +τ) dτ= x(−t )∗ y(t ). (4.6)

Note that this operation is not commutative, as is the convolution. The cross correlation ’assesses’ how sim-
ilar two functions are. If there is a high cross correlation, the signals show much similarities, and vice versa,
as shown in Figure 4.2b.

The auto correlation of a function x(t ) is the cross correlation of this function with itself, (x ⋆ x)(t ). The
cross correlation can be computed in the same manner as the convolution, but the signal g has to be mir-
rored. Because the Fourier transform is symmetric, the cross correlation satisfiesF(x⋆y)(ω) = X (ω)Y (ω). The
autocorrelation thus satisfiesF(x⋆x)(ω) = X (ω)X (ω) = |X (ω)|2. This Fourier transform of the autocorrelation
is known as the power spectral density, which has the units of watts per Hertz [7].

(a) The convolutions of two functions f and g . (b) The cross correlations of two signals f and g .

Figure 4.2: The difference between the convolution and cross correlation operation[45].

Delta Dirac function
The Delta (Dirac) function is a theoretical function with a support reduced to t = 0, but with an integral of 1.
In some areas this is referred to as the Delta pulse. This theoretical function simplifies computations, leaving
convergence issues aside [21]. The Delta function δ(t ) associates any continuous function f (t ) to its value at
t = 0: ∫ ∞

−∞
δ(t − t0) f (t ) dt = f (t0). (4.7)

Note that by this property that
f ∗δ(t ) = f (t ).

Example 4.3 (CFT of δ(t − t0)) The Fourier transform of the Delta function can be de-
rived from the property above, combined with the convolution property (4.5). However,
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4.2. FROM CONTINUOUS TO DISCRETE 16

te derivation from the definition is very short:

F{δ(t −a)}(ω) =
∞∫

−∞
δ(t −a)e−iωt dt = e−iωa .

For a Delta peak at t = 0, we find the magnitude spectrum of the Delta function asF{δ(t )}(ω) =
1, constant over the whole frequency domain. In general a Delta peak results a constant
magnitude spectrum, because |F{δ(t −a)}(ω)| = 1 ∀a ∈R.

Example 4.4 (CFT of a sine) The best example for the CFT is the transform of a sine or a
cosine, for these infinite and C∞ functions result in a very nice spectrum. The spectrum
of an arbitrary sine x(t ) = sin(ω0t ) is:

F{sin(ω0t )}(ω) =
∞∫

−∞
sin(ω0t )e−iωt dt =

∞∫
−∞

1

2i

(
e iω0t −e−iω0t

)
e−iωt dt

= 1

2i

∞∫
−∞

e i t (ω0−ω) −e−i t (ω0+ω) dt = 1

2i

 ∞∫
−∞

e−i t (ω−ω0) dt −
∞∫

−∞
e−i t (ω+ω0) dt


= 1

2i
[δ(ω+ω0)−δ(ω−ω0)].

In this derivation we used characteristic (A.7). The result is two delta peaks at the frequen-
cies −ω0 and ω0. So the signal can thus be explained as a combinations of two harmonics,
one at −ω0 and one at ω. This corresponds with our input signal. Note that both the sine
signal and its Fourier spectrum have an integral over the whole domain equal to zero.

4.2. From continuous to discrete
The described theory was perfectly applicable to the early days of signal processing. Most signals were con-
tinuous, such as AM radio signals. However nowadays more and more applications switch to digital imple-
mentation, such as DAB+ in case of the radio example. Also at Deltares all measurements are done using
computers, as described in Chapter 2. Computer sampling leaves us with so called sampled signals.

4.2.1. Sampling Theorem
These sampled signals are described using the delta function (4.7), discussed before. A discrete signal may be
represented as a sum of delta functions. For this we assume a uniform sampling, sampled with the sampling
frequency fsample =∆t−1 [Hz]. Assume a continuous signal x(t ) is being sampled, then the uniform sampling
of this signal is described as

xsampled(t ) =
∞∑

k=−∞
x(t )δ(t −k∆t ) =

∞∑
k=−∞

x(kT )δ(t −k∆t ).

Now calculate the Fourier transform of xsampled(t ), using the linearity property (A.1) of the Fourier transform
and the Fourier transform of the Delta function (A.9) to derive the discrete time Fourier transform (DTFT,
discrete in time, continuous in frequency):

Fxsampled(ω) = Xsampled(ω) =
∞∑

n=−∞
x(k∆t )e−iωn∆t .

Most sampled signals x(kT ) = x[k] are finite. The drawbacks of this approach are discussed in Section 4.3.
For now, we will work with the abbreviated expression for a signal of length N

X (ω) =
N−1∑
k=0

x(k∆t )e−iωk∆t . (4.8)
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LTI systems
Fourier analysis is a tool used a lot for LTI systems. Not all systems are coverable by Fourier analysis, which
sometimes forces signal analysts to use Laplace transformations or Z-transformations [7]. Fourier analysis is
a much used tool because the Fourier transform is a linear operator (A.1), so linearity of such systems can be
studied both in the time and the frequency domain.

4.2.2. DFT - Discrete Fourier Transform
Expression (4.8) can be simplified further, by discretization of the frequency domain. Mallat [21] notes that
the family of basis functions {

en[k] = exp

(
i 2πnk

N

)}
0≤n≤N

(4.9)

is an even orthonormal basis of signals with period N . Using this basis, the discrete Fourier transform (DFT)
is defined. This transform is discrete in both time and frequency. Now again consider a discrete time signal,
given by x[k], with k ∈N and finite with a duration of time T , then the DFT becomes

F dx[n] := X [n] =
k=N−1∑

k=0
x[k]e−i 2πnk/N , where n = 0,1,2, . . . , N −1, (4.10)

and the inverse operation is given by

F−1
d X [k] := x[k] = 1

N

N−1∑
n=0

X [n]e i 2πnk/N , where k = 0,1,2, . . . , N −1.

From now on the index k is used for indexing the discrete time domain and the index n for the discrete
frequency domain. Note that the basis functions (4.9) are independent of the sampling frequency or the total
duration of the signal x[n]. The resulting DFT has domain [− fsample/2, fsample/2], which will be elaborated
further in Section 4.3.

Example 4.5 (DFT of a sum of sines) In this first example we will pay attention to the func-
tion x(t ) = sin(100πt )+ sin(500πt ). The resulting spectrum can be found in Figure 4.3b.
Note that this spectrum is two sided, as predicted. One half of the information of this
spectrum is superfluous. Therefore, one half can be discarded, leading to the one sided
spectrum in Figure 4.3c.

The MATLAB-code for this example: Listing B.1.
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Figure 4.3: Spectrum of the signal from Example 4.5.

Discrete convolution and cross correlation
The discrete convolution of two discrete time signals x[n] and y[n] (assume both length N ) is given by:

(x ∗ y)[n] =
∞∑

k=−∞
x[k]y[n −k], for 0 ≤ n < N , (4.11)
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also a commutative operation as the continuous convolution (4.4). Again, the discrete cross correlation can
be computed in the same way as (4.6): (x ⋆ y)[n] = x[−n]∗ y[n]. To compute the discrete convolution, infor-
mation from x[n], n ≥ N is needed, but the signal does not exist there. The circular convolution considers
these two signals as periodic, such that x[N ] = x[0], x[N +1] = x[1] etc. The computation (4.11) can be abbre-
viated to

(x ~ y)[n] =
N−1∑
k=0

x[k]y[n −k],

where the ~ denotes the circular or cyclic convolution. If in x[k] from (4.10) the values of x[0] and x[N−1] are
very different, the big transition in the ’periodic signal’ will lead to high amplitude Fourier coefficients at high
frequencies. Again as for the continuous case of the convolution (4.5) there is a coupling between the DFT and
the convolution: Mallat [21] notices that the eigenvectors of the circular convolution operation are the same
as the family of basis functions described in (4.9). So for a circular convolution of two signals: g [k] = f ~h[k]
the DFT of g [k] is obtained by multiplying the DFTs of the two signals F dg [n] =F d f [n]F dh[n].

FFT - Fast Fourier Transform
When (4.10) is considered, notice that the direct computation of the DFT takes N complex multiplications
and N complex additions per element X [i ], i = 0, . . . , N −1 to find the whole frequency spectrum X [n]. his
implies the computation is of O(N 2) arithmetic operations. The fast Fourier transform (FFT) is a faster algo-
rithm to evaluate the DFT [7], where the number of computations is of O(N log2 N ) [27]. The FFT algorithm
breaks the convolutions used in the DFT computation in shorter convolutions, to lower the number of com-
putations.

Kronecker delta
The discrete case of the delta function is known as the Kronecker delta, this one is also denoted with a δ. It is
defined as

δi j =
{

1 if i = j
0 elsewhere

. (4.12)

Example 4.6 (DFT of transient signals) To show the largest short coming of the Fourier
transform a self composed signal is made, see Figure 4.5. This signal is composed of a
number of transient signals. What do we expect for the Fourier transform of this signal?
A block wave leads to a sync-reaction, the other parts are all perfect harmonics, which
should result in excitations around those frequencies. Because these signals do not all
have the same energy contribution, differences in energy densities will occur.

The spectrum is depicted in Figure 4.4a. The expectations can be found in this spec-
trum. The largest contributor to the signal is the 25 Hz part of the signal, followed by the
5 Hz part. The blockwave also has a large contribution, the sync can also be recognized in
this spectrum. Around 40 Hz there is a little excitation. If this signal would have less am-
plitude or be of shorter duration, it would not be noted. So we can ’rebuild’ the signal from
this spectrum, but at what times did these signals occur? This information is completely
lost.

The MATLAB-code for this example: Listing B.2.

Example 4.7 (DWT of a chirp) The last example of this chapter is made using the chirp-
function from Matlab. Here we have created a so called quadratic chirp from 100 to 500
Hz: this is a signal which increases in frequency over time. In this case it increases from
100 to 400 Hz in 2 seconds. Quadratic means this signal doubles in the first second to 200
Hz and in the second second to 400 Hz. The resulting spectrum (Figure 4.4b) shows the
presence of all these signals and their decreasing energy density. This is all corresponding
to the chirp-signal. However again we cannot tell how this signal is composed.
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(a) The spectrum of the signal from Example 4.6.
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(b) The spectrum of a chirp (Example 4.7).

Figure 4.4: Spectra of the signals from Example 4.6 and 4.7.

Figure 4.5: The upper signal is composed of four transient signals. The spectrum of this signal is
discussed in Example 4.6.
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4.3. Nyquist-Shannon Sampling Theorem
As mentioned before the sampling of a signal can be seen as multiplying the sampled signal x(t ) by a set of
Delta impulses (Section 4.2.1). The Nyquist-Shannon theorem relates properties of the signal to the proper-
ties of the sampling frequency and vice versa. This theorem mainly has effect in the Fourier approach used
in both the Fourier transform as the short term Fourier transform. For a signal of an interval T , we find the
sampling frequency as fsampling = 2π/T [27], resulting in the DFT (4.10). The spectrum of the original signal
x(t ), X (ω), repeats at every frequency interval of fsampling in the spectrum of the sampled signal Xsampled(ω)
[27]. These repetitions are called images. However if the original spectrum X (ω) is not limited by a maxi-
mum frequency (also known as bandwidth) fmax ≤ fsampling/2, the repetitions of X (ω) result in overlapping.
The high frequency components of X (ω) are added to its low frequency components, resulting in a distorted
Xsampled(ω). The repetitions of the spectrum can be cut out by using a low pass filter. In this case the choice for
a filter selecting the domain [− fsampling/2, fsampling/2] is made. This however does not remove the overlapping
components.

This distortion of the recovered signal due to insufficient sampling frequency is known as aliasing [27]. A
clear illustration of aliasing is given in Example 4.8. Signals with sudden transitions or noticeable noise often
contain frequency components of which ω → ∞, these are therefore impossible to catch by any sampling
frequency and will always lead to aliasing effect. These might be small however. To recover an analog signal
properly from the sampled signal, fsampling ≥ 2 fmax [7, 27]. This minimum sampling frequency for a signal
is known as the Nyquist frequency, defined as fN = 2 fmax [7]. Sampling a signal under the Nyquist frequency
is called undersampling, sampling with a frequency over the Nyquist frequency is called oversampling. Is
oversampling a problem? No it is not, but working with an oversampled signal, results in doing computations
that are not strictly necessary. However, when the Nyquist rate is based on the bandwidth of the sampled
signal, oversampling could reduce noise, aliasing and improves the resolution of your signal. These effects
are all explained by a theorem called the Nyquist-Shannon or Sampling Theorem. A nice proof of this theorem
is given by Couch [7].

Example 4.8 (Sampling a 1 Hz sine) In Figure 1 four examples of the sampling of a 1 Hz
signal (x(t ) = sin(2πt )) are presented. In 4.6a sampling at the Nyquist rate of 2 Hz is done,
with two different starting points. One would say on basis of the black sampling, the signal
can be reconstructed. However, the red sampling at the same frequency shows this could
lead to some fatal mistakes, where in this case the signal cannot show in the sample.

In 4.6b, the aliasing is made clear. The sampled signal of the 1 Hz sine, can also be in-
terpreted as a sine with frequency 7/6 Hz. This is where the aliasing comes from. Note that
the aliasing results in images for fsampled > fN, but then they do not disturb the spectrum.
At last, in 4.6c, a sampling with fsampling > fN is shown.

0 1 2 3
time (sec)

(a) Two different samplings at the
Nyquist frequency fN = 2 Hz.

0 1 2 3
time (sec)

(b) fsampling < fN = 2 Hz

0 1 2 3
time (sec)

(c) fsampling > fN = 2 Hz

Figure 4.6: Sampling of a 1 Hz sinusoidal signal: x(t ) = sin(2πt ).

4.3.1. Filtering
The images of a spectrum can be taken out of the spectrum using a gate function G(ω). This function in signal
analysis is referred to as a filter. Filters can be applied using computers, but often also analogue filtering
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(in the form of electronics) is used. An audio amplifier for instance often contains a set of analogue filters
to determine the audio signals for the low, mid and high speakers. Often measurement equipment apply
filtering effects to the measurements. A low pass filter is a filter that passes all frequencies under the cutoff
frequency ωm, for instance G(ω) = 1[−ω0,ω0](ω). In this same way, bandpass and high pass filters are used to
respectively pass signals in a certain bandwidth and above a certain cutoff frequency. This filtering can be
interpreted as a multiplication in the frequency domain: Xfiltered(ω) = Xsampled(ω)G(ω). If cut off windows are
used, the Gibbs phenomenon or ripple effect arises [27]. This is best shown with an example.

Example 4.9 (Gibbs phenomenon) For this example three estimations of the block func-
tion x(t ) = 1[−7,7](t ) using only harmonics have been made. These estimations are shown
in 5. By Example 4.1 we know that the function x(t ) has an infinite spectrum. We clearly
see that the more harmonics are used to estimate the original, the better the estimation
looks like the original. However, all estimations show oscillations near the edges of the
block wave. Note however that the overshoot of these oscillations is of equal size for all
estimations. This effect is known as the Gibbs phenomenon.

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.5

1

time (sec)

5 harmonics
25 harmonics
100 harmonics
original

Figure 4.7: An example of the Gibbs phenomenon for the signal x(t ) = 1[−7,7](t ).

By truncating the spectrum of the signal as in Example 4.9, a lot of relative large ripples appear. Choosing
a longer window leads to increased ripple frequency, with no effect on the ripples magnitude [27]. A solution
to this problem is choosing smoother windows, however, this results in loss of frequency resolution. The filter
determines the quality of the signal approximation [27]. Because the DFT is done using a computer, the signal
is of finite length T . This can be interpreted as multiplying the original infinite signal with a block window
w(t ) = 1[0,T ]. By the inversion property of the Fourier transform (A.7), this will result in rippling effects in the
spectrum, as observed in the in Figure 4.4.

4.3.2. Fourier transform requirements
The Fourier transform cannot just be applied to all functions existing. In mathematical terms the CWT only
exists for functions in the L2 space [15]. This ensures the convergence of the integral in Equation 6.4. In
physical terms one would speak of functions with a finite energy [7]. Discrete signals can be interpreted as
truncated signals, which will thus always be of finite energy. For these, the Fourier transform should be re-
stricted to the representation of smooth, 2π-periodic functions [30]. When used to represent non-periodic
functions, or functions with discontinuities, the Gibbs-effect will be present in the spectrum, and conver-
gence around the boundaries will be non-uniform. There are efficient ways to weaken this effect [30], but this
is a large disadvantage of the Fourier transform. Vice versa, when signals in the Fourier domain are truncated,
the Gibbs effect shows in the time domain.
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5
Temporal and frequency information

In the previous chapter the extraction of frequency information from a sig-
nal has been discussed. As mentioned in Chapter 3, the goal is to extract a
connection between time and frequency information from a time signal. In
this chapter the steps of this process will be discussed. First the windowed
Fourier transform (WFT) is explained, from which the short term Fourier
transform (STFT) is deducted. The next chapter will use the same theory to
derive the wavelet transform.

5.1. WFT - Windowed Fourier Transform
The WFT makes use of a so-called window function g : R → R≥0 [4]. This
window function should have the property that it has compact support
containing 0, or at least a maximum at t = 0, decaying fast for |t | →∞ and∫ ∞
−∞ g (t ) dt = 1. A widely used window is the Gabor transform window, after

the physicist who was one of the first to use the WFT systematically. He remarked that the window Nσ,0 has
some optimizing properties. The Gabor transform window is given by

g (t ) =Nσ,0(t ) := 1p
2πσ

e−t 2/2σ2
, with σ constant. (5.1)

The choice for a window like (5.1) instead of a rectangular pulse for instance is obvious to the reader familiar
with Fourier transform properties. The sharp cut off by a rectangular window, will lead to rippling effects,
described in Section 4.3. These contributions will disturb the results. The WFT is the CFT of the signal x(t )
multiplied with the window function g (t ).

5.2. STFT - Short Term Fourier Transform
The chosen window g will be slid over the signal x(t ) to not select the full signal, only parts of it. Therefore
the window transform is defined as

gs : t 7→ g (t − s), (5.2)

a translation by s ∈R of the window g . Note that for s > 0 the window is translated to the right. Now define:

Gx(ω, s) :=
∫ ∞

−∞
x(t )g (t − s)e−iωt dt =

∫ ∞

−∞
x(t )gs (t )e−iωt dt .

This use of the translated window transform is widely known as the short term Fourier transform (STFT) be-
cause the multiplication by g (t −s) localizes the Fourier integral in the neighbourhood of t = s [21]. The value
of Gx(ω, s) represents again the complex amplitude by which the pure harmonic e iωt is present in the signal
x(t )gs (t ) for that particular s. By the redundancy of information of the signal x(t ) in the STFT Gx(ω, s), there
are many inverse transformations defined [4]. The representation of this transformation is often given by a
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spectrogram. The spectrogram, denoted by PG measures the energy of x(t ) in the time-frequency neighbor-
hood of (ω, s). This neighborhood is specified by its so called Heisenberg box hω,s (see section 5.3.1). Where

PGx(ω, s) = |Gx(ω, s)|2 =
∣∣∣∣∫ ∞

−∞
x(t )g (t − s)e−iωt dt

∣∣∣∣2

.

In the given examples this spectrogram will be discussed further. For large signals the spectrogram can be
come quite hard to read. The two most applied enhancers are window overlapping and bin averaging. This
last one decreases time frequency resolution even further.

5.2.1. The discrete cases
As for the DFT and DTFT, the discrete STFT and discrete time STFT, respectively DSTFT and DTSTFT, are
defined. The derivation is following the same steps as the derivation of the DTFT (Section 4.2.1) and DFT
(Section 4.2.2). In the discrete case a discrete window or window sequence g [n] is chosen. Most of the time
this is a symmetric discrete signal of period N , with unit norm ∥g∥ = 1 [21]. For the DTSTFT the discrete signal
x[n] is multiplied with the shifted window sequence g [n −k], resulting in the expression

X (ω,k) =
∞∑

n=−∞
x[n]g [n −k]e−iωn = x[n]e iωn ∗ g [n].

The same step as for the DFT (Section 4.2.2) is done, leading to the expression for the DSTFT [21]:

X [n,k] =
N−1∑
ℓ=0

x[n]g [n −k]exp

(−i 2πnℓ

N

)
.

Computation time
As discussed before, the computation time of the DFT algorithm is of O(N 2), which can be shortened to
O(N log2 N ) using the FFT algorithm. The DSTFT algorithm from (5.2.1) calculates X [n,k]. The window size
and the overlap of the windows have their effects in the computation time. Again consider a signal x[k] of
length N . If for all 0 ≤ k < N X [n,k] is calculated using the FFT algorithm this results in a computation time of
at most O(N 2 log2 N ) to compute the DSTFT of the signal x(t ). If there however is very little overlap between
the windows, the computation time of the STFT can be close to the FFT computation time.

ISTFT - Inverse Short Term Fourier Transform
As discussed in the continuous case, there are a lot of different algorithms to compute the inverse of the STFT.
Mallat [21] shows that the inverse of the DSTFT of X [m,ℓ] is computed using the following summation:

x[k] = 1

N

N−1∑
m=0

N−1∑
ℓ=0

X [m,ℓ]g [n −m]exp

(
i 2πℓn

N

)
.

Example 5.1 (STFT of sum of sines) In this first example the STFT of the function x(t ) =
sin(100πt )+ sin(500πt ) will be elaborated. In Figure 5.1 the STFT of this function can be
found. The result is, as expected, constant over the time domain, and different over the
frequency domain. In Figure 5.1a and 5.1b the same result is shown. From now on the
z-axis will not be shown, only the 2D view with a colorbar is used.

Two runs of the STFT have been made, one with a relative small resolution in both
time and frequency (Figure 5.1b) and the other with a high resolution in both axis (5.1c).
A higher energy density in the finer computation is the most obvious difference, which is
easily explained. The energy of these two sines is very concentrated around their frequen-
cies of 50 and 250 Hz. For higher resolution, this energy is spread over a smaller box area,
resulting in a larger density. In the coarser computation, we find more energy in between
the two frequencies. This is the result of the window. It is clear that the Fourier spectrum
of this signal (Figure 4.3c) gives us better information than the STFT.

The MATLAB-code for this example: Listing B.3.
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Figure 5.1: The STFT of the signal from Example 5.1.

5.3. Regularity and decay
Till thus far the Fourier transform and the short term Fourier transform have been addressed. We have seen
some nice results using the different transforms. There are some limitations however, especially for the STFT.
These limitations are dependent on the regularity and decay of the chosen window function. The regular-
ity of a signal x(t ) affects the decay of its Fourier transform |X (ω)| and vice versa [21]. The decay depends
completely on the worst singular behaviour of x(t ). If there exists a constant K and ϵ> 0 such that

|X (ω)| ≤ K

1+|ω|p+1+ϵ , then x ∈C p . (5.3)

For instance a step function, which is in C 0, results in a decay of O(1/|ω|).

5.3.1. Uncertainty principle
Equation 5.3 shows that for a fast decaying spectrum |X (ω)| the signal x(t ) has regular variations in time. The
energy of the signal x(t ) therefore has to be spread over a relatively large domain. The uncertainty principle
relates the localization of energy in time with the localization in frequency. This principle is known to many
as the Heisenberg uncertainty principle, for its implications in quantum mechanics which were discovered by
Werner Heisenberg in the late 1920’s. Assume a signal x(t ) of which the time spread is reduced, but the total
energy is kept constant:

xs (t ) = 1p
s

x

(
t

s

)
, (5.4)

then its Fourier transform (use Appendix A) is Fxs (ω) = p
sX (sω). So the increased localization in the tem-

poral domain (s < 1) has led to a decreased localization in the frequency domain. These concentrations of
energy in time and frequency are therefore restricted.

This restriction is mathematically described by the uncertainty principle. The simplest explanation of this
principle is that if one wants to detect a frequency, one has to observe at least one period of the signal. So for
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low frequencies, this takes a lot of time. For high frequencies, very small time ranges have to be considered.
The uncertainty principle knows a number of different mathematical formulations [4, 15, 18, 21]. The prin-
ciple [21] states that the product of the temporal variance σ2

t and the frequency variance σ2
ω of a signal x(t )

and its Fourier transform respectively are restricted by

σ2
t σ

2
ω ≥ 1

4
. (5.5)

The equality only holds for special cases of the signal. In addition, if a function f ̸= 0 has a compact support
(the signal is of finite length), then its FT F f (ω) cannot have a compact support and vice versa [21].

Heisenberg boxes
The so called Heisenberg box is the result of this principle. This box limits the temporal and frequency preci-
sion of the STFT. The temporal and frequency variance are determined by the choice of the window function
g (t ). Assume g (t ) real and symmetric, with gs,ξ(t ) = e iξt g (t − s). Then the variances are only dependent on
time and frequency, and therefore independent of the translation s and the modulation ξ (see Equation 5.6).
Hence gs,ξ(t ) corresponds to a Heisenberg box of area σtσω, centered around (s,ξ) [21], this is illustrated in
Figure 5.2. Because the window function does not change, the STFT is of identical resolution across the whole
time-frequency plane.

σ2
t =

∫ ∞

−∞
t 2|g (t )|2 dt , σ2

ω =
∫ ∞

−∞
ω2|F{g (t )}(ω)|2 dt . (5.6)

Figure 5.2: Heisenberg boxes of two windowed Fourier transforms, where f̂ :=F f [8, 21].

Choice of windows
From the above, we may conclude that the resolution in time and frequency of the STFT is dependent on
the spread of the window in time and frequency. Notice that from the Heisenberg uncertainty principle (5.5)
follows that the minimal area of an Heisenberg box is 1/2. Mallat [21] shows that this can only be reached if
g is a Gaussian window function. However, the organization of this box, width vs. height, can be arranged, to
match a specific temporal or frequency resolution. This can be done by scaling the window g (t ) as in (5.4).

g (t ) finite?
For numerical applications, g (t ) must have a compact support, for it is finite. However, this results in an infi-
nite support of the window function in the frequency domain [21]. The frequency resolution of the transform
is maximized by concentrating the energy of Fg (ω) near ω = 0. Then the temporal and frequency variance
σt and σω are not to deviating. If we for instance choose to shrink σω to 0 (i.e. by choosing g (t ) = δ(t )), this
results in the normal Fourier transform: high frequency resolution, but no temporal resolution.
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Example 5.2 (STFT of transient signals and chirp) Here again we consider the self made
signal from Figure 4.5. The STFT shown in Figure 5.3a is hard to read, therefore we start
with the example where the frequencies of the signal are increased by a factor 10. The
resulting spectrogram is given in Figure 5.3b. In this figure two graphs are shown. The
lower graph gives an overview of the signal. The upper graph of the STFT of this signal.
On the x-axis of the STFT the time is given, on the y-axis the frequency. Figure 5.3b shows
excitations at the points where there are sudden frequency changes, as does the STFT of
the original signal in Figure 5.3. These sudden changes can be explained as Delta peaks,
which, as we know from Example 4.3, match with a constant energy distribution in the
frequency domain. The different frequency components are very clear from the spectro-
gram in Figure 5.3b. Their exact moments of appearance still has to be guessed, this is the
result of the Heisenberg boxes.

If now again Figure 5.3 is considered, we see these results are much less clear. The
limitations due to the Heisenberg boxes, which were already visible in Example 4.5, causes
hard to read results. When the code is changed to a better frequency resolution, the time
resolution decreases.

For the chirp (discussed in Example 4.7) the spectrogram is given in Figure 5.3c. Here
the content of the signal is actually much clearer than from its Fourier spectrum in Fig-
ure 4.4b. As the frequencies change faster when they become higher, the deviation of the
frequencies in a ’time level’ is larger. In both these cases the STFT has provided much
more information than the DFT. However, for frequencies close to each other, we have
seen in Figure 5.3a the result is very blurry, giving us very little information.

The MATLAB-code for this example: Listing B.4.

(a) The STFT for the original signal from Figure 4.5.

Figure 5.3: The STFT for the signals from Example 5.2.
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(b) The STFT for the same signal as (a), with 10 times larger frequencies.

(c) The STFT for chirp signal as described in Example 4.7.

Figure 5.3: The STFT for the signals from Example 5.2.
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6
Wavelet analysis

In Chapter 5 the Fourier transform has been applied to windowed pieces of
a time signal x(t ). This method trades resolution in the temporal and fre-
quency domain for information about the coupling of time and frequency.
This trade-off is the result of the Heisenberg uncertainty principle, which
holds for all time-frequency analyzing methods, including wavelet analy-
sis. Wavelet analysis however uses different resolutions for different fre-
quencies.

In this chapter first the continuous wavelet transform (CWT) will be dis-
cussed. Then the discrete wavelet transform (DWT) will follow. With the
application in mind, the DWT will be elaborated more thoroughly than the
CWT. The DWT is explained from the definition of a multi resolution anal-
ysis (MRA, Section 6.3) where both orthogonal and biorthogonal MRAs are
explained. When the reader is aware of the two types of MRA, algorithms

for the DWT will be elaborated. Throughout this chapter a lot of theory to derive wavelets is addressed. There-
fore this chapter will conclude with a summary of the most important equations to derive wavelets and show
an example using the well known Daubechies wavelet, followed by the main characteristics of other wavelets.

In Chapter 4 we have seen that the Fourier transform approximates a signal using a sum of sines and
cosines , i.e. (4.3). The only difference of the wavelet transform with the Fourier transform is the use of short
waves instead of the infinite sines and cosines. Their main characteristic is having compact support; they
do not last forever. Instead of multiplying the signal with an exponential function, wavelet functions ψ(t )
are used. The result for the Fourier transform is in terms of frequencies, whereas the wavelet transform is
expressed in scale and translation. Translation is easy to understand from the equations. The scale is a bit
harder to interpret. Scales can be seen as notes for a higher ’pitch’ the wavelet is compressed and for a lower
pitch it is stretched. This stretching leads to a longer wavelet, hence identifying the time of occurrence for
low frequency components is less accurate. Conversely the lower scale wavelet will be shorter and therefore
have a better localization in time. The trade off is a lower resolution in frequency, due to the Heisenberg
uncertainty principle. In short, the wavelet is scaled and translated to determine the correlation of the wavelet
with the signal at all scales and translations.

6.1. CWT - Continuous Wavelet Transform
We will start with the definition of a wavelet, to derive the main idea of the CWT. Later, another definition
of the wavelet will be given from a discrete perspective. First the formal definition: a wavelet is a function
ψ : R→C satisfying the conditions [4]:

ψ ∈ L2, (6.1a)

∥ψ∥ = 1, and (6.1b)

Cψ :=
∫
R\{}

|Fψ(ω)|2
|ω| dω<∞ (6.1c)
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Here ψ is called a mother wavelet or simply wavelet. These conditions represent the bare minimum for
wavelet theory to function. Wavelets occurring in practice are often L1 functions as well. Functions that
are continuous1, differentiable and have compact support (the function has a finite length) [4]. Condition
6.1c is also known as the admissibility condition for a function to be a wavelet. Narasimhan et al. [27] shows
that for Cψ to be finite, Fψ(ω) =Φ(ω) should tend to 0 as ω→ 0. Note that then follows

Ψ(ω)|ω→0 =
∫ ∞

−∞
ψ(t )e−iωt dt

∣∣∣∣
ω→0

= 0

⇒
∫ ∞

−∞
ψ(t ) dt = 0.

This equation is much weaker than the admissibility condition, but it is often sufficient for practical purposes.
It also implies that the total area under the wavelet should be zero. The function ψ(t ) has to oscillate to com-
ply to this condition, hence the name wavelet [27]. Some common wavelets are depicted in Figure 6.1, a more
elaborate overview of different wavelets with their strengths and weaknesses can be found in Section 6.5.

Figure 6.1: Four common real wavelets, scaled to fit in the domain [0,1] (therefore not all complying
to condition 6.1b).

Scaling
Now a wavelet ψ is chosen. For an arbitrary a ∈R\{0} we define the scaling [4] (or dilation [27]) of the wavelet
ψ as

ψa(t ) := |a|−1/2ψ

(
t

a

)
. (6.2)

This function is obtained from ψ by scaling the graph in the vertical direction (by t/a), reflecting the wavelet
ψ for a < 0 and scaling it in the horizontal direction by the factor |a|. This choice has been made such that
requirement (6.1b) holds for all ψa (a ̸= 0), by

∥ψa∥ =
∫ ∞

−∞
|ψa(t )|2 dt =

∫ ∞

−∞

∣∣∣∣|a|−1/2ψ

(
t

a

)∣∣∣∣2

dt = 1

|a|
∫ ∞

−∞

∣∣∣∣ψ(
t

a

)∣∣∣∣2

dt = 1

|a|
∫ ∞

−∞

∣∣ψ(t ′)
∣∣2 |a| dt ′ = 1.

For the obvious reason this process is called the scaling of a wavelet and the variable a is referred to as the
scaling factor or dilation parameter. Note this process is only valid for a ̸= 0.

1Exception: the Haar wavelet shown in Figure 6.1.
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Translating
After the process of scaling, the function ψa is translated along the time axis by the amount b. This translation
parameter indicates the location of the wavelet in time. The translation is chosen such that for b > 0 the
wavelet ψa is translated in the positive direction (as in (5.2)), from which the function

ψa,b(t ) :=ψa(t −b) = |a|−1/2ψ

(
t −b

a

)
(6.3)

is obtained. The resulting wavelets ψa,b are called the daughter wavelets [27]. These daughter wavelets exist
on the full R×R-domain except for {(a,b)|a = 0}, this set is defined as R2

_ := {(a,b)|a ∈R\0, b ∈R}. It is obvious
that ∥ψa,b∥ = 1 ∀(a,b) ∈R2

_.

6.1.1. The wavelet transform
As said before, a trade off has to be made between detailed time and frequency information, for you cannot
have both. As shown in Section 5.3.1 the scaling of the function adapts the variance in time and frequency.
From this scaling follows different resolutions in time and frequency for different frequencies. Remember, the
mother wavelet ψ is fixed, then the continuous wavelet transform (CWT) of a time signal x ∈ L2 with respect
to the chosen wavelet ψ is defined as

Wx(a,b) = X (a,b) := 〈x,ψab〉 =
∞∫

−∞
x(t )ψab(t ) dt = |a|−1/2

∞∫
−∞

x(t )ψ

(
t −b

a

)
dt (6.4)

=
∞∫

−∞
x(t )ψa(t −b) dt = (x ∗ψa)(b), (a ̸= 0)

From this definition we see the domain definition of Wx is R2
_. In wavelet theory the a-axis is scaled vertically

and the b-axis horizontally, in contrary to the (x, y) scaling the most readers are used to. This choice has been
made because the translation b is connected to the time, which is expressed on the horizontal axis too.

Note the resemblance of the wavelet transform with the cross correlation (4.6). In (6.4) the wavelet trans-
form is also written as a convolution [27]. As discussed before, the cross correlation assesses how much one
function resembles the other. In the case of the wavelet transform, the resemblance of the signal x(t ) with the
particular wavelet ψab is expressed in the function Wx(a,b).

Very often the domain of the transform Wx is restricted to positive a-values. Suitable wavelets for these
transforms are discussed later. If a or b is chosen from a discrete set, the wavelet transform is called discrete.
For a small value of |a|, ψab is of shorter duration and therefore covers a large frequency range. A larger
value of |a| results in a longer window and so covers a shorter frequency range. The parameter 1/a therefore
becomes a measure of frequency. In Figure 6.2b it is clear that the translation-scale domain differs from the
time-frequency domain. In the scale domain the highest frequencies are found at the bottom of the axis,
where the frequency axis displays them at the top.

The inverse wavelet transform
As for the Fourier transform, an inverse function for the wavelet transform is constructed as [27]:

x(t ) = 1

Cψ

∫
R

[∫
R\0

X (a,b)ψa,b(t )
da

|a|2
]

db, (6.5)

where Cψ is defined in (6.1c). A readable proof of this inverse wavelet transform is given by Narasimhan et al.
[27, page 8.5].

6.1.2. Heisenberg boxes and the scalogram
The wavelet transform does look the same as the STFT: an integral over the signal multiplied with a function
ψab . The energy spread of a wavelet ψab corresponds to a Heisenberg box with a center, with size aσt along
the time axis and σω/a along the frequency axis [21]. This is shown in Figure 6.2a: shorter wavelets cover
less time but higher and more frequencies. Longer wavelets cover more time, but less and lower frequencies.
The formal definition of the wavelet transform is in terms of scale a and translation b, which results in a
Heisenberg box division of the a,b-plane as in Figure 6.2b.
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(a) Heisenberg boxes of two different scalings of a wavelet [8]. (b) The arrangement of the translation-scale domain.

Figure 6.2: The time frequency domain arrangement by wavelets.

The scalogram [21, 28] or wavelet power spectrum [40] is the energy density of the wavelet transform, often
used to visualize the energy density over the signal. The scalogram measures the energy of a signal x(t ) in the
Heisenbergbox of the wavelet ψab . For a wavelet ψab centered around (t ,ω) = (b,ω= η/a) the scalogram PW

is defined as [21]:

PWx(b,ω) = |Wx(a,b)|2 =
∣∣∣Wx

(
b,

η

ω

)∣∣∣2
. (6.6)

This is a function with two variables. The x axis represents time (or translation b), the y axis represents the
scale a or as in the final part of the expression in terms of frequency. Torrence and Compo [40] has described
a process to interpret the statistical significance of the scalogram to be able to quantify the wavelet transform
results.

6.1.3. Computation of the CWT
The CWT of a signal often has to be computed analytically. Popular signal processing programs such as Mat-
lab or Python posses specific wavelet analysis tools. Both these toolboxes have functions to compute the
CWT of a signal. The CWT function of Python is shown in Listing B.6. In this code it becomes clear that the
’continuous wavelet transform’ is computed using discrete convolutions. So not the continuous expression
is computed, but an approach up to a certain level. The CWT algorithm does not have a fast computational
approach [27] and this discrete approach is computational expensive. The computation for a relative short
signal takes a lot of time and needs a lot of memory and is therefore considered ineffective. However, before
further elaboration on this subject, a few continuous wavelet transform examples using this function from
Matlab will be given, to give some insight in the results.

Complex Morlet wavelet In the following example the Complex Morlet wavelet will be
used for it is a standard wavelet from MATLABs Wavelet Toolbox [25]. The complex Morlet
wavelet is defined bya

ψcm = 1p
Bπ

exp(2πiω0)exp

(−t 2

B

)
, (6.7)

where B denotes the bandwidth and ω0 the center frequency of the wavelet. An example
of this wavelet with B = 1.5 and ω0 = 1 is given in Figure 6.3.

aExpression from MATLAB [26].
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Example 6.1 (CWT) In Chapter 4 and 5 we have used three examples: the sum of two
sines (Example 4.5, 5.1), the sum of transient signals (Figure 4.5) in Example 4.6 and 5.2
and the chirp signal from Example 4.7 and 5.2. These three examples will be discussed
here as well. The wavelet transform result of these three signals can be found in Figure 6.4.
The shown results are known as scalograms, following from the definition (6.6). To com-
pute these, the cwt()-function of Matlab has been used [26]: see Listing B.6.

The first result to consider is the sum of sines in Figure 6.4a. Here the same kind of
behavior as in the spectrogram is observed: the coefficients are constant in time. In the
frequency range two ’bars’ are observed, one around 50 Hz and one around 250 Hz. How-
ever, the spread of the 50 Hz signal is much smaller than the spread of the 250 Hz signal.
This is the result of the different shapes of the Heisenberg boxes: these have a larger fre-
quency variance for larger frequencies.

The same is observed for the quadratic chirp (Figure 6.4b), where also some ’boundary
effects’ appear at 2 seconds. The source of these effects will be discussed later. The last
example (Figure 6.4c) is the wavelet transform of the sum of transient signals. Here we
clearly see at t = 1 second that for the larger frequencies the resolution in time is better.
The start of the 250 Hz signal can be marked at this time, but the end of the 50 Hz signal
is not as clear. The 400 Hz part of the signal is harder to distinguish, but the start and
end are even sharper. However the frequency spread for this signal is already very large.
The most striking difference with the STFT is the absence of the block wave signal in this
wavelet transform. This can be explained by a characteristic of the Morlet wavelet; its
infinite number of vanishing moments [21]. This is addressed in Section 6.2.1. Note that
power density of the STFT example is expressed in decibels, in contrary to this example.

−8 −6 −4 −2 0 2 4 6 8

−0.4

−0.2

0

0.2

0.4 Real part
Imaginairy part

Figure 6.3: The complex Morlet wavelet ψcm(t ), (6.7) with B = 1.5 and ω0 = 1.

6.2. Wavelet characteristics
Till thus far we have seen the formal definition of a wavelet (6.1). An other approach will be presented in
Section 6.3.2. These wavelets do have the same characteristics. But what characteristics do make a wavelet a
good wavelet? Sweldens [37] gives a very general description of wavelets to start with:

Wavelets are building blocks that can quickly decorrelate data.

This sentence contains the three main characteristics of a wavelets. A wavelet is a building block, the first
characteristic, for a general function or time signal. This is consistent with the MRA approach: the mathe-
matical description of a basis fits this building block description.

The second characteristic is the power to decorrelate. This has not been addressed much yet, but the main
message is that we can get an accurate approximation of the original signal x(t ) by only using a small fraction
of the wavelet coefficients. Therefore the wavelet in a way has to resemble the data we want to represent, this
leads to three core properties [37]:

• A wavelet has to have compact support to ensure localization in time;
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(a) The wavelet transform of the signal x(t ) =
sin(100πt )+ sin(500πt ).

(b) The WT of the chirp signal, described in Exam-
ple 4.7.

Figure 6.4: Scalogram examples

(c) The WT of the signal from Figure 4.5, with 10 times larger frequencies.

Figure 6.4: The continuous wavelet transform (scalogram) of signals from previous examples.

• a wavelet has to be smooth, which results in decay towards high frequencies, to also have localization
in frequency. This localization in frequency is referred to as selectivity;

• and a wavelet has to have vanishing moments, which results in decay toward low frequencies.

The last characteristic is hidden in the word quickly. Sweldens [37] decribes that we want to switch be-
tween the original representation and the wavelet representation of some data in a time proportional to the
size of the data. This characteristic of course is very important to ensure the applicability of wavelets. At last
there is a choice between orthogonal and biorthogonal wavelets, this is further elaborated in Section 6.3.5.

6.2.1. Vanishing moments
In the last section three core properties have been discussed. The last one was the property of ’having vanish-
ing moments’. This subsection will shine some light on these moments. The name moment comes from the
probabilistic idea of a moment generating function. For a random variable, the nth derivative, evaluated at 0
gives the nth moment of this variable [31] . The best known moments are the first moment (expected value)
and the second moment (expected value of the square of the random variable).
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One way to differentiate various wavelet is by their vanishing moments. In wavelet theory the moments
are a number to estimate the rate of decay of a wavelet ψ(t ) [20]. The rate of decay for a general function f (t )
can be estimated by the formal integral

∞∫
−∞

t k f (t ) dt .

Here the parameter k indicates the rate of decay. If we for example consider the function f (t ) = cos t/t 2, then
we know that the integral converges to 0 for k = 0 and k = 1. For k = 2 this integral converges to π. For a
general wavelet ψ(t ) we say it has p vanishing moments if [20]

∞∫
−∞

t kψ(t ) dt = 0 for 0 ≤ k < p ∈N. (6.8)

This leads to descriptions of moments for both discrete and continuous wavelets. The continuous moments
µk and νk are defined by the integral (6.8) as

µk =
∫ ∞

−∞
t kϕ(t ) dt , νk =

∫ ∞

−∞
t kψ(t ) dt .

In the Fourier domain, this can be checked by evaluating the transform of the derivatives of the functions. A
function has p vanishing moments if the first p −1 derivatives of its Fourier transform are zero at ω= 0 [20].
This leads to the analogous expression [18]:

µk = 2πi k dkΦ

dωk
(0), νk = 2πi k dkΨ

dωk
(0).

Note that the continuous moment µ0 is not determined for the refinement equation [18], it depends on the
scaling of ϕ. µ0 can be picked arbitrarily for any given ϕ, but for a biorthogonal pair the following relationship
has to hold: µ̃0µ0 = 1. However, when µ0 has been chosen, all other continuous moments are uniquely
defined.

The definition of the moments are clear. A moment is called vanishing if it is equal to 0. The advantage of
the vanishing moments is the possibility to write the wavelet as a low pass filter. This simplifies the wavelet
design process [20], which will be addressed in Section 6.5. The higher the number of vanishing moments,
the more complex a wavelet is and therefore it is more accurate in the representation of a complex signal. The
disadvantage of a high number of vanishing moments is that it results in a longer support. As the number of
vanishing moments increases, polynomials up to that order will not be identified by the wavelet.

6.2.2. Localization and selectivity
So a wavelet with one vanishing moment, p = 1, cannot identify constant signals, but it does identify linear,
quadratic, etc. signals. In an analysis with a wavelet with two vanishing moments, linear signals cannot be
identified anymore. In the Fourier transform, for each analyzing function one frequency is addressed. In
the wavelet transform a range of frequencies is encompassed in one analyzing function ψ(t ). So to analyze
a lower range of frequencies, you need to be more selective, earlier referred to as ’localization in frequency’.
However if we link this to the uncertainty principle, we note that the more selective a wavelet is, the less com-
pact support it has. This links the selectivity of the wavelet to its number of vanishing moments, explaining
the behaviour in Example 6.1.

6.2.3. Regularity and decay
The last related aspect of wavelets is its regularity. Wavelet with low regularity create jagged representations
of the signal which is analyzed, wavelets with high regularity result in smoother representation of the func-
tions. The more vanishing moments a wavelet has, the higher the regularity of the wavelet. However, the
regularity of a wavelet increases linearly with the support width [11]. The application of the wavelet analy-
sis lets us assess wavelet for different properties. Compact supported orthonormal wavelets are suitable for
sparse representations of large matrices. Therefore the number of vanishing moments is far more important
than the regularity [11]. For compression, smoothness is important to observe as little of the compression as
possible, placing high regularity over number of vanishing moments [11].
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6.3. MRA - Multi Resolution Analysis
The multi resolution analysis or multi resolution approximation (MRA) is another way of defining wavelets. In
the first part of this chapter the CWT was defined from the theory of the STFT. The discrete wavelet transfrom
(DWT) theory can be approached from the definition of the CWT, with addition of the notion of frames in
Hilbert spaces [4, 11, 21]. Here however, the MRA approach of the DWT will be followed, which has two main
advantages. The first advantage is that the MRA theory is discrete to begin with, resulting in a more natural
derivation of the DWT, which is easier to implement as a computer algorithm [4, 18, 27]. Secondly, the MRA
structure allows for convenient, fast and exact calculation of wavelet coefficients by providing a recursion
relation, for both the discrete and the continuous case. This recursion relation is a relation between scaling
coefficients at a given scale 2−n−1 and the scaling and wavelet coefficients at the next coarser scale 2−n [43].
This section starts with the definition of a refinable function and an MRA and it ends with the definition of
the DWT. This is followed by the covering of biorthogonal MRAs, in addition to the orthogonal ones discussed
here. Through out this section the example of the Haar wavelet will be used. First we start with a refinable
function, which is a function ϕ : R→ C which satisfies a two-scale refinement equation, or recursion relation
of the form

ϕ(t ) =p
2

k1∑
k=k0

hkϕ(2t −k). (6.9)

The hk ∈ C are known as the recursion coefficients. A refinable function ϕ is called orthogonal if for k ∈ Z

[4, 18]
〈ϕ(t ),ϕ(t −k)〉 = δ0k holds. (6.10)

Example 6.2 (Haar function) An example of such an orthogonal refinable function is the
Haar function, defined as

ϕHaar(t ) := 1[0,1] =
{

1 0 ≤ t ≤ 1
0 elsewhere

. (6.11)

The Haar function is orthogonal and refinable with h0 = h1 = 1/
p

2, as shown in Figure 6.5.
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(a) The Haar scaling function ϕHaar(t )

−0.5 0 0.5 1 1.5
0

0.5

1

(b) The refined Haar scaling function
ϕHaar(t ) = p

2(ϕHaar(2t )/
p

2 + ϕHaar(2t −
1)/

p
2)

Figure 6.5: Example: the Haar scaling function.

The set {V j } j∈Z is called a orthogonal multi resolution analysis (MRA) of L2, where V j , j ∈Z is a sequence
of subspaces of L2, if it complies to six conditions [18]:

V j ⊂V j+1 (nested subsets) (6.12a)

∪ j∈ZV j = L2 (density axiom) (6.12b)

∩ j∈ZV j = {0} (separation axiom) (6.12c)

f (t ) ∈Vn ⇐⇒ f (2x) ∈ f (2t ) ∈Vn+1 ∀n ∈Z (scaling property) (6.12d)

f (t ) ∈Vn ⇐⇒ f (2x) ∈ f (t −2−nk) ∈Vn ∀n,k ∈Z (scaling property) (6.12e)

∃ϕ(t ) ∈ L2such that {ϕ(t −k) : k ∈Z} forms an orthogonal basis of V0 (scaling function) (6.12f)
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There also exist MRAs built on non orthogonal scaling functions, these will be discussed later (Section 6.3.5).
Orthonormalizing an existing scaling function is possible, but the resulting new ϕ often does not have com-
pact support anymore, losing its function for practical applications [18]. The fourth condition (6.12d) ex-
presses the main property of an MRA: each subspace Vn consists of the functions in V0 compressed by a factor
2n , therefore spanning V0. From this can be concluded that a stable basis of Vn is given by {ϕnk (t ) : n ∈ Z},
where

ϕnk (t ) = 2n/2ϕ(2n t −k), k ∈N. (6.13)

The last condition (6.12f) implies that any function f ∈V0 can be written uniquely as a sum of coefficients
fk multiplied with a scaling function

f (t ) = ∑
k∈Z

fkϕ(t −k), (6.14)

converging in L2. The essential characteristic of the MRA is that ϕ(t ) ∈ V0 can be written in the terms of the
basis of V1 as

ϕ(t ) =∑
k

hkϕ1k (t ) =p
2
∑
k

hkϕ(2t −k), (6.15)

for some coefficients hk . This is called the refinement equation. From this follows that ϕ is a refinable func-
tion, for ϕ complies to the recursion relation (6.9). This refinement equation can be an infinite sum, but for
now we will continue assuming a finite sum. The orthogonality condition (6.10) in this form becomes∑

k
hk hk−2ℓ = δ0ℓ. (6.16)

The orthogonal projection onto the subspace Vn , denoted with Pn , of an arbitrary function f ∈ L2 is given by

Pn f =∑
k
〈 f ,ϕnk〉ϕnk . (6.17)

Note that the projection Pn f cannot represent details smaller than 2−n . Therefore we say that functions in Vn

have resolution or scale 2−n . An MRA provides a sequence of approximations Pn f of increasing accuracy to a
given function f .

Example 6.3 (Orthogonal projection) Lets continue with the Haar example. We are go-
ing to approximate the function cos(t ) on the interval [0,10]. We start with the function
ϕHaar (6.11), then

P0 f (t ) =∑
k
〈 f ,ϕ0k〉ϕ0k =∑

k
〈cos t ,ϕHaar(t −k)〉 ·ϕHaar(t −k).

And so the same can be applied to P1 f (t ):

P1 f (t ) =∑
k
〈 f ,ϕ1k〉ϕ1k =∑

k
〈cos t ,

p
2ϕHaar(2t −k)〉 ·p2ϕHaar(2t −k).

The result of this approximation is given in Figure 6.6. Note that the Haar function pro-
duces an orthogonal MRA.

6.3.1. Fine details
Example 6.4 (Orthogonal components) In Example 6.3 we have seen that we can ap-
proximate a function using the scaling function ϕ. The representation of, for instance,
a function x(t ) ∈V1 can be done by the space V1, but also by all spaces V j , j > 1 [27]. This
representation however is not very efficient, because more parameters than necessary are
needed. How do you use less parameters? Note we used the functions in V1 only to rep-
resent the part of x(t ) which could not be represented by V0. If we only use the difference
between the spaces V1 and V0 to describe x(t ), less parameters are needed. Therefore the
space W0 will be explicitly designed. This space W0 is in V1, but not in V0 and therefore is
called the orthogonal component of V0 in V1. A more mathematical description follows.
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Figure 6.6: Orthogonal projection of the function cos t using the Haar function (6.11).

When this difference between two approximations at different levels is considered, the applicability of the
MRA rises. The difference between two levels of resolution 2−n and 2−n−1 is also called the fine detail at
resolution 2−n , denoted as Qn :

Qn f = Pn+1 f −Pn f . (6.18)

Note that Qn is also an orthogonal projection [18] and that its range Wn is orthogonal to Vn , so the direct sum
of the function space Vn and Wn is Vn+1:

Vn ⊕Wn =Vn+1.

This is the final step that brings us to another definition of the wavelet, approached discretely instead of con-
tinuous (6.4). Wavelets are an element of an orthogonal MRA. For any orthogonal MRA with scaling function
ϕ [18] ⊕

n
Wn = L2 dense (6.19a)

Wk ⊥Wn if k ̸= n (6.19b)

f (t ) ∈Wn ⇐⇒ f (2t ) ∈Wn+1∀n ∈Z (6.19c)

f (t ) ∈Wn ⇐⇒ f (t −2−nk) ∈Wn∀n,k ∈Z (6.19d)

∃ψ ∈ L2, called a wavelet, such that {ϕ(t −k) : k ∈Z} forms an orthogonal basis of W0

and {ψnk : n,k ∈Z} forms a stable basis of L2. (6.19e)

Since ψ ∈V1, it can be represented as

ψ(t ) =∑
k

gkϕ1k =p
2
∑
k

gkϕ(2x −k), with gk = (−1)k hN−k , with N odd. (6.19f)

Here ψ is known as the mother wavelet. In terms of the wavelet function, the projection Qn is given, in the
same way as Pn (6.17):

Qn f =∑
k
〈 f ,ψnk〉ψnk . (6.20)

This projection is the final step to the discrete wavelet transform DWT.

The Haar wavelet Now we will apply this to the example of the Haar function from Exam-
ple 6.2, to introduce our first wavelet build using MRA: the Haar wavelet (see Figure 6.7).
The coefficients gk from (6.19f) to create the Haar wavelet are {g0, g1} = {h1,−h0} =
{1/

p
2,−1/

p
2}, resulting in the function ψHaar(t ) = 1[0;0.5)(t )− 1[0.5;1)(t ).

6.3.2. DWT - Discrete Wavelet Transformation
We have seen that given a function f ∈ L2 we can represent it as a complete decomposition in terms of detail
at all levels:

f =
∞∑

k=−∞
Qk f .

LITERATURE THESIS T. DE ROOIJ



6.3. MRA - MULTI RESOLUTION ANALYSIS 38

−0.5 0 0.5 1 1.5
0

0.5

1

(a) The Haar scaling function ϕHaar(t )
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(b) The Haar wavelet ψHaar(t )

Figure 6.7: The Haar scaling function and wavelet.

As an alternative one can choose to start at a level ℓ and use the approximation at resolution 2−ℓ together
with the detail at finer resolution, to decompose f as:

f = Pℓ f +
∞∑

k=ℓ
Qk f .

An infinite sum is not practical applicable, so the sum is reduced to a finite sum: therefore we assume f ∈Vn

for some n > ℓ. Then the discrete wavelet transform (DWT) is described by

f = Pn f = Pℓ f +
n−1∑
k=ℓ

Qk f . (6.21)

The DWT approach is similar to the CWT approach, except of using continuous scale a and translation b,
these are chosen discretely as scale n and translation k. The mother wavelet ψ(t ) is chosen and the daughter
wavelets are

ψnk (t ) = 2n/2ψ(2n t −k). (6.22)

The nk Heisenberg box has size 2−nσt × 2nσω, with different spacings for different frequencies, as for the
continuous case. The inverse operation of the DWT will be discussed in Section 6.4.

Example 6.5 (DWT) This is the last time the Haar example will be discussed. For the Haar
example P0 f and P1 f have been computed, following the DWT (6.21) we should find that
P1 f = P0 f +Q0 f . Therefore we use (6.20) to find

Q0 f =∑
k
〈 f ,ψ0k〉ψ0k =∑

k
〈cos t ,1[0;0.5)(t −k)− 1[0.5;1)(t −k)〉 · (1[0;0.5)(t −k)− 1[0.5;1)(t −k)).

The result is shown in Figure 6.8.

6.3.3. Requirements for wavelet transform
As for the Fourier transform, the integral defining the coefficients should converge. So, just like for the Fourier
transform, only functions in the L2 space are theoretically suitable for wavelet transformation [21]. For dis-
crete signals some requirements will be discussed in Section 6.4. However effects such as the Gibbs effect are
not present in the wavelet transform. This makes the wavelet transform much more suitable to use for sig-
nals with discontinuities. The Fourier transform can also show unwanted effects in the reconstruction of non
periodic functions, for instance a linear function. The reconstruction of the wavelet transform for both non
periodic as periodic functions is close to perfect [47]. Because the wavelet transform (up to a certain scale)
only catches local effect, the wavelet transform is also better applicable to non stationary signals.

The downside of the wavelet transform is the time-frequency representation in the form of the scalogram.
The scalograms shown in Figure 6.4 are hard to read and do not necessarily contain better information than
the spectrograms of these signals (Figure 5.1, 5.3c and 5.3b.) The discrete version of the scalogram, which
will be presented in Figure 6.11b is even harder to read. There is not necessarily a one to one coupling of
wavelet scales to frequency. When complex wavelets are used this is determined most easy. Because of these
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Figure 6.8: Discrete wavelet decomposition of cos t using the Haar function (6.11) and Haar wavelet.

downsides the scalogram is not much used in time-frequency domain analysis; especially the discrete version
is almost never used.

From CWT to DWT
As mentioned before, there are two ways to derive the DWT. Following the MRA theory, we have found an ex-
pression for the (discrete) wavelet coefficient belonging to wavelet ψnk (from (6.20)): 〈 f ,ψnk〉. The definition
of the inner product on L2 in (1.1) shows the similarity with the continuous wavelet coefficient from (6.4). The
CWT and DWT coefficients are defined through the same integral. Therefore a large set of functions is suit-
able for both continuous and discrete wavelet transform. However the most are better suited for one or the
other; an overview will be given in Section 6.5. The DWT cannot be derived directly from the CWT expression
(6.4), because the set of discrete scales and translations cannot be chosen arbitrarily. The justification of this
choice can be made through the notion of frames from the Hilbert space theory [4, 11, 21]. This a very theo-
retical approach, where the MRA approach is less theoretical. They however result in the same expression for
the DWT. A mayor advantage of the MRA approach is that an efficient algorithm of the DWT is easily derived,
for both orthogonal and non orthogonal wavelets (see Section 6.3.5). This algorithm will be explained to the
reader in Section 6.4.

6.3.4. The design equations
The Fourier transforms of the scaling function and the wavelet are indispensable in the design of wavelets.
Here they are shortly reviewed. H(ω) and G(ω) are known as the symbol of respectively the refinable function
and the wavelet[18]:

Φ(ω) =Fϕ(ω) = H(ω/2)Φ(ω/2), with H(ω) = 1
p

2

∑
k

hk e−i kω, (6.23)

Ψ(ω) =Fψ(ω) =G(ω/2)Ψ(ω/2), with G(ω) = 1p
2

∑
k

gk e−i kω. (6.24)

The orthogonality condition (6.16) in the Fourier domain becomes

|H(ω)|2 +|H(ω+π)|2 = 1. (6.25)

Relationship (6.23) can be substituted recursively, to find the formal limit

Φ(ω) =
[ ∞∏

k=1
H(2−kω)

]
Φ(0). (6.26)

This approach is effective in the creation of wavelets. This relation can also be used to calculate the refine-
ment equation corresponding to a certain low pass filter [20]. If convergence of this infinite product is as-
sumed, this expression provides a way to compute ϕ(t ) theoretically. Φ(0) can be chosen arbitrarily: solutions
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of the refinement equation (6.15) are only defined up to a constant factor. Choose Φ(0) ̸= 0 to find solutions
other than ϕ(t ) = 0. Multiples of the solution of the equation are also solutions to the equation.

Cascade algorithm
The cascade algorithm is a more suitable way than (6.26) to approximate point values of ϕ(t ) [18]. This al-
gorithm applies a fixed point iteration applied to the refinement equation. Starting by choosing a suitable
scaling function ϕ(0)(t ), and define

ϕ(n)(t ) =p
2
∑
k

hkϕ
(n−1)(2t −k), (6.27)

which will converge in many cases.

6.3.5. Biorthogonal wavelets
In the derivation of the DWT we used the existence of orthogonal MRAs. These orthogonal MRAs however are
not very common [18] and therefore the biorthogonal MRA will be discussed (sometimes referred to as semi
orthogonal). We first start with an example from linear algebra, to explain the concept of biorthogonality.

Example 6.6 (Biorthogonal system) Consider two independent vectors b1 and b2 ∈ R2.
By independence, b1 and b2 are a basis for R. If b1 ⊥ b2, this basis is called orthogonal, if
also both vectors are unit vectors, the basis is called orthonormal. Any vector x ∈R2 can be
written as x =αb1 +βb2. If we choose B = [b1,b2], then we can solve for the coefficients:

x = B

[
α

β

]
= Bc ⇒ c = B−1x .

This however is not as easily solved for a nonorthogonal set as for an orthogonal set of
basis vectors. Therefore the dual base {b̃1, b̃1} is introduced. These vectors comply to [27]

〈b1, b̃1〉 = 1, 〈b2, b̃2〉 = 1, 〈b2, b̃1〉 = 0, 〈b1, b̃2〉 = 0,

such that we can use the relation c = B−1x = B̃ x , to determine the coefficients α and β.
This matrix B̃ is chosen B̃ = [

b̃1, b̃1
]ᵀ

such that

x = (
b̃ᵀ

1 x
)

b1 +
(
b̃ᵀ

2 x
)

b2. (6.28)

E.g. we choose two non orthogonal vectors, spanning R2 and a vector x :

b1 =
[

1
0

]
, b2 =

[
1/2p
3/2

]
x =

[
1
1

]
.

The dual base for the given b1 and b2 is given by

b̃1 =
[

1
−1/

p
3

]
and b̃2 =

[
0

2/
p

3

]
.

Then

b̃ᵀ
1 x = 1−1/

p
3, b̃ᵀ

2 x = 2/
p

3, ⇒ (1−1/
p

3)

[
1
0

]
+2/

p
3

[
1/2p
3/2

]
=

[
1
1

]
= x .

The sets {b1,b2} and {b̃1, b̃2} are a biorthogonal system of R2.

As the word bi in biorthogonal implies, the biorthogonal MRA has not one but two refinable functions as
a basis. Refinable functions in general are relatively easy to find, but a lot of them do not result in orthog-
onal MRAs, so the orthogonality conditions will be replaced by milder biorthogonality conditions [18]. Two
refinable functions ϕ and ϕ̃ are called biorthogonal if

〈ϕ(x), ϕ̃(x −k)〉 = δ0k .
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ϕ̃ then is referred to as the dual of ϕ. This dual however is not unique [18], dual lifting, a process discussed
later, will produce numerous other duals of the same ϕ. These two scaling functions define two MRAs:
{Vn}n∈Z and {Ṽn}n∈Z. Then the construction of the projections follows the same line of reasoning as in Ex-
ample 6.6: there are two projections, Pn (6.29a) and P̃n (6.29b) to project a function from L2 to {Vn}n∈Z and
{Ṽn}n∈Z respectively.

The projections Qn (6.29c) and Q̃n (6.29d) are defined as before, spanning the spaces {Wn}n∈Z and {W̃n}n∈Z
respectively. The space Wn is now orthogonal to Ṽn , such that the fine detail relation (6.18) still holds. The
same hold for W̃n and Vn . Now note that Vn ⊕Wn = Vn+1 still holds, but now as a nonorthogonal direct sum
instead of an orthogonal one. Keinert [18] states that finding wavelet functions ψ and ψ̃ which span the
spaces Wn and W̃n is not that hard, but stability is not guaranteed. How to find these functions is further
elaborated in Section 6.5.

Pn f =∑
k
〈 f , ϕ̃nk〉ϕnk , (6.29a)

P̃n f =∑
k
〈 f ,ϕnk〉ϕ̃nk , (6.29b)

Qn f = Pn+1 f −Pn f , (6.29c)

Q̃n f = P̃n+1 f − P̃n f . (6.29d)

When an orthogonal wavelet is used for decomposition, the representation of the signal is the most com-
pact: the number of convolutions at a scale is proportional to the size of a scale [40]. This will result in a
relative sparse representation of the signal. This is characteristic is very desirable in signal compression [18].
An aperiodic shift in time series produces a different wavelet spectrum, this is often not beneficial in time
series analysis. When a biorthogonal wavelet is used, the large scales are highly redundant, the wavelet co-
efficients at adjacent times are highly correlated. This makes the biorthogonal wavelets better applicable to
time series analysis where smooth, continuous variations in wavelet coefficients are expected [40].

6.3.6. Discrete moments
In Section 6.2 the importance of the number of vanishing moments for the wavelet transform has been ad-
dressed. The discrete wavelet do have vanishing moments, just like the continuous case. They however can
be defined by their coefficients: the kth discrete moment of the refinement function ϕ and the wavelet ψ
are defined by their coefficients hk and gk . The m denotes the moment of the refinable function, the n the
moment of the wavelet [18].

mk = 1p
2

∑
ℓ

ℓk hℓ, nk = 1p
2

∑
ℓ

ℓk gℓ,

mk = i k dk h

dωk
(0), nk = i k dk g

dωk
(0).

If in particular m0 = h(0) = 1, the zeroth moment of a refinement function is 1. These discrete moments are
uniquely defined and easy to calculate. They can be computed using the relation between the discrete and
continuous moments:

µk = 2−k
k∑

p=0

(
k

t

)
mk−pµp , νk = 2−k

k∑
p=0

(
k

t

)
nk−pµp .

6.4. Discrete wavelet transform algorithmic
In this section of the chapter the two or three steps of the algorithm performing the DWT are explained. Some
different formulations of the DWT algorithm are discussed, which are essential to the building of wavelets.
The resulting algorithm needs O(N log2 N ) operations, which as fast as the DFT, however it is asymptotically
faster than the STFT algorithm, using O(N 2 log2 N ) operations. The two or three steps to do a complete DWT
for a 1D signal of finite length are [18]:

1. Optional: preprocessing of the signal (Section 6.4.3);

2. Handling the boundary conditions (Section 6.4.4); and

3. Applying the algorithm (Section 6.4.1).
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Finally there are different ways of formulation and implementation of the algorithm. These will be discussed
at the end of this section. This section is started with the final step of the DWT: the algorithm. Note we
assume the use of biorthogonal wavelets, if one uses a orthogonal wavelets the tildes in this explanation can
be dropped. The DWT is based on the decomposition of the space Vn :

Vn =Vℓ⊕Wℓ⊕ . . .⊕Wn−1.

6.4.1. The algorithm
We start with a function s ∈ Vn (or signal), which by the theory can be represented by its coefficient vector
sn = {snk }k=1,...,N :

s(t ) =∑
k

snkϕnk (t ). (6.30)

The function can also be expanded into two parts:

s(t ) =∑
k

sℓkϕℓk (t )+
n−1∑
j=ℓ

∑
k

d j kψ j k (t ).

The notations s and d originate from the Haar wavelet, where s denotes the sum and d the difference. For reg-
ular wavelets, it is easier to remind s as the smooth part and d as the (fine) detail [18]. The complex conjugate
notation of the coefficients comes from the multiwavelet theory. The DWT and inverse DWT (IDWT) convert
the coefficients snk to sℓk and d j k , j = ℓ, . . . ,n−1 and vice versa. Signals consisting of equally spaced samples
of the signal s frequently are in the form s(2−nk). The conversion of s(2−nk) to snk is called preprocessing, the
reverse processes postprocessing. Both are explained later. So the signal s is decomposed in its components in
Vn−1 and Wn−1 by

s = Pn−1s +Qn−1s =∑
k
〈s, ϕ̃n−1, j 〉ϕn−1, j +

∑
k
〈s,ψ̃n−1, j 〉ψn−1, j

⇒ sn =∑
k

sn−1, jϕn−1, j +
∑
k

d n−1, jψn−1, j .

By this the (discrete) signal s, sn in vector notation, is decomposed in two pieces: sn−1 (6.31a) and dn−1

(6.31b) [18]. From this the signal can be reconstructed following (6.31c).

sn−1, j =
∑
k

h̃k−2 j snk , (6.31a)

dn−1, j =
∑
k

g̃k−2 j snk , (6.31b)

snk =∑
j

(hk−2 j sn−1, j + g k−2 j dn−1, j ) (6.31c)

Where we define

〈ϕn−1, j , ϕ̃nk〉 = hk−2 j , 〈ϕn−1, j ,ψ̃nk〉 = gk−2 j , 〈ϕ̃n−1, j ,ϕnk〉 = h̃k−2 j , 〈ψ̃n−1, j ,ϕnk〉 = g̃k−2 j .

Convolution implementation
The decomposition step can be written as two discrete convolutions, of computation time O(N log2 N ) using
the same improvement as the FFT algorithm. These convolutions are2

((−)h̃ ∗ sn) j =
∑
k

h̃−( j−k)snk , ((−)g̃ ∗ sn) j =
∑
k

g̃−( j−k)snk , (6.32a)

which are followed by downsampling to determine sn−1 and dn−1 (assume computation time of O(1)):

sn−1 = (↓ 2)((−)h̃ ∗ sn), dn−1 = (↓ 2)((−)g̃ ∗ sn). (6.32b)

2For notation, see Section 1.1.
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This is only one step of the algorithm, in practice these steps often repeated several times:

sn → sn−1,dn−1

sn−1 → sn−2,dn−2

...

sℓ+1 → sℓ,dℓ.

Because in every step, the length of the components sn−1, dn−1 is half the length of the components sn , dn ,
the algorithm has to compute O(N )+O(N /2)+O(N /4)+ . . . =O(N ) convolutions. This results in O(N 2 log2 N )
arithmetic operations to determine the discrete wavelet transform of a signal. The reconstruction of the signal
from the DWT is opposite to the decomposition: first upsampling, followed by two convolutions:

sn = h ∗ (↑ 2)sn−1 +g ∗ (↑ 2)dn−1. (6.32c)

Programming the routine
When we start with a signal sn of length N , the first step produces sn−1 and dn−1, which are both of length
N /2. These signals are most of the time stored in the same place as the original signal sn . So the output of the
DWT routine after several steps becomes then 

sℓ
dℓ

dℓ+1
...

dn−1

 .

This vector can be stored in the same space as sn with which the routine started. This representation results in
an ugly programmable routine. The matrix formulation of the DWT results in a more appealing matrix-vector
product notation.

Both the decomposition as the reconstruction can be implemented as infinite matrix-vector products
[18]. Here (sd )n = [

. . . , sn,−1,dn,−1, sn,0,dn,0, sn,1,dn,1, . . .
]ᵀ

, such that the decomposition step can be written
as

(sd )n−1 = L̃sn , with L̃ =


· · · · · · · · ·
· · · L̃0 L̃1 · · ·

· · · L̃0 L̃1 · · ·
· · · · · · · · ·

 , for L̃k =
[

h̃2k h̃2k+1

g̃2k g̃2k+1

]
. (6.33)

The reconstruction step can thus be written as

sn = L∗(sd )n−1,

where the perfect reconstruction condition is expressed as L∗L̃ = I . The finite, and therefore applicable ver-
sions will be derived when the boundaries are discussed.

6.4.2. Filter formulation
The filter formulation of this algorithm will be discussed shortly for it is widely used [26, 27, 38]. In the algo-
rithm the decomposition is given by a convolution and a down sampling. The recomposition is given as a up
sampling step follow by a convolution with the same signal. These steps are shown in Figure 6.9. From these
figures it is clear that both filters g [n] and h[n] have different properties. The filter g [n] is a high pass filter,
whereas the filter h[n] is a low pass filter. The down sampled low pass filter output is then treated as an input
for the next stage, passing through the same analyzing filters. From this follows that admissible wavelets are
either high pas or band pass filters [27]. This process can be repeated until the desired number of stages is
achieved. An example for three stages is found in Figure 6.10. In the recomposition it is clear why only the
most coarse smooth part and all fine details are saved. By omitting the finest details, a signal can for instance
be compressed. The representation in Figure 6.10 is known as the dyadic implementation. The recomposi-
tion filters are known as interpolating filters. If wavelet packets are used, not only the smooth part is fed into
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the decomposition again, but also the detail parts are decomposed. If not all detail parts are decomposed,
this can lead to interesting distributions of the time frequency plane (such as Figure 6.13). They are almost
nowhere used to display data, but have different applications in mostly compression and noise reduction
[27].

Wavelets can be designed from this filter perspective, where h[n] can be seen as high pass filter and g [n]
as a low pass filter. This design perspective will not be addressed much in this literature thesis. However,
note that the choice of filter h[n] has impact on the vanishing moments, the regularity and the decay of the
accompanied wavelet. The choice of the coefficients of h[n] that lead to maximum regularity differs from the
choice of a maximum number of vanishing moments [11]. The filter implementation of the DWT algorithm is
also known as the Fast Wavelet Transform (FWT) and was first proposed by Mallat in 1988. It finds it strength
in using the Fourier transform of the signals and the convolution property (4.5) [21]. This will be elaborated
further in Section 6.4.5.

6.4.3. Pre- and postprocessing
As mentioned in the begin of Section 6.4, the data, mostly in the form of a signal s(2−nk), has to be converted
to the coefficients snk from (6.30). Keinert [18] discusses a few options to find the coefficients snk (assume
the signal s(t ) is real for simplification):

• Use for the coefficients their exact values: snk =
∞∫

−∞
s(t )ϕ̃nk (t ) dt . This is only feasible for continuous

signals s(t ).

• For discrete signals, for instance the trapezoidal rule can be used: snk ≈ 2−n/2 ∑
ℓ s(2−nℓ)ϕ̃(ℓ−k) dt . It

is important to note that the point values of ϕ̃ at the integer points are known. Higher order quadrature
rules can be used too. The trapezoidal rule is one of the many quadrature rules, in general form written
as [41] ∫ t2

t1

f (t ) dt ≈
K∑

k=1
wk f (vk ),

where K is the number of quadrature points, wk the weights and vk the quadrature points in [t1, t2]. The
Gaussian rules are a special type of these quadrature rules, where the integration points and weights
are chosen such that the highest order of accuracy is reached for a particular number of integration
points vk .

• Keinert [18] suggests to use snk ≈ s(2−nk). Both Walnut [43] and Keinert [18] refer to the book of Strang
and Nguyen [36], where this assumption is called a wavelet crime. However Keinert [18] shows that for
smooth s (at least two times differentiable) the truncation error is smaller than the coefficients by a
factor of order 2−n .

Postprocessing is the above described process in reverse: the conversion from snk to s(t ). There are two main
approaches for postprocessing:

• Adding up scaling function expansions in between sampling points to retrieve the continuous signal
s(t ). Because many scaling functions are not smooth, this might lead to a non continuous reconstruc-
tion [18].

• The alternative is finding intermediate points using interpolation.

• Other approaches from papers or books, a start point is given by Keinert [18].

(a) One step decomposition (b) One step reconstruction

Figure 6.9: Filter formulation of the DWT algorithm.
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(a) Three steps decomposition

(b) Three steps reconstruction

Figure 6.10: Filter formulation of the algorithm for a three step algorithm

6.4.4. Boundaries: different approaches
In Section 6.4.1 the infinite approach of the algorithm and the corresponding implementation (6.33) has been
discussed. Of course this infinite approach is not implementable, therefore boundaries are introduced to
abbreviate the infinite approach to a finite implementation. As for the infinite length DWT the finite length
algorithm will be assumed linear, where the form of L̃n is changed to:

(sd )n−1 = L̃n sn , with L̃n =
L̃b ⊘

L̃i

⊘ L̃e

 . (6.34)

Here the subscript b, i and e stand for begin, interior and end. In the begin and end parts of the matrix, the
boundaries will be handled. Generally the size of Lb and Le are small with respect to the size of Ln and they
both remain constant at all levels. The interior L̃i is a segment of the infinite matrix L̃ from (6.33). This part
makes up the most of the matrix, approximately doubling in size when going from n to n +1. For the IDWT
to exist, the matrix L̃n has to be invertible. In the orthogonal case L−1

n = L∗
n , for the biorthogonal case the

’inverse’ L∗
n has an analogous structure, being

L∗
n =

L̃∗
b ⊘

L̃∗
i

⊘ L̃∗
e

 .

There are three main ways to implement boundaries [18]. These boundary methods often do require some
preprocessing. The choice for a specific method is data dependent. This will be discussed in the following
enumeration. If one has non-periodic, non-symmetric data, and the boundary function approach is too
hard, Keinert [18] advises to use linear extension for it is easy to implement and does not introduce artificial
jumps in the data. For signals with enough zeros at the begin and end of the signal, the boundary handling is
irrelevant.

• The data extension approach. This method extends the signal across the boundaries, such that each
extended coefficient is a linear combination of known coefficients. The resulting L̃n can be singular,

LITERATURE THESIS T. DE ROOIJ



6.4. DWT ALGORITHM 46

though most of the times it is not. The inverse L∗
n might not have the correct form such that reconstruc-

tion is possible. In this method several extension methods, known as modes in Matlab and Python:

– Periodic extension: the signal is assumed to be periodic, so the h- and g -coefficients disappear-
ing on the left side of the matrix appear at the right and vice versa. This extension always works,
preserving orthogonality and approximation O(h). Matlab and Python also know an extension
method called periodization [26, 38]. Periodization is virtually the same as periodic extension,
however it ensures the smallest length wavelet decomposition. When the data is not truly peri-
odic, the jump at the boundary leads to large d-coefficients [18].

– Zero extension, also known as zero padding (see Chapter 7) is done by truncating the infinite ma-
trix L̃. The non-existing infinite part of the signal is observed as 0’s. This also introduces jumps, as
the periodic extension, and this method does not preserve orthogonality or approximation orders
[18].

– Symmetric extension mirrors the data in the endpoints, resulting in the coefficients in L̃ that dis-
appear at the ends, get mirrored back. There are three ways of reflection: whole-sample sym-
metry, half-sample symmetry and antisymmetric reflection (only useful in the case s0 = 0). If the
data extension type matches the type of symmetry of the scaling function, the finite DWT will be
equivalent to an infinite DWT [18].

– Extrapolation does not conserve the orthogonality condition. Constant extrapolation leads to ap-
proximation O(2−n), linear approximation (also known as smooth-padding [38]) to order O(2−2n)
[18].

• The matrix completion approach guarantees L̃nL∗
n = I , approaching the problem from a linear algebra

view. The downside is that this approach generally does not conserve approximation order.

• The boundary function approach is the most time-consuming approach, preserving both orthogo-
nality and approximation order. This approach introduces special functions at the boundaries of the
interval which, unlike ϕ0, do not extend over the border. The decomposition and reconstruction algo-
rithm have to be worked out newly. The hardest part is to derive boundary wavelets which have the
same number of vanishing moments as the original [21].

• Instead of assuming the periodicity of the signal, periodic wavelets can be used. Wavelets that cross
one border of the domain are made periodic [21]. These wavelets create high amplitude wavelet coef-
ficients in the neighborhood of the borders of the domain and do not have vanishing moments. The
method is mathematically the same as extending the data periodically [21].

Example 6.7 (DWT decomposition) An example of a DWT decomposition: the signal at
the bottom is decomposed four times. Note that the length of the detail coefficient vec-
tor is half the length of its predecessor and that the resulting smooth part and the fourth
detail coefficients vector have the same length. The coefficients on the right have been
translated to their contribution to the signal (left). The sum of the contributions results in
the original signal. The error is negligible: in the order of 10−15 (see Figure 6.11c)

6.4.5. Formulations
Till now we have seen the so called matrix notation of the DWT. This notation is very convenient for those
used to linear algebra. There are two different formulations of the DWT. The first is the modulation formu-
lation, which is a way of looking at the DWT from Fourier analysis. This way is not implementable, but this
is useful in the creation of new wavelets bases, for instance by using the lifting method which will be dis-
cussed in Section 6.5.3. The polyphase formulation arranges the calculation of the DWT in such a way that
convolutions are used without wasting computations. The direct implementation of the DWT in terms of the
convolutions throws away the half of the computed values in the downscaling step. This is very regrettable,
therefore the polyphase formulation uses convolutions without wasting computations [18].
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Modulation formulation
Here we use the symbol formulation. For the discrete sequence a = {ak } the symbol is defined as a(ω) =∑

k ak e−i kω. Remember that c = a ∗b, then c(ω) = a(ω)b(ω). Down- and upsampling are also defined for the
Fourier domain as

(↓ 2)a(ω) = 1

2
[a(ω/2)+a(ω/2+π)] ,

(↑ 2)a(ω) = a(2ω).

The full DWT algorithm in terms of the symbols is the modulation formulation. The original signal is

(a) An example of a DWT decomposition: the signal at the bottom is decomposed four times using
the DWT algorithm. On the right the coefficients are translated to their contribution to the signal.

Figure 6.11: Figures with Example 6.7.
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(b) The detail coefficients from (a) depicted differently.

(c) The error between the reconstruction and the original signal from Example 6.7, in numerical
terms is the error 0.

Figure 6.11: Figures with Example 6.7.

sn(ω), then the decomposition in sn−1 and dn−1 becomes

sn−1(2ω) = 1p
2

[
h̃(ω)sn(ω)+ h̃(ω+π)sn(ω+π)

]
,

dn−1(2ω) = 1p
2

[
g̃ (ω)sn(ω)+ g̃ (ω+π)sn(ω+π)

]
.

In this we recognize the convolution step from (6.32a) and the sampling step from (6.32b). The reconstruction
is the same as (6.32c):

sn(ω) =p
2[h(ω)sn−1(2ω)+ g (ω)dn−1(2ω)].

This formulation can also be given in the matrix form. For the decomposition equation as[
sn−1(2ω)
dn−1(2ω)

]
= M̃ · 1

2
p

2

[
sn(ω)

sn(ω+π)

]
, with M(ω) =

[
h(ω) h(ω+π)
g (ω) g (ω+π)

]
. (6.35)

This matrix M is called the modulation matrix. For the reconstruction equation a redundant statement has
to be added, which is the second row of the matrix formulation:[

sn(ω)
sn(ω+π)

]
= M∗ ·p2

[
sn−1(2ω)
dn−1(2ω)

]
.

From these expressions another biorthogonality condition can be derived: M(ω)∗M̃(ω) = I . Note again that
for the orthogonal MRA case, the tildes can be eliminated. The condition M(ω)∗M(ω) = I is then called
paraunitary.
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Polyphase formulation
The polyphase formulation begins by splitting the signal and the recursion coefficients into odd and even
phases. The notation used for the even and odd phases a0 and a1 of a sequence a = {ak } is defined by a0,k =
a2k and a1,k = a2k+1. Using this notation, the convolution (6.32a) to find sn−1 can be written as [18]

sn−1 = (−)h̃0 ∗ sn,0 + (−)h̃1 ∗ sn,1.

The odd and even phases are computed separately and finally recombined. Note that the number of floating
point operations is unchanged from the direct implementation.

The polyphase symbols of the sequence a are given by

a0(ω) =∑
k

a0,k e−i kω =∑
k

a2k e−i kω, a1(ω) =∑
k

a1,k e−i kω =∑
k

a2k+1e−i kω.

Then the decomposition of the signal s can be written as[
sn−1(ω)
dn−1(ω)

]
= P̃

[
sn,0(ω)
sn,1(ω)

]
with P (ω) =

[
h0(ω) h1(ω)
g0(ω) g1(ω)

]
.

Where P (ω) is called the polyphase matrix. As for the modulation approach, the tildes can be dropped when
an orthogonal MRA is used. The reconstruction step then is[

sn,0(ω)
sn,1(ω)

]
= P∗

[
sn−1(ω)
dn−1(ω)

]
.

The biorthogonality condition in this formulation becomes P (ω)∗P̃ (ω) = I . For the orthogonal MRA the
polyphase matrix is paraunitary, as for the modulation formulation.

6.5. Wavelets
This sections starts with the derivation of orthogonal wavelets, with an example for the Daubechies 2 wavelet.
This is followed by a short summary of theory on biorthogonal wavelets and te building and modification of
wavelets. Then some common wavelets and their characteristics will be discussed. The section is concluded
with a subsection about expansions of wavelet analysis: wavelet packets and multiwavelets.

6.5.1. Deriving orthogonal wavelets
A short overview of the important equations to design a wavelet will be given. Thereafter this will be applied
to the derivation of the famous Daubechies wavelet [10]. At first we have the basic definitions of the scaling
and wavelet functions from (6.9) and the same application to the wavelet function:

ϕ(t ) =p
2
∑
k

hkϕ(2t −k), (6.36a)

ψ(t ) =p
2
∑
k

gkϕ(2t −k). (6.36b)

Their Fourier transforms, known as the symbols in (6.23) and (6.24). H(ω) and G(ω) are the discrete-time
Fourier transforms of the discrete filters [20]. By substitution in the recursive equations, this leads to (6.26).
From this we can switch from a low pass filter to a wavelet and vice versa. To recall:

Φ(ω) = H(ω/2)Φ(ω/2), with H(ω) = 1
p

2

∑
k

hk e−i kω, (6.36c)

Ψ(ω) =G(ω/2)Ψ(ω/2), with G(ω) = 1p
2

∑
k

gk e−i kω, (6.36d)

Φ(ω) =
[ ∞∏

k=1
H(2−kω)

]
Φ(0). (6.36e)

The scaling equations are a connection between the scaling and the corresponding filters, on which the
orthogonality condition (6.25) holds. Filters satisfying this relationship are called conjugate mirror filters [20].

|H(ω)|2 +|H(ω+π)|2 = 1. (6.36f)
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For the wavelet high pass filter a similar equation has to hold:

|G(ω)|2 +|G(ω+π)|2 = 1. (6.36g)

In the next example, the assumption of a real filter will be used:

H(ω) = H(−ω), G(ω) =G(−ω).

These equations will lead to the design of a low pass filter. The design has to hold just for the frequency band
ω ∈ [0,π/2], because the values in [π/2,3π/2] can be obtained using (6.36f), where the values in [3π/2,2π] are
the result of the reflection due to the real filter property [20]. Finally the number of vanishing moments and
the size of support of the wavelet has to be taken into account. It is preferable to compose an FIR filter to
avoid stability and implementation issues. Liu [20] shows that if the support of ϕ(t ) and h[n] is the domain
[N1, N2], then the support of the wavelet ψ(t ) is [(N1 − N2 + 1)/2,(N2 − N1 + 1)/2]. For a higher number of
vanishing moments, a longer filter size is indispensable. This forces a trade-off between the support and the
number of vanishing moments [20].

The final part of the design process is the choice of number of vanishing moments p. Liu [20] gives five
equivalent statements which can be used:

(i) |ϕ(t )| =O((1+ t 2)−p/2−1) and |ψ(t )| =O((1+ t 2)−p/2−1);

(ii) The wavelet ψ(t ) has p vanishing moments;

(iii) Φ(ω) and Φ(ω) and its first p −1 derivatives are 0 at ω= 0;

(iv) H(e iω) and its first p −1 derivatives are zero at ω=π;

(v) For any 0 ≤ k < p, qk (t ) =
∞∑

n=−∞
nkϕ(t −n) is a polynomial of degree k.

Example 6.8 (Daubechies wavelet) In this example the Daubechies wavelets are derived.
We start by combining (6.36f) and statement (iv) to write the low pass filter as

H(e iω) =p
2

(
1+e iω

2

)p

R(e iω), (6.37a)

where R(x) is a polynomial. The wavelet will have vanishing moments p and it will be a
minimum size discrete filter [20]. The absolute square of (6.37a) is

|H(e iω)| = H(e iω)H(e iω) = 2
(
cos

ω

2

)2p
|R(e iω)|2 = 2

(
cos

ω

2

)2p
P

(
sin2 ω

2

)
. (6.37b)

Now again apply (6.36f) and substitute y = sin2(ω/2), then we find (6.37c), which is uniquely
solved using the Bezout Theorem [20], from which we find the solution (6.37d).

(1− y)p P (y)+ y p P (1− y) = 1, (6.37c)

⇒ P (y) =
p−1∑
k=0

(
p −1+k

k

)
yk . (6.37d)

From this minimum degree polynomial P (y), the polynomial R(e iω) can be derived. This
is done by first decomposing R(e iω) according to its roots (see Equation 6.37e) and then
use the relation (6.37f) between P and R. Note the substitution of e iω by z to simplify the
calculations.

R(z) =
m∑

k=0
rk z−k = r0(1−ak z−1), (6.37e)

P

(
2− z − z−1

4

)
= r 2

0

m∏
k=0

(1−ak z−1)(1−ak z). (6.37f)

By solving the roots of the left-hand side, we find the roots of R, {ak ,1/ak }k={0,...,m} and
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r0 = 2p−1 Usually the ak are chosen to lie within the unit circle to have a minimum phase
filter [20].

This wavelet is named after its creator, Ingrid Daubechies, who published her paper in 1988 [9].

Daubechies 2 For the Daubechies 2 wavelet, the number of vanishing moments is 2: p =
2. This results in P (y) = 1+2y (from (6.37d)) and the left hand size of (6.37f) becomes

P

(
2− z − z−1

4

)
= 2− 1

2
z − 1

2
z−1. (6.37g)

The roots of this equation are 2±p
3, so the low pass filter of the Daubechies 2 filter is

H(e iω) =
p

2+p
6

8
+ 3

p
2+p

6

8
e−iω+ 3

p
2−p

6

8
e−i 2ω+ −p2−p

6

8
e−i 3ω.

This results in the minimum filter with 2 vanishing moments and the corresponding size
of 4. In general the minimum filter size is two times the number of vanishing moments
[20]. The discrete time-domain representation of this filter is

h[n] =
p

2+p
6

8
δ0n + 3

p
2+p

6

8
δ1n + 3

p
2−p

6

8
δ2n + −p2−p

6

8
δ3n .

The Daubechies 2 scaling function, wavelet function, decomposition and reconstruction
filters can be found in Figure 6.12.

The code to compile this figure is found in Listing B.7.

6.5.2. Deriving biorthogonal wavelets
The derivation of biorthogonal wavelets is more complicated than the orthogonal ones. Of this no example
will be given. Keinert [18] derives the wavelets from their scaling functions. To find the wavelet functions
belonging to a set of biorthogonal scaling functions, the definition of the modulation matrix from (6.35) is
used. The biorthogonality conditions in terms of this matrix became M(ω)∗M̃(ω) = M(ω)M̃(ω)∗ = I , from
which we can derive

M̃(ω)∗ = M(ω)−1 = 1

det(M(ω))

[
g (ω+π) −h(ω+π)
−g (ω) h(ω)

]
.

By comparing the entries of the two matrices, the following can be found [18]:

g̃k = 1

α
(−1)k h2n+1−k , gk =−α(−1)k h̃2n+1−k , where det(M(ω)) =αe i (2n+1)ω, α ̸= 0, n ∈Z.

Finding the dual scaling functions is a bit harder. It follows the same line of reasoning as in Section 6.5.1: the
dual scaling function h̃(ω) is the solution to the equation

h(ω)h̃(ω)+h(ω+π)h̃(ω+π) = 1, (6.38)

which can be converted into a Bezout equation (see Equation 6.37g). Constrains such as symmetry or vanish-
ing moments can again be added as extra equations. For more information the reader is referred to Keinert
[18].

6.5.3. Building and modifying wavelets
There are many ways to build wavelets from scratch. Some techniques are also used to modify wavelets into
new ones. Keinert [18] gives an overview of the most common methods:

• Biorthogonality relation: by solving the relation (6.38) directly wavelets can be build. For short wavelets
direct solving is possible, for longer wavelets it is very inconvenient [18]. The orthogonality relation
(6.36f) can be solved better by using the Bezout equation, as seen in Example 6.8.
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Figure 6.12: The Daubechies 2 scaling function, wavelet and discrete filters.

• Lifting factors are used to modify wavelets. These factors can be added to an existing wavelet (and its
dual). Well chosen lifting factors preserve approximation order, but they always impair orthogonality
[18]. To apply the lifting procedure, the reader is referred to Keinert [18].

• Projecting factors are both used in building and modifying. The projecting factors can be added to an
existing wavelet, preserving orthogonality. The downside is the destruction of the approximation order.
For longer wavelets this process has to be done numerically [18].

• Shifting factors are also used to both build and modify wavelets. The use of shifting factors results
in biorthogonal wavelets of any size [18]. The modification process start with h and h̃ satisfying the
relation (6.38). If h can be factorized as h(ω) = f (ω)h0(ω) with h0(0) = 1, then

hnew(ω) = h0(ω), h̃new(ω) = f (ω)h̃(ω).

This results in a new biorthogonal wavelet. An example of this process is the Cohen wavelet, which is
created by shifting factors in de Daubechies wavelet.

6.5.4. Common wavelets, an overview
Wavelet analysis has been applied already in a lot of fields. Therefore two commonly used numerical packages
already have an extensive toolbox to do discrete wavelet transformations [26, 38]. These toolboxes, together
with some books [4, 18, 27] are the basis of this short overview of most used wavelets and their characteristics.
When the toolboxes are used, this is referred to by [TB]. The wavelets are split into discrete and continuous
wavelets. The choice for a particular wavelet for a specific purpose is further addressed at the end of the next
chapter.
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Discrete wavelets
Discrete wavelets are derived from the MRA approach which are easily implemented on a computer for they
possess easy implementable filters. These are all designed before 1992, most of them by Daubechies [11].

• The Haar wavelet has been discussed extensively in examples in this chapter. Named after its inventor
Alfred Haar who laid the foundation of multi resolution analysis in 1910 [4].

• Daubechies wavelets are wavelets designed by Ingrid Daubechies [9]. They are called by their number
of vanishing moments p, however sometimes they are referred to as 2p, which is consistent with the
filter length of the particular Daubechies wavelet. So the Daubechies 2 wavelet has two vanishing mo-
ments, and a filter length of four and therefore sometimes referred to as Daubechies 4. In this literature
thesis the number of vanishing moments is leading. The derivation of this wavelet is treated in Exam-
ple 6.8. Note that de Daubechies 1 wavelet is the same as the Haar wavelet. The Daubechies wavelets
are orthogonal, have a support of [0,2p −1] [18] and are asymmetric [TB].

• Coiflets, just like the Daubechies wavelets, are orthogonal wavelets. These are also designed by Ingrid
Daubechies on request of Ronald Coifman [11]. They are designed such that not only the wavelet,
but also the scaling function has a number of vanishing moments. The advantage of Coiflets is for
smooth signals s(t ), the scaling function expansion coefficients snk are very close to s(2−nk) [18], such
that preprocessing can be omitted. This results in near symmetric wavelets, which are all orthogonal.
Narasimhan et al. [27] notes that some Coiflets have no zeros at ω = π, which results in a non smooth
wavelet, with possibly high frequency components. The error of the reconstructed signal therefore
will be relatively large. There are again infinitely many Coiflets, numbered with n, with a number of
vanishing moments p = 2n. The support of the wavelet is [0,6n −1] and their filters are of length 6n
[TB].

All above mentioned wavelets are orthogonal and compactly supported. These wavelet all have an
orthogonal analysis, with an existing compactly supported ψ(t ) and ϕ(t ). Their ψ(t ) has a known
number of vanishing moments and their FIR filter description is very clear. These properties make
them suitable for both continuous and discrete wavelet transformation, with applicability of the fast
wavelet transform algorithm. The main difficulty using these wavelets is their poor regularity [TB].

• Symmlets are an adaptation of the Debauchies wavelets. They are an answer of Daubechies to the re-
quest from engineers for linear phase filters. Such linear filters are symmetric around b ∈Z. Note that
therefore the Haar wavelet is not symmetric, although its coefficients are symmetric. If a filter is not
symmetric, its deviation from symmetry is judged by how much its phase deviates from a linear func-
tion. These symmetrized Daubechies wavelets are close to symmetric, but not completely symmetric
[11]. This characteristic caused the wavelets of this family to be biorthogonal. Again these wavelets are
numbered by their number of vanishing moments.

• Cohen wavelets, also known as Cohen-Daubechies-Feauveau wavelets are scalar biorthogonal wavelets
derived from the Daubechies wavelet using the lifting factor technique. In both MATLAB and Python
these wavelets are known as the biorthogonal wavelets [26, 38]. Again a lot of them can be made, the
vanishing moments p and p̃ of the wavelet and dual wavelet function are restricted by p + p̃ = 2k for
k ∈ Z. They are symmetric around 0 if p is even and around 1/2 for p odd [18, 27]. The supports of
these wavelets differs for the decomposition and reconstruction step (respectively ψ and ψ̃), they are
[0,2p+1] and [0,2p̃+1]. The filter lengths differ a lot by choice of p and p̃, but is limited by max{p, p̃}+2
[TB]. Note that the Cohen(1,1) wavelet is the Haar wavelet.

Continuous wavelets
Continuous wavelets are defined by functions, not by their filters. However, most of them do have a filter
implementation too. Often the filter has to be truncated to become finite. There is also a differentiation in
analytic or complex and real wavelets [21, 40]. Analytic wavelets often are wavelets of which their Fourier
transforms are zero for negative frequencies:

Ψ(ω) = 0 ∀ω< 0.

Therefore an analytic wavelet has to be complex, but it can be characterized by its real part only [21]. Their
advantage is that they can measure time evolution of frequency transients by separating amplitude and phase
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components: it is better adapted to capturing oscillatory behavior in time series [40]. Real wavelets often are
used to detect sharp signal transitions. Furthermore can complex wavelets be used to define a scalogram only
for positive frequencies.

• The Meyer wavelet is a symmetric and orthogonal wavelet invented by Meyer in 1990 [11]. It is a band-
limited wavelet, limited to 4π/2 ≤ |ω| ≤ 8π/3, which results in an infinite support in the time domain
[27]. Its amplitude in time decays rapidly, making it suitable for wavelet analysis. The Meyer scaling
function satisfies [27]

|ΦMeyer(ω)|2 =


1, 0 ≤ |ω| ≤ 2π/3
1−|ϕ(2π−ω)|2 2π/3 ≤ |ω| ≤ 4π/3
0, elsewhere

.

From this follows that the Fourier transform of the Meyer wavelet satisfies [4]

ΨMeyer(ω) = e iω/2(Φ(ω+2π)+Φ(ω−2π))Φ(ω/2).

The Meyer wavelet is a symmetric, orthogonal wavelet with non-compact support. The effective sup-
port of the Meyer wavelet is [−8,8] [TB]. This results in implementation of the Meyer wavelet transform
in the Fourier domain, instead of the time domain. The Meyer wavelet has infinite vanishing moments
[21].

The Meyer wavelet is known as an infinitely regular wavelet [TB]. It can be applied in both continuous
and discrete wavelet analysis. Its filter implementation however is not a FIR filter. The analysis of the
pair ψMeyer and ϕMeyer is orthogonal. Both functions are infinitely differentiable and have compact
support. The symmetry and infinite regularity are its most important properties. The difficulty of this
wavelet lies within the filter implementation: there is no fast algorithm available for the filter is of
infinite impulse response.

• The Discrete Meyer wavelet is the finite filter approximation of the Meyer wavelet [44]. It remains
orthogonal and symmetric. By the truncation it is the FIR implementation of the Meyer wavelet. Tech-
nically this thus is a discrete wavelet.

• The Mexican hat wavelet is probably the best known continuous wavelet. It is defined by [27]:

ψmexh(t ) = K (1− t 2)e−(t 2/2), K = 2p
3π1/4

. (6.39)

The factor K normalizes the Mexican hat wavelet. If K = 1 the wavelet is known as the unnormalized
Mexican hat [27]. The wavelet is named after its shape, however it is originally known as the Ricker
wavelet. The Mexican hat wavelet is the second Gaussian wavelet, which characteristics will be dis-
cussed later. The Mexican hat specifically is well localized in time and has a zero mean value [27]. The
support [−5,5] is used in the finite filter approximation.

• The Complex Morlet wavelet is defined by Narasimhan et al. [27] as

ψcm(t ) =π−1/4
[

e−i 2πω0t e−t 2/2
]

.

The general expression used in MATLAB is given on page 34. It is described as a complex wave e i 2πω0t

within the Gaussian envelope e−t 2/2. The term in font of the expression ensures unit energy. For values
of ω0 ≫ 0 this wavelet has the property that it minimizes the error [27].

• The Morlet wavelet is the real part of the complex Morlet wavelet [27], which results in the function
[TB]

ψMorlet(t ) = e t 2/2 cos(5t ).

• The Gaussian wavelet family is a set of wavelets, derived from the derivatives of the Gaussian function

f (t ) = e−t 2
.
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This function can be derived infinitely many times, therefore there are a lot of Gaussian wavelets. They
all do not have compact support, but do have an effective support of [−5,5] [TB]. The best known is the
Mexican Hat wavelet, which is the negative of the second derivative of the Gaussian function, multi-
plied by a scaling factor. This is an example of a nice wavelet, with compact support and mean value
zero [27]. Not all derivatives lead to wavelet with these nice characteristics. For a n-times differentiated
Gaussian, the number of vanishing moments is n too. Moreover, if n is even the wavelet is symmetric,
for odd n it is anti symmetric [TB]. The complex Gaussian wavelet family has the same properties as
the Gaussian wavelet family, the only difference is that this is a complex wavelet. The complex Gaussian
wavelets are defined by derivatives of [TB]

f (t ) = e i t e t 2
.

• The Shannon wavelet is defined by [27]

ψShannon(t ) = sin(πt/2)

πt/2
cos(3πt/2).

From this definition we see it is real and symmetric but does not have a finite support [27], however is
is infinitely differentiable and Φ(ω) is zero in the neighborhood of ω = 0, as are all its derivatives [21].
We may conclude that it therefore has infinitely many vanishing moments. It is therefore not a very
good wavelet to apply wavelet analysis with [27]. The Shannon wavelet is a specific case of the spline
wavelets [21].

The Morlet, Gaussian and Shannon wavelets are also known as crude wavelets [TB]. These wavelets
only have minimal properties. Their downsides are that ϕ(t ) does not exist, the analysis is not orthog-
onal or biorthogonal and ψ(t ) is not of compact support. Therefore reconstruction is not insured and
there are no fast algorithms to do calculations with. These wavelets are only useful for a (complex) con-
tinuous decomposition. Good properties are the symmetry and explicit declaration of the wavelet ψ(t )
[TB]. Complex wavelet can have a spectrum for which Ψ(ω)|ω<0 = 0, such that a wavelet transform for
only positive frequencies is possible.

• Spline wavelets [TB], also known as Battle-Lemarié wavelets [21] are computed from spline MRA. The
Fourier transform of the wavelet is chosen a block B-spline, leading to a band limiting FIR. The wavelet
ψ(t ) has p = m +1 vanishing moments if its Fourier transform is made up of splines of order m. The
resulting wavelet ψ has an exponential decay. They are again referred to with their number of vanishing
moments p. In relation with the Meyer wavelet, they are less regular, but they decay faster [21]. For p
even we have ψ symmetric about 1/2, and for p odd it is antisymmetric around the same point. The
spline wavelet of order 1 is again the Haar wavelet. The choice of such a spline MRA can lead to both
orthogonal and biorthogonal wavelet bases [21, TB].

The Symmlets, Cohen and spline wavelets are part of the biorthogonal and compactly supported
wavelet pairs [TB]. They have in common that that ψ(t ), ψ̃(t ), ϕ(t ) and ϕ̃(t ) are compactly supported.
They have a known number of vanishing moments and are regular. These wavelet are applicable in
both continuous and discrete analysis, and again the FWT algorithm is applicable. The wavelets have
symmetry with FIR filters, have desirable properties for decomposition and reconstruction and nice
allocation is possible. The main downside is the loss of orthogonality [TB].

6.5.5. Multiwavelets and wavelet packets
Wavelet analysis knows two extensions which are really common in modern research: multiwavelets and
wavelet packets. These will be briefly be addressed. Remember the definition of the scaling function ϕ via
the recursion relation (6.9), and its application in the refinement equation (6.15). Generalizations of this
equation lead to all kind of other constructions [18, 27, 34]: wavelet packets, multivariate wavelets, ridgelets,
curvelets, vaguelettes and much more. This theory is out of the scope of this literature thesis, but will be
explained in a few sentences. The multiwavelet theory is more complicated than the wavelet theory. The
general idea is the replacement of the scaling function ϕ(t ) by a function vector ϕ(t ) (in bold), known as a
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multiscale function

ϕ(t ) =

ϕ1(t )
...

ϕr (t )

 .

In the refinement equation (6.15) the recursion coefficients will become r × r matrices Hk :

ϕ(t ) =p
m

∑
k

Hkϕ(mt −k).

Also note the addition of the dilation factor m. In the MRA theory discussed so far, the factor m = 2 was
used. The whole derivation can be done using a factor m, which adds some complexity to the notation and
is therefore skipped. The factor m = 2 is also well suitable for computer implementation. The advantage
of multiwavelets is their short support, coupled with high smoothness and high approximation orders. In
addition they can be both symmetric and orthogonal, in contrary to the ’normal’ wavelets. The disadvantages
are the complexity of the theory and the requirement of pre- and postproccesing steps in the algorithm, which
takes more computation time [18].

A wavelet packet choses different decomposition [34]. The spaces Wn are "split" again in two orthogonal
subspaces. The basis functions for these subspaces, are constructed from both the refinable function as the
wavelet. This approach leads to a redundant representation of the input data, and is best known by its use
in the FBI Fingerprint Compression Specification [34]. The time frequency plane distribution changes from a
’regular’ grid such as in Figure 3.1 but can be something like Figure 6.13, still the boxes have the same area by
the Heisenbergs restriction. These techniques are not discussed further in this literature thesis.

Figure 6.13: Example of the distribution of the time frequency plane by wavelet packets.
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7
DSP - Digital Signal Processing

In the last three chapters we have seen three different signal analyzing techniques. These techniques have
been made applicable to time signals in particular, but they can also be applied to for instance spacial infor-
mation. The Fourier transform (FT, Chapter 4), short term Fourier transform (STFT, Chapter 5) and wavelet
transform (WT, Chapter 6) do not only find their strength in just the analysis of a signal, but in the analysis
signals can be processed too. A good example of a process is the time domain is the division of a signal into
two parts of equal duration. In the frequency domain this process is close to impossible. On the other hand,
when certain frequencies have to be canceled in a signal, one would definitely do this adjustment in the fre-
quency domain, for this is very hard to do in the time domain. The possibilities using the time, Fourier and
wavelet analysis will be discussed in this chapter about signal processing, especially digital signal processing
(DSP): the origin and the result of the signals are considered digital. Sampling theory, described in Chapter 4,
lies at the basis of digital signal processing. In this chapter mainly the power and differences between pro-
cessing in the Fourier and wavelet domain will be discussed. The STFT has partially the same strengths and
limitations as the Fourier transform and is therefore discussed less intensively. This chapter will conclude
with the applicability to the problems discussed in Chapter 2.

7.1. Random signals
Till thus far we only have discussed deterministic signals in the examples. Remember that a deterministic
signal can be modeled completely as a function of a variable, for instance time. A deterministic signal has
a known and unambiguous value at every point in time [7, 15]. These signals are composed of additions,
subtractions, delays, derivations and integrals of deterministic parts. This is not applicable to signals in real
life applications. There, most signals are non deterministic, also known as stochastic or random signals [15]
These non deterministic signals are modeled using probability theory. Here a short overview of the proba-
bilistic theory together with some important definitions for signal processing purposes will be presented.

A random process is a process that generates random signals in general. Such a process can produce an
entirety of random signals, this entirety is called an ensemble. One signal from such an ensemble is a sample
function (in mathematics) or realization (in signal analysis) of the random process. A random signal cannot
be described deterministically. To characterize them using deterministic descriptions, characteristics which
are valid for the whole ensemble are used [15]. The whole ensemble is described as a set functions {xi (t )},
consisting of the individual random signals x1(t ), x2(t ) etc. The expected value or ensemble mean of a random
process at a certain time t0 defines the mean value of the whole ensemble as [15]:

E[x(t0)] = lim
N→∞

1

N

N∑
i=1

xi (t0), . (7.1)

For most signals the expected value is time dependent. Note that the time average of a signal is the average
over the whole time domain, which can be computed for every ensemble member individually. The quadratic
average of an ensemble, E[x2(t )], is used to describe the average power of a random process. The square of
the deviation from the linear average is called the variance:

Var(x(t0)) =σ2(t ) = E
[
(x(t0)−E[(x(t0))])2]= E

[
(x(t0))2]−E[x(t0)]2. (7.2)
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The variance of a signal is a measure of the amount of fluctuation from its mean. The square root of the

variance is known as the standard deviation σ(t ) =
√

σ2(t ). The average and variance are often sufficient to
describe common random signals. The more general formulation of the expected value and the variance at a
certain time t0 is [7]

E[ f (x(t0))], (7.3)

where for the expected value: f (x) = x and for the variance we choose f (x) = (x−E[x])2. A probability density
function is a description of a characteristic (7.3) for the whole time t . Advanced models of stochastic process
can become very complicated, using higher-order statistics [15], such as f (x) = x3 in (7.3).

Stationary and ergodic random processes
So far, the general aspects of a random process have been discussed. Random processes have a lot of different
classifications. Two important classes of random processes will be explained. A random process is called
stationary if its statistical properties do not change with time. So in general a signal is stationary to the order
N if [7]:

E[ f (x(t1), x(t2), . . . , x(tN ))] = E[ f (x(t1 +∆t ), x(t2 +∆t ), . . . , x(tN +∆t ))] (7.4)

for all ∆t . This expression is hard to use, therefore often a random process is stationary if its second-order
expected values only depend on the difference of observed time points t1 − t2 [15], mostly checked using
the autocorrelation function E[x(t1)x(t2)]. This mathematical description excludes finite random signals and
deterministic functions other than constant functions as stationary [15]. A random process is called weak
stationary if only the autocorrelation and the expected value of a signal are stationary [5, 7], respectively if
∀∆t

E[x(t1)x(t2)] = E[x(t1 +∆t )x(t2 +∆t )], E[x(t1)] = E[x(t1 +∆t )].

Stationary signals are also described as signals whose Fourier analysis coefficients are time invariant [27].
This implies that both the power spectral density and the autocorrelation of the signal are time invariant
too. For a stationary random process for which all time averages are the same as all ensemble averages, the
process is an ergodic random process [7, 15]. This holds for all function f (x) from (7.4). A signal is again called
weak ergodic if the autocorrelation and expected value of the signal are the same as their time averages [15]:

lim
T→∞

1

2T

∫ T

−T
xi (t )xi (t −∆t ) dt , lim

T→∞
1

2T

∫ T

−T
xi (t ) dt .

Noise
A received waveform x(t ) = s(t )+ v(t ) usually consists of two parts: a desired part s(t ), containing the infor-
mation, and the undesired part v(t ) [7]. The desired part is referred to as the signal, the undesired part as
noise. The sum of these parts is then referred to as the noisy signal or received signal. This is noise in the most
broad sense of the word and it has all kinds of shapes and sizes: it can be ’added’ to the desired signal by the
sender, the measurement equipment or other processes. Often noise is assumed to be of constant power in
all frequencies, white noise, but could also be contained in specific frequencies, which is known as colored
noise. These names are in convention with light, where white light contains photons of all frequencies and
colored light only those of specific frequencies. Noise does not always have to be of constant power, it can
for instance fade out or build up. This is known as non stationary noise. The amount of noise on a signal is
often described using the signal-to-noise ratio, SNR for short (sometimes denoted as S/N) [7]. It is the ratio
between the power of the signal and the power of the noise:

SNR = Psignal

Pnoise
, (7.5)

often expressed in decibels. If the variance of the signal and noise are known and the signal is of zero-mean,
the SNR is also expressed by

SNR =
σ2

signal

σ2
noise

. (7.6)
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Amplification or delay
The noise theory discussed till now concerns noise as an addition to the signal: additional noise. Often a large
share of the mutation of a signal consists of this additional noise [7]. However noise can also adjust or adapt
the signal in other ways: noise can also be a distort the amplification and delay of (specific frequencies) the
signal. Amplification (or damping) and the delay of parts of the signal may have different causes. If the whole
signal has been amplified or delayed with the same factor, this does not affect the signal analysis that much.
These two noise effects are often modeled as filters. Damping is often a result of the range of the measurement
equipment. For instance the detection of sounds by the human ear rapidly decays under 50 Hz, which can be
modeled as a damping. In a spectrum or scalogram this can be noted from the amplification or damping of
specific frequencies or detail coefficients.

Delays can have a lot of different causes, also often modeled as a filter. As addressed before, delay is
modeled as a phase change in the Fourier domain (A.2). Therefore it is also known as phase noise. Phase
noise is generally hard to detect, because it is a non linear effect. E.g. sin(ω0t +ψ(t )) has a basis frequency
of 2ω0π, however this might be altered by the phase change ψ(t ). Because both the wavelet and Fourier
transform are linear transforms, some phase changes ψ(t ) might be hard to detect: by the linearity they are
modeled as different frequencies instead of one phase changing frequency. A good example is shown in
the spectrum of the quadratic chirp signal in Figure 4.4b. The noise expression can thus be expanded like
x(t ) = ϵ(t )s(t +ψ(t ))+ v(t ).

7.2. Detection and filtering
In this section some basic concepts within digital signal processing will be discussed. These concept mainly
concern detection and filtering. Detection is the term that describes discovery and classification of expected
or unexpected behavior in a signal, whereas filtering concerns the deletion of unwanted or superfluous part
of a signal. We start with a short overview of the most important processes, of which some will be elaborated.

• Denoising is the study of the removal of noise on a signal. Two different main types of additional noise
will be discussed: white noise and colored noise. The filtering of noise in time, Fourier and wavelet
domain will be addressed.

• Transients is a container concept for little amplitude disturbances of short duration [27] . These are
best detected using wavelet analysis. Once detected, they can be reconstructed and possibly subtracted
from the signal, resulting in a filtered signal. Note that the term transient sometimes also is used for
momentary signal elements, which do not have less energy then the signal.

• Discontinuities can be very clear from a time signal, but smaller discontinuities can be harder to locate.
Again wavelet analysis is a good way of detecting discontinuities in time. Often discontinuities are not
taken out of the signal. Other filtering processes may have effects on discontinuities in a signal.

• Specific frequencies such as resonance frequencies can disturb data and therefore interesting to filter.
This is briefly discussed under colored noise.

• Both Fourier and wavelet transforms are linear transformations. Non linear signal elements will there-
fore always be described as linear elements in the analysis. In the examples identifying the quadratic
chirp (Example 4.7, 5.2 and 6.1) still a quadratic behaviour is recognized, but for different non linear
signal or non linear signal elements one can imagine this does not always work.

• Non stationary signal elements are elements that have changing statistical properties over time. One
can think of bandwidth changing noise, which may be caused by the warming of measurement equip-
ment. These effects are considered hard to determine and filter.

• Compression is not a standard signal processing subject, but it is part of the domain where wavelet
analysis has become most popular: image processing. A great and still used example is the JPG image
format [18, 27]. In compression it is the challenge to discard the unimportant data (a.o. noise) and to
retain the essential information. This will not be elaborated further.

7.2.1. Denoising
The process to remove noise from a signal is called denoising. Often noise is assumed to be an addition to the
signal as x(t ) = s(n)+ v(n), by the linearity of the FT, the spectrum then becomes X (ω) = S(ω)+V (ω). These
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noise processes are mostly concerned stationary. To denoise in the frequency domain often the spectral
values of which the magnitude are above a certain threshold, |X (ω)| ≥ω0, are set to zero [5, 27]. The inverse of
the resulting signal X̃ (ω) is supposed to have reduced noise. The threshold value can be determined with the
help of a histogram of the spectral magnitude values [27]. This thresholding removes high frequency values,
which are indispensable for the reconstruction of sharp edges or discontinuities in a signal. Furthermore a
sharp cut-off will lead to Gibbs ripples in the time domain. This sharp cut-off is the same as multiplication
with a rect-window. Other window types are chosen to have a less ripply result [7].

Other well known noise reduction methods in the Fourier domain (especially in speech processing) are
spectral subtraction and the Wiener filter [33]. In the spectral subtraction method a ’signal free’ period is cho-
sen. The spectrum of this period is then subtracted from spectra of periods containing the signal. The Wiener
Filter computes a linear estimation of the signal which is optimal in the minimum mean square error sense.
Therefore it needs spectral information of the noiseless signal and the noise to derive a filter that mimics the
behavior of the noiseless signal. The Wiener Filter shows better results than the spectral subtraction method
[47]. Both methods are relatively weak in non stationary signal environments, moreover they suffer from so-
called ’musical notes’: the subtraction can lead to artificial zeros in the spectrum, leading to the noticeable
absence of those frequencies [33].

Figure 7.1: Signal x(t ), noisy signal s(t ) = x(t )+ v(t ) (SNR=10 dB) and its spectrum.

Example 7.1 (Filtering noise using Fourier) In this example the signal in Figure 7.1 will
be filtered in the frequency domain. Therefore the spectrum is multiplied with a rect-
angular window and a Hanning window (see Figure 7.2). For the use of the rectangular
window, we expected a lot of ripples, which are clearly present in the filtered signal. The
Hanning window should let through some more noise, but is should also result in less rip-
ples, especially near discontinuities. The resemblance of the original signal x(t ) is better
using the Hanning window then the rectangular window.

The Python-code for this example: Listing B.8.

In the wavelet domain random noise will mostly show up in the d-coefficients [18]. Just as in the Fourier
case, if the smaller coefficients are set to zero, much of the noise will disappear, inevitably together with some
features of the signal. The Gibbs phenomenon on the other hand will not play a role in the wavelet denoising.
The thresholding technique is most applied to white noise, distributed over all scales, which is assumed of
smaller magnitude than the signal [27]. The most commonly used thresholding functions, dnk → Tϵ(dnk ), are
hard and soft thresholding [1, 18, 27]. Hard thresholding sets values smaller then the threshold to zero:

Tϵ(d) =
{

0 if |d | < ϵ

d otherwise
, (7.7)

whereas soft thresholding also shortens the values above the threshold:

Tϵ(d) =


d −ϵ if d > ϵ

0 if |d | ≤ ϵ

−d +ϵ if d <−ϵ
. (7.8)
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Figure 7.2: The signal s(t ) has been denoised using a rectangular window (blue, resulting in the left
reconstruction of x(t )) and a Hanning window (orange, resulting in the right construc-
tion of x(t )) in the frequency domain.

The soft thresholding can be read as removing the noise component part from the coefficient d , therefore
it is known as wavelet shrinkage [27]. The implementation of a such an algorithm is shown in Figure 7.4a
Edge information will be in the lower scales (high resolutions) and have large magnitudes compared to the
noise. So in comparison to the filtering in the Fourier domain, a better preservation of the edge information
is predicted. The wavelet thresholding will therefore preserve more edge information than the described
Fourier denoising [27]. No scale will be removed completely, unless it has a very small contribution to the
signal. For every scale i a new choice for a threshold is made.

Often the variance or standard deviation of the coefficients in the i th scale multiplied with a scaling factor
is used. An other option used is a universal threshold given by [1, 27]

Tϵ =
√

2ln Nvσv . (7.9)

The factor in the square root represents the expected maximum value of a unit variance Gaussian white noise
sequence of length Nv . σv is the standard deviation of the noise, which in practice is not known. The es-
timator for σv , denoted as σ̂v , is based on the median of the absolute deviation (MAD) of the wavelet co-
efficients at the lowest scale, multiplied with a conversion factor to match with the Gaussian distribution:
σ̂v = MAD/0.6745 [27]. For large samples the removal of noise is effective, however it will remove parts of
the signal too. Because in soft thresholding more coefficients are shortened, the reconstruction is more ad-
justed. Therefore when the universal threshold is used in soft thresholding, the value half the value for the
hard thresholding is used [27]. Other, more complicated thresholding techniques are described by [1]. This
are non linear regularization methods, which are often superior to the soft and hard thresholding techniques.

Example 7.2 (Filtering noise using wavelets) Now we apply filtering using wavelets on
the signal from Figure 7.1. Of the described methods, three have been applied: soft thresh-
olding with the universal threshold, hard thresholding with the universal threshold and
thresholding per scale with a threshold of 1.3 times the standard deviation of the scale.
The results are shown in Figure 7.3. If we compare these three results, the choice of thresh-
olding per scale clearly has more noise on it than the other two. Between the hard and the
soft thresholding, we note that the peaks we see in the hard threshold are less high than
the low threshold peaks. In comparison with the filtered Fourier transforms both univer-
sal thresholded wavelet transforms give a better approximation of the discontinuities.

The difference of the filtered s(t ), s f (t ) and the the signal x(t ) has been measured by∑2056
k=1 |s f (t ) − x(t )| to show the wavelet filtering approaches the signal x(t ) better. The

difference between the noisy signal s(t ) and its wavelet recomposition is 5.1 · 10−13 and
therefore negligible.
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Error between x(t ) and ... Error
s(t ) 320
rectangular window filter 136
Hanning window filter 94
Hard universal thresholding 84
Soft universal thresholding 78
Scaled thresholding 161

In this example, the wavelet filtering performs better, for it has a smaller error and it is
better in approximating the discontinuities than the Fourier transform. For larger SNR,
this is not necessarily still valid. A combination of Fourier and wavelet noise canceling
might be more suitable.

The Python-code for this example: Listing B.8.

Figure 7.3: The signal s(t ) from Figure 7.1 has been denoised using three different techniques: soft
and hard thresholding, both using the universal threshold (7.9); and a thresholding per
scale of 1.3 times the standard deviation. For this example the Daubechies 4 wavelet has
been used.

Shifting and cycle spinning
Denoising by thresholding works better if several shifted copies of the signal are denoised and averaged [1,
18, 27]. The wavelet denoising algorithm is not shift invariant because the DWT is not shift invariant. If
the discrete signal is shifted by one, different coefficients at the next lower level will appear. If the signal
is shifted by 2, the original coefficients rise again. After k levels, we need a shift by 2k before the original
coefficients at the lowest level reappear [18]. Denoising several shifted copies and averaging them, improves
the result. Implementation of the shifted denoising algorithm is more efficient when decomposition without
down sampling is done. In the regular DWT algorithm the signals are down sampled to match the filter. In the
so called shift invariant discrete WT the filters are interpolated in order to match the signal [27]. The amount
of work for a signal of length N over k levels is O(kN ) instead of O(2k N ) for separately denoising all shifts 2k

shifts [18]. Note that more memory capacity will be needed.
Finally an adaptation of the shifted denoising algorithm is the cycle spinning algorithm [27]. This algo-

rithm is a recursive algorithm, where the previous iterations output becomes the input to the new iteration
[27]. The initialization is done by setting the first input equal to the original noisy signal x[n]: ŷ0[n] = x[n].
The recursive update follows from

x̂ℓ+1[n] = Di (xℓ[n]), i ,ℓ= 0, . . . , M −1,

where Di (x) is the denoising operator that uses shift i . This algorithm converges for sufficiently large M ,
however the threshold should be chosen carefully to not smoothen the discontinuities [27].

Colored noise
Till now we have assumed the noise is white noise. This is only valid for a small number of applications. Often
noise is colored: it covers a specific bandwidth. If we for instance assume a speech signal, car noise would
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be colored noise on the speech signal. In Fourier analysis an ’inverse’ bandpass filter can be applied over the
noisy bandwidth to filter that specific bandwidth. This is known as a notch or band-stop filter. This however
does not only address the specific frequencies, but also some of the surrounding frequencies. This is a known
problem in audio processing, where they use a so-called anti-hum filter, for the 50 Hz distortion of the signal
can be heard as a low frequency hum in the signal. Filter application in Matlab is proven effective for audio
signals [24]: at least half the power of the frequency components in the short range is reduced.

For colored noise reduction in wavelet analysis, a scale dependent threshold can be used in stead of a
universal threshold [6, 27]:

T j =σ j

√
2ln N j , σ j = (MAD) j /0.6745,

where now the number of samples used and the median of the absolute deviation is dependent on the scale j .
This choice of threshold is still very rigid and will not always show the desired result. However, the choice of
threshold still can be very hard. A block diagram of the standard wavelet noise suppression method is shown
in Figure 7.4a. More state of the art level-dependent noise threshold selection methods such as the Stein’s
Unbiased Risk Estimate (SURE) and the minmax threshold show excellent performance [35]. The downside
of these methods is that they only work for white Gaussian noise [6]. Srivastava et al. [35] excellently describe
the drawbacks of wavelet shrinkage methods for data analysts and suggest a new denoising method. This
method describes decomposition level choice and automated thresholding (however, user input is possible)
applicable to measurement data analysis. The resulting algorithm is tested on spectroscopy time series and
they are promising. A block diagram of this algorithm is shown in Figure 7.4b. An interesting feature is of this
proposed algorithm is the choice for hard thresholding. An other threshold definition proposed by Srivastava
et al. [35] is to select a ’signal free’ period and base the thresholding on those. Often in non stationary noise
filtering wavelet packets are used, with better result then standard wavelet decomposition [27]. There are also
other noises such as brown noise, pink noise and red noise. These are noises that show a specific behavior, for
instance red noise has a larger contribution in lower frequencies [40]. How to address these is not discussed
here.

(a) Block diagram of standard wavelet denoising method (or
shrinkage method).

(b) Block diagram of the wavelet denoising method, pro-
posed by Srivastava et al. [35].

Figure 7.4: Two block diagrams for wavelet denoising algorithms from [35, fig. 1&2]. The discrete signal to denoise is
F (x), denoised signals and coefficients are denoted with an apostrophe. Ak stands for the kth smooth level
(or approximation level [35]).

Time domain
Next to the frequency and wavelet domain, noise can also be reduced ’in the time domain’, or better stated:
without doing a transformation. The advantage of this type of filtering is that in theory less calculations are
needed, because the signal does not have to be transformed (twice). These filters (except the last one) are
often referred to as signal smoothing filters, for they optically make the signal smoother. The most used
filters are [23]:
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• The moving average filter of length N takes the average of every N consecutive samples of the wave-
form [23]. The two sided moving average filter for N even is defined by [5]:

xfiltered[i ] = (N +1)−1
N /2∑

j=−N /2
x[i − j ].

Especially linear trends are reconstructed well. For x[i ] not linear, it is important not to choose N to
large, for the filtered signal will be smooth, but not a good estimator of x[i ]. N can also be chosen odd,
and the center of the filter does not necessarily has to be the sample x[i ]. This results however in a
delay, which is easily corrected.

• The weighted moving average filter does not weight each sample equally, common weighings are the
binomial expansion of [1/2,1/2]n , known as the Gaussian expansion filter [23], and the exponentially
weighted moving average [5]:

xfiltered[i ] =αx[i ]+ (1−α)xfiltered[i −1], i = 1, . . . , N −1 with xfiltered[0] = x[0].

• The Savitzky-Golay filter is a weighted moving average filter that fits a polynomial of a specified order
over a specified number of samples in a least-squares sense. The fitting of a polynomial is better in
preserving peak values [23].

• A signal with sharp edges will be under-corrected by a moving average filter and over-corrected by a
Savitzky-Golay filter [23]. A better approximation is given by the median filter, which uses, instead of
the average, the median of the values in the window and is therefore recommended for non linear data
[2].

• The Kalman filter finds it origin in control theory, but also found its way to time series analysis [5]. The
Kalman filter consists of two parts: a model prediction and a measurement. The model prediction gives
an estimate of the unknown quantity at a certain moment, based on a computer model. This estimate
has a certain uncertainty. The measurement is a recording of that same quantity with a certain amount
of noise: it will have a different uncertainty. The Kalman filter combines the model prediction and
the measurement to create a better estimate: the uncertainty of the prediction by the filter is limited
by the minimum uncertainty used, but often it is even less uncertain. The computational load of the
Kalman filter depends on the complexity of the used model. In general for a signal of length N , the filter
algorithm is equivalent with O(2N +1) model simulations [46]. For a relative simple model this would
result in O(N 2) operations.

The most important assumption in the derivation of this filter is assuming that the probability den-
sity function of both the model prediction and the measurement are Gaussian [13]. This assumption
ensures convergence in Gaussian noise situations. Moreover, the extended Kalman filter can be used
for non linear problems, it performs a linearizion of the model around the mean of the most recent
estimate. Another solution for non linear problems is the ensemble Kalman filter, a Monte Carlo type
approach, which enables the treatment of non linear problems without the need to introduce an extra
model [46]. Computational cost of this filter can be high, mainly driven by the computational costs of
the model.

For samples disturbed by (relative high frequent) periodic components, resampling of the signal can be
very helpful to filter these components [23]. Note that aliasing effects may disturb the spectrum of a down
sampled signal. Most of the mentioned filters are applicable to non stationary problems, they however can-
not focus on specific frequencies. The Kalman filter is an exception to this. The covariances assumed in the
filter can be adapted such that the filter addresses specific frequencies. A field where Kalman filtering often is
used is speech enhancement [14]. In this field both white and colored noise are successfully filtered using the
Kalman filter. To apply a Kalman filter the variance of the noise has to be known: a time interval without an
active set-up could be used to determine estimates for the variance, which can be used in the filter [47]. Xia
and Wei [47] introduce a model prediction that is based on the same measurements used for the measure-
ment update. By rewriting the problem this model prediction is ’whitened’: the model is corrupted by white
noise in stead of the measured colored noise. This allows the Kalman filter to make a better estimation of
the underlying signal. This method of Xia and Wei [47] shows good results for speech enhancement. Speech
signals are considered periodic, where the measurement signals as presented in Chapter 2 are not. This might
influence the behaviour of the Kalman filter.
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7.2.2. Transients and discontinuities
The detection of transients and discontinuities (or edges in signal analysis) is very important in most engi-
neering fields. Any discontinuity measured by a sensor may characterize an event [27]. Transients are always
of short duration and unpredictable nature, changing frequency over time and they often decay fast: the pa-
rameters of the transient and its arrival time are unknown. In the Fourier domain the STFT is used to deter-
mine the location of the transient. The trade-off between time and frequency chosen beforehand influences
the detection of a certain transient. The time frequency representation of the WT on the other hand enables
exact localization of any abrupt change, impossible for the STFT. This is not only applicable to transients,
but also to discontinuities. Transients usually only appear in the lower scales of the WT, whereas the higher
scales represent the low frequency basis of the signal. The choice of wavelet is very important in the detection
of transients: remember the WT coefficients represent the correlation between the transient and the wavelet
function used. The detection will improve when the the shape of the transient and wavelet are similar [27].

The scales that need to be considered for detecting transients are dependent on the size of these tran-
sients. The amplitude of a transient often is rather low in comparison to the signals amplitude. This brings
down the computational load for transient detection; only a few scales have to be computed. The lowest
scales contain information about the discontinuities and high frequency noise of the signal, transient detec-
tion most of the time is done from scale 4 and up [27]. But for shorter signals this might be in higher scales. To
detect transients in the presence of noise can be difficult, it may be necessary to first apply some thresholding
and then do transient detection on the reconstructed signal. Discontinuities are recognizable by their high
detail coefficients over a lot of decomposition levels, as mentioned before [18]. Especially the Haar wavelet
had good discontinuity recognizing properties, because it is a discontinuous wavelet.

Example 7.3 (Transient detection using wavelets) To show how wavelet transforms de-
tect transients, a short example is given. In Figure 7.5a a very small transient is placed on
a sine wave. In the spectrum of this signal, the transient cannot be detected. Also a spec-
trogram gives little insight in the place of the spectrum. If one level of wavelet decompo-
sition is applied (see Figure 7.5b) the place of the transient is immediately clear from the
coefficients in the detailed part. The reconstruction of the transient is very similar to the
original transient.

The Python-code for this example: Listing B.9.

7.2.3. Non linear and non stationary signals
Finally the two last signal elements are discussed. The first one to discuss is are te non linear elements. As
described before, linear functions or systems comply to (3.2):

f (Ax +B y) = A f (x)+B f (y).

As mentioned before, both Fourier and wavelet transform are linear, which results in a linear representation of
the transformed signals. This linearity comes from the basis of an analysis as discussed in Chapter 3: an anal-
ysis is seen as a superposition of deterministic functions with different weights. The functions are complex
exponents in the Fourier case and short waves in the wavelet case, the different weights are known as coeffi-
cients. Non linear elements are very common in nature. They are often described by non linear differential
equations, which do not always have a finite representable solution [42]. The mathematical description us-
ing harmonic components or wavelet functions does have a mathematical meaning, however physically this
often has no meaning [16]. The second signal element to discuss are the non stationary signal elements. The
concept of stationarity is already explained in Section 7.1.

To analyse non linear, non stationary data the Hilbert Huang transform has been developed by NASA
in the late 90s. Applications of this transform emerged around 2005 [17, 28]. This method combines an
empirical mode decomposition with Hilbert spectral analysis [16]. The signal is first decomposed in so-called
empirical modes: simple harmonic components which can have variable amplitude and frequency in time.
These modes are then analyzed using Hilbert spectral analysis, which computes instantaneous frequencies
easily. The Hilbert transform of a signal x(t ), H{x(t )}(iω) is defined by[15]:

H{x(t )}(ω) := 1

π
F{x(t )}(ω)∗ 1

ω
= 1

π

∫ ∞

−∞
X (η)

ω−η
dη.
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(a) On a sinusoidal signal a small transient is placed (at sample 1225). In the normalized onesided
spectrum of this signal the transient is not visible. The spectrum on the right is therefore trun-
cated; the ’1 oscillation per frame’ sine is visible.

(b) The signal from part (a) is decomposed using a Daubechies 4 wavelet. Only one decomposition
step is computed. Note the difference in y-scale in the signal and transient plots. The smooth
part contains the sine, where the detail part shows a peak at the place of the transient. The
reconstruction of the transient in these ideal circumstances is close to perfect.

Figure 7.5: Transient detection and reconstruction using wavelets

In contrary to the Fourier and wavelet transform, the basis of the decomposition, the empirical modes, is
adaptive. The instantaneous frequency is a highly controversial definition, and inceptive: when something
is instantaneous, it is localized in time. However, time and frequency are inverse quantities, resulting in the
ambiguity [12]. The resulting algorithm, the called the Hilbert-Huang transform has a lot of empirical support
[16, 17, 28]. An overview of the comparison of the three methods is given in Table 7.1.

Fourier Wavelet Hilbert-Huang
Basis a priori: a priori: ψ(t ) adaptive
Frequency convolution: convolution: differentiation:

global uncertainty regional uncertainty local, certainty
Presentation energy frequency energy-time-frequency energy-time-frequency

STFT: energy-time-frequency
Non linear no no yes
Non stationary no yes yes
Feature extraction no discrete: no, yes

continuous: yes
Theoretical base theory complete theory complete empirical base
Computation time FFT: O(N log2 N ) CWT: no fast algorithm O(N log2 N )

STFT: O(N 2 log2 N ) DWT (all scales): O(N 2 log2 N )

Table 7.1: Comparative summary of Fourier, wavelet and HHT analyses from [16].
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This all sounds very promising, however the great drawback of this method is the lack of (mathematical)
theoretical base. This is in large contrast with Fourier and wavelet analysis, which both have an elegant math-
ematical framework, very suitable for model building [12]. Huang and Shen [16] sums up a lot of challenges,
among others: non linear system identification, optimization and approximation problems.

7.3. Application to the problem
In Chapter 2 different problems with respect to measurement results have been addressed. In this section the
different applications and possibilities to process the presented measurements are briefly discussed. This
section consists of the following components: noise reduction, linearity and stationarity, the multichannel
approach and some wavelet analysis specific considerations.

Noise reduction
The plots of the discussed signals from Chapter 2 can be found in Appendix C. The displayed signals are
distorted by noise. To give an insight in the different sources of noise, the spectra of the example signals
was already shown in Figure C.2. Additive noise contributions can exist of stationary or non stationary and
colored or white noise. Stationary white noise can be filtered using both Fourier and wavelet analysis. To
filter non stationary noise, wavelet analysis is recommended. To test whether noise is Gaussian white or not,
there are a lot of options. Gaussian white noise in statistics is known as a realization of an independent and
identically distributed or iid process.

• The autocorrelation of the samples could be used to test a white noise assumption [5]. The autocorre-
lation of an iid variable sequence Y1, . . . ,Yn with finite variance are approximately iid with distribution
N(0,1/n). So in 95% of the cases the sample autocorrelation should fall within the bounds ±1.96/

p
n.

The iid hypothesis is dropped if up to lag 40 more than three autocorrelation values fall outside these
bounds, and even if only one lies far outside these bounds [5].

• The portmanteau test uses, instead of checking each sample the autocorrelation on the given borders,
the single statistic based on the autocorrelation of the signal ρ̂( j ) [5]

Q(h) = n
h∑

j=1
ρ̂2( j ).

The iid hypothesis is rejected at a level α if Q(h) > χ2
1−α(h), where χ2

1−α(h) is the 1−α quantile of the
chi-squared distribution with h degrees of freedom.

In the Ljung-Box test Q(h) is replaced by an expression whose distribution is better approximated by the
chi-squared distribution. An other test is the McLeod-Li test which uses the same statistic as Ljung-Box,
except for the use of the autocorrelation of the squared data [5].

• The turning point test counts the number of turning points in the sample. A too small or too large
number of turning points indicated the rejection of the iid hypothesis [5].

• The difference-sign test counts, instead of the number of turning points, the number of times the dif-
ferenced series yi − yi−1 is positive [5].

• Different visual techniques can be used as well, although these are less reliable. The QQ-plot is the best
known example of displaying correlation.

The most used test is the Ljung-Box text [5], which also has user friendly implementation in both Matlab [22]
and Python [29].

The data presented in Chapter 2 (Figure C.2) does however show very little white noise. At specific fre-
quencies, distinct peaks are detected: overall it can be stated that colored noise has a larger contribution to
the noisy signal than white noise. The 50 Hz peak is known to originate from the power supply, and will al-
ways be there. For this power supply noise contribution the implementation of a notch filter seems the most
logical. Note that the frequency of the power supply can deviate a little bit, and therefore the specific tuning
of the filter may differ. For the other frequency peaks a same type of filtering is applicable, however this will
result in (a lot of) manual work. There are three obvious noise filtering algorithms to apply. The first one is
to use a low pass filter to cut of all high frequency parts of the signal, which always will result in Gibbs rip-
ples and smoothening of jumps in the signals. This is the computational least intensive method. The second
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one is to apply wavelet filtering. We have seen some promising results already, however a bit more advanced
coefficient filter should be applied to ensure the filtering of the right frequencies.

The filter proposed by Srivastava et al. [35] (Figure 7.4b) shows promising results: the computational
load of the filtering is of O(N ), which results in an filtering algorithm from signal to filtered signal of O(N +
N 2 log2 N ). Moreover, the use of wavelet packets to apply colored noise filtering is a more promising tech-
nique than the standard wavelet filtering. The final option is application of one of the ’smoothing filters’ or
the Kalman filter from page 67. The filter as proposed by Xia and Wei [47] without updating the noise parame-
ters should be much less computational intensive then the wavelet filtering algorithm. When the parameters
need to be updates, there will be almost no difference in computational load. In the wavelet domain filters
such as the Kalman filter can also be applied, this might be interesting for further research.

Linearity and stationarity
The signals discussed in Chapter 2 have both non linear and non stationary elements. This could be both
noise and part of the desired signal. For instance in the water height measurement in Figure C.3 at around
15.08 minutes a large amount of water is added to the basin, this results in sloshing waves: a non stationary
process. This does not take for ever; before the jump the water level is constant. In the other measurement the
resonance frequency of the tested construction is expected to also show non stationary influences. A linear
model for the behavior as shown in Figure C.1 probably does not exist, however the goal is not to build a model
to mimic this behavior, but to denoise the signal and determine the influence of effects of the measurement
setup. Non linear effects do not have to be taken into account to successfully retrieve the signal.

A wish of the data analysts is to get more insight in the (non stationary) frequencies present in the noise
free signal. Especially the influence resonance frequencies on the measurement are interesting to them. For
they work with scale models the resonance frequency in the measurement can differ a lot from the life size
application. These effects will ultimately have to be filtered out. For these frequencies are non stationary they
are most practically filtered in the wavelet domain.

A multi-channel approach
In the first sections of this thesis the focus of the noise reduction was on so called single-channel noise reduc-
tion methods. These methods all assume the availability of just one sensor. In multi-channel noise reduction
methods, the input of different sensors is used to suppress noise [47]. A good example is a modern mobile
phone, which often has two or more microphones to record your voice when calling, to be able to suppress
noise better. This method is well known from speech enhancement, however multi-channel noise reduction
can have some application in this field as well. In multi-channel approaches often filters such as the Kalman
filters are used. But there are also possibilities in the wavelet domain.

The applicability of wavelets
In the introduction was stated that the application of wavelets is Deltares’ primal interest. In this subsection
some advantages, disadvantages, applications and considerations of wavelet analysis will be highlighted. The
largest advantage is that wavelet analysis has high applicability in non stationary signal analysis and noise re-
duction for non periodic signals which frequently occur in the field of coastal engineering. The wavelet theory
is a bit more complicated than the general Fourier technique, which makes it harder to apply. There are how-
ever possibilities in automatizing wavelet filter application [35], more than in the Fourier analysis. Actually it
is best to design a wavelet to decompose a specific signal [35]. Both the similarity of the wavelet and the signal
in time [37] as the similarity of the spectra of the wavelet and the signal [35] are good indicators for the effec-
tiveness of the decomposition, and thus the algorithms. Cortés et al. [6] notes the Symmlet 8 as a traditional
mother wavelet for denoising natural signals. However, for specific applications, different wavelets may be
recommended. Orthogonal wavelets, especially the Haar wavelet, are best applicable for discontinuity detec-
tion [40]. Their filtering properties differ from the biorthogonal wavelets, by using less decomposition levels.
For fast frequency information insight the scalogram is not recommended. The spectrogram is easier to apply
and to read. However, some proposals by Torrence and Compo [40] should reduce some reading problems.
Moreover wavelet analysis can be extended further to multiwavelets and wavelet packets. These extensions
in wavelet theory both show even better results in signal processing. Over all we may conclude that there are
enough possibilities to apply wavelets in data analysis in the coastal engineering field and extend the analysis
if results are non satisfactory.
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8
Summary and conclusion

This chapter concludes this literature study with a research proposal for the master thesis. First we start with
a short recap of all chapters in this thesis. In this proposal research questions are stated that will be answered
in the masters thesis. Thereafter some details concerning the process of the master thesis will be addressed.

This thesis started with a short overview of measurements conducted at Deltares. These measurements
are just a few of a vast number of time series in coastal engineering research, which are distorted by different
effects. The most important effects are non stationary noise contributions and behaviors of the measurement
setup. In the three chapters thereafter, three different signal analysis methods are elucidated: the Fourier
transform (Chapter 4), the wavelet transform (Chapter 6) and an adaptation of the Fourier transform, the
short term Fourier transform (Chapter 5). Finally in Chapter 7 the applications of these different analyzing
techniques were discussed.

Fourier analysis
Real word data most often contains slowly changing trends (or oscillations) and abrupt changes, and almost
always contains a certain amount of noise. Fourier analysis is a perfect method to find these slowly changing
trends and is a mathematically stable and proven method. The Fourier Transform (FT) represents a signal as
an infinite sum of complex exponentials (which can be rewritten to sines and cosines). These exponentials
have one exact frequency, but therefore they lack localization in the time domain. If a finite sum of sines
and cosines is used to describe a discrete signal, the transformation is called the discrete Fourier transform.
When using the short term Fourier transform (STFT) technique the Fourier transform is applied to shorter
parts of the signal. By choosing those parts wisely an overview of the presence of different frequencies at
different times can be given. However a trade-off has to be made. By the Heisenberg uncertainty principle
(Equation 5.5) localization in time is inversely proportional to frequency localization. The result: if one wants
a better frequency resolution, the consequence is a decrease in time resolution (and vice versa).

Wavelet analysis
The wavelet transform (WT) represents a signal in terms of a short wave like signals, wavelets, instead of the
infinite complex exponential waves. This results in an analysis with localization in both time and frequency,
similar to the STFT. A short wave like function ψ(t ) is suitable as wavelet if it complies to at least these two
requirements (see Section 6.1):

• Compact support: the signal is of finite duration;

•
∞∫

−∞
ψ(t ) dt = 0 and

∞∫
−∞

|ψ(t )|2 dt = 1: to ensure an equal energy distribution.

The wavelet transform coefficient of a signal is dependent of two variables: the scale a and translation
b. The scale (Equation 6.2) adjusts the length in time of the wavelet. A high scale ’stretches’ the wavelet,
increasing its duration and lowering its frequencies. High scaled wavelets have a smaller frequency spread
which lie in the lower frequency regions, they also have less localization in time. The low scaled wavelets are
shorter in time, which increases their accuracy in time. Moreover they support a larger bandwidth in higher
frequency regions, in agreement with the Heisenberg uncertainty principle . To choose the right wavelet
to analyze your signal, three characteristics have to be taken into account (see Section 6.2): the number of
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vanishing moments, the regularity and the selectivity of the wavelet. Often the resemblance of the wavelet
and the signal to analyze are a good reference of the applicability of that wavelet. However, there are many
possibilities to design a wavelet which is suitable for a specific analysis.

The information above is general information for both the continuous as the discrete wavelet transform.
For the discussed application: signal analysis, the discrete wavelet transform (DWT) is more suitable. Instead
of a continuous scale and translation, in this literature thesis the discrete scales of 2k for k ∈ Z are chosen.
The discrete translations depend on the chosen wavelet. The discrete wavelet transform is based on multi
resolution analysis (Section 6.3) which provides a solid base for the algorithmic implementation of the DWT.

Digital signal processing
In Chapter 7 a set of common applications of these transforms are discussed: noise reduction; detection of
transients, discontinuities and specific frequencies; and the applicability to non linear and non stationary
signals. There we have seen that the simplicity of the Fourier transform, giving only insight in the frequency
domain, has its advantages and disadvantages. The largest advantage are the comprehensibility (by engi-
neers), the easy filter design and the applicability by modern computers. The main disadvantage of signal
processing in the frequency domain is that any change to the spectrum of a signal will effect the whole signal,
whereas signal processing in the STFT or the wavelet domain allows for the effects reduces to certain intervals.
Non stationary effects therefore cannot be filtered in the Fourier domain, furthermore discontinuities for in-
stance will be smoothened when filtering in the frequency domain is applied. By switching to the STFT some
disadvantages are removed. However signal processing using the STFT might become a tedious job, because
often the filters in the frequency domain have to be hand picked. Therefore this transform is not used much
in situations alike our application. The (discrete) wavelet transform does not have the same disadvantages as
the Fourier transform; it is recommended to use for non stationary and discontinuous signals.

A disadvantage of the use of wavelets is that one has less influence on the time or frequency spread of a
wavelet. This can be solved partially by using wavelet packets instead of regular wavelets: wavelet packets
are used to address small frequency bands (this however results in less localization in time). Furthermore
a lot of choices have to be made to apply filtering using wavelet analysis. These however can (partially) be
automated. A even newer technique is reviewed in Section 7.2.3: the Hilbert-Huang transform. The published
results concerning this transform look very promising, however it only has an empirical base, which is in great
contrast with the mathematical base of both Fourier and wavelet analysis. Therefore this transformation will
not be part of the research.

The last important characteristic of these transforms is their algorithmic speeds. For implementation
on the computer of quite long signals, this is important, especially if transforms have to be adjusted or cas-
caded to apply optimal filtering. Let us assume a discrete signal of length N . The fast Fourier transfrom (FFT)
algorithm is the fastest discrete implementation of the discrete Fourier transform, which takes O(N log2 N )
computations. To compute the STFT the number of computations is of O(N 2 log2 N ). To compute one scale
of the discrete wavelet decomposition, a computation of O(N log2 N ) is performed. To do a full scale decom-
position O(N log2 N ) computations are needed.

So, despite the irregular shapes of wavelets, perfect reconstruction is possible for linear and higher or-
der polynomial shapes. In Fourier analysis always some Gibbs effects will appear. Furthermore automatic
thresholding in wavelet analysis is possible. For filtering of specific frequencies however, wavelet analysis
definitely is not the best choice. The main difference of the wavelet approach with respect to the Fourier
approach in signal processing is that the wavelet approach is more of a ’decomposition’ rather than a filter.
The reason wavelets are being used more and more is because they are capable of deconstructing complex
signals into basis signals of finite bandwidth, and then reconstructing them again with very little loss of in-
formation. Wavelet decomposition suffer less to no signal leakage or phase-shifting of the original signal
when decomposed. Conventional filters in the Fourier domain generally have problems with signal leak-
age or phase-shifting that have to be dealt with.The best known practical application of this characteristic is
compression. Here there is more interest in the noise filtering qualities.
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8.1. Thesis proposal: research questions
The summary has given a problem sketch and an overview of the different time series analysis techniques
which can be used to address the problem. There is a large number of possible improvements, however the
project has to be specified to the project duration of six months. Therefore the main research question of my
masters thesis will be:

How can wavelet analysis improve time series analysis

in the field of coastal engineering?

To answer this question, the following subquestions shall guide the research:

1. How to recognize and identify different types of noise in coastal engineering time series?

2. How to remove or reduce different types of noise efficiently in coastal engineering time series?

3. What is the added value of wavelet analysis over current time series analysis methods in coastal engi-
neering?

Subquestions
The first subquestion focuses on the signal analysis through spectra, spectrograms and scalograms and how
different types of noise can be recognized. In noise identification the challenge is to separate contributions to
the noise by the measurement equipment, such as the power supply, and contributions which are considered
component of the measured signal, such as resonance effects. This field connects seamlessly to the noise
filtering field, which is addressed in the second question. The noise filtering algorithms to implement are
limited to a number of algorithms. These algorithms will be implemented on a set of test cases, discussed
in Section 8.1.1. The performance of these algorithms will be rated based on their noise reducing ability,
computational speed, and discontinuity preserving characteristics for different signals. These algorithms
are:

• Frequency domain filtering, a combination of the Hanning window and notch filters, will be used as a
reference because it is the most used method in the field nowadays.

• Wavelet filtering, both hard and soft thresholding [1] are early wavelet thresholding techniques, which
will also serve as a reference.

• The semi-automated wavelet filtering algorithm as proposed by Srivastava et al. [35] is a new algorithm
which has been empirically approved and can be automatized.

• Wavelet filtering based on a signal free period as proposed by Srivastava et al. [35].

• The Kalman filtering algorithm presented by Xia and Wei [47] is a different approach, however its first
results look promising and computation times are expected to be less than the other algorithms, be-
cause no transformation is involved. It is good applicable to signals disturbed by correlated noise, such
as the example signals from Chapter 2.

As mentioned before noise filtering is a very extensive field. Based on the results of the algorithm possible
further improvements could answers to these questions (without further elaboration):

• How does the choice of wavelet influence the result of the wavelet filtering algorithms?

• How can results from different sensors in the same measurement, i.e. a multi channel approach, be
used to improve noise identification and filtering?

• Is there need to implement a more sophisticated wavelet analysis, i.e. wavelet packets or multi wavelets?

• Is there need to extend the wavelet filtering algorithms with a shifting or cycle spinning algorithm?

• Does cascading algorithms from different domains improve the performance?

• Can wavelet analysis be used to separate incoming and reflected waves?

The answer to the last subquestion should endorse the added value of wavelet analysis in the field of
coastal engineering research. Based on conversations with people from the coastal engineering research field
the answer should make clear why it is better to use wavelet analysis, if so. This subquestion is important to
answer the main research question: a clear added value will prevent users to fall back to their known, regular
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data analysis methods. An important step in answering this question will be the accessibility of wavelet anal-
ysis, especially for engineers who do not have any knowledge about wavelet analysis. Also the applicability
of different wavelets for specific purposes will be elaborated, possibly combined with some testing from the
second subquestion. Further the possibility of fully automatized choice of wavelet and noise threshold could
be investigated. This might lead to an extra algorithm to test.

8.1.1. Test cases
The test cases are used to test the algorithms and their performances. Therefore the algorithms will first be
tested on artificial problems to quantify the performance of these different algorithms. In this simulation
of a measurement signal, the SNRs can be adjusted to describe different measurement circumstances. The
simulation signal should consist of a basis signal:

• A stationary signal, such as wave height measurements.

• A non stationary signal, for instance a signal with large peaks such as measurements by force meters.

This basis signal can have contributions of colored, non stationary signal elements which for instance resem-
ble resonance effects. To this signal some noise will be added. The noise can consist of 4 elements.

• A Gaussian white noise contribution;

• A contribution of colored noise (within a bandwidth), or of a specific ’color’ such as red noise;

• A contribution of colored noise at a few specific frequencies (e.g. 50 Hz and mirrors);

• A contribution of colored non stationary noise.

The colored noise can be chosen such that it interferes with the signal or not. The challenge lies in the ability
to filter the noise, but not filter the non stationary or colored effects in the signal. For these noise choices
four different cases are defined: noise absent, SNR= 0 dB, 5 dB and 10 dB. This leads to a set of 16 different
settings per basis signal which can be tested. During the research some settings can be discarded based on
earlier findings. The test signal will span two minutes, sampled at 3 kHz and all start with a idle period of 10
seconds.

Signals from measurements
The known behavior to the test case will then be applied to measurements conducted at Deltares. The expert
eyes of the data analysts at Deltares will have to judge the effectiveness of the used method. Therefore these
sets over measurements will be leading:

• A pressure signal with peaks

• A force signal with peaks

• A periodical water height measurement

8.1.2. Project details
This graduation project will be fulfilled at Deltares. The main programming language to implement wavelet
analysis will be Python, because the Wavelet Toolbox of MathWorks is not available for Deltares employees.
The other programming tasks will be conducted in Matlab. My supervisor from the Delft University of Tech-
nology will be prof. dr. ir. Kees Vuik, at Deltares ir. Jan Kramer will be my daily supervisor.

Further research options
For further research and a broader application of wavelets in coastal engineering research, the following top-
ics can be addressed. These are not further elaborated.

• Can sources of the noise contributions be explained? Can the measurements or the equipment be
optimized to suppress the noise?

• How can the spectrum, spectrogram or the scalogram be used effectively for signals in coastal engi-
neering research?

• How can the computation times of the algorithms be improved?

• Does wavelet analysis have the same added value for two dimensional results in coastal engineering
research?

• How does Hilbert Huang Transform filter perform in comparison with the other tested filters?
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A
Fourier transforms

A.1. CFT - Continuous Fourier transforms

Property Time signal f (t ) Fourier transform F f (ω) = F (ω)

Linearity c1 f1(t )+ c2 f2(t ) c1F1(ω)+ c2F2(ω) (A.1)

Translation f (t −h) e−iωhF (ω) (A.2)

Modulation e iξt f (t ) F (ω−ξ) (A.3)

Scaling f

(
t

a

)
|a|F (aω) (A.4)

Convolution f1 ∗ f2(t ) F1(ω)F2(ω) (A.5)

Multiplication f1 f2(t )
1

2π
F1 ∗F2(ω) (A.6)

Inversion F (t ) f (−ω) (A.7)

Time differentiation
d f (t )

dt
iωF (ω) (A.8)

more needed? [21, p.25]

A.1.1. Important functions

Time signal f (t ) Fourier transform F f (ω) = F (ω)

δ(t −τ) e−iτω (A.9)
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B
Scripts

B.1. FT examples

Script B.1: Code for Example 4.5

1 close all;

3 %% DFT transforms
Fs = 1000; % sampling frequency

5 t = 0:1/ Fs :2 -1/ Fs; % time distance

7 % choose signal
x = sin (100* pi*t)+sin (500* pi*t);

9

% use FFT algorithm to find the DFT
11 X= fftshift (fft(x));

X_norm =abs(X)/max(abs(X));
13 freq= linspace (-Fs/2,Fs/2, length (X));

15 % twosided spectrum
plot(freq , X_norm );

17 xlabel (’frequency (Hz)’);
ylabel (’normalized energy density ’)

19

% onesided spectrum
21 plot(freq(end /2: end),X_norm (end /2: end));

xlabel (’frequency (Hz)’);
23 ylabel (’normalized energy density ’)

Script B.2: Code for Example 4.6

1 %% FT transforms
Fs = 1000; % sampling frequency

3 t = 0:1/ Fs :2 -1/ Fs; % time distance

5 % self composed signal
y1 = ones(size(t));

7 y2 = sin (10* pi*t);
y3 = 2* sin (50* pi*t);

9 y4 = 0.2* sin (80* pi*t);
nul = zeros (size(t));

11

x1 =[ y1 (1: end /4) nul(end /4+1: end)];
13 x2 =[ y2 (1: end /2) nul(end /2+1: end)];

x3 =[ nul (1: end /2) y3(end /2+1: end)];
15 x4 =[ nul (1:3* end /5) y4 (3* end /5+1:4* end /5) nul (4* end /5+1: end)];

17 x=x1+x2+x3+x4;

19 X= fftshift (fft(x));
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X_norm =abs(X)/max(abs(X));
21 freq= linspace (-Fs/2,Fs/2, length (X));

23 plot(freq(end /2: end),X_norm (end /2: end));
xlabel (’frequency (Hz)’);

25 ylabel (’normalized energy density ’)
axis ([0 100 0 1])

B.2. STFT examples

Script B.3: Code for Example 5.1

close all;
2

%% STFT transforms
4 Fs = 1000; % sampling frequency

t = 0:1/ Fs :2 -1/ Fs; % time distance
6

% signal
8 x=sin (100* pi*t)+sin (500* pi*t);

10 % course
Ny = length (x); % length of signal

12 nsc = floor (Ny /10); % ( number of sections ) divides signal into 10 sections
nov = 0; % ( number of overlap ) no overlap between contiguous sections

14 nff = 30; % max number of points for FFT

16 spectrogram (x,hann(nsc),nov ,nff ,Fs ,’yaxis ’)
shading interp

18

% fine
20 Ny = length (x); % length of signal

nsc = floor (Ny /20); % ( number of sections ) divides signal into 20 sections
22 nov = floor (nsc /2); % ( number of overlap ) 20% overlap between contiguous sections

nff = 200; % max number of points for FFT
24

spectrogram (x,hann(nsc),nov ,nff ,Fs ,’yaxis ’)
26 shading interp

Script B.4: Code for Example 5.2

%% STFT transforms
2 Fs = 1000; % sampling frequency

t = 0:1/ Fs :2 -1/ Fs; % time distance
4 close all;

6 % self composed signal of higher frequency
y1 = ones(size(t));

8 y2 = sin (100* pi*t);
y3 = 2* sin (500* pi*t);

10 y4 = 0.2* sin (800* pi*t);
nul = zeros (size(t));

12

x1 =[ y1 (1: end /4) nul(end /4+1: end)];
14 x2 =[ y2 (1: end /2) nul(end /2+1: end)];

x3 =[ nul (1: end /2) y3(end /2+1: end)];
16 x4 =[ nul (1:3* end /5) y4 (3* end /5+1:4* end /5) nul (4* end /5+1: end)];

18 x=x1+x2+x3+x4;
% end self composed signal

20

% choose signal
22 y = chirp (t ,100 ,1 ,200 , ’quadratic ’); %or

y = x;
24

Ny = length (y); % length of signal
26 nsc = floor (Ny /20); % ( number of sections ) divides signal into sections of length

...
nov = floor (nsc /2); % ( number of overlap ) 50% overlap between contiguous sections

28 nff =2000; % max number of points for FFT
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30 [spectro ,freq ,time ]= spectrogram (y,hann(nsc),nov ,nff ,Fs ,’yaxis ’);
subplot (2 ,1 ,1);

32 spectrogram (y,hann(nsc),nov ,nff ,Fs ,’yaxis ’)
shading interp

34

subplot (2 ,1 ,2);
36 plot(t,y);

xlabel (’Time (secs)’)
38 ylabel (’Amplitude ’)

B.3. Wavelets
https://github.com/scipy/scipy/blob/v0.15.1/scipy/signal/wavelets.py#L309 komt de code van-
daan op 1/3/2017

Script B.5: Python code for CWT function

def cwt(data , wavelet , widths ):
2 """

Continuous wavelet transform .
4

Performs a continuous wavelet transform on ‘data ‘,
6 using the ‘wavelet ‘ function . A CWT performs a convolution

with ‘data ‘ using the ‘wavelet ‘ function , which is characterized
8 by a width parameter and length parameter .

10 Parameters
----------

12 data : (N ,) ndarray
data on which to perform the transform .

14 wavelet : function
Wavelet function , which should take 2 arguments .

16 The first argument is the number of points that the returned vector
will have (len( wavelet (width , length )) == length ).

18 The second is a width parameter , defining the size of the wavelet
(e.g. standard deviation of a gaussian ). See ‘ricker ‘, which

20 satisfies these requirements .
widths : (M ,) sequence

22 Widths to use for transform .

24 Returns
-------

26 cwt: (M, N) ndarray
Will have shape of (len(data), len( widths )).

28

Notes
30 -----

>>> length = min (10 * width [ii], len(data))
32 >>> cwt[ii ,:] = scipy . signal . convolve (data , wavelet (length ,

... width [ii ]) , mode=’same ’)
34

Examples
36 --------

>>> from scipy import signal
38 >>> import matplotlib . pyplot as plt

>>> t = np. linspace (-1, 1, 200 , endpoint = False )
40 >>> sig = np.cos (2 * np.pi * 7 * t) + signal . gausspulse (t - 0.4 , fc =2)

>>> widths = np. arange (1, 31)
42 >>> cwtmatr = signal .cwt(sig , signal .ricker , widths )

>>> plt. imshow (cwtmatr , extent =[-1, 1, 1, 31] , cmap=’PRGn ’, aspect =’auto ’,
44 ... vmax=abs( cwtmatr ).max () , vmin=-abs( cwtmatr ).max ())

>>> plt.show ()
46

"""
48 output = np. zeros ([ len( widths ), len(data)])

for ind , width in enumerate ( widths ):
50 wavelet_data = wavelet (min (10 * width , len(data)), width )

output [ind , :] = convolve (data , wavelet_data ,
52 mode=’same ’)

return output
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Script B.6: MATLAB code for Example 6.1.

1 Fs = 1000; % sampling frequency
dt= 1/ Fs;

3 t = 0:1/ Fs :2 -1/ Fs; % time distance

5 % choose signal
y = chirp (t ,100 ,1 ,200 , ’quadratic ’);

7 y = sin (100* pi*t)+sin (500* pi*t);

9 % own signal
y1 = ones(size(t));

11 y2 = sin (100* pi*t);
y3 = 2* sin (500* pi*t);

13 y4 = 0.2* sin (800* pi*t);
nul = zeros (size(t));

15

x1 = [y1 (1: end /4) nul(end /4+1: end)];
17 x2 = [y2 (1: end /2) nul(end /2+1: end)];

x3 = [nul (1: end /2) y3(end /2+1: end)];
19 x4 = [nul (1:3* end /5) y4 (3* end /5+1:4* end /5) nul (4* end /5+1: end)];

21 y = x1+x2+x3+x4;
% end own signal

23

a0 = 2^(1/64) ;
25 scales = 2*( a0 .^(0:6*64) );

27 [cfs , frequencies ]= cwt(y, scales ,’cmor1 -1.5 ’,dt);
surf(t, frequencies ,abs(cfs));

Script B.7: Python code for Figure 6.12.

import pywt
2 from matplotlib import pyplot as plt

4 w= pywt. Wavelet (’db2 ’)
(phi ,psi ,x)=w. wavefun ( level =5)

6 plt. subplot (3 ,2 ,1)
plt.plot(x,phi)

8 plt. title (" Scaling function ")

10 plt. subplot (3 ,2 ,2)
plt.plot(x,psi)

12 plt. title (" Wavelet function ")

14 plt. subplot (3 ,2 ,3)
plt.stem(w. dec_lo )

16 plt.axis ([0 , 3, -0.5, 1])
plt. title (" Decomposition low pass filter ")

18

plt. subplot (3 ,2 ,4)
20 plt.stem(w. dec_hi )

plt.axis ([0 , 3, -0.5, 1])
22 plt. title (" Decomposition high pass filter ")

24 plt. subplot (3 ,2 ,5)
plt.stem(w. rec_lo )

26 plt.axis ([0 , 3, -0.5, 1])
plt. title (" Reconstruction low pass filter ")

28

plt. subplot (3 ,2 ,6)
30 plt.stem(w. rec_hi )

plt.axis ([0 , 3, -0.5, 1])
32 plt. title (" Reconstruction high pass filter ")

B.4. Digital signal processing

Script B.8: Python code for Example 7.1 and 7.2.
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from pylab import *
2 import numpy as np

from math import *
4 import pywt

import Timfunctions as Tf
6 from statsmodels import robust

from matplotlib2tikz import save as tikz_save
8 import copy as copy

10 t = linspace (0, 10, 2056)
x = np.sin (2 * pi / 10 * t)

12 move = np. zeros_like (t)
move [:500] = -1 * np.ones ([1 , 500])

14 move[len(x) -500:] = np.ones ([1 , 500])

16 x += move
var_noise = var(x) / Tf. db2mag (10)

18 noise = np. random . normal (0, sqrt( var_noise ), len(x))
xpn = x + noise

20

# FOURIER
22 XpN = fftshift (fft(xpn))

XpN_abs = abs(XpN) / max(abs(XpN))
24

filter_size = 40
26

rect = np.ones ([1 , filter_size ])
28 hamm = np. hanning (2 * filter_size )

30 filter_rect = np. zeros_like (t)
filter_hann = np. array ( filter_rect )

32 filter_rect [len(t)/2 - filter_size / 2: len(t)/2 + filter_size / 2] = rect
filter_hann [len(t)/2 - filter_size :len(t)/2 + filter_size ] = hamm

34

XmR = XpN * filter_rect
36 XmH = XpN * filter_hann

38 xmr = ifft( ifftshift (XmR))
xmh = ifft( ifftshift (XmH))

40

# WAVELET
42 wavelet = "db4"

decomp = pywt. wavedec (xpn , wavelet )
44

# Universal threshold
46 T_U = sqrt (2 * np.log(len(xpn))) * robust .mad( decomp [ -1]) / 0.6745

48 Thres_hard = copy. deepcopy ( decomp )
Thres_soft = copy. deepcopy ( decomp )

50 Thres_scale = copy. deepcopy ( decomp )

52 for i in range (len( decomp ))[1:] :
Thres_hard [i][:] = pywt. threshold ( Thres_hard [i][:] , T_U , ’hard ’)

54 Thres_soft [i][:] = pywt. threshold ( Thres_soft [i][:] , T_U / 2, ’soft ’)
Thres_scale [i][:] = pywt. threshold ( Thres_scale [i][:] , 1.3 * std( Thres_scale [i ][:]) ,

’soft ’)
56

x_filt_hard = pywt. waverec ( Thres_hard , wavelet )
58 x_filt_soft = pywt. waverec ( Thres_soft , wavelet )

x_filt_scale = pywt. waverec ( Thres_scale , wavelet )

Script B.9: Python code for Example 7.3.

1 from math import *

3 import numpy as np
import pywt

5 from pylab import *
import copy as copy

7 import scipy . signal as signal
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9 t = linspace (0, 10, 2056)
x = 0.5 * np.sin (2 * pi / 10 * t)

11

transient = 10** -4 * np. array ([0 , 7, -4, -3, 4, -3, 2, 1.5,-1, 0.6 , -0.5, -0.4, 0.3 ,
-0.2, 0.1 , -0.05 , 0.02 , 0])

13

x [1222:1222+ len( transient )] += transient
15

# FOURIER
17 X = fftshift (fft(x))

X_abs = abs(X) / max(abs(X))
19

# WAVELET
21 wavelet = "db4"

decomp = pywt. wavedec (x, wavelet , level =1, mode = ’smooth ’)
23

recomp = copy. deepcopy ( decomp )
25 recomp [0] = zeros_like ( decomp [0])

recomposition = pywt. waverec (recomp , wavelet , mode=’smooth ’)
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Signal examples

Figure C.1: Example time signals from Deltares: KRDAX is a force measurement, WHM90 is a water height measure-
ment and PDCR2 is a pressure measurement. A more elaborate description of the signals can be found in
Section 2.1.
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Figure C.2: Spectra of time signal examples from Figure C.1. On the right hand side one or both of the axes are zoomed
to have more insight in the spectrum
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Figure C.3: The time signals from Figure C.1 between 15 min and 15 min and 12 sec (5.2 minute): the spectra show a
relatively larger contribution of the frequencies >30 Hz than in Figure C.2.
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Figure C.4: The wave heights in the flume.
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D
MSc assignment

MSc-thesis assignment

Wavelets

The FBI uses wavelet techniques for image compression
of digital fingerprints to save storage space. In geophysics
wavelets are being used to analyse seismic signals for
detecting e.g. earthquakes and oil layers. In finance the
wavelet is used to analyse stock markets due to their
dynamic and non-linear nature. These are just a few
examples to highlight the applicability of the wavelet
techniques.

The same techniques are potentially very interesting for Deltares
as coastal engineers have to deal with complex time dependent
physical processes as for example illustrated in the figures
included.
To improve the understanding of these physical processes
associated with waves, wave structure interaction, stability of
structures or the influence on morphology various measurements

techniques like time sampling, lasers scanning, photography are
employed to capture instant information on wave conditions, forces, currents, erosion and accretion
for further detailed analysis.

This assignment is related to the part of detailed analysis of time
series containing the time evolution of wave heights, forces, etc.
Currently, the analysis is performed through Fourier analysis
combined with filtering techniques to remove e.g. noise. However, the
Fourier analysis has its limitations.

The purpose of this assignment is to look into the added value of
applying existing wavelets and the related techniques compared to
Fourier type of
analysis.

The question is: can we improve our analysis by
employing wavelet instead of Fourier technique? To
answer this question, the following tasks have been
defined for this assignment.

Tasks

1. Provide a summary/overview on how wavelets are being used in other fields of expertise,
including background information on the mathematical aspects of wavelets.

2. Verify the added value of wavelets by comparing results obtained through wavelet techniques
with Fourier analysis by using different type of measured of time series (e.g. pressure due to
wave impact, wave height, etc.) which representative for Deltares. Important aspects related
to this task are:

a. Use wavelets to detect and filter different components (e.g. noise) from the signal by
using for example thresholding methods.

b. Use wavelets to detect, if possible, the influence of wave basin characteristics on
measured signals.

Figure 2 Example of measuring wave field

Figure 1 Example of obtaining ware field information
near trunk of a breakwater

Figure 3 Example
Stereophotography

Figure 4 Example wave impact on a pile and
measured pressure
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c. Use wavelets to detect non-stationary properties in a signal, which is not possible by
using standard Fourier analysis.

3. Research the sensitivity of wavelet specific parameters, e.g. type of wavelet, on the output of
a wavelet analysis, including using statistical techniques to be able to interpret results.

4. Make wavelet analysis accessible in projects through scripts on top of an existing wavelet
toolbox (yet to be selected). One important aspect for this task is the presentation of results.

Requirements

Ø Programming skills in either Matlab and/or Python.

This assignment is your chance to start a new era in coastal engineering with respect to time series
analysis and also create added value to your own skills as wavelets are used in various fields of
expertise. The only difference is jargon as the mathematics stays the same! If you are interested,
please contact me.

Indication start date: After August 2016

Company: Deltares

Name : Jan Kramer

Email address: jan.kramer@deltares.nl

The MSc proposal as subjected by Deltares via
http://ta.twi.tudelft.nl/nw/users/vuik/numanal/rooij.html.
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