
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Numerical treatment of stochastic control problems

by Fourier-cosine series expansions

The dike height problem

A thesis submitted to the

Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

by

Marjon Ruijter

Delft, the Netherlands

September 2010

Copyright c© 2010 by Marjon Ruijter. All rights reserved.





MSc THESIS APPLIED MATHEMATICS

“Numerical treatment of stochastic control problems by Fourier-cosine series expansions,

the dike height problem”

M.J. Ruijter

Delft University of Technology

Daily supervisor Responsible professor

Prof.dr.ir. C.W. Oosterlee Prof.dr.ir. C.W. Oosterlee

Other thesis committee members

Dr. J.A.M. van der Weide

Dr.ir. F.J. Vermolen

September 2010 Delft, the Netherlands





Preface

This report is part of my Master Thesis for the degree of Master of Science in Applied Mathematics at
Delft University of Technology, the Netherlands. This thesis was completed at the faculty of Electrical
Engineering, Mathematics and Computer Science at the chair of Numerical Analysis and the National
Research Institute for Mathematics and Computer Science (CWI), located in Amsterdam.

I would like to acknowledge the advice and guidance of my supervisor Prof.dr.ir. C.W. Oosterlee. I also
thank the members of my graduate committee and the members of the department at the CWI. Special
thanks go to Bowen Zhang and Fang Fang, for helping me with the Matlab code and understanding their
methodology. Finally I wish to express my gratitude to my family and friends who supported me through
the duration of my study.

Marjon Ruijter
Delft, 2010

i



ii



CONTENTS

Contents

1 Introduction 1

1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Real options approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basics of stochastic optimisation 5

2.1 Stochastic optimisation problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Finite horizon problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Infinite horizon problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dynamic programming principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Verification Theorem and viscosity approach . . . . . . . . . . . . . . . . . . . . . 10

2.4 Optimal stopping and impulse control problems . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Optimal stopping problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Stochastic impulse control problems . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Impulse control problems under jump diffusions . . . . . . . . . . . . . . . . . . . . 14

2.4.4 Impulse control problems including ‘extreme events’ . . . . . . . . . . . . . . . . . 15

2.5 Examples of stochastic optimisation problems . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Example 1: Merton’s portfolio allocation problem . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Example 2: European call and put options . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.1 Dynamic programming approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.2 Contingent claims approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Example 3: Harvesting forest problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8.1 Dynamic programming approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.2 Contingent claims approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The dike height stochastic optimisation problem 25

3.1 First model for the dike height problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Dynamic programming approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Contingent claims approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The relation between the harvesting and dike height problems . . . . . . . . . . . . . . . . 28

3.3 Alternative dike height models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Stochastic water level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 The dike age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Soil compression and deterioration . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 A recovery rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The dike-COS method 35

4.1 COS formula for the continuation value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



CONTENTS

4.2 Recursion formula for coefficients Vk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Construction domains Ai
m(x1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Expected loss fraction function β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Error analysis 47

5.1 Local error dike-COS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Error propagation in the backward recursion . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Error propagation with incorrect construction points . . . . . . . . . . . . . . . . . . . . . 55

6 Numerical experiments error 57

6.1 COS density recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Fourier-cosine series expansion of payoff function . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 COS method for call and put option prices . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Convergence and the roundoff plateau . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.2 Error close to the boundaries of the domain . . . . . . . . . . . . . . . . . . . . . . 68

6.3.3 SIN method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.4 Modified Fourier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Numerical experiments with dike-COS method 79

7.1 Exact solution at time tM−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Tests dike-COS method for an island . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Variation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 The dike-Q-COS method 95

8.1 Second model for the dike height problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 COS convolution formula for the expected flood losses . . . . . . . . . . . . . . . . . . . . 97

8.3 Quadrature-COS formula for the continuation value . . . . . . . . . . . . . . . . . . . . . 99

8.4 Recursion formula for coefficients Vkq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4.1 Extensions to alternative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.5 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5.1 Local error dike-Q-COS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5.2 Error propagation in the backward recursion . . . . . . . . . . . . . . . . . . . . . 105

8.5.3 Numerical experiments COS convolution formula . . . . . . . . . . . . . . . . . . . 107

8.6 Tests dike-Q-COS method for an island . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.6.1 Low water level volatility, σw ≈ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.6.2 Stochastic average water level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Summary and conclusion 115

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

iv



LIST OF FIGURES

9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A Functions χk and ψk 119

B Functions χSIN
k and ψSIN

k 119

C Functions χc
k, χ

s
k, ψ

c
k and ψs

k 119

D Function Mk,j 120

E Black-Scholes price and errors 120

F Characteristic functions 122

G Results for average water level volatility σw = 1 122

Bibliography 123

List of Figures

4.1 Overview of construction domains Ai
m(x1) for example 1. . . . . . . . . . . . . . . . . . . 43

4.2 Overview of construction domains Ai
m(x1) for example 2. . . . . . . . . . . . . . . . . . . 44

4.3 Function β(h) on logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Convergence rates coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 COS density recovery and the error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Max. error on integer grid and coefficients Fk. . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Max. error on integer grid and coefficients Fk (L = 10). . . . . . . . . . . . . . . . . . . . 59

6.4 Higher precision calculations, max. error on integer grid for p = 24, 53, 100. . . . . . . . . 60

6.5 Fourier-cosine expansion gcall(y) and the error. . . . . . . . . . . . . . . . . . . . . . . . . 61
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1 INTRODUCTION

1 Introduction

In financial markets traders deal in stocks and options, such as the well-known call and put options. An
option is a contract between a buyer and a seller that gives the buyer the right to buy or sell a partic-
ular stock under prescribed conditions. In this turbulent trading world, questions about a ‘fair’ option
price and the hedging of risks arise. In the recent decades financial mathematics has developed fast to
contribute to this theory and to improve the pricing methods.

In economical, but also in personal or societal contexts, one may face options in the sense of real ‘choices’.
For example, should one build a new factory now or later. These options are called real options and can
be related to the financial options. An introduction to real options is given in Section 1.2. Also the
contingent claims approach and the dynamic programming approach are introduced there.

A (real) option problem can often be formulated as a stochastic optimisation problem. We start with a
general model for these problems in Section 2. This section is mainly based on the literature report ([34]),
which is also a part of the Master Thesis. Concepts, such as control, the dynamic programming principle,
the Hamilton-Jacobi-Bellman equation and impulse control problems are introduced. At the end of the
section three examples of stochastic optimisation problems are discussed. The first two examples are
financial problems, the optimal utility of wealth and put option prices are derived. The other example
does not originate from the financial world but is a real option problem where optimal choices are made
about when to harvest a forest.

Section 3 presents the dike height problem, where one has to choose when to increase the dike level and
by which amount. The model includes a deterministic average water level and a stochastic economic
value of endangered goods. This problem is the application of interest in this work. The relation and
the differences between the harvesting and dike height problems are discussed in Section 3.2. After this,
improved models for the dike height problem are proposed in Section 3.3.

Subsequently, a numerical method to solve the dike height problem is developed in Section 4. First
the COS method, which is based on Fourier-cosine series expansions, is presented. This option pricing
method has been used for pricing European, Bermudan, barrier and swing options. We adapt the method
to the impulse control problem in order to estimate the costs of flooding and dike reinforcements. Then
the resulting algorithm, the dike-COS method, comes up in Section 4.2 and an extensive error analysis
is given in Section 5.

Numerical experiments to investigate the error of the COS method are performed in Section 6. The tests
are based on the COS formula for pricing European options and they give insight into possible difficulties
we may face using the more involved dike-COS method. We show how errors at the boundaries of the
computational domain arise and how roundoff errors may spoil the error convergence.

The dike-COS method is applied to a model of an island in Section 7. We obtain a control law, which
describes when it is optimal to increase the dikes and by which amount, depending on the economic value
of endangered goods and the current dike level. Various model parameters are varied to investigate their
influence.

Then in Section 8 we introduce an extended model for the dike height problem. The water level is stochas-
tic in this model in order to be prepared for an uncertain rise in the future water level. The dike-COS
method is extended using a quadrature rule for the additional dimension and the corresponding algorithm
is developed thereafter. The error analysis can be found in Section 8.5. At the end we apply the method
to a model of an island with stochastic water level. The results are presented in Section 8.6.

1



1 INTRODUCTION

Finally, a summary is made and the main results are presented in Section 9.

Some notations are used two times through the different sections of this report. For example, ǫ denotes
an arbitrary positive constant in Theorem 2.2, whereas it represents an error in sections thereafter. We
suppose that the meaning of all notations becomes clear by its context.

In some experiments the results are shown with many decimal digits, because we investigate the perfor-
mance of numerical solution methods and their convergence. For engineering purposes a lower accuracy
is often sufficient.

1.1 Research questions

In this Master Thesis we focus on the numerical treatment of stochastic impulse control problems, in
particular to determine the optimal height and reinforcement times for dikes. We adapt a financial option
pricing method, based on Fourier-cosine series expansions, to pricing real options. The main research
questions we work on are:

• Can we adapt the COS pricing method for Bermudan or swing options to solve the dike height
impulse control problem?

• How can we efficiently calculate the optimal dike increase level?

• What can we tell about the error convergence of the numerical method and the errors close to the
boundaries of the computational domain?

• Is it possible to extend the pricing method to using it with more than one stochastic process, such
as both stochastic water level and stochastic economic value?

• How do the real option prices change when it is possible to hedge the risks of, for example, floods?

1.2 Real options approach

In this section we explain the idea of real options. A detailed introduction to real options theory can be
found in [38] and [8].

In the financial world many different options exist, the most well-known are the European call and put
options. More involved options are path-dependent and exotic options, such as barrier options, Asian
options, swing options and rainbow options. In recent times the financial options theory for pricing
options has been well developed. We refer to [14] for an introduction to financial option valuation and
to [36] for a financial mathematical background.

A real option is not a financial derivative, but an actual option in the sense of a ‘choice’ that, for instance,
a company or government may have by undertaking investments. For example, by investing in a partic-
ular project (e.g., a new factory), a company may have the real option of delaying, expanding, deferring
or abandoning the project in the future. Such real options have a certain value which can greatly affect
the valuation of investments and may not be neglected. Most investment decisions share three important
characteristics: (partially or completely) irreversibility, uncertainty over the future rewards of the invest-
ment and some leeway regarding the timing of the investment.

The opportunity to invest can be modelled by means of a financial option. The company has the option,
but not the obligation, to spend investment costs and to receive a project. Frequently the investment
opportunity remains only for a certain time interval. The expiration time can be the time from a patent’s
right or the anticipated entry time of a competitor. The investment opportunity can be seen as a call

2



1 INTRODUCTION

option, the investment costs represent the exercise price and the project is modelled as the stock received
by exercising the option. The value of the implanted project, after investment, fluctuates stochastically
like the value of stocks. There is a value of waiting before investment in order to gain more information,
and the option is only exercised if the project is sufficiently profitable.

In classical valuation methods one often uses the net-present value (NPV) of a project to determine the
profitability, which does not include the benefits of real options. In these methods one invests when the
present value of the expected stream of profits is larger than the costs required, i.e., when the NPV is
greater than zero. However, this ignores the opportunity of delaying an investment. Delaying can create
costs, but it may also give rise to large benefits as uncertainty is resolved. If an option is exercised the
opportunity costs of the lost option must be included as part of the total cost.

The real options theory can be applied when we have irreversibility, ongoing uncertainty and some lee-
way in timing. Some techniques developed for valuing financial options appear to be useful in the real
option context. A clarifying example of two valuation methods is given in [8], page 27-33. The valuation
approach of constructing a risk-free portfolio, consisting of the investment option and hedge instruments,
is called the contingent claims approach. With this approach it is assumed that markets are complete
in order to hedge the risk of an investment. The assumption of the absence of arbitrage opportunities
allows the derivation of the fair value using the risk-free discount rate. For example, the well-known
Black-Scholes equation can be derived using this approach.

The limitations attached to the use of financial option pricing techniques for real option values are due to
the differences between real options and the financial options. Two important differences that can arise
are:

• The underlying asset is not tradeable (e.g., the factory cannot easily be sold).

• The real option itself is not tradeable (e.g., the option to built the factory cannot usually be sold
to another investor).

If there are no assets to trade or other assets that cover the price risk we can employ the dynamic pro-
gramming or expected value approach. Here we calculate the NPV for each investment strategy, invest
now or wait, under a risk adjusted discount rate, which is usually higher than the risk-free rate. The
risk adjusted discount rate reflects the return the investor would require for holding the risky option. We
choose the strategy that yields the highest NPV. This approach has the disadvantage that it is necessary
to choose a future discount rate for the risky investment. The basic principle behind this approach is
Bellman’s Principle of Optimality ([3]):

“Principle of Optimality. An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.”

In the next sections we will deal with the dynamic programming approach, and later on with the contin-
gent claims approach, for continuous time models.
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2 Basics of stochastic optimisation

This section provides the mathematical background of stochastic optimisation problems. In these prob-
lems we can apply a certain control to optimise an objective function which is subject to stochastic
processes. In Section 2.1 we introduce the notation for stochastic optimisation problems. Then the
dynamic programming principle in Section 2.2 helps in deriving the Hamilton-Jacobi-Bellman equation
in Section 2.3. Finally, three concrete examples of stochastic optimisation problems are discussed. A
comprehensive introduction to stochastic control and optimisation can be found in [31] and [30], from
which we employ the notation system and moreover most theorems.

2.1 Stochastic optimisation problems

We can subdivide the problem class into finite and infinite horizon problems, where we optimise the
objective either over a given finite or over an infinite domain. We start with the notation of both types
of control problems.

Let (Ω,F , P ) be a probability space, F = (Ft)t≥0 a filtration satisfying the usual conditions and W a d-
dimensional Brownian motion on the filtered probability space (Ω,F ,F, P ). The controlled state process
Xt is valued in Rn and satisfies the stochastic differential equation

dXs = b(Xs, αs)ds+ σ(Xs, αs)dWs, (2.1)

or componentwise

dX(i)
s = bi(Xs, αs)ds+

d
∑

j=1

σij(Xs, αs)dW
(j)
s , 1 ≤ i ≤ n. (2.2)

The control process α = (αs) is progressively measurable with respect to F and is valued in the control
set A, a subset of Rm. The state process is typically influenced by this control process α whose value is
determined at any time t based on the available information.

The measurable functions b : Rn ×A→ Rn and σ : Rn ×A→ Rn×d satisfy a uniform Lipschitz condition
in A, in other words, ∃K ≥ 0, ∀x, y ∈ Rn, ∀ a ∈ A we have

|b(x, a) − b(y, a)| + |σ(x, a) − σ(y, a)| ≤ K|x− y|. (2.3)

In the case of finite horizon problems we can consider coefficients b(t, x, a) and σ(t, x, a) depending also
on time t. However, in the case of infinite horizon problems the coefficients cannot be time-dependent
in order to get the stationarity of the problem, that is the solution is independent on the initial time at
which the optimisation problem is considered.

In the next two sections the finite and infinite horizon problems are formulated.

2.1.1 Finite horizon problems

For the finite horizon problem, with terminal time T ∈ (0,∞), A denotes the set of control processes α,
which satisfy

E

[

∫ T

0

|b(0, αt)|2 + |σ(0, αt)|2dt
]

<∞. (2.4)

With conditions (2.3) and (2.4) on b, σ we have that for all α ∈ A and for any initial condition
(t, x) ∈ [0, T ] × Rn a unique strong solution to equation (2.1) starting from x at s = t exists, which
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2 BASICS OF STOCHASTIC OPTIMISATION

is denoted by {Xt,x
s , t ≤ s ≤ T }.

Take f : [0, T ]× Rn × A→ R and g : Rn → R two measurable functions with:
(i) g has a lower bound, or
(ii) g satisfies a quadratic growth condition: |g(x)| ≤ C(1 + |x|2), ∀x ∈ Rn, for some constant C
independent of x.

For (t, x) ∈ [0, T ]× Rn the subset A(t, x) ⊂ A contains controls α such that

E

[

∫ T

t

|f(s,Xt,x
s , αs)|ds

]

<∞ (2.5)

and we assume that this set is not empty for all (t, x) ∈ [0, T ]× Rn.

The gain function on the finite domain is defined as

J(t, x, α) := E

[

∫ T

t

f(s,Xt,x
s , αs)ds+ g(Xt,x

T )

]

, (2.6)

for all (t, x) ∈ [0, T ]× Rn and α ∈ A(t, x). The function f is a so-called running profit function and g is
a terminal reward function. The objective of the finite horizon problem is to maximise the gain function
over all admissible controls A(t, x). We introduce the so-called value function:

v(t, x) := sup
α∈A(t,x)

J(t, x, α). (2.7)

For an initial state (t, x) ∈ [0, T )×Rn we say that α̂ ∈ A(t, x) is an optimal control if v(t, x) = J(t, x, α̂).
A control process α is called a Markovian control if it has the form αs = a(s,Xt,x

s ) for some measurable
function a : [0, T ]× Rn → A.

2.1.2 Infinite horizon problems

In this section the previous conditions are adjusted to the infinite horizon case. A0 denotes the set of
control processes α, which satisfy

E

[

∫ T

0

|b(0, αt)|2 + |σ(0, αt)|2dt
]

<∞, ∀T > 0. (2.8)

For any initial condition x ∈ Rn at t = 0 and for all α ∈ A0 a unique strong solution to equation (2.1)
exists, which is denoted by {Xx

s , s ≥ 0}.

Let f : Rn × A → R be a measurable function and ρ > 0 be a discount factor. For x ∈ Rn the subset
A(x) ⊂ A0 contains controls α such that

E

[∫ ∞

0

e−ρs|f(Xx
s , αs)|ds

]

<∞ (2.9)

and we assume that this set is not empty for all x ∈ Rn. Again we define a gain function:

J(x, α) := E

[∫ ∞

0

e−ρsf(Xx
s , αs)ds

]

(2.10)

for all x ∈ Rn and α ∈ A(x). In this case the value function is defined by:

v(x) := sup
α∈A(x)

J(x, α). (2.11)

The above equation formulates the infinite horizon problem. Given an initial state x ∈ Rn, we say that
α̂ ∈ A(x) is an optimal control if v(x) = J(x, α̂). Here it is important to assume that the function f(x, a)
does not depend on time in order to get the stationarity of the problem.
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2.2 Dynamic programming principle

A fundamental principle in the theory of stochastic control is Bellman’s optimality principle, also called
the dynamic programming principle and already mentioned in Section 1.2. It means that if one has taken
an optimal control decision path until some arbitrary observation time θ, then, given this information, it
remains optimal to use it after that observation time. With this principle we derive the Hamilton-Jacobi-
Bellman equation in Section 2.3, but first we give a formal definition.

For t ∈ [0, T ], T ≤ ∞, we denote by Tt,T the set of stopping times valued in [t, T ]. When t = 0 and
T = ∞ we use the notation T = T0,∞. In the context of controlled diffusion processes described in the
previous section, but valid more generally for controlled Markov processes, the dynamic programming
principle is stated as follows:

Theorem 2.1. (Dynamic programming principle (DPP))
Finite horizon: Let (t, x) ∈ [0, T ]× Rn. Then we have

v(t, x) = sup
α∈A(t,x)

sup
θ∈Tt,T

E

[

∫ θ

t

f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )

]

= sup
α∈A(t,x)

inf
θ∈Tt,T

E

[

∫ θ

t

f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )

]

. (2.12)

Infinite horizon: Let x ∈ Rn. Then we have

v(x) = sup
α∈A(x)

sup
θ∈T

E

[

∫ θ

0

e−ρsf(Xx
s , αs)ds+ e−ρθv(Xx

θ )

]

= sup
α∈A(x)

inf
θ∈T

E

[

∫ θ

0

e−ρsf(Xx
s , αs)ds+ e−ρθv(Xx

θ )

]

, (2.13)

with the convention that exp(−ρθ) = 0 when θ = ∞.

The dynamic programming principle splits the optimisation problem in two parts. For the finite domain
problem an optimal control may be obtained by first searching for an optimal control from a time θ given

the state valueXt,x
θ , in other words, compute v(θ,Xt,x

θ ). Then the quantityE
[

∫ θ

t f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )
]

is maximised over all controls on [t, θ] .

For some derivations in the sequel we will use a stronger version of the dynamic programming principle:

Theorem 2.2. (Stronger version DPP (finite horizon))
For all α ∈ A(t, x) and θ ∈ Tt,T

v(t, x) ≥ E

[

∫ θ

t

f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )

]

. (2.14)

For all ǫ > 0, there exists α ∈ A(t, x) such that for all θ ∈ Tt,T

v(t, x) − ǫ ≤ E

[

∫ θ

t

f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )

]

. (2.15)

The DPP has a clear intuitive meaning, but its rigorous proof is technical and has been studied by
several authors and by different methods. The proof in [31] uses, among other things, the tower property
of conditional expectations:

7
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Theorem 2.3. (Tower property of conditional expectations)[36]
Let (Ω,F , P ) be a probability space and G a sub-σ-algebra of F . If H is a sub-σ-algebra of G (H contains
less information than G) and X is an integrable random variable, then

E[E[X |G]|H] = E[X |H]. (2.16)

By this theorem of iterated conditional expectation we have for a given admissible control α ∈ A(t, x)
and for any stopping time θ in [t, T ]:

J(t, x, α) = E

[

∫ θ

t

f(s,Xt,x
s , αs)ds+ J(θ,Xt,x

θ , α)

]

. (2.17)

This forms the beginning of the proof of the DPP.

2.3 Hamilton-Jacobi-Bellman equation

With the dynamic programming principle we can derive the Hamilton-Jacobi-Bellman (HJB) equation,
see [31]. This second order, nonlinear partial differential equation is the infinitesimal version of the dy-
namic programming principle. In short, the HJB equation is derived by assuming that the value function
is smooth enough, by applying Itô’s formula to v(s,Xt,x

s ) between s = t and s = t+ h and then taking h
to zero in the dynamic programming principle.

We start with the finite horizon problem and use the relation of the dynamic programming principle
(2.14) with θ = t+ h and a constant control αs = a, for some arbitrary a in A:

v(t, x) ≥ E

[

∫ t+h

t

f(s,Xt,x
s , a)ds+ v(t+ h,Xt,x

t+h)

]

. (2.18)

Assume that the value function v is sufficiently smooth, v ∈ C1,2([0, T ] × Rn). Itô’s formula ([36]) then
reads

v(t+ h,Xt,x
t+h) = v(t, x) +

∫ t+h

t

(

∂v

∂t
+ Lav

)

(s,Xt,x
s )ds+ (local) martingale, (2.19)

with differential operator of second order

Lav(t, x) = b(x, a).Dxv(t, x) +
1

2
tr(σσ′(x, a)D2

xv(t, x))

=

n
∑

i=1

bi(x, a)
∂v

∂xi
(t, x) +

1

2

n
∑

i,j=1

(σσ′)ij(x, a)
∂2v

∂xi∂xj
(t, x), (2.20)

where σσ′(x, a) is an n× n matrix with components (σσ′)ij(x, a) =
∑d

k=1 σik(x, a)σjk(x, a). La is called
the infinitesimal generator associated to the diffusion Xt with constant control a. The vector Dx denotes
the gradient of a function and matrix D2

x consists of its the second derivatives. Substituting equation
(2.19) into equation (2.18) gives

v(t, x) ≥ E

[

∫ t+h

t

f(s,Xt,x
s , a)ds+ v(t, x) +

∫ t+h

t

(

∂v

∂t
+ Lav

)

(s,Xt,x
s )ds

]

= v(t, x) + E

[

∫ t+h

t

f(s,Xt,x
s , a)ds+

∫ t+h

t

(

∂v

∂t
+ Lav

)

(s,Xt,x
s )ds

]

(2.21)

and we get

0 ≥ E

[

∫ t+h

t

f(s,Xt,x
s , a)ds+

∫ t+h

t

(

∂v

∂t
+ Lav

)

(s,Xt,x
s )ds

]

. (2.22)

8
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Dividing by h, taking the limit h → 0 and interchanging limit and expectation results, according to the
mean-value theory, in

0 ≥ ∂v

∂t
(t, x) + Lav(t, x) + f(t, x, a). (2.23)

Since a ∈ A was arbitrary we obtain the inequality:

−∂v
∂t

(t, x) − sup
a∈A

[Lav(t, x) + f(t, x, a)] ≥ 0. (2.24)

Now suppose that α∗ is an optimal control with X∗
t the associated state solution to equation (2.1) starting

from x at time t. Using this control we have equality signs instead of the preceding inequality signs and
we find by similar arguments

−∂v
∂t

(t, x) − Lα∗
t v(t, x) + f(t, x, α∗

t ) = 0. (2.25)

The equations (2.24) and (2.25) result, if the above supremum in a is finite, in the regular case

−∂v
∂t

(t, x) − sup
a∈A

[Lav(t, x) + f(t, x, a)] = 0, ∀(t, x) ∈ [0, T ) × Rn. (2.26)

This is often written as:

−∂v
∂t

(t, x) −H(t, x,Dxv(t, x), D
2
xv(t, x)) = 0, ∀(t, x) ∈ [0, T )× Rn, (2.27)

where for (t, x, p,M) ∈ [0, T ]× Rn × Rn × Sn (Sn is the set of symmetric n× n matrices)

H(t, x, p,M) = sup
a∈A

[b(x, a).p+
1

2
tr(σσ′(x, a)M) + f(t, x, a)]. (2.28)

The function H is called the Hamiltonian of the associated control problem. Equation (2.27) is the
Hamilton-Jacobi-Bellman (HJB) equation, also called the dynamic programming equation. The a priori
regular terminal condition reads v(T, x) = g(x), ∀x ∈ Rn, resulting from the definition of the value func-
tion.

In the examples described at the end of Section 2 the running profit function f and a terminal reward
function g are often multiplied by a discount factor and the gain function J has the general form

J(t, x, α) = E

[

∫ T

t

Γ(t, s)f(s,Xt,x
s , αs)ds+ Γ(t, T )g(Xt,x

T )

]

(2.29)

with Γ(t, s) = exp

(

−
∫ s

t

ρ(u,Xt,x
u , αu)du

)

, t ≤ s ≤ T,

where ρ is a measurable function on [0, T ]× Rn ×A. Then the Hamiltonian associated to the stochastic
control problem is

H(t, x, v, p,M) = sup
a∈A

[−ρ(t, x, a)v + b(x, a).p+
1

2
tr(σσ′(x, a)M) + f(t, x, a)]. (2.30)

Control space unbounded

The Hamiltonian H(t, x, p,M) is typically finite when the control set A is bounded. When the control
space A is unbounded the Hamiltonian H(t, x, p,M) may take the value ∞ in some domain of (t, x, p,M).
Assume there exists a continuous function G(t, x, p,M) on [0, T ]× Rn × Rn × Sn such that

H(t, x, p,M) <∞ ⇐⇒ G(t, x, p,M) ≥ 0. (2.31)

9
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From the derivation of HJB equation (2.27) we must have

G(t, x,Dxv(t, x), D
2
xv(t, x)) ≥ 0, (2.32)

and − ∂v

∂t
(t, x) −H(t, x,Dxv(t, x), D

2
xv(t, x)) ≥ 0. (2.33)

If the first inequality, (2.32), is strict at some (t, x) ∈ [0, T )× Rn, we should have equality in the second
equation. We thus obtain a variational inequality for the Hamilton-Jacobi-Bellman equation (HJB-VI):

min

[

−∂v
∂t

(t, x) −H(t, x,Dxv(t, x), D
2
xv(t, x)), G(t, x,Dxv(t, x), D

2
xv(t, x))

]

= 0. (2.34)

In this case we say that the control problem is singular. The value function is generally discontinuous at
T , so that v(T, x) = g(x) is not the relevant terminal condition. In [31] the HJB equation is discussed in
the weak viscosity sense where we do not need a priory regularity of the value function. There also the
correct terminal condition is derived.

Minimisation problem

The HJB equation to the minimisation problem on the finite horizon,

v(t, x) = inf
α∈A(t,x)

E

[

∫ T

t

f(s,Xt,x
s , αs)ds+ g(Xt,x

T )

]

, (2.35)

can be derived by looking at the maximisation problem of the value function −v. We arrive at the
equation

−∂v
∂t

(t, x) −H(t, x,Dxv(t, x), D
2
xv(t, x)) = 0, ∀(t, x) ∈ [0, T )× Rn, (2.36)

with Hamiltonian function

H(t, x, p,M) = inf
a∈A

[b(x, a).p+
1

2
tr(σσ′(x, a)M) + f(t, x, a)]. (2.37)

Infinite horizon problem

The Hamilton-Jacobi-Bellman equation for value function (2.11) on the infinite domain is derived using
similar arguments:

ρv(x) −H(x,Dxv(x), D
2
xv(x)) = 0, ∀x ∈ Rn, (2.38)

with for (x, p,M) ∈ Rn × Rn × Sn

H(t, x, p,M) = sup
a∈A

[b(x, a).p+
1

2
tr(σσ′(x, a)M) + f(x, a)]. (2.39)

The classical approach to solving optimal control problems starts by showing the existence of a smooth so-
lution to the Hamilton-Jacobi-Bellman equation by partial differential equation (PDE) techniques. Then
the Verification Theorem shows that the smooth solution is indeed the value function. This approach,
and the viscosity solutions approach, are briefly discussed in the next section.

2.3.1 Verification Theorem and viscosity approach

The classical verification approach consists of finding a smooth solution to the HJB equation and to check
by means of the Verification Theorem that this candidate, under suitable sufficient conditions, coincides
with the value function v(t, x). As a byproduct, we obtain an optimal Markovian control. The following
Verification Theorem on the finite domain can be found in [31], with v(t, x) as in equation (2.7):

10
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Theorem 2.4. (Verification Theorem (finite horizon))
Let w be a function in C1,2([0, T ) × Rn) ∩ C0([0, T ] × Rn) satisfying a quadratic growth condition, i.e.,
there exists a constant C such that

|w(t, x)| ≤ C(1 + |x|2), ∀(t, x) ∈ [0, T ]× Rn. (2.40)

(i) Suppose that

− ∂w

∂t
(t, x) − sup

a∈A
[Law(t, x) + f(t, x, a)] ≥ 0, (t, x) ∈ [0, T ) × Rn, (2.41)

w(T, x) ≥ g(x), x ∈ Rn. (2.42)

Then w ≥ v on [0, T ]× Rn.
(ii) Suppose further that w(T, .) = g(.) and there exists a measurable function α̂(t, x), (t, x) ∈ [0, T )×Rn,
valued in A such that

− ∂w

∂t
(t, x) − sup

a∈A
[Law(t, x) + f(t, x, a)] = −∂w

∂t
(t, x) − [Lα̂(t,x)w(t, x) + f(t, x, α̂(t, x))]

= 0, (2.43)

and the SDE
dXs = b(Xs, α̂(s,Xs))ds+ σ(Xs, α̂(s,Xs))dWs (2.44)

admits a unique solution, denoted by X̂t,x
s , given an initial condition Xt = x, and the process {α̂(s, X̂t,x

s ), t ≤
s ≤ T } lies in A(t, x). Then w = v on [0, T ]× Rn and α̂ is an optimal Markovian control.

The proof of this theorem relies mainly on Itô’s formula. The Verification Theorem for the infinite case
is defined likewise. The classical Verification Theorem allows us to solve control problems where one
can find, or at least there exists, a smooth solution to the associated HJB equation. The first and most
famous application in finance of this Verification Theorem for stochastic control problems is Merton’s
portfolio allocation problem, which we will discuss in Section 2.6.

Before this we derived the Hamilton-Jacobi-Bellman equation using the dynamic programming principle
and we just discussed the classical verification approach, which has its limitations. The main drawback
of this method is the assumption of an a priori existence of a smooth solution to the HJB equation. This
is not necessarily true, not even in very simple cases. Then, the classical verification approach does not
work and we need to relax the notion of solution to the HJB equation. A suitable class of weak solu-
tions is the one of viscosity solutions. The notion of viscosity solutions was introduced by P.L. Lions ([24]).

For a general introduction to viscosity solutions and some general uniqueness and existence results we
refer to [6]. Reference [31] explains that we do not need a priory the continuity of the value function in
the viscosity approach, since we work with the lower and upper semi-continuous envelopes. They prove
that the value function from the stochastic optimisation problems satisfies the associated HJB equation
in the viscosity sense and determine the relevant terminal condition. It is not always easy to know a
priori details about the continuity of the value function. Therefore one often works with the notion of
viscosity solutions.

We will not pay attention to the verification and viscosity solutions approaches in the other sections
(except for Section 2.6), because later on we will consider another method, based on the dynamic pro-
gramming principle.

2.4 Optimal stopping and impulse control problems

In this section we extend the notion of stochastic optimisation problems with the concepts of optimal
stopping and impulse control problems. Now the controller does not only have the disposal of control α

11
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to optimise his objective, but he can also determine the terminal time or can add extra impulses to the
state process. We discuss only the finite horizon cases, but similar theory holds for the infinite horizon
problems.

2.4.1 Optimal stopping problems

We define the optimal stopping problem, where the controller may also decide directly the terminal time
of his objective ([31]). This field of stochastic control received renewed interest due to its application in
finance and economy, from asset pricing (e.g., American options, Section 2.7) to firm investment and also
to real options.

We start with the case where there is no control α and the controller only has control over his terminal
time. Consider the diffusion process on Rn given by

dXt = b(Xt)dt+ σ(Xt)dWt, (2.45)

with W a d-dimensional Brownian motion on the filtered probability space (Ω,F ,F = (Ft)t≥0, P ). The
coefficients b and σ satisfy the same Lipschitz conditions as before. For t ∈ [0, T ] we denote by Tt,T the
set of stopping times valued in [t, T ]. The finite horizon optimal stopping problem is then formulated as

v(t, x) = sup
τ∈Tt,T

E

[∫ τ

t

e−ρ(s−t)f(s,Xt,x
s )ds+ e−ρ(τ−t)g(Xt,x

τ )

]

, (t, x) ∈ [0, T ] × Rn. (2.46)

Note that we incorporate a discount factor ρ ≥ 0. The value function v is related to the HJB variational
inequality (HJB-VI):

min[−vt + ρv − Lv − f, v − g] = 0, (2.47)

with Lv = b(x).Dxv + 1
2 tr(σσ′(x)D2

xv). This means that −vt + ρv − Lv − f = 0 holds in the domain
C = {(t, x) ∈ [0, T ] × Rn : v(t, x) > g(x)} with v = g on the boundary of C. The problem is called
a free boundary problem, since the boundary is unknown. C is called the continuation region, since it
coincides with the state values for which it is optimal to let the process continue. The complement set
S = {(t, x) ∈ [0, T ] × Rn : v(t, x) = g(x)} is called the stopping, or exercise region. This region matches
with the state values for which it is optimal to stop the process and receive the reward g.

Consider now the case in which the controller also has the disposal of a control α and the state process
dXt depends on α as in (2.1). The value function of the mixed control, composed of the pair control and
stopping time (α, τ), may be written as

v(t, x) = sup
τ∈Tt,T ,α∈A(t,x)

E

[∫ τ

t

e−ρ(s−t)f(s,Xt,x
s , αs)ds+ e−ρ(τ−t)g(Xt,x

τ )

]

, (t, x) ∈ [0, T ]× Rn.

(2.48)
Then the associated HJB-VI equation reads

min[−vt + ρv − sup
a∈A

[Lav + f(t, x, a)], v − g] = 0. (2.49)

2.4.2 Stochastic impulse control problems

In the previous sections the state process changes continuously in time in response to the control effort.
However, in practice this may be discontinuous. For example, an investor cannot invest continuously in
assets or stocks, but only at discrete times. In the stochastic impulse control problem we can act on the
state process Xt by choosing stopping times tm at which the current state is immediately modified by an
additive impulse ξm. Information about impulse control problems can be found in [21] and [2].

12
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At every stopping time tm ∈ [0, T ), m ∈ N, there is an impulse ξm and the state process reads

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt, for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ ξm, m ∈ N.
(2.50)

Here Xt− is the value of the process as it approaches t from the left. The stochastic process is càdlàg, that
is right continuous with left limits. This is different from the stochastic control problem in the previous
sections, where the controller could only influence the drift and/or diffusion terms of the state process
and the resulting controlled diffusion remains a continuous process. Here the controlled process has a
jump of size ξm at control time tm, but the drift and diffusion terms remain unchanged by the impulses.
The impulse control strategy is given by the triplet β = (α, {tm}, {ξm}) and B is the set of all β such
that α ∈ A(t, x) and

tm ∈ [0, T ), tm+1 ≥ tm, ξm ∈ Rn. (2.51)

The sequence (ξm)m≥1 consists of Ftm
-measurable random variables and tm is a stopping time with re-

spect to the filtration F. Often there are practical restrictions on the size of impulses and ξm ∈ B ⊂ Rn.
Performing an impulse involves certain costs c. The term ‘costs’ can be confusing, because it can
also represent revenues. The impulse costs c : Rn × Rn → R are assumed to satisfy the inequality
c(x, ξi + ξj) ≥ c(x, ξi) + c(x, ξj), ∀ξi, ξj ∈ Rn. This states that it is more profitable to perform directly
two impulses rather than execute them in two steps.

The objective function is represented by

J(t, x, β) = Et,x





∫ T

t

e−ρ(s−t)f(s,Xs, αs)ds+
∑

t≤tm<T

c(Xt−m
, ξm)e−ρ(tm−t) + e−ρ(T−t)g(XT )



 , (2.52)

∀(t, x) ∈ [0, T ] × Rn. For ease of notation we use the form Et,x[Xs] instead of E[Xt,x
s ]. The objective is

to maximise this gain function over all controls β ∈ B and the value function is

v(t, x) = sup
β∈B

J(t, x, β). (2.53)

We define the intervention operator M via:

Mv(t, x) := sup
ξ

(v(t, x+ ξ) + c(x, ξ)). (2.54)

This represents the value of the strategy that consists of performing the best immediate action and
behaving optimally afterwards. There could be states x for which it is not optimal to have an immediate
action, this yields v(t, x) ≥ Mv(t, x). At the first time after t when it is optimal to execute an impulse,
v and Mv must coincide and the optimal action is equal to the optimal immediate action. We get the
following variant of the dynamic programming principle:

v(t, x) = sup
τ∈[t,T ],α∈A(t,x)

Et,x

[∫ τ

t

e−ρ(s−t)f(s,Xs, αs)ds+ e−ρ(τ−t)Mv(τ,Xτ−)

]

. (2.55)

We see that the impulse control problem is reduced to an optimal stopping problem, but this is not very
helpful since the reward function Mv(τ,Xt,x

τ− ) is still unknown. However, this version of the dynamic
programming principle helps us to derive a HJB equation heuristically. We find that the impulse control
problem is associated to a Hamilton-Jacobi-Bellman quasi-variational inequality (HJB-QVI):

min

[

−vt(t, x) + rv(t, x) − sup
a∈A

[Lav(t, x) + f(t, x, a)], v(t, x) −Mv(t, x)

]

= 0, (t, x) ∈ [0, T )× Rn,

(2.56)

with terminal condition
v(T, x) = g(x), ∀x ∈ Rn. (2.57)

13



2 BASICS OF STOCHASTIC OPTIMISATION

Verification theorems for the impulse control problem can be found in [39]. Under certain conditions for
σ, b and f the value function v is a viscosity solution to the HJB-QVI (see [21]).

The minimisation problem with v(t, x) = infβ∈B J(t, x, β) is quite similar. Then we assume c(x, ξi +
ξj) ≤ c(x, ξi) + c(x, ξj), ∀ξi, ξj ∈ Rn and get maximum and infimum statements instead of minimum and
supremum, respectively.

2.4.3 Impulse control problems under jump diffusions

In the previous sections we used the diffusion process dXt from equation (2.1). Here we extend the
impulse control theory to jump diffusion processes with one jump process, without control α:

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs +

∫ t

0

z(s,Xs− ,Υs)dqs, (2.58)

or in differential notation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt + z(t,Xt− ,Υt)dqt, (2.59)

where qt is an independent Poisson process with intensity rate λ and measures the number of jumps that
took place before time t. z(t,Xt− ,Υt) is the magnitude of a jump realisation, which is a function depend-
ing on t, Xt− and random variable Υt that can have some arbitrarily specified distribution independent
of both dWt and dqt. The integrals are assumed to exist. The first integral is interpreted as a Riemann
integral, the second is an Itô integral, and the last one in (2.58) is notation for:

∫ t

0

z(s,Xs− ,Υs)dqs =

qt
∑

j=1

z(τj , Xτ−
j
,Υτj

), (2.60)

where τj for j = 1, ..., qt are the times when a jump takes place and Υτj
are i.i.d. variables. Itô’s formula

reads

Theorem 2.5. (Itô’s formula for jump diffusion processes)[36]
Let X be a diffusion process with jumps,

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs +

∫ t

0

z(s,Xs− ,Υs)dqs, (2.61)

where b and σ are continuous non-anticipating processes with

E

[

∫ T

0

σ(t,Xt)
2dt

]

<∞.

Then, for any C1,2 function f : [0, T ]× R → R, the process f(t,Xt) can be represented as:

f(t,Xt) = f(0, X0)+

∫ t

0

(

∂f

∂t
+ Lf

)

(s,Xs)ds+

∫ t

0

∂f

∂x
σ(s,Xs)dWs+

∑

0<s≤t

[f(s,Xs)−f(s,Xs−)], (2.62)

with f(s,Xs) = f
(

s,Xs− + z(s,Xs− ,Υs)dqs

)

. In differential notation:

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
b(t,Xt)dt

+
1

2

∂2f

∂x2
σ2(t,Xt)dt+

∂f

∂x
σ(t,Xt)dWt + [f(t,Xt) − f(t,Xt−)]dqt. (2.63)
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We consider the value function of the impulse control problem as before, but now without control α,

v(t, x) = sup
β∈B

Et,x





∫ T

t

e−ρ(s−t)f(s,Xs)ds+
∑

t≤tm<T

c(Xt−m
, ξm)e−ρ(tm−t) + e−ρ(T−t)g(XT )



 , (2.64)

where B is the set of admissible control times and impulses {tm, ξm}.

In the derivation of the Hamilton-Jacobi-Bellman equation in Section 2.3 Itô’s formula for diffusion
processes was used to calculate E[v(t + h,Xt,x

t+h)]. Now we use Itô formula for jump diffusion processes
and get:

E[v(t+ h,Xt,x
t+h)] = v(t, x) + E





∫ t+h

t

(vt + Lv) (s,Xt,x
s )ds+

∑

t<s≤t+h

[v(s,Xs) − v(s,Xs−)]



 . (2.65)

The theorem about the mean of stochastic jump integrals in [13] gives

E

[

∫ t+h

t

(v(s,Xs) − v(s,Xs−))dqs

]

= λ

∫ t+h

t

E [v(s,Xs) − v(s,Xs−)] ds. (2.66)

Dividing by h and sending h to zero gives:

lim
h→0

1

h
E[v(t+ h,Xt,x

t+h)] = v(t, x) − ∂v

∂t
(t, x) + Lv(t, x) + λE[v(t, x + z(t, x,Υ)) − v(t, x)], (2.67)

where the expectation is taken with respect to stochastic variable Υ. The associated HJB equation is

min
[

− vt(t, x) + ρv(t, x) − Lv(t, x) − λE[v(t, x+ z(t, x,Υ)) − v(t, x)] − f(t, x),

v(t, x) −Mv(t, x)
]

= 0, (t, x) ∈ [0, T )× Rn, (2.68)

with terminal condition
v(T, x) = g(x), ∀x ∈ Rn. (2.69)

The above can easily be extended with a control process α. In [28] and [35] a broader class of stochastic
optimisation problems under the more general jump diffusion processes is discussed. An impulse control
problem under jump diffusion with a delayed reaction is studied in [29]. This means that there is a delay
between the time when a decision for intervention is taken and the time when the intervention is actually
carried out.

2.4.4 Impulse control problems including ‘extreme events’

Suppose that instead of the running profit function f in gain function (2.64) we have so-called extreme
events at times τi, modelled by a Poisson process with intensity rate λ, at which a certain amount is
added to the gain function. Examples of extreme events in Section 2.8 and Section 3 are forest fires and
floods. The value function is written as

v(t, x) = sup
β∈B

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t)η(τi, Xτ−
i
, Θτi

) +
∑

t≤tm<T

c(Xt−m
, ξm)e−ρ(tm−t) + e−ρ(T−t)g(XT )



 ,

(2.70)
where η(t,Xt− , Θt) is a function depending on t, Xt− and random variable Θt. The values Θτi

are i.i.d.
and represent the costs of an extreme event. B is the set of all β = ({tm}, {ξm}) without control process
α, which can easily be added to the results. In the derivation of the HJB equation we get the term

Et,x





∑

τi∈[t,t+h]

e−ρ(τi−t)η(τi, Xτ−
i
, Θτi

)



 = Et,x

[

∫ t+h

t

e−ρ(s−t)η(s,Xs− , Θs)dqs

]

. (2.71)
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Dividing this by h, sending h to zero and interchanging limit and expectation gives (by [13]):

lim
h→0

1

h
Et,x





∑

τi∈[t,t+h]

e−ρ(τi−t)η(τi, Xτ−
i
, Θτi

)



 = lim
h→0

1

h
λ

∫ t+h

t

e−ρ(s−t)Et,x[η(s,Xs− , Θs)]ds

= λE[η(t, x,Θ)]. (2.72)

We end this section with the HJB equation associated to value function (2.70):

min
[

−vt(t, x)+ρv(t, x)−Lv(t, x)−λE[η(t, x,Θ)], v(t, x)−Mv(t, x)
]

= 0, (t, x) ∈ [0, T )×Rn. (2.73)

with terminal condition
v(T, x) = g(x), ∀x ∈ Rn. (2.74)

2.5 Examples of stochastic optimisation problems

In the next sections we discuss three examples of stochastic optimisation problems. The first example
is the well-known portfolio allocation problem of Merton, where the Verification Theorem is applied to
verify a candidate solution. The second example is also a financial problem. There the price of European
options is derived, whereby the holder tries to maximise his expected payoff. The third example does
not stem from the financial world but there are obvious similarities. Namely, in the harvesting problem
optimal forest harvesting decisions have to be made. This problem can be viewed in the context of the
real options approach, where we try to calculate the real option value by representing it as a value func-
tion. In Section 3 we will consider a similar problem, the dike height problem, where the costs of land
protection against floods are minimised.

For the derivation of partial differential equations for the option values in the last two examples we discuss
two different methods. In the first method the option price is formulated as a stochastic optimisation
problem. With the theory from the previous sections the associated HJB equations can be derived. This
is called the dynamic programming approach, referring to the dynamic programming principle which is
used to derive the HJB equations. The second method is called the contingent claims approach. For this
we assume that the asset markets are rich enough to hedge the risks and that the market will not reward
the investor for holding his risky asset. This approach, together with the complete market assumption,
is sometimes preferred to the dynamic programming approach, because no risk adjusted discount rate
needs to be determined.

2.6 Example 1: Merton’s portfolio allocation problem

The portfolio allocation problem is originally formulated and studied by Merton ([27]) and we solve it
by using the classical verification method. Merton considered a portfolio consisting of riskless bonds and
risky stocks. The value of the wealth at time t is denoted by Xt. At any time t the agent invests a
proportion αt ∈ A, with A a closed convex subset of R, of his wealth in risky stocks of price St and 1−αt

in bonds of price S0
t with riskless interest rate r. The stock price follows a geometric Brownian motion

dSt = µStdt+ σStdWt. The dynamics of his wealth are given by

dXt =
Xtαt

St
dSt +

Xt(1 − αt)

S0
t

dS0
t

=
Xtαt

St
(µStdt+ σStdWt) +

Xt(1 − αt)

S0
t

rS0
t dt

= Xt(αtµ+ (1 − αt)r)dt +XtαtσdWt. (2.75)

The agent wants to maximise his expected utility from terminal wealth XT at terminal time T < ∞.
The utility function U(.) is nondecreasing and concave on R+. This formulates the risk aversion of the
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agent. The objective is given by the value function

v(t, x) = sup
α∈A(t,x)

J(t, x, α) = sup
α∈A(t,x)

E[U(Xt,x
T )], (t, x) ∈ [0, T ]× R. (2.76)

The problem is equivalent to an optimal control problem with gain function (2.6), with f ≡ 0 and
g(Xt,x

T ) = U(Xt,x
T ). The associated HJB equation for this stochastic control problem is

−∂w
∂t

− sup
a∈A

[Law(t, x)] = 0 with terminal condition w(T, x) = U(x), x ∈ R. (2.77)

The diffusion generator reads Law(t, x) = (aµ+ (1 − a)r)xwx + 1
2x

2σ2a2wxx. We switched to a notation
with w to stay in line with the Verification Theorem 2.4. Next we will show that w = v.

Merton considered power utility functions of constant relative risk aversion (CRRA) type:

U(x) =
xp

p
, x ≥ 0, p < 1, p 6= 0. (2.78)

For this utility function one can find explicitly a smooth solution to problem (2.77). To find this so-
lution we start with a candidate solution of the form w(t, x) = φ(t)U(x), for some positive function φ.
Substituting this into equation (2.77) we derive the following ordinary differential equation for φ

φ′(t) + qφ(t) = 0, φ(T ) = 1, (2.79)

with q = p sup
a∈A

[a(µ− r) + r − 1

2
a2(1 − p)σ2] := p sup

a∈A
y(a).

We obtain φ(t) = exp(q(T − t)). The value function w(t, x) = exp(q(T − t))U(x) is a smooth solution
to equation (2.77) and it is strictly increasing and concave in x. The function a ∈ A 7→ y(a) is strictly
concave on the closed convex set A and thus attains its maximum at some constant â. It follows that
â attains the supremum of supa∈A[Law(t, x)]. The wealth processes Xt associated with this constant
control â admits a unique solution given an initial condition. The Verification Theorem 2.4 tells us that
the value function to the portfolio allocation maximisation problem (2.76) is equal to w(t, x) and â is
an optimal Markovian control. In other words, the optimal proportion of wealth to invest in stock is
constant given by â. Finally, when A = R we can find explicitly the optimal control:

α̂ =
µ− r

σ2(1 − p)
. (2.80)

2.7 Example 2: European call and put options

In the financial markets, traders buy and sell stocks and options. An option is a contract between a
buyer and a seller that gives the buyer the right, but not the obligation, to buy or to sell a particular
asset on or before the option’s expiration date, at an agreed price. Many different options exist, the most
well-known options being the European call and put options.

Definition 2.1. (European call (put) option)
A European call (put) option gives its holder the right, but not the obligation, to buy from (sell to) the
writer a prescribed asset for a prescribed price at a prescribed time in the future.

The prescribed asset is called the underlying asset with value Xt at time t, the agreed price is the strike
price K and the prescribed time is the expiration time T . The price of an option at time t is denoted
by value function v(t, x). We consider the price of a European put option with payoff at expiration time
T equal to g(XT ) = (K − XT )+. A similar analysis holds for call options for which the payoff reads
g(XT ) = (XT −K)+. The asset price is as usually described by a geometric Brownian motion:

dXt = µXtdt+ σXtdWt. (2.81)

We use the dynamic programming approach and the contingent claims approach to price the option.
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2.7.1 Dynamic programming approach

The first way to derive the European put option price is by using the dynamic programming, or the
expected value approach. This approach can be used if the market is not complete and it is not possible
to hedge the option. The option price is then calculated as the discounted expected payoff with respect
to the true state process (2.81), that is under the true world measure P. The value function is denoted
by:

v(t, x) = EP[e−ρ(T−t)(K −Xt,x
T )+], (t, x) ∈ [0, T ]× R. (2.82)

The risk adjusted discount rate ρ reflects the return required by the holder to hold the risky option. The
control space A is reduced to a singleton {a0}, since there is no control on the asset price Xt. There are
no decisions to be made by the holder of the option, he just has to wait to expiration time T . Compared
with gain function (2.29) we find that for f ≡ 0, g(Xt,x

T ) = (K −Xt,x
T )+ and Γ(t, s) = e−ρ(s−t) the HJB

equation is reduced to the linear Cauchy problem:

−∂v
∂t

(t, x) + ρv(t, x) − La0v(t, x) = 0, (2.83)

or

−∂v
∂t

+ ρv − µx
∂v

∂x
− 1

2
σ2x2 ∂

2v

∂x2
= 0, ∀(t, x) ∈ [0, T )× R, (2.84)

with terminal condition v(T, x) = g(x).

Unlike the European options an American put option gives the holder the right, but not the obligation,
to sell a prescribed asset for a prescribed price at any time between the starting date and a prescribed
expiration time. The price of an American put option can be expressed by an optimal stopping problem:

v(t, x) = sup
τ∈Tt,T

E[e−ρ(τ−t)(K −Xt,x
τ )+], (t, x) ∈ [0, T ]× R. (2.85)

This is analogous to optimal stopping problem (2.46) with f ≡ 0 and g(Xt,x
τ ) = (K − Xt,x

τ )+. The
following partial differential equation is found

min[−∂v
∂t

+ ρv − µx
∂v

∂x
− 1

2
σ2x2 ∂

2v

∂x2
, v − g] = 0, ∀(t, x) ∈ [0, T )× R. (2.86)

In the continuation region C it is optimal to hold the option and the left-hand side equals zero. The
payoff in the stopping region S is g(x).

2.7.2 Contingent claims approach

Now assume that the market is complete and there is a risk-free interest rate r. In such a case we can use
the contingent claims approach to calculate the put option price. With a portfolio consisting of the option
v and ∆ = ∂v

∂x underlying assets we can derive the risk-neutral price which satisfies the Black-Scholes
equation (see [33]):

−∂v
∂t

+ rv − rx
∂v

∂x
− 1

2
σ2x2 ∂

2v

∂x2
= 0, ∀(t, x) ∈ [0, T )× R, (2.87)

with terminal condition v(T, x) = g(x). This equation has an analytical solution, called the Black-
Scholes price. If we compare this equation with equation (2.84) the term −ρv is replaced by −rv and µx
is replaced by rx. According to the Feynman-Kac formula ([31]) we have

v(t, x) = EQ[e−r(T−t)(K −Xt,x
T )+], (t, x) ∈ [0, T ]× R. (2.88)

This formulation looks like equation (2.82) from the dynamic programming approach. However, now the
expectation is taken with respect to the risk-neutral measure Q under which dXt = rXtdt + σXtdWt.
Note that the drift term µ is reduced to r. Furthermore, discounting is done using the risk-free interest
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rate instead of the risk adjusted discount rate.

The option prices can be calculated by solving equation (2.87) with PDE methods or by means of equa-
tion (2.88). The last one is employed in Fourier pricing methods such as the CONV method ([25]) and
the COS method ([10]), which we will discuss in Section 6.3.

In [14] the following equation is found for the risk-neutral price of American put options using the non-
arbitrage principle:

min[−∂v
∂t

+ rv − rx
∂v

∂x
− 1

2
σ2x2 ∂

2v

∂x2
, v − g] = 0. (2.89)

2.8 Example 3: Harvesting forest problem

In [17] and [16] the valuation of forest land is studied. This topic has been a concern in academic lit-
erature for over 150 years. Uncertainty concerning land valuation is for example due to volatile prices
for timber and production risks. Another aspect is the problem of optimal harvesting under the risk of
a forest fire. We describe the real options approach to investigate the value of the forest land. First the
tree harvesting model, including fire risk, is defined. This model can be adjusted to other agricultural
harvesting problems, such as cereal harvests, and the risk of fire might be replaced by the risk of, for
example, pests. After this, equations for the value of land are derived using both the dynamic program-
ming and the contingent claims approach, as in [17].

The harvesting model describes the optimal harvesting problem and it accounts for the risk of fire. The
stand of trees is assumed to be even-aged and will be used for commercial forestry. The aim is to find
the value of a stand of trees depending on Pt, the price of timber at time t, and the age of the stand ζt.
The stand value under optimal harvesting is denoted by v = v(t, Pt, ζt) = v(t,Xt), with Xt = [Pt, ζt]

′

(′ represents the transpose of a matrix or vector).

The price of timber follows a stochastic diffusion process:

dPt = a(t, Pt)dt+ b(t, Pt)dWt. (2.90)

We assume that an accurate description of this process is a mean reverting process with a(t, Pt) =
η(P − Pt) and b(t, Pt) = σPt. The price level tends to revert to the long run mean P . The volume of
timber on the stand is given by the deterministic function Q = Q(ζt) depending on the stand age.

The return of harvesting and selling the timber will give a profit of (Pt − Ch)Q(ζt), where constant Ch

includes the harvesting costs per cubic meter and the value of the bare land v(t, Pt, 0). If harvesting is
delayed there is a capital gain or loss due to the change in timber volume, price change and the possible
occurrence of fire. Contrary to [17] we do not incorporate management costs to maintain the stand,
because this may make the problem formulation more involved, but not necessarily more difficult.

The age of the stand ζt is a stochastic variable which depends on the time of the last harvest th and the
occurrence of fire. If no fire has occurred we have ζt = t− th, but if a fire occurs the stand age will jump
to zero. The occurrence of fire is modelled by a Poisson process qt with intensity rate λ. By this the
stand age is modelled as a simplified jump diffusion process.

In short, the uncontrolled state process reads

dXt =

[

dPt

dζt

]

=

[

a(t, Pt)dt+ b(t, Pt)dWt

dt− ζtdqt

]

. (2.91)

It is assumed that a fire consumes the entire stand, although some timber may be salvaged. Let S be the
value of salvaged timber net of harvesting costs per hectare and assume this value to be a constant propor-
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tion γ of the value of the stand if it was harvested immediately before the fire: S(Xt−) = (Pt−Ch)Q(ζt−)γ.
The loss in the case of a fire is v(t, Pt, 0) − v(t,Xt−) + S(Xt−).

The problem of optimal harvesting is defined on a finite horizon [0, T ]. At each time the land owner has
to decide whether or not to harvest and he will weigh up the profit from harvesting immediately versus
delaying until the next period. Clearly there is a trade-off between the returns of harvesting immediately
and waiting, which bears the risk of a fire. In the next sections partial differential equations for the value
of land are derived under different assumptions about hedging the risk of price changes and the fire risk.

2.8.1 Dynamic programming approach

For the derivation of the first equation we assume that neither the risks from price changes nor from
fire can be hedged. Then the value of the land must be estimated as an expected value with respect to
the true price process and the risk of fire. It is assumed that the holder of the asset makes the optimal
choice between harvesting the stand or waiting, in other words holding the option or not, which is the
control. In order to hold the option the investor would require a constant risk adjusted discount rate ρ.
We can formulate the harvesting problem as an optimal stopping problem or an impulse control problem
(without control process α). Both are discussed below.

Optimal stopping problem

The owner of the forest land wants to value his stand of trees under the assumption that he makes an
optimal decision about the harvesting time τ . The land is valued as the expected losses from fire plus
the revenues from harvesting at time τ :

v(t, x) = sup
τ∈Tt,T

J(t, x, τ)

= sup
τ∈Tt,T

Et,x





∑

τi∈[t,τ ]

e−ρ(τi−t)S(Xτ−
i

) + e−ρ(τ−t)g(Xτ )



 , (t, x) = (t, p, ζ) ∈ [0, T ]× R2,

(2.92)

with reward on the harvesting time g(Xτ ) = (Pτ − Ch)Q(ζτ ) + v(τ, Pτ , 0). The times τi denote the
fire times and these extreme events give a deterministic revenue S(Xτ−

i
). The problem is similar to the

optimal stopping problem (2.46) with f ≡ 0, but now under a jump diffusion process (Section 2.4.3) and
including extreme events (Section 2.4.4). If we compare this we arrive at the associated Hamilton-Jacobi-
Bellman equation variational inequality:

min
[

− vt + ρv − Lv − λ[v(t, p, 0) − v] − λS, v − g
]

= 0, (2.93)

or

min
[

− vt + (ρ+ λ)v − a(t, p)vp − vζ − 1

2
b2(t, p)vpp − λ[v(t, p, 0) + S],

v − (p− Ch)Q(ζ) − v(t, p, 0)
]

= 0, ∀(t, x) = (t, p, ζ) ∈ [0, T )× R2. (2.94)

Impulse control problem

The harvesting problem can also be formulated by an impulse control problem on the finite domain [0, T ],
with harvesting times tm, m ∈ N. At the harvesting times an impulse ξm = [0,−ζt−m ]′ is added to the
state process. To be precise, the price of timber remains the same, but the age of the stand jumps to zero.
The ‘costs’ of an impulse are c(Xt−m

, ξm) = (Ptm
− Ch)Q(ζt−m). At each time there is only one possible

impulse, namely harvesting everything, so the intervention operator is

Mv(t,Xt) = v(t,Xt + ξt) + c(Xt− , ξt) = v(t, Pt, 0) + (Pt − Ch)Q(ζt−). (2.95)
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The following dynamics hold:

dPt = a(t, Pt)dt+ b(t, Pt)dWt, for t ∈ (tm, tm+1),

dζt = dt− ζdqt, for t ∈ (tm, tm+1),

ζtm
= ζt−m − ζt−m , m ∈ N.

(2.96)

Denote by B the set of possible harvesting times. The value of the stand can be expressed by the value
function

v(t, x) = sup
β∈B

J(t, x, β)

= sup
β∈B

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t)S(Xτ−
i

) +
∑

t≤tm<T

e−ρ(tm−t)(Ptm
− Ch)Q(ζt−m)



 ,

(t, x) = (t, p, ζ) ∈ [0, T ]× R2. (2.97)

This is comparable with the impulse control problem under jump diffusion (2.64) combined with the case
of extreme events (Section 2.4.4). If a fire occurs, that means a jump in the Poisson process qs, the value
function v changes to v(s, Ps, 0). The associated Hamilton-Jacobi-Bellman variational inequality reads:

min
[

− vt + ρv − Lv − λ[v(t, p, 0) − v] − λS, v −Mv
]

= 0, (2.98)

or

min
[

− vt + (ρ+ λ)v − a(t, p)vp − vζ − 1

2
b2(t, p)vpp − λ[v(t, p, 0) + S],

v − (p− Ch)Q(ζ) − v(t, p, 0)
]

= 0, (t, x) = (t, p, ζ) ∈ [0, T )× R2, (2.99)

with terminal condition v(T, x) = 0.

Not surprisingly, the optimal stopping time and the impulse control formulations lead to the same HJB-
VI equation. Equality to zero of the first equation in the minimisation operator (2.99) describes the value
of the forested land when it is optimal not to harvest. Equality to zero of the second equation represents
the value at an optimal harvesting time. Due to the possibility of fire a risk premium λ is added to the
risk adjusted discount rate ρ. The drawback of this dynamic programming approach is the fact that it
is difficult to determine the appropriate discount rate ρ. Besides, it is generally not correct to assume a
constant discount rate. Because of that we recommend to use, if possible, the contingent claims approach
from the next section.

2.8.2 Contingent claims approach

In this section we use the contingent claims or risk-neutral valuation approach to derive two other partial
differential equations for the optimal harvesting problem, following the analysis in [17]. For the first
one we assume that the asset markets are sufficiently rich to be able to hedge the risks of price changes
and fire and the market will not reward the investor for holding his risky asset. The advantage is that
it is not necessary to choose a risk adjusted discount rate and it is consistent with financial options theory.

Denote the value of the stand of trees from the previous section by v1. We construct a portfolio π
consisting of this value v1 and two other assets v2 and v3. Asset v2 = v2(t, Pt, ζt) depends only on timber
price and not on fire and asset v3 = v3(t, Pt, ζt) depends on the risk of fire alone. Using Itô’s formula the
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dynamics of v1 are derived as

dv1(t,Xt) =
∂v1
∂t

(t,Xt)dt+
∂v1
∂p

(t,Xt)[a(t, Pt)dt+ b(t, Pt)dWt] +
∂v1
∂ζ

(t,Xt)dt

+
1

2

∂2v1
∂p2

(t,Xt)b
2(t, Pt)dt+ [v1(t, Pt, 0) − v1(t,Xt−)] dqt

=

(

(v1)t + a(t, Pt)(v1)p + (v1)ζ +
1

2
b2(t, Pt)(v1)pp

)

dt

+ b(t, Pt)(v1)pdWt + [v1(t, Pt, 0) − v1(t,Xt−)]dqt, (2.100)

and likewise we find in shorthand notation:

dv1(t,Xt) = µ1v1dt+ s1v1dWt + [v1(t, Pt, 0) − v1(t,Xt−)]dqt,

dv2(t,Xt) = µ2v2dt+ s2v2dWt,

dv3(t,Xt) = µ3v3dt+ [v3(t, Pt, 0) − v3(t,Xt−)]dqt,

(2.101)

with
µj :=

(

(vj)t + a(t, Pt)(vj)p + (vj)ζ + 1
2b

2(t, Pt)(vj)pp

)

1
vj
, j = 1, 2,

sj := b(t,Pt)
vj

(vj)p, j = 1, 2,

µ3 := ((v3)t + (v3)ζ)
1
v3
.

(2.102)

In the hedging portfolio we take, at time t, n1, n2 and n3 numbers of v1, v2 and v3, respectively. So,

π(t,Xt) = n1v1(t,Xt) + n2v2(t,Xt) + n3v3(t,Xt). (2.103)

Assume it is optimal not to harvest and we consider the value of the portfolio a small time dt later. Over
the hedging interval dt the amounts n1, n2 and n3 are held constant. A time dt later we have n1 times
the value of forest land at time t+ dt and likewise for assets v2 and v3. Also the cashflow of the salvage
value of timber n1Sdqt, due to a possible fire in the small time interval, has entered the portfolio. For
simplicity we assume that the salvage value for asset v3 equals zero. The change in the portfolio value is:

dπ(t,Xt) = n1dv1(t,Xt) + n1S(Xt−)dqt + n2dv2(t,Xt) + n3dv3(t,Xt). (2.104)

The risk of the hedging portfolio is reflected by changes dWt and dqt. To eliminate these risks we choose
n1, n2 and n3 so that

n1s1v1+n2s2v2 = 0 and n1[v1(t, Pt, 0)−v1(t,Xt−)+S(Xt−)]+n3[v3(t, Pt, 0)−v3(t,Xt−)] = 0. (2.105)

Because of this, the dWt and dqt terms are eliminated, which results in

dπ = n1µ1v1dt+ n2µ2v2dt+ n3µ3v3dt. (2.106)

There is no risk, to first order, and thus this portfolio must earn the risk-free rate r, in other words we
set dπ = rπdt. With this we get a system of 3 equations with 3 unknowns:




s1v1 s2v2 0
v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−) 0 v3(t, Pt, 0) − v3(t,Xt−)
v1(µ1 − r) v2(µ2 − r) v3(µ3 − r)









n1

n2

n3



 =





0
0
0



 . (2.107)

In order to have a nontrivial solution the determinant of this matrix must equal zero. This will happen
if the rows of the matrix are linearly dependent. So there must be two parameters λP and λF such that
(multiply the first row by λP and the second row by λF ):

(µ1 − r)v1 = λP s1v1 − λF [v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−)],

(µ2 − r)v2 = λP s2v2,

(µ3 − r)v3 = −λF [v3(t, Pt, 0) − v3(t,Xt−)].

(2.108)
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Working out the first row gives:

− vt + (r + λF )v − [a(t, p) − λP b(t, p)] vp − vζ − 1

2
b2(t, p)vpp − λF [v(t, p, 0) + S] = 0,

(t, x) = (t, p, ζ) ∈ [0, T )× R2, (2.109)

with

λP =
µ2 − r

s2
and λF =

µ3 − r

[v3(t, p, 0) − v3]/v3
. (2.110)

The above equation holds while it is optimal to refrain from harvesting. Parameter λP is called the mar-
ket price of timber price risk and λF the market price of fire risk. They reflect the extra return over the
risk-free rate r per unit of variability. The variability of price is measured by the instantaneous standard
deviation for v2(t, Pt, ζt): s2. The variability for fire is measured by −[v3(t, Pt, 0) − v3]/v3, which is the
proportional loss in asset value if a fire occurs. In theory λP and λF could be estimated using historical
data on prices and timberland sales, as discussed in [17].

Equation (2.99) was derived assuming that the risks could not be hedged, but the asset v would earn a
risk adjusted return ρ. Comparing equations (2.99) and (2.109) we see that in the second equation the
risk adjusted discount rate ρ is replaced by the risk-free interest rate r and the true probability of fire λ
is replaced by market price of fire λF . Furthermore, the term a(t, p)vp is replaced by [a(t, p)−λP b(t, p)]vp.

Contingent claims approach under imperfect hedging

For the derivation of the final partial differential equation we will assume that it is possible to hedge price
risk but not fire risk, so the investor will not be rewarded with extra return for taking on price risk. The
hedging portfolio consists of n1 assets v1 and n2 assets v2, as defined before. The price risk is hedged by
choosing n1 and n2 so that

n1s1v1 + n2s2v2 = 0. (2.111)

There remains:

dπ = n1µ1v1dt+ n1[v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−)]dqt + n2µ2v2dt. (2.112)

Now it is not possible to perform a perfect hedge with dπ = rπdt, but we require E[dπ] = rπdt. This
is called imperfect hedging, since no perfect replicate of the real option value can be made. In other words

E[n1µ1v1dt+ n1[v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−)]dqt + n2µ2v2dt]

= n1µ1v1dt+ λ[v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−)]dt+ n2µ2v2dt

= rπdt. (2.113)

This results in the following system of 2 equations with 2 unknowns:

[

s1v1 s2v2
v1(µ1 − r) + λ[v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−)] v2(µ2 − r)

] [

n1

n2

]

=

[

0
0

]

. (2.114)

For a nontrivial solution there must be a parameter λP such that:

(µ1 − r)v1 + λ[v1(t, Pt, 0) − v1(t,Xt−) + S(Xt−)] = λP s1v1,

(µ2 − r)v2 = λP s2v2.
(2.115)

Now we arrive at

− vt + (r + λ)v + [a(t, p) − λP b(t, p)] vp − vζ − 1

2
b2(t, p)vpp − λ[v(t, p, 0) + S] = 0,

(t, x) = (t, p, ζ) ∈ [0, T )× R2, (2.116)
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with

λP =
µ2 − r

s2
. (2.117)

Here λF in equation (2.109) is replaced by the true probability of fire λ. In equation (2.99) λ was added
as a risk premium to the risk adjusted discount rate ρ. In equation (2.116) the fire probability λ is added
to the risk-free rate r, due to the assumption that it is possible to hedge the price risk, but not the fire risk.

In [17] an interesting discussion takes place about the risk-neutral price and the estimation of the market
price of risk. It is noticed that the risk-neutral price is given by its expected discounted value, where
discounting is done at the risk-free rate r and the expectation is taken with respect to a risk adjusted
process. This is achieved by reducing the expect growth rate a(t, p) by the risk premium λP b(t, p). The
term [a(t, p) − λP b(t, p)] is often referred to as the risk-neutral drift rate. This is comparable with the
option price (2.88), where the risk-neutral price is calculated with a risk-free discount rate and under a
process with reduced drift r.

24



3 THE DIKE HEIGHT STOCHASTIC OPTIMISATION PROBLEM

3 The dike height stochastic optimisation problem

Another example of stochastic optimisation problems considers the dike height problem. A significant
part of the Netherlands lies below the sea level and flood prevention has always been a major concern
for this country. The water level is predicted to rise so it may be necessary to increase the dike height in
the future. A pioneer in investigating the economic-decision problem of optimal dike height is Prof. D.
van Dantzig, after the flood disaster in the southwestern part of the Netherlands in 1953. Van Dantzig
([7]) suggested a strategy where each dike is increased if the probability of the water level exceeding the
dike level is above a certain threshold. A recent alternative strategy is based on the expected loss due
to flooding instead of the exceedance probability (see [9]). With this the construction costs are balanced
against the expected flooding costs.

In Section 3.1 a basic model is explained, for which we will develop a numerical solution method in Section
4. The relation and the differences between the harvesting and dike height problems are discussed in
Section 3.2. After this, improved models for the dike height problem are proposed in Section 3.3. We
end this section with a discussion about the models.

3.1 First model for the dike height problem

The problem posed is when to increase the dikes and also by which amount. The goal is to minimise the
future expected costs, consisting of the investment costs of dike level increases, losses due to flooding and
the terminal costs. We put this in the form of a stochastic impulse control problem, which leads up to a
second order Hamilton-Jacobi-Bellman equation. We start by defining the model, in accordance to [32].
Later on this model will be extended.

Process X
(1)
t represents the dike level. We have the possibility to control this value. Y

(2)
t = w(t) is a

deterministic average water level. In [22] and [32] a piecewise linear process of the form dY
(2)
t = µw(t)dt

was used.

Remark 3.1. We use Y
(2)
t instead of the obvious X

(2)
t for ease of notation in Section 8, where a surplus

water level X
(2)
t is defined. The superscript (2) denotes the second process instead of a square root.

The economic value of endangered goods is modelled by a geometric Brownian motion,

dY
(3)
t = µ3Y

(3)
t dt+ σ3Y

(3)
t dW

(3)
t , (3.1)

where µ3 is the predicted economic growth factor and σ3 the economic volatility. The mean of this process

reads Et,y[Y
(3)
s ] = yeµ3(s−t). We consider the log-process of the economic value:

X
(3)
t := log(Y

(3)
t ), (3.2)

where log denotes the natural logarithm. We use Itô calculus to find

X
(3)
t = X

(3)
0 +

∫ t

0

1

Y
(3)
s

dY (3)
s +

1

2

−1

(Y
(3)
s )2

(dY (3)
s )2

= X
(3)
0 +

∫ t

0

(µ3 −
1

2
σ2

3)ds+

∫ t

0

σ3dW
(3)
s . (3.3)

So, we have

X
(3)
t = X

(3)
0 + (µ3 −

1

2
σ2

3)t+ σ3dW
(3)
t ∼ N (X

(3)
0 + (µ3 −

1

2
σ2

3)t, σ2
3t), (3.4)

where N (µ, σ2) represents a normally distributed random variable with mean µ and standard deviation
σ. From now on we use this stochastic log-economic value of endangered goods. This Brownian motion
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is a Lévy process and its characteristic function reads

ϕ
X

(3)
t

(u) = eiX
(3)
0 u exp

(

i(µ3 −
1

2
σ2

3)tu− 1

2
σ2

3tu
2

)

. (3.5)

The state variable of the first model is Xt = [X
(1)
t , X

(3)
t ]′. Note that the process Y

(2)
t = w(t) is omitted,

because it is a deterministic function of time t. In the model the dikes can be increased at stopping
times tm, m ∈ N, by an amount um ∈ U . The set U can either be continuous or discrete, for example,
U = {0, 5, 10, . . .} cm as in [22]. The other state variables remain the same, so the impulse on the state
process is ξm = [um, 0]′. There is no control α on the drift and diffusion terms of the process. Denote
by u = ({tm}, um) the impulse control strategy and by U the set of all u such that,

tm ∈ [0, T ), tm+1 ≥ tm, um ∈ U. (3.6)

The dynamics of the state process Xt is summarised by

dX
(1)
t = 0, for t ∈ (tm, tm+1),

dX
(3)
t = (µ3 − 1

2σ
2
3)dt+ σ3dW

(3)
t , for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0]′, m ∈ N.

(3.7)

Note that Y
(2)
t is an average water level. Occurrences of extreme water level are added to this level,

modelled by a Poisson process qt with intensity rate λ. If a jump in the Poisson process occurs the
average water level jumps instantaneously by an amount Jt, which is a random variable with probability
density function

fJ (y) = k1e
k1(k2−y)−ek1(k2−y)

. (3.8)

The extreme water level size J is Gumbel distributed with scale parameter 1/k1 > 0 and location pa-
rameter k2 ∈ R ([26]). The mean is k2 + γEM/k1, with γEM ≈ 0.58 the Euler-Mascheroni constant, and
the variance (π/k1)

2/6.

The total water level is a summation of the average water level w(t) and a possible jump:

w(t) + Jtdqt. (3.9)

After an occurence of extreme water level, the total water level returns to w(t). The fraction of the
economic value that is lost if the total water level exceeds the dike height by an amount y is given by the
function lp(y), where

lp(y) = max(1 − e−λpy, 0), (3.10)

with λp > 0 a rate parameter. The losses at time t due to flooding are proportional to the economic
value of endangered goods and are given by

exp(X
(3)
t )lp(w(t) + Jt −X

(1)
t )dqt. (3.11)

3.1.1 Dynamic programming approach

For the dynamic programming approach we assume that it is not possible to hedge the risks from flooding
and from changes in the state process Xt. We use a discount factor ρ to measure the expected discounted
costs.

Let τi denote the times of extreme water levels with sizes Jτi
i.i.d. variables. The discounted future flood

losses at time t are given by

∫ T

t

e−ρ(s−t) exp(X(3)
s )lp(w(s) + Js −X(1)

s ) dqs =
∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(w(τi) + Jτi
−X(1)

τi
).(3.12)

26



3 THE DIKE HEIGHT STOCHASTIC OPTIMISATION PROBLEM

The terminal costs at time T are called bT and they express the total discounted expected costs after the
terminal time T . For this it is assumed that the dike and water level remain constant beyond this time
and we have:

bT (x1, x3) = ET,x





∑

τi∈[T,∞)

e−ρ(τi−T ) exp(X(3)
τi

)lp(w(T ) + Jτi
− x1)



 . (3.13)

The construction costs of a dike increase at time tm by an amount um are denoted by b(X
(1)

t−m
, um), with

b(x1, u) =

{

0, for u = 0,
b+(x1, u), for u > 0,

(3.14)

where b+(x1, u) is a smooth function, increasing in x1 and u, and b+(x1, 0) 6= 0.

At any time t one has to decide whether to increase the dike height, and if so by which amount, or to do
nothing and wait until the next time. There is a trade-off between increasing the dike level immediately
at certain costs and waiting, which bears the risk of flooding. The total discounted expected flooding
and construction costs, which are called the flood protection costs, for a control u are given by the gain
function:

J(t, x1, x3,u) = Et,x





∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(w(τi) + Jτi
−X(1)

τi
)

+
∑

t≤tm<T

e−ρ(tm−t)b(X
(1)

t−m
, um) + e−ρ(T−t)bT (X

(1)
T , X

(3)
T )



 ,

(t, x) = (t, x1, x3) ∈ [0, T ]× R2. (3.15)

The average water level is not included as variable in the function J since it is a deterministic function
of time t. The aim is to minimise these costs of flood protection. For this we define the value function,
representing the minimum costs, by

v(t, x1, x3) = inf
u∈U

J(t, x1, x3,u). (3.16)

This stochastic impulse control problem, about when and by which amount to increase the dike height,
represents a trade-off between investment costs of the heightenings and the expected costs due to floods.

It coincides with impulse control problem (2.70) with c(Xt−m
, ξm) = b(X

(1)

t−m
, um) and η(τi, Xτ−

i
, Θτi

) =

exp(X
(3)
τi )lp(w(τi) + Jτi

−X
(1)
τi ). This results in the associated HJB quasi-variational inequality:

max
[

− vt(t, x) + ρv(t, x) − Lv(t, x) − λE[exp(x3)lp(w(t) + J − x1)], v(t, x) −Mv(t, x)
]

= 0,

(t, x) = (t, x1, x3) ∈ [0, T )× R2, (3.17)

with terminal condition
v(T, x) = bT (x), x ∈ R2. (3.18)

The intervention operator is Mv(t, x) = infu∈U v(t, x+ (u, 0)) + b(x1, u) and

E[exp(x3)lp(w(t) + J − x1)] = exp(x3)E[lp(w(t) + J − x1)]

= exp(x3)

∫ ∞

−∞
lp

(

y − (x1 − w(t))
)

fJ (y)dy

:= exp(x3)β(x1 − w(t)), (3.19)

where β(h) is a function that is decreasing in h.
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We can rewrite the HJB-QVI as

max
[

− vt(t, x) + ρv(t, x) − Lv(t, x) − λ exp(x3)β(x1 − w(t)), v(t, x) − inf
u∈U

[v(t, x+ (u, 0)) + b(x1, u)]
]

= 0, (t, x) = (t, x1, x3) ∈ [0, T )× R2. (3.20)

The left-hand side in the maximum statement is equal to zero when it is not optimal to increase the dike
height and the right-hand side is equal to zero in case it is optimal to increase dike height. Under the
first model we have

Lv(t, x) = (µ3 −
1

2
σ2

3)
∂v

∂x3
(t, x) +

1

2
σ2

3

∂2v

∂x2
3

(t, x). (3.21)

3.1.2 Contingent claims approach

Assume that it is possible to hedge the flood risk and risks from changes in the economic value with,
for example, an asset of a company that is included in the economic value of endangered goods or an
asset that is related to a company which delivers barricade sandbags or rebuilds destructed houses. Then
repeating the arguments in the contingent claims approach as done for the harvesting problem in Section
2.8.2 results in another partial differential equation. Since no information about possible hedge instru-
ments is available, we omit this analysis and refer to [34] for a detailed derivation.

In the derivation of the last partial differential equation in Section 2.8.2 it was assumed that it was
possible to hedge price risk but not fire risk. Analogous in the case of the dike height problem, we may
consider societal risks which cannot be hedged, for example, the risk that people who live in the flooded
area cannot move back to their destructed houses.

3.2 The relation between the harvesting and dike height problems

In the previous sections we studied the harvesting and dike height problems. First we defined the
stochastic models. Then two methods have been discussed to derive partial differential equations for
the problems, the dynamic programming and the contingent claims approach. In this section we discuss
the similarities and differences between both models, under the dynamic programming approach, and in
Section 3.3 we construct some alternatives to the first basic model of the dike height problem. First we
summarise both stochastic impulse control problems:

Harvesting problem

State dynamics
dPt = a(t, Pt)dt+ b(t, Pt)dWt, for t ∈ (tm, tm+1),

dζt = dt− ζdqt, for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [0,−ζt−m ]′, m ∈ N.

(3.22)

Value function

v(t, x) = sup
β∈B

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t)S(Xτ−
i

) +
∑

t≤tm<T

e−ρ(tm−t)(Ptm
− Ch)Q(ζt−m)



 . (3.23)

Associated Hamilton-Jacobi-Bellman variational inequality

min
[

− vt + ρv(t, x) − Lv(t, x) − λ[v(t, p, 0) − v + S], v − [v(t, p, 0) + (p− Ch)Q(ζ)]
]

= 0,

(t, x) = (t, p, ζ) ∈ [0, T ) × R2, (3.24)

with terminal condition v(T, x) = 0.
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Dike height problem

State dynamics

dX
(1)
t = 0, for t ∈ (tm, tm+1),

dX
(3)
t = (µ3 − 1

2σ
2
3)dt+ σ3dW

(3)
t , for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0]′, m ∈ N.

(3.25)

Value function

v(t, x) = inf
u∈U

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(w(τi) + Jτi
−X(1)

τi
)

+
∑

t≤tm<T

e−ρ(tm−t)b(X
(1)

t−m
, um) + e−ρ(T−t)bT (X

(1)
T , X

(3)
T )



 . (3.26)

Associated Hamilton-Jacobi-Bellman quasi-variational inequality

max
[

− vt(t, x) + ρv(t, x) − Lv(t, x) − λ exp(x3)β(x1 − w(t)), v(t, x) − inf
u∈U

[v(t, x + (u, 0)) + b(x1, u)]
]

= 0, (t, x) = (t, x1, x3) ∈ [0, T )× R2. (3.27)

with terminal condition v(T, x) = bT (x1, x3).

In both problems the occurrence of disasters is modelled, in the first problem there is a risk of fire and
in the second problem the risk of floods. We called the times of a disaster τi and there are obvious
differences between both models concerning the occurrence and times of a disaster. A disaster in the
harvesting problem has a direct effect on the revenues, that are changed by an amount S(Xτ−

i
). Besides

the state dynamics are changed, to be precise, ζt is send to zero and so is v to v(t, Pt, 0). So, the total
loss due to fire is v(t, Pt, 0) − v + S. However, there is also an indirect effect because a disaster in the
harvesting model also affects the possible revenues (Ptm

− Ch)Q(ζt−m), by means of the function Q. The
longer the time that has past after a disaster, the higher Q(ζt), hence the faster a harvest would be
profitable. On the other hand the occurrence of a flood has only a direct effect on the change of the costs

of flood protection by an amount exp(X
(3)
τi )lp(w(τi) + Jτi

−X
(1)
τi ). This is comparable with the salvage

revenues S in the harvesting problem. The flood does also not affect the state dynamics Xt because
they are independent of a disaster. Because of that, a disaster does not influence the construction costs

b(X
(1)

t−m
, um). Consequently the occurrence and time of a disaster do not influence the choice whether to

increase the dike level now or later. However, the expectation of the flood losses influences the control
and higher expected flood losses advance the heightening.

Harvesting the forest as well as increasing the dikes, that is carrying out an impulse ξm, causes a change
in the value function and in the state process. It influences v since it is changed to v(tm, Ptm

, 0) with

revenues (Ptm
−Ch)Q(ζt−m) and to v(tm, X

(1)
tm

+ um, X
(3)
tm

) with costs b(X
(1)

t−m
, um), respectively. The state

processes are changed by an amount ξm = [0,−ζ−tm
]′ and ξm = [um, 0]′, respectively. So in the harvesting

problem an impulse affects only the stand age ζt, in other words the time of last impulse or disaster.
There is only one possible impulse, namely harvesting everything. In the dike height problem a minimi-
sation problem must be performed to decide the best immediate dike increase level. This results in a
quasi-variational inequality instead of a variational inequality.

Finally we compare the effects of timber volume growth Q(ζt) and timber price increase on harvesting

and the growth of the economic value of endangered goods and the relative dike height X
(1)
t − w(t) on

heightening. The volume of timber depends only on the stand age ζt and the price Pt is exogenous. An
increase in the timber volume, as well as a price increase, increases the revenues of harvesting, which
thus delays the harvesting. However, also the possible losses of a disaster are increased by them, which
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advances harvesting. There is a trade-off between the returns of harvesting immediately and waiting,
which bears the risk of a fire. In the dike height problem a similar trade-off exists. An increase in
economic value does not affect the decision of raising the dikes now or later by means of the construction

costs which are independent of X
(3)
tm

. However, these costs are affected positively by dike level X
(1)
t and

the increase level um, which can delay a certain heightening. A higher economic value leads to higher
costs of possible disasters and a lower difference between the dike level and average water level as well.

In this way a higher log-economic value X
(3)
t , as well as a lower relative dike height X

(1)
t −w(t), shortens

the time before increasing the dikes.

Another clear difference between both models is the presence of a terminal reward function in the dike
height problem. In the harvesting problem in [17] they assume that v(T, x) = 0 and the terminal time T
is made large enough such that this assumption has a negligible effect on the actual value function. In
the dike height problem we set v(T, x) = bT (x). However, the addition of a terminal condition not equal
to zero has no interesting effects on the model or the associated HJB equation.

3.3 Alternative dike height models

In the previous sections we studied a dike height model, which is mainly based on [32]. In the next sections
we develop alternative models for the dike height problem. These models incorporate concepts such as
stochastic water level, the dike age, a recovery rate or a soil compression and deterioration function. The
additional state dynamics are coloured in blue.

3.3.1 Stochastic water level

Due to global warming, the water level is expected to rise considerably in the next centuries. The future
water level rise is uncertain and scientific predictions distinct from each other. Different models for a
stochastic average water level, instead of a deterministic one, may be used.

In general the state dynamics may be modelled by:

dX
(1)
t = 0, for t ∈ (tm, tm+1),

dY
(2)
t = bw(t,Xt)dt+ σw(t,Xt)dW

(2)
t , for t ∈ (tm, tm+1),

dX
(3)
t = (µ3 − 1

2σ
2
3)dt+ σ3dW

(3)
t , for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0, 0]′, m ∈ N.

(3.28)

bw is the drift term of the average water level and σw the volatility. Now the value function depends also
on an average water level variable:

v(t, x1, y2, x3) = inf
u∈U

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(Y
(2)
τi

+ Jτi
−X(1)

τi
)

+
∑

t≤tm<T

e−ρ(tm−t)b(X
(1)

t−m
, um) + e−ρ(T−t)bT (X

(1)
T , Y

(2)
T , X

(3)
T )



 . (3.29)

The associated Hamilton-Jacobi-Bellman quasi-variational inequality reads

max

[

−vt + ρv(t, x) − Lv(t, x) − λx3β(x1 − y2), v(t, x) − inf
u∈U

[v(t, x+ (u, 0, 0)) + b(x1, u)]

]

= 0,

(t, x) = (t, x1, y2, x3) ∈ [0, T )× R3, (3.30)
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with terminal condition v(T, x) = bT (x) and

Lv(t, x) = bw(t, x)
∂v

∂y2
(t, x) + (µ3 −

1

2
σ2

3)
∂v

∂x3
(t, x) +

1

2
σ2

w(t, x)
∂2v

∂y2
2

(t, x) +
1

2
σ2

3

∂2v

∂x2
3

(t, x). (3.31)

In Section 8 we will use the following model for the stochastic average water level process

Y
(2)
t = w(t) + σwW

(2)
t , (3.32)

with σw > 0 a constant. In other words, a scaled Wiener process is added to the deterministic function
w(t).

3.3.2 The dike age

In an attempt to take concepts from the harvesting problem and include them in the dike height model,
we incorporate the dike age ζt. This variable is comparable with the stand age and depends on the time
of the last dike increase tdi and the occurence of floods. If no flooding has occurred we have ζt = t− tdi

and a flood lets ζt jump to zero. The new dynamics of the state process Xt = [X
(1)
t , X

(3)
t , ζt]

′ read:

dX
(1)
t = 0, for t ∈ (tm, tm+1),

dX
(3)
t = (µ3 − 1

2σ
2
3)dt+ σ3dW

(3)
t , for t ∈ (tm, tm+1),

dζt = dt− ζtdqt, for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0,−ζt−m ]′, m ∈ N.

(3.33)

In this case we have a jump diffusion state process and a disaster changes the state process by an Ft-
measurable value ζt. An important difference between the harvesting and dike height problem is the
positive influence of the stand age on the revenues in the harvesting problem and the independence of the
dike age on the construction costs in the dike height problem. We might wonder whether it is realistic
to postpone an increase of the dike level when ζt is small. Construction costs that are increasing in the
dike age may model the effect of dike deterioration, since this advances the dike reinforcements for a
longer time that has past after the last dike increase or disaster. We propose to use the construction
costs b(x1, ζ, u), which are increasing in ζ. The value function reads:

v(t, x) = inf
u∈U

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(w(τi) + Jτi
−X(1)

τi
)

+
∑

t≤tm<T

e−ρ(tm−t)b(X
(1)

t−m
, ζt−m , um) + e−ρ(T−t)bT (X

(1)
T , X

(3)
T )



 . (3.34)

The Hamilton-Jacobi-Bellman equation associated to this value function is:

max
[

− vt + rv(t, x) − Lv(t, x) − λ[v(t, x1, x3, 0) − v] − λ exp(x3)β(x1 − w(t)),

v(t, x) − inf
u∈U

[v(t, x1 + u, x3, 0) + b(x1, ζ, u)]
]

= 0,

(t, x) = (t, x1, x3, ζ) ∈ [0, T )× R3, (3.35)

with terminal condition v(T, x) = bT (x). Remark that the operator Lv(t, x) now includes the derivative
vζ .

Now a disaster affects the state dynamics by sending ζt to zero. This also affects the new construction
costs b(x, ζ, u). A higher dike age, to be precise a longer time that has past after a disaster or dike
increase, will advance the next heightening. Although this may reasonably model the deterioration of
dikes, it seems not realistic that the construction costs are really increasing in the dike age. Besides, it
might be difficult to find an appropriate model for the construction costs depending on the dike age. The
modelling of dike deterioration is also discussed in Section 3.3.3.
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3.3.3 Soil compression and deterioration

In the harvesting problem the longer time that has past after a disaster or a harvest, the higher the
revenues from harvesting and the earlier a harvest is profitable. We ask ourselves again whether it is
realistic to add something similar to the dike height problem. In the previous model the dike age, which
is determined by the last dike increase or disaster, positively affects the construction costs b and models
dike deterioration by that. It is realistic to assume that the longer the time that has past after a dike
increase, the earlier a next dike increase is necessary. In this section we want to adapt the state dynamics
to account for this.

This new model is based on the discrete dike height model in [22] where soil compression factors affect
the dike height in the following way:

X(1)(t+ 1) = X(1)(t) + u(t) − γ1u(t− 1) − γ2u(t− 2) − γ3u(t− 3). (3.36)

{. . . , t− 3, t− 2, t− 1, t, t+ 1, . . .} are the discrete times, X(1)(t) is the dike height at time t, u(t) is the
dike increase at time t and γ1, γ2, γ3 ∈ [0, 1) are the soil compression factors in the first, second and third
year after a dike increase. In an example for an island the factors γ1 = 0.05, γ2 = 0.03 and γ3 = 0.01 are
used. With this a dike increase is assumed to reduce by 9% after three years.

We suggest to incorporate a rate of soil compression and deterioration of the dikes by a function γ. We
assume that only the time of last raising and not the time of the last disaster affects this rate. For this
we introduce ςt as the time of the last dike increase, which is independent of floods. The proposed state
dynamics are:

dX
(1)
t = −γ(t, ςt)X(1)

t dt, for t ∈ (tm, tm+1),

dX
(3)
t = (µ3 − 1

2σ
2
3)dt+ σ3dW

(3)
t , for t ∈ (tm, tm+1),

dςt = dt, for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0,−ςt−m ]′, m ∈ N,

(3.37)

where γ(t, ςt) ∈ [0, 1) models the soil compression and deterioration of the dikes and depends on ςt. We
use the same value function as in equation (3.26) including an additional state variable ς. The associated
HJB equation for this model is

max
[

− vt + rv(t, x) − Lv(t, x) − λ exp(x3)β(x1 − w(t)), v(t, x) −

inf
u∈U

[v(t, x1 + u, x3, 0) + b(x1, u)]
]

= 0, (t, x) = (t, x1, x3, ς) ∈ [0, T )× R3, (3.38)

where

Lv(t, x) = −γ(t, ς)x1
∂v

∂x1
(t, x) + (µ3 −

1

2
σ2

3)
∂v

∂x3
(t, x) +

∂v

∂ς
(t, x) +

1

2
σ2

3

∂2v

∂x2
3

(t, x). (3.39)

3.3.4 A recovery rate

In the dike height problems discussed so far we assumed that the economic value is recovered immediately
in case of a flood. However, it seems more realistic to assume an immediate loss of economic value if a
flood occurs, but a certain recovery time with a recovery rate before all losses are recovered. We wish
to remember the flood losses made, but still maintain a Markovian state process. For this we intro-

duce a new process X
(4)
t which keeps track of the flood losses that are not yet recovered. These losses

are recovered with a positive recovery rate R(t,Xt), which is zero if there are no flooding costs remaining.

We model the economic value of endangered goods by:

dY
(3)
t = µ3Y

(3)
t dt+ σ3Y

(3)
t dW

(3)
t −Y (3)

t lp(w(t) + Jt −X
(1)
t )dqt + Y

(3)
t R(t,Xt)dt. (3.40)
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The first two terms are the same as in equation (3.1). The third term represents the flood losses and the
last term denotes the recovery of the economic value in time. Then the dynamics of the flood losses that
are not yet recovered read

dX
(4)
t = −Y (3)

t R(t,Xt)dt+ Y
(3)
t lp(w(t) + Jt −X

(1)
t )dqt. (3.41)

We use Itô calculus to find

log(Y
(3)
t ) = log(Y

(3)
0 ) +

∫ t

0

µ3 −
1

2
σ2

3 +R(s,Xs)ds+

∫ t

0

σ3dW
(3)
s

+
∑

0<s≤t

[log
(

Y
(3)
s− − Y

(3)
s− lp(w(s) + Js −X(1)

s )
)

− log(Y
(3)
s− )]dqs

= log(Y
(3)
0 ) +

∫ t

0

µ3 −
1

2
σ2

3 +R(s,Xs)ds+

∫ t

0

σ3dW
(3)
s

+
∑

0<s≤t

log
(

1 − lp(w(s) + Js −X(1)
s )
)

dqs. (3.42)

So, for the log-economic value of endangered goods we have

dX
(3)
t = d log(Y

(3)
t ) =

(

µ3 −
1

2
σ2

3 +R(t,Xt)

)

dt+ σ3dW
(3)
t + log

(

1− lp(w(t) +Jt −X
(1)
t )
)

dqt. (3.43)

The state dynamics can be expressed by

dX
(1)
t = 0, t ∈ (tm, tm+1),

dX
(3)
t =

(

µ3 − 1
2σ

2
3 +R(t,Xt)

)

dt+ σ3dW
(3)
t + log

(

1 − lp(w(t) + Jt −X
(1)
t )
)

dqt, t ∈ (tm, tm+1),

dX
(4)
t = − exp(X

(3)
t )R(t,Xt)dt+ exp(X

(3)
t )lp(w(t) + Jt −X

(1)
t )dqt, t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0, 0]
′, m ∈ N.

(3.44)

Using the stochastic control theory from Section 2.4 we obtain the HJB equation associated to value
function (3.26), with additional state variable x4:

max
[

− vt + rv(t, x) − Lv(t, x) − λE[v(t, x1, x3 +Θ1, x4 +Θ2) − v] − λx3β(x1 − w(t)),

v(t, x) − inf
u∈U

[v(t, x+ (u, 0, 0)) + b(x1, u)]
]

= 0, (t, x) = (t, x1, x3, x4) ∈ [0, T )× R3, (3.45)

where the expectation is taken with respect to the size of the extreme water level J , with the jumps

Θ1 = log
(

1 − lp(w(t) + J − x1)
)

and Θ2 = exp(x3)lp(w(t) + J − x1). The operator L is given by

Lv(t, x) = (µ3 −
1

2
σ2

3 +R(t, x))
∂v

∂x3
(t, x) − ex3R(t, x)

∂v

∂x4
(t, x) +

1

2
σ2

3

∂2v

∂x2
3

(t, x). (3.46)

The recovery rate R(t,Xt) depends on the time t and state process Xt and must be equal to zero if all
losses are recovered. We can model for example the case where the recovery rate is higher when the flood
losses that are not recovered yet are high, for example

R(t,Xt) =

{

0.5X
(4)
t + 0.2, for X

(4)
t > 0,

0, for X
(4)
t ≤ 0.

(3.47)

The recovery rate model shows some interesting similarities with the harvesting problem. If a fire in the
forest happens the stand age jumps to zero and recovers in time. The stand age affects the harvesting
revenues and the possible losses from a fire. In the above model a flood causes a sudden decrease in the
economic value, which recovers hereafter at a certain rate. The economic value of endangered goods does
not affect the construction costs, but it influences the possible losses from a next flood and in this way
the dike increase time is delayed.

33



3 THE DIKE HEIGHT STOCHASTIC OPTIMISATION PROBLEM

3.4 Discussion

The model extensions we proposed in the previous sections make the dimension of the state dynamics
higher and thus also the dimension of the HJB equation. In this discussion we wonder whether these
extensions are really useful and which model is best to use in the sequel.

A model we did not discuss until now is a model with deterministic log-economic value of endangered

goods: X
(3)
t = X

(3)
0 + µ3t. This model is used in [32] and in discrete form in [22] and reduces the

space dimension of the HJB equation to one. Although this model is not very realistic and there are no
stochastic processes, it represents a basic model and is easy to start with. However, this model is not
interesting with respect to the stochastic solution method that we will develop in Section 4.

Instead of one stochastic process, the economic value of endangered goods, we can consider the average
water level as a stochastic process too. As there is a lot of discussion about the future water level rise,
this seems a relevant extension.

In the third dike model, Section 3.3.2, we aimed to resemble concepts from the harvesting problem by
introducing the dike age ζt, similar to the forest stand age. If the dike age does not influence the con-
struction costs or the losses from flooding this addition does not seem very useful. On the other hand,
construction costs which are increasing in the dike age may model the dike deterioration. However, it
might be difficult to find an appropriate model for the construction costs depending on the dike age and
it does not seem realistic that the construction costs are increasing in the dike age.

We think that the use of a soil compression and deterioration rate is realistic, because the quality of dikes
gets worse over time. The longer the time that has past after the last dike increase, the earlier the next
increase may become necessary. However, if this rate is almost zero it will not affect the problem greatly.

Also incorporating a recovery rate for the economy in the dike model is realistic. Now the losses from
flooding are not recovered immediately and economic recovery happens at a certain recovery rate, which
can depend on, for example, the losses that are not yet recovered or the economic value remaining. This
is comparable with the stand age in the harvesting problem, which becomes zero if a fire takes place and
increases over time afterwards. Most easy is the case of a constant recovery rate until there are no flood
losses left.

A disadvantage of the models with stochastic water level, dike age, soil compression and deterioration
rate and recovery rate, is the dimensionality that we get, since this results in three-space-dimensional
partial differential equations.

In the remainder of the Master Thesis we firstly focus on the basic model from Section 3.1. Secondly, the
extended version with stochastic average water level comes up in Section 8. We discuss computational
difficulties of the models with recovery rate and with a soil compression and deterioration rate in Section
8.4.1. We will not use the model with the dike age.
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4 The dike-COS method: A Fourier-cosine valuation method

for one-factor Lévy processes

In [10] an option pricing method for European options based on Fourier-cosine series was developed. This
method was called the COS method and was extended in [11] to pricing Bermudan, barrier and American
options. In this section we explain the generalisation to the dike-COS method to solve the dike height
problem for the first model (Section 3.1) with only one stochastic process, namely the economic value of
endangered goods. This problem is a stochastic impulse control problem, as we explained in Section 3.1.1.

We start discussing the dynamic programming principle for a discrete time lattice. Then the COS for-
mula, which can help with the approximation of expectations, is explained in Section 4.1. In Section 4.2
a recursive algorithm is developed.

Let t0 denote the initial time and tM = T the terminal time. At these times no dike increase is pre-
scribed. We take a finite number of fixed control times {t1, t2, . . . , tm, . . . , tM−1} with ∆t := tm − tm−1

and t0 < t1 < . . . < tM . At the control times one can increase the dike level. The set of possible dike
level increases is U = {u0, u1, u2, . . . , uK}, with K a finite number, u0 = 0 and u0 < u1 < u2 < . . . < uK .
For example, U = {0, 40, 60, 80} cm. At each control time one has to decide whether or not to increase
the dike level and by which amount.

Value function v(t, x) = v(t, x1, x3) denotes the expected costs of flood protection at time t, with dike
level x1 and log-economic value of endangered goods x3, under optimal heightenings. Note that the
process Y 2

t = w(t) is omitted as variable as before, because it is a deterministic function of time t. The
following impulse control problem to formulate the dike height problem is obtained as in Section 3.1.1:

v(t, x) = min
u∈U

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(w(τi) + Jτi
−X(1)

τi
)

+
∑

t≤tm<T

e−ρ(tm−t)b(X
(1)

t−m
, um) + e−ρ(T−t)bT (X

(1)
T , X

(3)
T )



 . (4.1)

This value can be seen as a real option value. The set u = ({tm}, um) denotes the impulse control and
U is the set of all u such that um ∈ U = {u0, u1, u2, . . . uK}. In this notation a subscript indicates the
control time and a superscript the size of the dike increase. Note that the dike level remains constant
within the intervals [tm−1, t

−
m]. The dynamic programming principle gives, for m = 1, . . . ,M :

v(tm−1, x1, x3) = Etm−1,x





∑

τi∈[tm−1,tm]

e−ρ(τi−tm−1) exp(X(3)
τi

)lp (w(τi) + Jτi
− x1)





+ Etm−1,x
[

e−ρ∆tv(t−m, x1, X
(3)
tm

)
]

, (4.2)

followed by

v(t−m, x1, y) = Mv(tm, x1, y)

= min
ui∈U

[

v(tm, x1 + ui, y) + b(x1, u
i)
]

, (m 6= 0,M). (4.3)

After terminal time T the dike height and average water level are assumed to remain constant and the
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terminal costs are given by the expected flooding costs hereafter:

v(T, x1, x3) = bT (x1, x3)

= ET,x





∑

τi∈[T,∞)

e−ρ(τi−T ) exp(X(3)
τi

)lp(w(T ) + Jτi
− x1)





= λ

∫ ∞

T

e−ρ(s−T )ET,x[exp(X(3)
s )]β(x1 − w(T ))ds

= λβ(x1 − w(T )) exp(x3)

∫ ∞

T

e(µ3−ρ)(s−T )ds

=
λβ(x1 − w(T ))

ρ− µ3
exp(x3). (4.4)

The terminal costs are decreasing in x1 and increasing in x3.

The first part of equation (4.2) is the expected running costs from flooding in [tm−1, tm]:

Etm−1,x





∑

τi∈[tm−1,tm]

e−ρ(τi−tm−1) exp(X(3)
τi

)lp (w(τi) + Jτi
− x1)





= λ

∫ tm

tm−1

e−ρ(s−tm−1)Etm−1,x[exp(X(3)
s )]Etm−1,x[lp (w(s) + J − x1)]ds

= exp(x3)λ

∫ tm

tm−1

e(s−tm−1)(µ3−ρ)β(x1 − w(s))ds

:= exp(x3)d(tm−1, tm, x1). (4.5)

Function d is called the proportional damage function. Function β admits an analytical solution for the
Gumbel distributed extreme water level sizes, as shown in Section 4.3. The above time integral is ap-
proximated by applying the Composite Trapezoidal rule with Nt integration steps. The approximated
value is denoted by d̂(tm−1, tm, x1).

The second part of equation (4.2) represents the expected costs of flood protection at the next time
step, t−m, denoted as the continuation value c(tm−1, x1, x3). The expectation is taken with respect to the
stochastic log-economic value of endangered goods. In Section 4.1 we explain a method to estimate this
value. With the above notation, the real option value can be written as

v(tm−1, x1, x3) = exp(x3)d(tm−1, tm, x1) + c(tm−1, x1, x3). (4.6)

4.1 COS formula for the continuation value

The expectation c(tm−1, x1, x3) can be approximated by the COS method. The COS method is based
on the Fourier-cosine series expansion of the density function of the stochastic process. It relies on the
insight that the characteristic function is closely related to the series coefficients of this expansion. We
assume that the reader is familiar with these concepts. The following theory is derived from [10] and [11].

From now on function f denotes a density function instead of a running profit function as we saw in, for
example, equation (2.6). We start with

c(tm−1, x1, x3) = e−ρ∆tEtm−1,x
[

v(t−m, x1, X
(3)
tm

)
]

= e−ρ∆t

∫

R

v(t−m, x1, y)f(y|x3)dy. (4.7)

The conditional density function f(y|x3) decays to zero rapidly as y → ±∞. Because of that we can
truncate the infinite integration range of the expectation to some interval [a, b] ⊂ R without loosing
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significant accuracy. We obtain the approximation

c1(tm−1, x1, x3) = e−ρ∆t

∫ b

a

v(t−m, x1, y)f(y|x3)dy

= e−ρ∆t

∫ b

a

v(t−m, x1, y)

+∞
∑′

k=0

Gk(x3) cos

(

kπ
y − a

b− a

)

dy. (4.8)

In the second line of equation (4.8) the conditional density is replaced by its Fourier-cosine expansion in
y on [a, b], with series coefficients {Gk(x3)}+∞

k=0 defined by

Gk(x3) :=
2

b− a

∫ b

a

f(y|x3) cos

(

kπ
y − a

b− a

)

dy. (4.9)

The notation ci is used for the different approximations of c and keeps track of the numerical errors that
set in from each step. We interchange summation and integration and insert the definition

Vk(t−m, x1) :=
2

b− a

∫ b

a

v(t−m, x1, y) cos

(

kπ
y − a

b − a

)

dy, (4.10)

which are the Fourier-cosine series coefficients of v(t−m, x1, y) on [a, b]. This results in

c1(tm−1, x1, x3) =
b − a

2
e−ρ∆t

+∞
∑′

k=0

Gk(x3)Vk(t−m, x1). (4.11)

Note that the product of f(y|x3) and v(t−m, x1, y) is transformed to a product of their Fourier-cosine series
coefficients. Truncation of the series summation gives the approximation

c2(tm−1, x1, x3) =
b − a

2
e−ρ∆t

N−1
∑′

k=0

Gk(x3)Vk(t−m, x1). (4.12)

The coefficients Gk(x3) can be approximated as follows

Gk(x3) ≈ 2

b− a

∫

R

f(y|x3) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a
ℜ
[∫

R

f(y|x3)e
ikπ y

b−a dye−ikπ a
b−a

]

=
2

b− a
ℜ
[

ϕ

(

kπ

b− a

∣

∣

∣x3

)

e−ikπ a
b−a

]

:= Fk(x3). (4.13)

ϕ(.|x3) is the conditional characteristic function of X
(3)
tm

, given that X
(3)
tm−1

= x3. The density function
of a stochastic process is usually not known, whereas the characteristic function is known. Inserting the
above gives the COS formula for approximation of c(tm−1, x1, x3):

ĉ(tm−1, x1, x3) = e−ρ∆t

N−1
∑′

k=0

ℜ
[

ϕ

(

kπ

b− a

∣

∣

∣x3

)

e−ikπ a
b−a

]

Vk(t−m, x1)

= e−ρ∆t

N−1
∑′

k=0

ℜ
[

ϕlevy

(

kπ

b− a

)

eikπ
x3−a

b−a

]

Vk(t−m, x1), (4.14)

where the last equality holds for Lévy processes, with ϕlevy(u) := ϕ(u|0). The process used for the
log-economic value of endangered goods is indeed a Lévy process. Finally, we end up with

v̂(tm−1, x1, x3) = exp(x3)d̂(tm−1, tm, x1) + e−ρ∆t

N−1
∑′

k=0

ℜ
[

ϕlevy

(

kπ

b− a

)

eikπ
x3−a

b−a

]

Vk(t−m, x1). (4.15)
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Since the terms Vk(t−m, x1) are independent of x3, we can calculate the real option value for many log-
economic values x3 simultaneously. It is even possible to calculate the option value for many different
dike levels simultaneously:

v̂(tm−1,x1,x3) = exp(x3)d̂(tm−1, tm,x1) + e−ρ∆t

N−1
∑′

k=0

ℜ
[

ϕlevy

(

kπ

b− a

)

eikπ
x3−a

b−a

]

Vk(t−m,x1). (4.16)

4.2 Recursion formula for coefficients Vk

In this section a recursive algorithm for the dike height problem is explained. First we choose a grid for
the dike level x1, for example x1 ∈ [425, 505, 585, 665, 745] cm. It is important for the algorithm that this
grid coincides with the grid points of x1 + ui, ∀ i, except for the first and last entries. Let D denote the
number of dike level grid points.

Coefficients at time t−M
For approximating the option prices at time tM−1 we need the coefficients Vk(t−M , x1). Their exact
representation reads:

Vk(t−M , x1) =
2

b− a

∫ b

a

v(T, x1, y) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

∫ b

a

λβ(x1 − w(T ))

ρ− µ3
exp(y) cos

(

kπ
y − a

b− a

)

dy

=
λβ(x1 − w(T ))

ρ− µ3

2

b− a
χk(a, b), (4.17)

where the analytical solution of χk(z1, z2) can be found in Appendix A.

Next we consider the coefficients that are used to estimate the real option values at times t0, . . . , tM−2.
In the terms Vk(t−m, x1) the option value appears:

v(t−m, x1, y) = min
ui∈U

[

v(tm, x1 + ui, y) + b(x1, u
i)
]

. (4.18)

The construction costs are given by

b(x1, u) =

{

0, for u = 0,
b+(x1, u), for u > 0,

(4.19)

where b+(x1, u) is a smooth function, increasing in x1 and u, and b+(x1, 0) 6= 0.

We suppose that, for a fixed dike level, a higher economic value of endangered goods leads to a higher, or
equal, optimal reinforcement level (see results in [32]). Assume that we can find intervals Ai

m(x1) ⊂ [a, b],
such that for a log-economic value y ∈ Ai

m(x1) it is optimal to increase the dike level x1 at control time
tm by an amount ui. These intervals are named the construction domains. We will explain an algorithm
to determine these domains in Section 4.2.1. For x1 + ui higher than the largest dike level grid point we
take Ai

m(x1) empty, implying that the dike heightening involved is not allowed anymore.

With the construction domains we can split the integral in the definition of Vk into parts, independent
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of k:

Vk(t−m, x1) =
2

b− a

∫ b

a

v(t−m, x1, y) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

∫ b

a

min
ui∈U

[

v(tm, x1 + ui, y) + b(x1, u
i)
]

cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

K
∑

i=0

∫

Ai
m(x1)

v(tm, x1 + ui, y) cos

(

kπ
y − a

b− a

)

dy

+
2

b− a

K
∑

i=1

∫

Ai
m(x1)

b(x1, u
i) cos

(

kπ
y − a

b − a

)

dy

:=
K
∑

i=0

Ck(Ai
m(x1), tm, x1 + ui) +

K
∑

i=1

Bk(Ai
m(x1), x1, u

i), (m 6= 0,M). (4.20)

Next, the backward recursion of the coefficients Vk will be explained.

Coefficients at time t−M−1

For approximation of the option prices at time tM−2 we need the exact coefficients Vk(t−M−1, x1). We will
use the approximated option value v̂(tM−1, y1, y) to approximate the terms Ck(z1, z2, tM−1, y1), where
the variables z1 and z2 denote the boundaries of the construction domain. This approximation is denoted
by Ĉk(z1, z2, tM−1, y1). This results in the approximated coefficient:

V̂k(t−M−1, x1) :=

K
∑

i=0

Ĉk(Ai
M−1(x1), tM−1, x1 + ui) +

K
∑

i=1

Bk(Ai
M−1(x1), x1, u

i). (4.21)

Note that the terms Bk are time-independent and known analytically:

Bk(z1, z2, x1, u
i) =

2

b− a

∫ z2

z1

b(x1, u
i) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a
b(x1, u

i)

∫ z2

z1

cos

(

kπ
y − a

b− a

)

dy

=
2

b− a
b(x1, u

i)ψk(z1, z2), (4.22)

with ψk(z1, z2) as defined in Appendix A. On the integrants of terms Ĉk we can apply again the Fourier-
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cosine expansion by inserting equation (4.15). This reads

Ĉk(z1, z2, tM−1, y1) =
2

b− a

∫ z2

z1

v̂(tM−1, y1, y) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

∫ z2

z1

exp(y)d̂(tM−1, tM , y1) cos

(

kπ
y − a

b− a

)

dy

+ e−ρ∆t 2

b− a

∫ z2

z1





N−1
∑′

j=0

ℜ
[

ϕlevy

(

jπ

b− a

)

eij y−a
b−a

]

Vj(t
−
M , y1)



 cos

(

kπ
y − a

b− a

)

dy

=
2

b− a
d̂(tM−1, tM , y1)

∫ z2

z1

exp(y) cos

(

kπ
y − a

b− a

)

dy

+ e−ρ∆tℜ







N−1
∑′

j=0

ϕlevy

(

jπ

b − a

)

Vj(t
−
M , y1)

2

b− a

∫ z2

z1

eij y−a
b−a cos

(

kπ
y − a

b− a

)

dy







=
2

b− a
d̂(tM−1, tM , y1)χk(z1, z2)

+ e−ρ∆tℜ







N−1
∑′

j=0

ϕlevy

(

jπ

b − a

)

Vj(t
−
M , y1) ·Mk,j(z1, z2)







, (4.23)

where the coefficients Mk,j(z1, z2) are given by:

Mk,j(z1, z2) :=
2

b− a

∫ z2

z1

eijπ y−a
b−a cos

(

kπ
y − a

b− a

)

dy. (4.24)

Finally we end up with the vector form

V̂ (t−M−1, x1) =
K
∑

i=0

2

b− a
d̂(tM−1, tM , x1 + ui)χ(Ai

M−1(x1)) +
K
∑

i=0

e−ρ∆tℜ{M(Ai
M−1(x1))w

i}

+

K
∑

i=1

2

b− a
b(x1, u

i)ψ(Ai
M−1(x1)), (4.25)

where

wi := {wi
j}N−1

j=0 with wi
j := ϕ

(

jπ

b− a

)

Vj(t
−
M , x1 + ui), wi

0 =
1

2
ϕ(0)V0(t

−
M , x1 + ui). (4.26)

The inputs of the functions χ, ψ and M represent the boundary values of their integration range.

Coefficients at time t−m, 1 ≤ m < M − 1
For the other coefficients the approximations v̂(tm, y1, y) and V̂k(t−m+1, y1) will be used to approximate
the terms Ck(z1, z2, tm, y1). The same arguments as before give the following numerical approximation
of the Fourier-cosine coefficients at time t−m:

V̂ (t−m, x1) =

K
∑

i=0

2

b− a
d̂(tm, tm+1, x1 + ui)χ(Ai

m(x1)) +

K
∑

i=0

e−ρ∆tℜ{M(Ai
m(x1))ŵ

i}

+
K
∑

i=1

2

b− a
b(x1, u

i)ψ(Ai
m(x1)), (m = 1, . . . ,M − 2), (4.27)

where

ŵi := {ŵi
j}N−1

j=0 with ŵi
j := ϕ

(

jπ

b− a

)

V̂j(t
−
m+1, x1 + ui), ŵi

0 =
1

2
ϕ(0)V̂0(t

−
m+1, x1 + ui). (4.28)
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An extra error is introduced because the real option values are approximated by using V̂k. We will discuss
this propagating error in Section 5.2.

Fast Fourier Transform

The matrix-vector product Mw in the terms Ĉ can be computed by an Fourier-based algorithm, as stated
in the following theorem.

Theorem 4.1. (Efficient computation of Ĉ(z1, z2, tm, y1))[11]
The matrix-vector product M(z1, z2)w in equations (4.25) and (4.27) can be computed in O(N log2N)
operations with the help of the Fast Fourier Transform (FFT) algorithm.

The key insight of this efficient computation is the equality

Mk,j(z1, z2) = − i

π

(

M c
k,j(z2, z2) +M s

k,j(z1, z2)
)

, (4.29)

and the fact that the matrix M c is a Hankel matrix and M s is a Toeplitz matrix (M c
i,j = M c

i−1,j+1 and
M s

i,j = M s
i+1,j+1). The matrices M c

k,j and M s
k,j can be found in Appendix D. These special structures

make the calculation of the matrix-vector products efficient using FFT algorithms, as described in [11]
and [5].

Algorithm

We can recover the terms V̂k(t−m, x1) recursively, starting at Vk(t−M , x1). The algorithm to solve the dike
height problem backwards in time reads:

Algorithm 1. (Dike-COS method)

Initialisation:

Calculate coefficients Vk(t−M , x1) for k = 0, 1, . . . , N − 1 and all possible dike levels x1.

Main loop to recover V̂ (t−m, x1):
For m = M − 1 to 1:

• Determine the construction domains Ai
m(x1) with the Bisection method (see Section 4.2.1).

• Compute V̂ (t−m, x1) for all possible dike levels (with the help of the FFT algorithm).

Final step:

Compute v̂(t0, x1, x3) by inserting V̂k(t−1 , x1) into equation (4.15).

Computational complexity

The computational complexity of the dike-COS method depends on the following six parameters:

M − 1, the number of control times,
N, the number of coefficients in the series expansion,
K, the number of possible dike increase levels unequal to zero,
D, the number of dike level grid points,
Nt, the number of integration steps for the Trapezoidal rule,
Nbis, the number of iterations of the Bisection method to locate Ai

m(x1) (see Section 4.2.1).
(4.30)

The initialisation of the above algorithm takesO(ND) operations. Location of all domainsAi
m(x1) at each

time lattice has complexity O(DKNbis). The computation of a vector Ĉ(z1, z2, tm, y1) has complexity
O(Nt + N log2N) with the help of the Trapezoidal rule and the FFT algorithm. This dominates the
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computation of B(z1, z2, x1, u
i), which is linear in N . So, the work needed to compute V̂ (t−m, x1) for all

possible dike levels is O(DK(Nt +N log2N)). Then the total work required for the main loop is

O
(

(M − 1)DK(Nbis +Nt +N log2N)
)

. (4.31)

The computation complexity of the final step is O(Nt +N).

Comparison with financial options and authors contribution

We discuss some similarities between our real option problem and the Bermudan and the swing options,
which are financial options. The holder of a Bermudan option can exercise his option at a finite number of
fixed exercise dates, comparable with the finite number of fixed control times in the dike height problem.
However, a Bermudan option can be exercised only once, whereas the real option here remains valid after
a dike heightening and the dikes can be increased more than once. A swing option gives the right to
order extra units of a commodity. The amount of commodity at each swing action can be chosen from a
certain set, for example {−2,−1, 0, 1, 2}, where a negative amount implies back delivery and a positive
amount means ordering. Similarly, the dike increase levels are in the set U = {u0, u1, . . . , uK}.

The main difference between these two financial options and the real option here is the possible change
in the state dynamics by an impulse at the control times in the dike height problem. That is, the dike
height jumps to a higher level if a reinforcement is performed. Because of that we need to keep track of
the dike level. Besides there is a kind of cashflow from flooding costs in the dike height problem, which is
represented by the proportional damage function d. In practice, a terminal time of the order T ≃ 0.1−10
is used for pricing financial options. However, in our numerical example of the dike height problem in
Section 7 there is a much larger terminal time, T = 300. This results in a much larger computational
domain, which may give difficulties as we will show in Section 6.3 and Section 7.1.

The dike-COS method is mainly based on the COS pricing method for Bermudan and swing options
([11] and [41]). Since we need to keep track of the dike level in our stochastic impulse control, the
problem dimension is increased. Furthermore the estimation of the additional proportional damage
function can take much computation time if not implemented efficiently. However, we found an analytical
representation of the function β(h), see Section 4.3, which appears to by useful and efficient. We propose
an algorithm for determination of the construction domains in Section 4.2.1. Uniqueness results to justify
this algorithm are assumed on the basis of the results in [32].

4.2.1 Construction domains Ai
m(x1)

The determination of the domains Ai
m(x1) needs to be done carefully. It may be possible that, for ex-

ample, the domain A1
m(x1) is an empty set, whereas A0

m(x1) and A2
m(x1) are not. Then there exists a

value y∗ for which it is not optimal to heighten the dike if the log-economic value is less than y∗ and it
is optimal to increase the dike level by an amount u2 if the log-economic value is higher than y∗. This is
due to the fact that the function b(x1, u) is discontinuous in u = 0, see [32]. We explain an algorithm to
determine the domains Ai

m(x1).

Suppose we are on time lattice m 6= 0,M . Keep in mind that Ai
m(x1) is empty for x1 + ui higher

than the largest dike level grid point. First we only consider the set of strictly positive dike increments
U+ := U\{u0} and the corresponding option value

v+(t−m, x1, y) := min
ui∈U+

[

v(tm, x1 + ui, y) + b(x1, u
i)
]

. (4.32)

We determine the values yi
m(x1) such that:

v(tm, x1 + ui, yi
m(x1)) + b(x1, u

i) = v(tm, x1 + ui+1, yi
m(x1)) + b(x1, u

i+1). (4.33)

In other words, yi
m(x1) represents the log-economic value at which the optimal dike increase level changes

from ui to ui+1 if only the set U+ is taken into account. We assume that the values yi
m(x1) are unique
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and increasing in i, in accordance with the results of [32].

It follows that
v(t−m, x1, y) = min

[

v(tm, x1, y), v
+(t−m, x1, y)

]

. (4.34)

We proceed by finding the value y0
m(x1), which is supposed to be unique, such that

v(tm, x1, y
0
m(x1)) = v+(t−m, x1, y

0
m(x1)). (4.35)

This value represents the change from the case of no dike increase to the case where dike reinforcement
is optimal. Now the construction domains can be found as follows:

Ai
m(x1) = [a, b] ∩























[−∞, y0
m(x1)] for i = 0,

[

−∞, yi
m(x1)

]

∩ [y0
m(x1),∞] for i = 1,

[

yi−1
m (x1), y

i
m(x1)

]

∩ [y0
m(x1),∞] for 1 < i < K,

[

yK−1
m (x1),∞

]

∩ [y0
m(x1),∞] for i = K.

(4.36)

The preceding procedure is repeated for all possible dike levels x1. Uniqueness of the points y0
m(x1) and

yi
m(x1) needs to be proved formally, but we accept unicity based on the results in [32].

Examples

The previous algorithm is illustrated by two examples with U = {u0, u1, u2}, u1 = 30 cm, u2 = 60 cm
and [a, b] = [−1.03, 30.15]. The parameter values used are the same as introduced for the experiments
with an island in Section 7.
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Figure 4.1: Overview of construction domains Ai
m(x1) for example 1 (tm = 200, x1 = 545).

Example 1: Figure 4.1 shows the option values for tm = 200 years and x1 = 545 cm. The intersection
of the red and green line gives y1

m(x1) ≈ 21.39. Then from the blue and dotted line, which represents
v+(t−m, x1, y), it follows that y0

m(x1) ≈ 20.70. We deduce that

A0
m(x1) = [−1.03, 20.70], A1

m(x1) = [20.70, 21.39], A2
m(x1) = [21.39, 30.15]. (4.37)

Example 2: The second example considers the construction domains for tm = 100 years and x1 = 455
cm. Figure 4.2 shows that y1

m(x1) ≈ 19.86 and y0
m(x1) ≈ 20.06. We find

A0
m(x1) = [−1.03, 20.06], A1

m(x1) = ∅, A2
m(x1) = [20.06, 30.15]. (4.38)
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Figure 4.2: Overview of construction domains Ai
m(x1) for example 2 (tm = 100, x1 = 455).

Bisection method

We may use Newton’s method to determine the points yi
m(x1) and y0

m(x1). However, Newton’s method
requires a ‘good’ initial value. Since the derivative of the curve concerned can change rapidly this method
does not always show a proper convergence in our test cases. Because of that we use the robust Bisection
method, with Nbis iterations, to find the construction domains.

4.3 Expected loss fraction function β

In [32] the integral in the function β(h), see equation (4.42) below, is approximated by the Composite
Trapezoidal rule with integration interval [−500, 500] and Ny = 1000 integration steps. There the pa-
rameter values k1 = 8.16299 · 10−1 and k2 = 1.88452 · 102 are used. We will show that we can evaluate
this function also analytically.

The extreme water level size J is Gumbel distributed with density function

fJ (y) = k1e
k1(k2−y)−ek1(k2−y)

, (4.39)

with scale parameter 1/k1 > 0 and location parameter k2 ∈ R. Its distribution function reads

FJ (y) = e−ek1(k2−y)

. (4.40)

The fraction of economic value lost, if the difference between the dike height and the average water level
is h and the extreme water level size is y, is

lp(y − h) = (1 − e−λp(y−h))+ =

{

0, for y < h,

1 − e−λp(y−h), for y > h.
(4.41)

The expectation of this loss fraction if an extreme water level occurs reads:

β(h) = E[lp(J − h)]

=

∫ ∞

−∞
lp(y − h)fJ (y)dy

=

∫ ∞

h

fJ (y)dy −
∫ ∞

h

e−λp(y−h)fJ (y)dy. (4.42)
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We calculate these two integrals separately. First of all,

∫ ∞

h

fJ (y)dy = 1 −
∫ h

−∞
fJ (y)dy

= 1 − FJ (h)

= 1 − exp
(

−ek1(k2−h)
)

(4.43)

and secondly
∫ ∞

h

e−λp(y−h)fJ (y)dy = eλphk1

∫ ∞

h

e−λpyek1(k2−y)e−ek1(k2−y)

dy

= eλphk1

∫ ∞

h−k2

e−λp(k2+x)e−k1xe−e−k1x

dx

= eλp(h−k2)k1

∫ ∞

h−k2

(e−k1x)λp/k1+1e−(e−k1x)dx

= −eλp(h−k2)

∫ 0

exp(−k1(h−k2))

zλp/k1+1−1e−zdz

= eλp(h−k2)γ(exp(−k1(h− k2)), λp/k1 + 1). (4.44)

Adding up the two parts yields the analytical representation:

β(h) = 1 − exp
(

−ek1(k2−h)
)

− eλp(h−k2)γ(exp(−k1(h− k2)), λp/k1 + 1). (4.45)
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Figure 4.3: Function β(h) on logarithmic scale.

γ is the lower incomplete gamma function, γ(x, s) =
∫ x

0
zs−1 e−z dz. This function can be evaluated by

using the Matlab functions gammainc(x,s) and gamma(s). However, using Matlab results in a negative
value β(h) for large values h (e.g., h > 646), due to inaccuracy. This is undesirable, since it points to
negative costs. It is important to be aware of this inaccuracy and to correct for it. In Figure 4.3 the exact
values and the approximated values using the Trapezoidal rule are shown. The latter ones take more
computation time. The values received by the Composite Trapezoidal rule are too low for h close to 500,
because then the integration interval [−500, 500] is too small. The absolute error is at most 3.00 · 10−5

on the grid [0 : 0.01 : 800]. The function β(h) is decreasing in h and convex for h > 200. We will use the
exact representation of function β(h) and set this value equal to zero if the obtained value is negative, so
no significant errors are introduced by its computation.
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5 Error analysis

In this section we analyse the error of the dike-COS-method, based on the error analysis in [10] and
[11]. Errors are introduced by using the Composite Trapezoidal rule, the COS formula and by evolution
through time via the coefficients V̂k. In Section 5.1 we start with the local error where no control and no
backward recursion of the terms V̂k are taken into account. This corresponds to the case of a European
option. After that the error propagation in the backward recursion is studied in Section 5.2 and Section
5.3.

5.1 Local error dike-COS method

We consider the error of the Composite Trapezoidal integration rule and the error in the derivation of
the COS formula. The local error reads:

ǫLoc(tm−1, x1, x3|N, [a, b], Nt) := v(tm−1, x1, x3) − v̂(tm, x1, x3|N, [a, b], Nt)

= exp(x3)(d(tm−1, tm, x1) − d̂(tm−1, tm, x1|Nt))

+ c(tm−1, x1, x3) − ĉ(tm−1, x1, x3|N, [a, b]). (5.1)

The above notation includes the method parameters used for the approximations, namely N, [a, b] and Nt.

The time integral in the function d(tm−1, tm, x1) is approximated by applying the Composite Trapezoidal
rule with Nt integration steps. The error is given by

ǫTrap(tm−1, tm, x1|Nt) := d(tm−1, tm, x1) − d̂(tm−1, tm, x1|Nt)

= − (tm − tm−1)
3

12N2
t

G′′(t∗)

= O(1/N2
t ), (5.2)

with analytical function G(s) = λe(s−tm−1)(µ3−ρ)β(x1 − w(s)) ∈ C2([tm−1, tm]) and t∗ ∈ [tm−1, tm].

We define the local error of the COS formula as

ǫCOS(tm−1, x1, x3|N, [a, b]) := c(tm−1, x1, x3) − ĉ(tm−1, x1, x3|N, [a, b]). (5.3)

Let assume that the terms Vk(t−m, x1) are exact. Errors are introduced in three steps: the truncation
of the integration range, the substitution of the density by its cosine series expansion on the truncated
range and the substitution of the series coefficients by the characteristic function approximation. An up-
per bound for the error of the European pricing option COS method with respect to the truncation range
and the convergence rate in dependence of N have been derived in [10]. The key to bound the error lies in
the decay rate of the Fourier-cosine series coefficients. We will discuss the three errors one after the other:

1. The integration range truncation error:

ǫ1(tm−1, x1, x3|[a, b]) := c(tm−1, x1, x3) − c1(tm−1, x1, x3|[a, b]) = e−ρ∆t

∫

R\[a,b]

v(t−m, x1, y)f(y|x3)dy > 0.

(5.4)
If v(t−m, x1, y)f(y|x3) is very small outside the interval [a, b], then the error ǫ1 can be ignored.

2. The series truncation error on [a, b]:

ǫ2(tm−1, x1, x3|N, [a, b]) := c1(tm−1, x1, x3|[a, b]) − c2(tm−1, x1, x3|N, [a, b])

=
b− a

2
e−ρ∆t

+∞
∑

k=N

Gk(x3)Vk(t−m, x1). (5.5)
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The convergence rate of Fourier-cosine series depends on the properties of the approximated functions in
the expansion interval. The following definitions and propositions can be found in [5]. These definitions
are all asymptotic definitions based on the behaviour of the series coefficients for large k. They may be
misleading if applied for small or moderate values of k. We start with classifying the rate of convergence:

Definition 5.1. (Algebraic Index of Convergence)
The algebraic index of convergence n is the largest number for which

lim
k→∞

|ak|kn <∞, k >> 1, (5.6)

where the ak are the coefficients of the series.
Alternative definition: If the coefficients of a series are ak and if

ak ∼ O(1/kn), k >> 1, (5.7)

(decay asymptotically) then n is the algebraic index of convergence.

Definition 5.2. (Exponential Index of Convergence)
If the algebraic index of convergence n is unbounded - in other words, if the coefficients ak decrease
faster than 1/kn for any finite n - then the series is said to have the property of “infinite order”, or
“exponential” convergence.
Alternative definition: If

ak ∼ O(exp(−qk̺)), k >> 1, (5.8)

with q a constant for some ̺ > 0, then the series has “infinite order” or “exponential” convergence. The
exponent ̺ is the exponential index of convergence.

We can distinguish three rates of exponential convergence by the following definition.

Definition 5.3. (Rates of Exponential Convergence)
A series whose coefficients are ak is said to have the property of “supergeometric”, “geometric” or “sub-
geometric” convergence depending upon whether

lim
k→∞

log(|ak|)/k =







−∞ supergeometric,
constant geometric,
0 subgeometric.

(5.9)

Alternative definitions:
1. If ak ∼ O([ ] exp(−(k/j) log(k))) (for some j > 0), convergence is supergeometric.
2. If ak ∼ O([ ] exp(−qk)) (̺ = 1), convergence is geometric.
3. If the exponential index of convergence ̺ < 1, then the convergence is subgeometric.
(The empty brackets [ ] denote factors that vary more slowly with k than the exponentials.)

The convergence concepts become clear with Figure 5.1. On the left log-linear plot, with the logarithm
of the absolute value of ak versus k, the coefficients of a geometrically converging series will asymptoti-
cally resemble a straight line. Supergeometric convergence can be defined as coefficients whose curve has
an increasingly negative slope. Similarly, subgeometric and algebraic convergence rates produce curves
which bend upward away from the straight line of geometric convergence. On the right log-log plot in
Figure 5.1, the curve of coefficients with algebraic convergence, with algebraic index of convergence n,
resembles asymptotically a straight line with slope −n. Exponential convergence results in an unbounded
negative slope.

The normal density function is a typical function that has a supergeometrically converging cosine series
expansion (see right side plot of Figure 6.2 in Section 6.1). The convergence type can be derived from
the following proposition.
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Figure 5.1: Convergence rates coefficients ([5]) (ak = 1/k2 (algebraic index of convergence n = 1),
bk = exp(−1.5k2/3) (log(|bk|)/k = 0),
ck = exp(0.75k) (log(|ck|)/k = 0.75),
dk = exp(−k log k)) (log(|dk|)/k = −∞).

Proposition 5.1. (Convergence of Fourier-cosine series)[10]
If h(x) ∈ C∞([a, b] ⊂ R), then its Fourier-cosine series expansion on [a, b] has (at least) geometric con-
vergence. The constant q in equation (5.8) is determined by the location in the complex plane of the
singularities nearest to the expansion interval. Exponent ̺ is determined by the type and strength of the
singularity.

If a function h(x), or any of its derivatives, is discontinuous, its Fourier-cosine series coefficients show
algebraic convergence. Integration-by-parts shows that the algebraic index of convergence, n, is at least
as large as n′, with the n′-th derivative of h(x) integrable.

The absolute error of truncation of the expansion after N terms is denoted by ETr(N). The following
proposition allows to bound the series truncation error of an algebraically and geometrically converging
series.

Proposition 5.2. (Last coefficient error estimate)
The truncation error is the same order of magnitude as the last coefficient retained in the truncation
for a series with (at least) geometric convergence. Since the truncation error is a quantity we can only
estimate anyway (in the absence of a known, exact solution), we can loosely speak of the last retained
coefficient as being the truncation error, that is:

ETr(N) ∼ O(|aN |) = O ([ ] exp(−Nν)) . (5.10)

Here, constant ν > 0 is called the asymptotic rate of geometric convergence of the series, which satisfies

ν = lim
k→∞

− log(|ak|)
k

, (5.11)

and [ ] denotes a factor which varies less than exponentially with N .

Extension: if the series has algebraic convergence index n, i.e., if ak ∼ O(1/kn) for large k, then

ETr(N) ∼ O(|NaN |). (5.12)

(Note that an algebraically converging series behaves like ([4])

+∞
∑

k=N+1

1

kn
∼ O

(

1

(n− 1)Nn−1

)

= O

(

N
1

Nn

)

, N >> 1.) (5.13)
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Now we return to the series truncation error ǫ2. For N so large that |Vk(t−m, x1)| ≤ 1 for k ≥ N , the error
can be bounded by

|ǫ2(tm−1, x1, x3|N, [a, b])| =

∣

∣

∣

∣

∣

b− a

2
e−ρ∆t

+∞
∑

k=N

Gk(x3)Vk(t−m, x1)

∣

∣

∣

∣

∣

≤ b− a

2
e−ρ∆t

+∞
∑

k=N

|Gk(x3)|. (5.14)

The error is dominated by the series truncation error of the coefficients Gk. We can also bound the error
with a summation over the coefficients Vk(t−m, x1). However, we assume that the coefficients Gk decay
faster than Vk as the density function is typically smoother than the ‘payoff’ function, which makes the
above bound tighter.

With Proposition 5.2 we find that the error converges exponentially for density functions in the class
C∞([a, b]):

|ǫ2(tm−1, x1, x3|N, [a, b])| < P (x3, N) exp(−(N − 1)ν(x3)), (5.15)

where ν(x3) > 0 is a constant and P is a factor that varies less than exponentially with N . A density
function with discontinuity in one of its derivatives results in an algebraic convergence of the Fourier-
cosine expansion:

|ǫ2(tm−1, x1, x3|N, [a, b])| <
P (x3)

(N − 1)n(x3)−1
, (5.16)

where P is a function depending on x3 and n(x3) the algebraic index of convergence of the series coeffi-
cients Gk(x3).

3. The error related to approximating Gk(x3) by Fk(x3) (equation (4.13)):

ǫ3(tm−1, x1, x3|N, [a, b]) := c2(tm−1, x1, x3|N, [a, b]) − ĉ(tm−1, x1, x3|N, [a, b])

=
b− a

2
e−ρ∆t

N−1
∑′

k=0

(Gk(x3) − Fk(x3))Vk(t−m, x1)

= −e−ρ∆t

∫

R\[a,b]





N−1
∑′

k=0

cos

(

kπ
y − a

b− a

)

Vk(t−m, x1)



 f(y|x3)dy

= −e−ρ∆t

∫

R\[a,b]

[

v(t−m, x1, y) −
+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

Vk(t−m, x1)

]

f(y|x3)dy

= −ǫ1(tm−1, x1, x3|[a, b])

+ e−ρ∆t

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

Vk(t−m, x1)

]

f(y|x3)dy. (5.17)

We define

ǫ5(tm−1, x1, x3|N, [a, b]) := e−ρ∆t

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

Vk(t−m, x1)

]

f(y|x3)dy

= ǫ1(tm−1, x1, x3|[a, b]) + ǫ3(tm−1, x1, x3|N, [a, b]). (5.18)

Error ǫ5 is the integral over the domain R\[a, b] of the density function f(y|x3) times the error resulting
from approximation of the discounted payoff function

e−ρ∆tv(t−m, x1, y) (5.19)
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by

e−ρ∆t

N−1
∑′

k=0

cos

(

kπ
y − a

b− a

)

Vk(t−m, x1). (5.20)

The function f(y|x3) is large for y close to x3. Besides, the Fourier-cosine expansion of v(t−m, x1, y) is less
accurate close to b compared to boundary a for call-like payoff functions. Together they can result in a
significant error for x3 in the vicinity of b. In Section 6.3.2 we investigate a case where ǫ5 is estimated
using a numerical integration rule. It also shows how the local error may be reduced by error ǫ3 compared
to error ǫ1.

Now we can write the local error of the COS method as

ǫCOS(tm−1, x1, x3|N, [a, b]) = ǫ1(tm−1, x1, x3|[a, b]) + ǫ2(tm−1, x1, x3|N, [a, b]) + ǫ3(tm−1, x1, x3|N, [a, b])
= ǫ2(tm−1, x1, x3|N, [a, b]) + ǫ5(tm−1, x1, x3|N, [a, b]). (5.21)

We end up with

|ǫLoc(tm−1, x1, x3|N, [a, b], Nt)| ≤ ex3 |ǫTrap(tm−1, tm, x1|Nt)| + |ǫCOS(tm−1, x1, x3|N, [a, b])|. (5.22)

If the integration interval [a, b] is chosen sufficiently wide and Nt sufficiently large, then the series trun-
cation error ǫ2 dominates the overall local error. This implies that for smooth density functions the
error ǫLoc converges exponentially, otherwise it goes algebraically. However, roundoff errors may give
difficulties in the convergence of Fourier-cosine series expansions as we will show in Section 6.

Remark 5.1. In [10] another bound for the local error has been obtained as follows. The function
v(t−m, x1, y) has an integrable derivative and according to Proposition 5.1 the Fourier-cosine coefficients
show at least algebraic convergence. This gives the following estimate

e−ρ∆t

∣

∣

∣

∣

∣

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

Vk(t−m, x1)

∣

∣

∣

∣

∣

≤ e−ρ∆t
+∞
∑

k=N

|Vk(t−m, x1)|

≤ Q(t−m, x1)

(N − 1)n−1
≤ Q(t−m, x1), for N >> 1, n ≥ 1, (5.23)

for some positive constant Q independent of N . This allows to bound the error related to approximating
Gk(x3) by Fk(x3) by

|ǫ3(tm−1, x1, x3|N, [a, b])| ≤ |ǫ1(tm−1, x1, x3|[a, b])| +Q(t−m, x1)

∣

∣

∣

∣

∣

∫

R\[a,b]

f(y|x3)dy

∣

∣

∣

∣

∣

:= |ǫ1(tm−1, x1, x3|[a, b])| +Q(t−m, x1)ǫ4(x3|[a, b]), (5.24)

with 0 ≤ ǫ4(x3|[a, b]) ≤ 1. Then we get

|ǫCOS(tm−1, x1, x3|N, [a, b])| ≤ 2|ǫ1(tm−1, x1, x3|[a, b])|+|ǫ2(tm−1, x1, x3|N, [a, b])|+Q(t−m, x1)|ǫ4(x3|[a, b])|.
(5.25)

This contains an error ǫ4, which includes the density function f . In [10] it has been proposed to let the
characteristics of the stochastic process prescribe the integration interval [a, b] such that, for example,

ǫ4(x|[a, b]) < 10−5. (5.26)

We will show in Section 6.3 and Section 8.5.3 that this is not always accurate and that in some cases
it is better to take the properties of the payoff function into account too when choosing the integration
interval.
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5.2 Error propagation in the backward recursion

The coefficients Vk(t−m, x1) are recovered recursively, backwards in time. The local error ǫLoc may prop-
agate through time. In this section we study the error in the Fourier coefficients,

εk(t−m, x1) := Vk(t−m, x1) − V̂k(t−m, x1) (5.27)

and
|ε(t−m)|∞ := max

k,x1

|εk(t−m, x1)|. (5.28)

For ease of notation we consider the case of only two possible dike increase levels, u0 and u1. The results
can easily be extended to the case of more possible dike increase levels.

We introduce the construction points y∗m(x1), which represent the log-economic value for which the
optimal dike increase level changes from zero to the positive amount u1. In other words, they represent
the right side boundary of the intervals A0

m(x1). We assume that the construction points y∗m(x1) are
exact, in other words, the error resulting from applying the Bisection method is not significant. The
error propagation caused by an incorrect construction point is discussed in Section 5.3 and examples are
given in Section 7.1.

Theorem 5.1. With Nt sufficiently large, [a, b] ⊂ R sufficiently wide and a probability density function
f in C∞([a, b]), the error εk(t−m, x1) converges exponentially in N for all 1 ≤ m ≤M − 1.

Proof by induction:
A similar proof for the problem of pricing Bermudan options can be found in [11]. However, here we
explicitly discuss the error of the COS formula close the boundaries of the domain. It can also be proved
that if the local error converges algebraically, then so does ε.

Step 1: Base case

The terms Bk are exact, see equation (4.22). So, on time lattice M − 1 we have

εk(t−M−1, x1) = Ck(a, y∗M−1(x1), tM−1, x1) − Ĉk(a, y∗M−1(x1), tM−1, x1)

+ Ck(y∗M−1(x1), b, tM−1, x1 + u1) − Ĉk(y∗M−1(x1), b, tM−1, x1 + u1)

:= εk(a, y∗M−1(x1), tM−1, x1) + εk(y∗M−1(x1), b, tM−1, x1 + u1), (5.29)

where

εk(z1, z2, tM−1, y1) =
2

b− a

∫ z2

z1

(v(tM−1, y1, y) − v̂(tM−1, y1, y)) cos

(

kπ
y − a

b − a

)

dy

=
2

b− a
(d(tM−1, tM , y1) − d̂(tM−1, tM , y1|Nt)χ(z1, z2)

+
2

b− a

∫ z2

z1

(c(tM−1, y1, y) − ĉ(tM−1, y1, y)) cos

(

kπ
y − a

b− a

)

dy. (5.30)

Coefficients Vk(t−M , y1) are exact, see equation (4.17), so the only error introduced by the COS formula
is the local error ǫCOS(tM−1, y1, y|N, [a, b]). Assuming that Nt is set sufficiently large, so that the error
resulting from the Trapezoidal rule can be neglected, we obtain:

εk(z1, z2, tM−1, y1) =
2

b− a

∫ z2

z1

ǫCOS(tM−1, y1, y|N, [a, b]) cos

(

kπ
y − a

b− a

)

dy. (5.31)

The absolute error can be bounded by

|εk(z1, z2, tM−1, y1)| ≤ 2

b− a

∫ z2

z1

∣

∣

∣

∣

ǫCOS(tM−1, y1, y|N, [a, b]) cos

(

kπ
y − a

b− a

)∣

∣

∣

∣

dy

≤ 2

b− a

∫ z2

z1

|ǫCOS(tM−1, y1, y|N, [a, b])|dy. (5.32)

52



5 ERROR ANALYSIS

This is less than two times the average of |ǫCOS(tM−1, y1, y|N, [a, b])| over the interval [a, b]. The error
ǫCOS may be large close to the boundaries a and b. However, assuming that the integration range [a, b]
is chosen sufficiently wide the series truncation error ǫ2 will dominate the average. The series truncation
error ǫ2 converges exponentially with respect to N according to Proposition 5.1. This allows to bound
the error:

|εk(z1, z2, tM−1, y1)| ≤ 2

b− a
(z2 − z1)P (N)e−(N−1)ν , (5.33)

where we use the notation P (N) := maxy∈[a,b] P (y,N) and ν := miny∈[a,b] ν(y), where P (y,N) > 0 is a
function which varies less than exponentially in N and ν(y) > 0 is a function not depending on N .

Adding up the terms results in

|εk(t−M−1, x1)| ≤ 2

b− a

[

(y∗M−1(x1) − a)P (N)e−(N−1)ν + (b− y∗M−1(x1))P (N)e−(N−1)ν
]

,

|ε(t−M−1)|∞ ≤ 2P (N)e−(N−1)ν. (5.34)

It follows that the convergence of εk(t−M−1, x1) is exponential in N , like the series truncation error ǫ2.

Step 2: Inductive step

If
|ε(t−m+1)|∞ ≤ R(N)e−(N−1)ν, (Induction Hypothesis) (5.35)

where R(N) varies less than exponentially in N , then

|ε(t−m)|∞ ∼ O
(

e−(N−1)ν
)

. (5.36)

Proof: Take m ∈ {1, . . . ,M − 2} fixed. For the estimation of v(tm, x1, x3) the COS formula with
approximations V̂k(t−m+1, y1) is used. The estimated value is denoted by v(tm, x1, x3). The use of the

approximations V̂k(t−m+1, y1) introduces an additional error to Vk(t−m, x1):

εk(t−m, x1) = Ck(a, y∗m(x1), tm, x1) − Ĉk(a, y∗m(x1), tm, x1)

+ Ck(y∗m(x1), b, tm, x1 + u1) − Ĉk(y∗m(x1), b, tm, x1 + u1)

:= εk(a, y∗m(x1), tm, x1) + εk(y∗m(x1), b, tm, x1 + u1), (5.37)

where

εk(z1, z2, tm, y1) =
2

b − a

∫ z2

z1

(v(tm, y1, y) − v(tm, y1, y)) cos

(

kπ
y − a

b− a

)

dy

=
2

b − a
(d(tm, tm+1, y1) − d̂(tm, tm+1, y1|Nt))χ(z1, z2)

+
2

b − a

∫ z2

z1

(c(tm, y1, y) − c(tm, y1, y)) cos

(

kπ
y − a

b − a

)

dy, (5.38)

with c obtained by inserting V̂k(t−m+1, y1) in the COS formula:

c(tm, y1, y) = e−ρ∆t

N−1
∑′

j=0

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]

V̂j(t
−
m+1, y1)

= e−ρ∆t

N−1
∑′

j=0

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]

(Vj(t
−
m+1, y1) − εj(t

−
m+1, y1))

= ĉ(tm, y1, y) − e−ρ∆t

N−1
∑′

j=0

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]

εj(t
−
m+1, y1). (5.39)

53



5 ERROR ANALYSIS

Assuming thatNt is sufficiently large, the error ǫCOS resulting from the Trapezoidal rule can be neglected.
Next εk(z1, z2, tm, y1) can be separated into two parts:

εk(z1, z2, tm, y1) =
2

b− a

∫ z2

z1

(c(tm, y1, y) − ĉ(tm, y1, y) + ĉ(tm, y1, y) − c(tm, y1, y)) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

∫ z2

z1

(ǫCOS(tm, y1, y|N, [a, b]) + ǫ(t−m+1, y1, y)) cos

(

kπ
y − a

b− a

)

dy, (5.40)

where

ǫ(t−m+1, y1, y) = e−ρ∆t

N−1
∑′

j=0

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]

εj(t
−
m+1, y1). (5.41)

The first part is related to the local error ǫCOS and the second part is related to the terms εj(t
−
m+1, y1).

Assuming that [a, b] is chosen sufficiently wide, the first part can be bounded as before:

∣

∣

∣

∣

2

b− a

∫ z2

z1

ǫCOS(tm, y1, y|N, [a, b]) cos

(

kπ
y − a

b− a

)

dy

∣

∣

∣

∣

≤ 2

b − a
(z2 − z1)P (N)e−(N−1)ν . (5.42)

For the second part we start with

∣

∣

∣

∣

2

b− a

∫ z2

z1

ǫ(t−m+1, y1, y) cos

(

kπ
y − a

b− a

)

dy

∣

∣

∣

∣

≤ 2

b− a

∫ z2

z1

∣

∣ǫ(t−m+1, y1, y)
∣

∣ dy. (5.43)

Next we find

∣

∣ǫ(t−m+1, y1, y)
∣

∣ =

∣

∣

∣

∣

∣

∣

e−ρ∆t

N−1
∑′

j=0

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]

εj(t
−
m+1, y1)

∣

∣

∣

∣

∣

∣

≤ e−ρ∆t

N−1
∑′

j=0

∣

∣

∣

∣

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]∣

∣

∣

∣

∣

∣εj(t
−
m+1, y1)

∣

∣

≤ e−ρ∆tR(N)e−(N−1)ν

N−1
∑′

j=0

∣

∣

∣

∣

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]∣

∣

∣

∣

. (5.44)

For the last step we used the Induction Hypothesis. With the definition of Gk, equation (4.9), follows
that

N−1
∑′

j=0

∣

∣

∣

∣

ℜ
[

ϕlevy

(

jπ

b− a

)

eijπ y−a
b−a

]∣

∣

∣

∣

=

N−1
∑′

j=0

∣

∣

∣

∣

∣

b− a

2
Gj(y) +

∫

R\[a,b]

f(z|y) cos

(

jπ
z − a

b − a

)

dz

∣

∣

∣

∣

∣

≤ b− a

2

N−1
∑′

j=0

|Gj(y)| +
N−1
∑′

j=0

∫

R\[a,b]

f(z|y)dz (f ≥ 0)

≤ b− a

2

N−1
∑′

j=0

|Gj(y)| +N. (5.45)

We define

W (N) := max
y∈[a,b]

b− a

2

N−1
∑′

j=0

|Gj(y)| = O



 max
y∈[a,b]

N−1
∑′

j=0

(e−ν(y))j



 , (5.46)

which represents the sum of a geometric series and convergences in N . We end up with

∣

∣ǫ(t−m+1, y1, y)
∣

∣ ≤ e−ρ∆tR(N)e−(N−1)ν(W (N) +N) (5.47)
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and
∣

∣

∣

∣

2

b− a

∫ z2

z1

ǫ(t−m+1, y1, y) cos

(

kπ
y − a

b− a

)

dy

∣

∣

∣

∣

≤ 2

b− a
(z2 − z1)e

−ρ∆tR(N)e−(N−1)ν(W (N) +N). (5.48)

Adding up the parts gives

|εk(t−m, x1)| ≤
[

2P (N) + 2e−ρ∆tR(N)(W (N) +N)
]

e−(N−1)ν . (5.49)

This completes the proof. �

5.3 Error propagation with incorrect construction points

In Section 5.2 we made the assumption of exactly determined construction points y∗m(x1). However, the
function v̂(tm, x1, x3) is not always accurate, especially not in the vicinity of the boundaries of the com-
putational domain. This may result in finding incorrect construction points, which may have a significant
impact on the error propagation.

Suppose that construction point y∗m(x1) is estimated by the incorrect value ỹ∗m(x1). This introduces an
additional error in the estimation of Vk(t−m, x1):

Ṽk(t−m, x1)

:=
2

b− a

∫ ỹ∗
m(x1)

a

v̂(tm, x1, y) cos

(

kπ
y − a

b− a

)

dy

+
2

b− a

∫ b

ỹ∗
m(x1)

v̂(tm, x1 + ui, y) cos

(

kπ
y − a

b− a

)

dy +
2

b− a

∫ b

ỹ∗
m(x1)

b(x1, u
i) cos

(

kπ
y − a

b − a

)

dy

=
2

b− a

∫ y∗
m(x1)

a

v̂(tm, x1, y) cos

(

kπ
y − a

b− a

)

dy +
2

b− a

∫ ỹ∗
m(x1)

y∗
m(x1)

v̂(tm, x1, y) cos

(

kπ
y − a

b− a

)

dy

+
2

b− a

∫ y∗
m(x1)

ỹ∗
m(x1)

v̂(tm, x1 + ui, y) cos

(

kπ
y − a

b − a

)

dy +
2

b− a

∫ b

y∗
m(x1)

v̂(tm, x1 + ui, y) cos

(

kπ
y − a

b− a

)

dy

+
2

b− a

∫ y∗
m(x1)

ỹ∗
m(x1)

b(x1, u
i) cos

(

kπ
y − a

b− a

)

dy +
2

b− a

∫ b

y∗
m(x1)

b(x1, u
i) cos

(

kπ
y − a

b− a

)

dy

= V̂k(t−m, x1) +
2

b− a

∫ ỹ∗
m(x1)

y∗
m(x1)

[v̂(tm, x1, y) − v̂(tm, x1 + ui, y) − b(x1, u
i)] cos

(

kπ
y − a

b− a

)

dy. (5.50)

We get the error

ε̃k(t−m, x1) := Vk(t−m, x1) − Ṽk(t−m, x1)

= εk(t−m, x1) −
2

b− a

∫ ỹ∗
m(x1)

y∗
m(x1)

[v̂(tm, x1, y) − v̂(tm, x1 + ui, y) − b(x1, u
i)] cos

(

kπ
y − a

b− a

)

dy.

(5.51)

The error depends on value ỹ∗m(x1) and the difference between v̂(tm, x1, y) and v̂(tm, x1 +ui, y)+b(x1, u
i)

over the integration range. It is clear that the effect of this error can be disastrous in the backward re-
cursion, starting by the calculation of v̂(tm−1, x1, x3). However, the difference between v̂(tm, x1, y) and
v̂(tm, x1 + ui, y) + b(x1, u

i) is usually small for y close to ỹ∗m(x1) and because of that the error will be
bounded in practice. Moreover, if the interval [a, b] is sufficiently wide, then the incorrect construction
domains at the boundaries will not significantly affect the real option prices in the middle of the com-
putational domain. We will demonstrate examples where the incorrect construction points are found in
Section 7.1.
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6 Numerical experiments error

In this section we perform numerical tests to confirm the error analysis of the COS method by means of
the COS formula for pricing European options, for which a similar error analysis as in Section 5.1 holds.
In that section an exponential error convergence for density functions that belong to C∞([a, b]) was found.
However, the tests will show that the error convergence can be spoilt by roundoff errors, especially for
large values of T as we have them with real options. We start with the COS density recovery and the
Fourier-cosine series expansion of the European call and put payoff functions. Thereafter the COS formula
for pricing European call and put options is tested. Finally methods using Fourier-sine or modified Fourier
series expansions are discussed. In this section we use the abbreviations call and put options to denote
European call and European put options.

6.1 COS density recovery

In [10] the first step to explain the COS method for pricing call and put options consists of showing how
a density function f(y) can be recovered from its characteristic function, starting by

f(y) =

+∞
∑′

k=0

Gk cos

(

kπ
y − a

b− a

)

, (6.1)

with

Gk =
2

b − a

∫ b

a

f(y) cos

(

kπ
y − a

b− a

)

dy. (6.2)

The COS density recovery gives the approximation

f̂(y) =

N−1
∑′

k=0

Fk cos

(

kπ
y − a

b− a

)

, (6.3)

where

Fk :=
2

b− a
ℜ
[

ϕ

(

kπ

b− a

)

e−ikπ a
b−a

]

≈ Gk. (6.4)

We investigate the error of the density recovery for the standard normal density function

f(y) =
1√
2π

e−
1
2y2

, (6.5)

with characteristic function ϕ(u) = e−
1
2u2

. We take [a, b] = [−10, 10] and N = 25. The results are shown
in Figure 6.1. An absolute error lower than 10−6 is achieved, which is highly satisfactorily.

Next, the dependence ofN and the size of the interval [a, b] are analysed. We take interval [a, b] = [−L, L],
with L =10, 100 and 1000, and calculate the maximal absolute errors for y on the integer grid [−6 : 6].
The error introduced by the approximation of Gk by Fk can be neglected for these intervals. The left side
plot of Figure 6.2 indicates that it takes significant larger values of N to reach the same level of accuracy
for larger values L. Besides, the minimal error obtained is somewhat larger for larger L, probably because
the series expansion over a larger interval hinders the recovery, although the density function is close to
zero in the additional domain. The part where the minimal error is reached, is the so-called roundoff
plateau. In [5] the following is stated:

Let amax denote the maximum absolute value of the spectral coefficients ak for all k. Let e denote a con-
stant proportional to the roundoff error or ‘machine epsilon’, typically around 10−16 on most computers,
but somewhat larger, perhaps by a factor of 100 or more. Then when the exact coefficients fall below
eamax, spectral algorithms including interpolation will compute roundoff-corrupted coefficients that will

57



6 NUMERICAL EXPERIMENTS ERROR

−10 −5 0 5 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y

 

 

f(y)
Approximation of f(y)

−10 −5 0 5 10
−7.8

−7.6

−7.4

−7.2

−7

−6.8

−6.6

−6.4

−6.2

y

lo
g 10

|e
rr

or
|

Figure 6.1: Left: COS density recovery, right: the error ([a, b] = [−10, 10] and N = 25).
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Figure 6.2: Left: max. error on integer grid [−6 : 6], right: coefficients Fk.

flatten out at roughly ak ∼ eamax for all sufficiently large k. (“Roughly” means that coefficients in the
“Roundoff Plateau” fluctuate randomly about the indicated magnitude.).

The right plot in Figure 6.2 shows the values of the coefficients Fk. The more detailed left plot in Figure
6.3 shows that, for L = 10, the roundoff plateau is reached around N = 50. The coefficients Fk are shown
in the right plot and we have Fmax = F2 ≈ 9.52 ·10−2. The odd coefficients are much lower than the even
coefficients, because the density function is even (Gk = 0 for k odd). We have: F50/Fmax ≈ 4.23 · 10−14.
When all coefficients fall below eFmax the plateau is reached. From this we can conduct that e ≈ 10−14,
which is indeed about a factor 100 times the ‘machine epsilon’.

For L = 1000 the roundoff plateau is reached at N ≈ 4800. The corresponding coefficients thus decrease
much slower. We have F4800/Fmax ≈ 4.52 · 10−13.

The limit limk→∞ log(|Fk|)/k goes to minus infinity and the convergence of the coefficients is superge-
ometric in k (see Definition 5.3). The error has the same supergeometric convergence rate in N , until
the roundoff plateau is attained. The decreasing coefficients Fk have a big impact on when the roundoff
plateau with pricing options is reached as we will demonstrate in Section 6.3.1.
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Figure 6.3: Left: max. error on integer grid [−6 : 6], right: coefficients Fk (L = 10).

Multiple Precision

The awareness of the fact that loss of significance can occur is useful. Sometimes the solution to roundoff
errors consists of changing the order of operations ([40]). However, as long as the large coefficients are
not sufficiently accurate, we will not reach a better accuracy. An obvious solution seems to be the use
of higher precision calculations. For that reason we use the Multiple Precision Toolbox for Matlab to
investigate the influence of precision on the error of the density recovery.

Numbers are in general represented approximately as a fixed number and scaled using an exponent:

±d0.d1d2 . . . dp−1 × βE , (6.6)

where d0.d1d2 . . . dp−1 is the value of the significand, β is the base, usually 2, 10 or 16, and E is the
exponent ([40]). The number of digits in the significand is as usually called the precision p.

Single precision is a binary format that is 32 bits long and its significand has a precision of p = 24
bits (about 7 decimal digits). Double precision occupies 64 bits and its significand has a precision of
p = 53 bits (about 16 decimal digits). Matlab’s default precision is double precision. In the tests with
the Multiple Precision Toolbox we use the significand precision p with p = 24, 53 and 100 bits.

We take [a, b] = [−10, 10] and repeat the preceding error analysis. The results are shown in Figure
6.4. The upper plot shows the values of the coefficients Fk (black) and the lines indicate the values
2−pFmax. Error convergence for the various precisions is shown in the lower plot. The figure shows
that single precision is indeed less accurate than double precision. With single precision, p = 24 bits,
the roundoff plateau is reached when roughly all coefficients are below 2−24Fmax ≈ 10−8Fmax times a
factor about 100. With higher precision, for example p = 100 bits, the results are the same for low N
compared to double precision, but this higher precision gives smaller errors for large values N , where
double precision has already reached the roundoff plateau. So, the roundoff plateau is ‘delayed’ by higher
precision calculations and the minimal attainable error is lower. The computation time is linear in N
and besides the use of the Multiple Precision Toolbox for Matlab takes much more time (more than a
factor 100 in our computations). Because of that, we advise to use higher precision calculations only if
results using double precision are not sufficiently accurate.

6.2 Fourier-cosine series expansion of payoff function

In this section we discuss the Fourier-cosine series expansion of the option payoff function, which is an
important approximation in the COS method for pricing option. Both call and put payoff functions are
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Figure 6.4: Higher precision calculations, max. error on integer grid [−6 : 6] for p = 24, 53, 100.

studied. The definitions of call and put options are given in Theorem 2.1. The asset price at time t is
denoted by St, the agreed price is the strike price K and the prescribed time is the expiration time T .

Call option

The payoff of a call option at the terminal time, with scaled log-asset price y = log(ST /K), is given by
the function

gcall(y) := K(ey − 1)+. (6.7)

Fourier-cosine series expansion gives the approximation:

ĝcall(y) =

N−1
∑′

k=0

Vk cos

(

kπ
y − a

b− a

)

, (6.8)

where

Vk =
2

b− a

∫ b

a

gcall(y) cos

(

kπ
y − a

b− a

)

dy =
2

b− a
K(χ(0, b)− ψ(0, b)), (a ≤ 0 ≤ b). (6.9)

We take strike price K = 100, interval [a, b] = [−2, 2] and N = 25. The results are shown in Figure 6.5.
We see a peak in the error around y = 0, probably due to the discontinuous derivative at that point. For
larger intervals [a, b], the error around b dominates. In the next test we measure the error at y = 0 for
different values of N and different intervals [a, b]. From the results in Figure 6.6 it follows that a larger
interval [a, b] gives rise to a larger error. The coefficients Vk decrease algebraically (right side plot). The
slope on the log-log graph is -2, so the algebraic index of convergence is 2. The error decreases with
order O(|NVN |) in accordance with Proposition 5.2. The call payoff function is unbounded for y → ∞,
which gives much larger coefficients for larger intervals and with that also larger errors. The roundoff
plateau is not yet reached and the results will thus not be improved by using higher precision calculations.

Put option

The payoff of a put option reads

gput(y) := K(1 − ey)+, (6.10)
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Figure 6.5: Left: Fourier-cosine expansion gcall(y), right: the error (K = 100, [a, b] = [−2, 2] andN = 25).
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Figure 6.6: Left: convergence error of ĝcall(0), right: coefficients Vk, (K = 100).

with Fourier-cosine series expansion

ĝput(y) =

N−1
∑′

k=0

Vk cos

(

kπ
y − a

b− a

)

, (6.11)

where

Vk =
2

b− a

∫ b

a

gput(y) cos

(

kπ
y − a

b− a

)

dy =
2

b − a
K(−χ(a, 0) + ψ(a, 0)), (a ≤ 0 ≤ b). (6.12)

The put payoff function is bounded by strike price K. Because of that the Fourier coefficients do not
become as large as their sister call payoff coefficients for larger intervals [a, b], which has a positive effect
on the error especially for low values N . Error results for different values of N and different intervals
[a, b] are shown in Figure 6.7.

Comparison of the error results for the call and put payoff functions shows that about the same error is
achieved for high N (N ≈ 106). If one has only dispose of hundred coefficients for the approximation,
then the call payoff series expansion performs less satisfactorily. Because of this the COS pricing method
may give better results for pricing put options compared to call options, as we will discuss in the next
section.
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Figure 6.7: Left: convergence error details of ĝput(0), right: coefficients Vk, (K = 100).

6.3 COS method for call and put option prices

In [10] numerical experiments were performed to test the COS method and European call and put prices
were calculated. We perform here extensive tests to further analyse the error of this method.

The underlying asset has value St at time t and the strike price is K. We switch to the scaled log-asset
price process:

Xt = log(St/K). (6.13)

The asset price is modelled by a geometric Brownian motion. In accordance with Section 2.7.2 there
holds

v(t, x) = Et,x[e−r(T−t)g(XT )], (6.14)

with expectation taken with respect to the risk-neutral measure under which dXt = (r− 1
2σ

2)dt+ σdWt.
We study the results for the parameters

r = 0.1, σ = 0.25, t0 = 0, S0 = 100. (6.15)

Next we define ∆t := T − t0. The exact solutions for the call and put prices are given by their Black-
Scholes prices (see Appendix E):

vBScall(t0, x) = KexN(d2) −Ke−r∆tN(d1),

vBSput(t0, x) = Ke−r∆t −Kex + vBScall(t0, x), (6.16)

where N(.) denotes the standard normal distribution function and with

d1 =
x+ (r − 1

2σ
2)∆t

σ
√

∆t
and d2 = d1 + σ

√
∆t. (6.17)

The approximation by the COS method is a combination of the Fourier-cosine series coefficients of the
payoff function and the estimated coefficients of the density function:

v̂(t0, x) = e−r∆t b − a

2

N−1
∑′

k=0

Fk(x)Vk, (6.18)

where
b− a

2
Fk(x) = ℜ

[

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

]

, (6.19)
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and with Fourier coefficients Vk of the corresponding payoff function g(y). We obtain:

V call
k =

2

b− a
K(χk(0, b) − ψk(0, b)),

V put
k =

2

b− a
K(−χk(a, 0) + ψk(a, 0)). (6.20)

In Section 5.1 we found that the error of the COS method consists of three parts. Two of them are related
to the integration domain [a, b]. Using the same error notation for the COS option pricing formula as in
Section 5.1, there holds

ǫ1(x|[a, b]) = e−r∆t

∫

R\[a,b]

v(T, y)f(y|x)dy, (6.21)

ǫ3(x|N, [a, b]) =
b− a

2
e−r∆t

N−1
∑′

k=0

(Gk(x) − Fk(x))Vk , (6.22)

ǫ5(x|N, [a, b]) = ǫ1(x|[a, b]) + ǫ3(x|N, [a, b]). (6.23)

The series truncation error, which converges exponentially in N for the underlying Brownian motion,
reads

ǫ2(x|N, [a, b]) =
b− a

2
e−r∆t

+∞
∑

k=N

Gk(x)Vk. (6.24)

It consists of a combination of both Fourier-cosine coefficients Gk and Vk. This error dominates if the
integration range is sufficiently wide for given x. This error, for its part, is dominated by roundoff errors
for N sufficiently large.

The integration range truncation error can be calculated exactly, see Appendix E. We find for a call
option (a ≤ 0 ≤ b)

ǫ1(x|[a, b]) = exK(1 −N(b2)) −Ke−r∆t(1 −N(b1)), (6.25)

where

b1 =
b− x− (r − 1

2σ
2)∆t

σ
√

∆t
and b2 = b1 − σ

√
∆t. (6.26)

For a put option we obtain (a ≤ 0 ≤ b):

ǫ1(x|[a, b]) = −exKN(a2) +Ke−r∆tN(a1), (6.27)

where

a1 =
a− x− (r − 1

2σ
2)∆t

σ
√

∆t
and a2 = a1 − σ

√
∆t. (6.28)

In Section 5.1 we defined

ǫ4(x|[a, b]) =

∫

R\[a,b]

f(y|x)dy. (6.29)

This error is used in equation (5.25) to bound the error of the COS method. The error ǫ4 for both
financial options reads

ǫ4(x|[a, b]) = N(a1) + (1 −N(b1)). (6.30)

Integration range [a, b]
The following integration range was proposed in [10]:

[a, b] :=

[

c1 − L
√

c2 +
√
c4, c1 + L

√

c2 +
√
c4

]

, L = 10, (6.31)

where c1, c2 and c4 are the first, second and fourth cumulant of XT , given that X0 = x0. For the
underlying Brownian motion we have c1 = x0 + (r − 1

2σ
2)T , c2 = σ2T and c4 = 0. We will make critical

63



6 NUMERICAL EXPERIMENTS ERROR

comments on this integration range, which in only based on the characteristics of the stochastic process
and not on the payoff function. According to [10] the above range, with L = 10, is accurate in the range
T = 0.1 to T = 10. We investigate whether something goes wrong for T = 100.

In the next sections we perform various numerical tests to analyse the convergence of the series truncation
error (Section 6.3.1) and the integration range truncation error (Section 6.3.2).

6.3.1 Convergence and the roundoff plateau

In this section we take K = 100 (x0 = 0) and integration interval (6.31) with L equal to or larger than
10. For these values of L the errors ǫ1 and ǫ3 are not relevant. This gives the opportunity to investigate
the convergence of the series truncation error ǫ2. We calculate the error of the option prices, compared
to the exact Black-Scholes prices. Besides the error of the COS density recovery

f̂(y) =

N−1
∑′

k=0

Fk cos

(

kπ
y − a

b − a

)

, (6.32)

and the error of the payoff approximation

ĝ(y) =

N−1
∑′

k=0

Vk cos

(

kπ
y − a

b − a

)

, (6.33)

in the point y = 0, are determined.

Terminal time T = 0.1
The exact Black-Scholes prices for K = 100 and terminal time T = 0.1 are 3.66 for the call option and
2.67 for the put option. Results of the calculations are shown in Figure 6.8, on a logarithmic scale. The
left side plots correspond to the call option and the right plots to the put option. The option prices
are converging in N , but the error of the approximated option prices reaches a roundoff plateau (upper
plots). This happens just before the error of the density recovery reaches its roundoff plateau (middle
plots). At that moment the Fourier-cosine series approximation of payoff function has not yet reached
its roundoff plateau and the call payoff expansion is less accurate compared to the put payoff (lowest plots).

It takes more terms N to reach the same level of accuracy for the option prices for larger integration
intervals, because the series expansions of the functions are worse for larger integration intervals. By that
also the value of the roundoff plateau for the error of call options prices is higher. Since a Fourier-cosine
expansion of the payoff function works out better for the put option payoff, especially for larger intervals
[a, b], the error results for large L are better for put option prices.

In the Figure 6.9 the Fourier-cosine coefficients Vk, Fk(x0) and the product

ak := e−r∆t b− a

2
Fk(x0)Vk, (6.34)

associated to the call option, for L = 10, are shown. When the coefficients ak are below their maximal
absolute value amax times e ≈ 10−14 the roundoff plateau is reached. Mainly the fast decreasing coef-
ficients Fk determine how fast the plateau is reached. They decrease a little bit slower than the terms
ak, therefore the roundoff plateau for the error of the option prices is reached somewhat earlier than the
roundoff plateau of the COS density recovery. The option price error has the same convergence rate as
the coefficients Fk, namely supergeometric. The roundoff plateau has a value around 10−14.

Terminal time T = 100
Next we examine whether the COS pricing method is also accurate for a very large terminal time T = 100.
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Figure 6.8: Errors of Fourier-cosine expansions, T = 0.1 (x0 = 0).

Although this is not very realistic in the case of pricing financial options, the analysis will give insight
into possible difficulties using the COS method in the real options context, by which large terminal times
may be used. The exact Black-Scholes prices for K = 100 and T = 100 are about 99.996 for the call
option and 5.92 · 10−6 for the put option.

According to equation (6.31), a larger terminal time leads to a larger integration interval [a, b], because
then the stochastic value XT can cover a wider range. So, the interval for the call payoff expansion gets
larger, which worsens the error of its series expansion. Because of that, the error of the call option prices
is less accurate for terminal time T = 100, see the left plots in Figure 6.10. The put payoff recovery
works well for large intervals [a, b], as the function is bounded by value K. Because of that, the error of
the put option prices does not suffer significantly from a larger terminal T (right plots). Note that the
absolute errors, instead of the relative errors, are measured. The roundoff plateaus are reached for the
same values of N as for terminal time T = 0.1.

Remark 6.1. Reference [10] has priced call options using the corresponding European put option prices
and the put-call parity, which leads to the same accuracy of the puts, namely of order 10−15 for terminal
time T = 100. However, in the real options context for control problems a likewise parity does not (yet)
exist and therefore we do not use it here.

We examine the call option price error further. Again the coefficients Vk, Fk(x0) and their product ak,
for L = 10, are explored, see Figure 6.11(a). When the coefficients ak are below their maximal absolute
value amax times e the roundoff plateau is reached. Increasing the number of coefficients N in the series
expansion gives an error which is at most a factor 1015 smaller, but at least only of order 10−5.
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Figure 6.9: Convergence coefficients Vk, Fk, ak and the call option price error, T = 0.1, (x0 = 0, L = 10).
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Figure 6.10: Errors of Fourier-cosine expansions, T = 100 (x0 = 0).

In order to make more clear how the first, large coefficients influence the option price, we show the de-
velopment of the approximated call option prices in the number of terms N by an example for L = 10.
The first coefficients ak are very large, of order 1010, and positive coefficients alternates with negative
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Figure 6.11: Convergence coefficients, error and approximated call option price, T = 100 (x0 = 0,
L = 10).

ones, see upper plot in Figure 6.11(b). The lower plot illustrates how the summation over the coefficients
ak develops in N . There holds amax ≈ 1010, which is, using double precision, accurate up to about six
decimals places. This affects the attainable accuracy. Indeed this corresponds closely to the roundoff
plateau with value 10−5. This shows how the first, large coefficients affect the accuracy that can be
reached.

We demonstrated how the large coefficients affect the attainable accuracy. Suppose that the maximum
absolute value of the coefficients, amax, has accuracy 10q for some value q. We set the following rule-of-
thumb:

The summation

N−1
∑

k=0

ak can reach an accuracy of at most 10q.

Multiple Precision

Again we use the Multiple Precision Toolbox for Matlab to investigate the error convergence with higher
precision calculations. This enables us to use more accurate coefficients ak, so that the roundoff plateau
can be lowered, as illustrated in Figure 6.12. The value amax has an accuracy of thirteen decimals using
precision p = 75 and the corresponding roundoff plateau has value 10−12. However, using the Multiple
Precision Toolbox takes much more computation time (more than a factor 100 in our computations).
Again we recommend the use of higher precision calculations only if the results of double precision are
not accurate enough.
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Figure 6.12: Higher precision calculations call option price for p = 24, 53, 75, T = 100.

6.3.2 Error close to the boundaries of the domain

The COS method can be used to calculate the European option prices for many different values x simul-
taneously. However, the integration range (6.31) is defined based on only one of their values, x0. We
investigate the error for different values x ∈ [a, b]. The truncation error ǫ1 and ǫ3 may be large close to the
boundary values a and b. These errors may give difficulties when determining the construction domains
in the more involved dike-height problem, or the early-exercise points for pricing Bermudan options, if
they are located in the vicinity of the boundaries. In this section we first investigate the influence of a
low value L, for which the errors ǫ1 and ǫ3 dominate even for x0.

The integration range [a, b] suggested by equation (6.31) is based on the cumulants of the normally
distributed log-asset price XT . We may require, for example, ǫ4 < TOL for some given tolerance TOL.
The probability that a normally distributed random variable is within L standard deviations of its mean,
to be precise in the interval [c1 − L

√
c2, c1 + L

√
c2], is given by

N(c1 + L
√
c2) −N(c1 − L

√
c2) = erf

(

L/
√

2
)

. (6.35)

For example, erf(4/
√

2) ≈ 0.999937 and erf(6/
√

2) ≈ 0.999999998. So, for L = 4 we have
ǫ4(x|[a, b]) = 1 − erf

(

L/
√

2
)

≈ 6.33 · 10−5.

Reference [10] proposed to take value L = 10. A slightly smaller value L will not cause a very large error
ǫ4. However, the error

ǫ1(x|[a, b]) = e−r∆t

∫

R\[a,b]

g(y)f(y|x)dy > 0, (6.36)

which also takes into account the characteristics of the payoff function, may become too large, especially
for call options.

Figure 6.3.2 demonstrates the effects of a small value L = 4 for x0 = 0 and terminal times T = 0.1 (upper
plots) and T = 100 (lower plots). The density functions are given in the left side plots and the func-
tions e−r∆tg(y)f(y|x0) in the middle (call options) and right plot (put options). The error ǫ4 has value
6.33·10−5 in both cases. The integration range truncation error ǫ1 is represented by the red coloured areas
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and has value 1.27 ·10−3 and 6.68 for the call options for T = 0.1 and T = 100, respectively. The put pay-
off function is bounded and therefore the truncation error ǫ1 for put options is much lower, 8.75 ·10−4 and
1.40·10−4 for T = 0.1 and T = 100, respectively. Especially the errors for the large terminal time T = 100
are unacceptable. Multiplying the density function by the payoff shifts the mass. This shows that an
integration range that is defined only based on the density function is not always accurate, which we will
also illustrate by an example in Section 8.5.3. We will show that the error ǫ1 may be partly reduced by ǫ3.

Next we measure the error on the whole domain x ∈ [a, b]. Again two terminal times are considered,
T = 0.1 and T = 100. We start with the call option prices for terminal time T = 0.1. Figure 6.14 shows
the total error ǫ, the integration range truncation error ǫ1, the error ǫ3 related to approximating Gk(x)
by Fk(x), and the sum of both errors:

ǫ5(x|N, [a, b]) = ǫ1(x|[a, b]) + ǫ3(x|N, [a, b])

= e−r∆t

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

Vk

]

f(y|x)dy

= e−r∆t

∫

R\[a,b]

[g(y) − ĝ(y)] f(y|x)dy. (6.37)

The exact Black-Scholes prices are used to calculate the total error ǫ. The integration range truncation
error is given by equation (6.25) and the error ǫ3 is estimated using a numerical integration rule. We
set N = 212, so that the roundoff plateau is reached. The overview confirms that the series truncation
error ǫ2 can be neglect since the total error equals error ǫ5 nearly. The error is large in the vicinity of
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boundary value b.
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Figure 6.14: Errors approximated call option price for different values x and L, T = 0.1 (x0 = 0).

For L = 10, there holds for x = b:

ǫ1 ≈ 73.00, ǫ3 ≈ −57.54, ǫ5 ≈ 15.46. (6.38)

The error ǫ3 is negative at the b-side and compensates for the large truncation error ǫ1. This is illustrated
by Figure 6.15, where we take L = 10 ([a, b] = [−0.78, 0.80]). The upper plot shows the discounted payoff
function and its Fourier-cosine series expansion, which is symmetric in a and b. The error is large outside
the interval [a, b]. The density function f(y|x = b) is given in the middle plot. The product of both
functions, this is the integrand of

v(t0, x = b) =

∫

R

e−r∆tg(y)f(y|x = b)dy, (6.39)

appears in the third plot. The integration range truncation error ǫ1 enters by truncation of the above
integration interval R to [a, b], which is represented by the sum of the pink and light green area. Note that
the error ǫ5 equals the light green area, so the pink part only represents the error −ǫ3. This demonstrates
how the first error is compensated by the third error for x close to b. Computing the areas gives:

ǫ1 = pink + light green ≈ 73.00,
−ǫ3 = pink ≈ 57.54,
ǫ5 = light green ≈ 15.46,

(6.40)
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which corresponds to the results in Figure 6.14. We remark that the integration range truncation error
is close to zero for x in the vicinity of a. Then the error ǫ3 and the series truncation error ǫ2 remain.
The error reaches a roundoff plateau in the middle of the computational domain. Although not visible
from the figure, this plateau is a little bit higher for larger integration domains [a, b]. Results for the
put options prices are quite similar, except that the error is large at the left-hand side instead of the
right-hand side of the computational domain. Moreover, the put option errors are smaller compared to
the call errors, because their payoff function is bounded by K.
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Figure 6.15: Truncation range error ǫ1(x|[a, b]) compensated by ǫ3(x|N, [a, b]) for x = b.

The error results for the large terminal time T = 100 are shown in Figure 6.16. Only the total errors ǫ
for call (upper plot) and put options (lower plot) are given, on a logarithmic scale.

Firstly we discuss the error results for the call prices. The roundoff plateau is represented by the horizon-
tal parts. Outside this plateau the error ǫ5, which is the sum of the integration range truncation error ǫ1
and ǫ3, dominates. The value of the roundoff plateau is higher for larger values of L as the Fourier-cosine
series expansion of the call payoff is less accurate for larger intervals. For x = 0 the value L = 10 is just
large enough in order to stay outside the part where the error ǫ5 dominates. By varying the value L we
see a trade-off between a smaller error ǫ5 and smaller roundoff errors. The optimal value L for x = 0
is L = 8. However, if the density function and the exact solution are not known, it is more difficult to
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determine the optimal interval [a, b].

Secondly we take a look at the errors of the put option prices. They do not suffer from a larger value
L in the middle of the computational domain. This follows from the fact that the value of the roundoff
plateau, where the roundoff errors dominate, does not depend on L. Surprisingly, the plateau shows a
‘bump’ in the middle of the computational domain. Possibly this is due to the Gibbs phenomenon, which
is illustrated by Figure 6.17. There the Fourier-cosine series expansion of the put payoff function, for
[a, b] = [−10, 10] and N = 25, is shown. The error is highest for y = 0. The derivative of the function
g(y) increases if y approaches zero from the left side and there holds

lim
y↑0

dgput(y)

dy
= K. (6.41)

The derivative is not continuous in y = 0, which may cause the so-called Gibbs phenomenon.
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Figure 6.16: Errors approximated option prices for different values x and L, T = 100 (x0 = 0).

Remark 6.2. At last we change the proposed interval (6.31) by

[a, b] =

[

c1 − Ll

√

c2 +
√
c4, c1 + Lr

√

c2 +
√
c4

]

. (6.42)

With this we will confirm that one of the boundary of interval (6.31) is more significant. Repeating the
previous tests with Ll = 1

2L and Lr = L does not show different errors for the call option prices. The
coefficients are of the same order and the same accuracy is reached. However, the coefficients Fk decrease
faster on the smaller interval, so that the roundoff plateau is reached earlier. The results for put options
are less satisfactorily since most part of the mass in the integral represented by equation (6.14) is located
at the left side of the integration domain. This leads up to a larger error ǫ5. The results for Ll = L and
Lr = 1

2L give a higher roundoff plateau for call option because the coefficients are lowered by this, but the
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Figure 6.17: Possible explanation ‘bump’ error put prices (K = 100, [a, b] = [−10, 10], N = 25).

error ǫ5 is much higher. The put option price errors remain the same in the middle of the computational
domain. This establishes that multiplying the density function by the payoff shifts the mass and that an
integration range which only based on the density function is not always accurate.

6.3.3 SIN method

One might wonder why we use the COS method instead of a similar SIN method. Indeed a function can
also be represented by its Fourier-sine series expansion. The error results of a SIN density recovery and
the COS density recovery are similar for sufficiently large domains [a, b]. However, the Fourier-sine series
expansion of the call payoff function shows less satisfactorily results, as we present in this section.

We start with a moral principle cited from [5]:
“MORAL PRINCIPLE 1
(i) When in doubt, use Chebyshev polynomials unless the solution is spatially periodic, in which case an
ordinary Fourier series is better.
(ii) Unless you’re sure another set of basis functions is better, use Chebyshev polynomials.
(iii) Unless you’re really, really sure that another set of basis functions is better, use Chebyshev polyno-
mials.”

For a finite interval, which can always be rescaled and translated to [−1, 1], Chebyshev or Legendre
polynomials are optimal. The complete Fourier series expansion is better if a function is periodic. An
important feature of Chebyshev series is that their convergence properties are not affected by the values
of the approximated function or its derivatives at the boundaries.

The Chebyshev series expansion of a function H(θ) supported on the finite interval [−1, 1] reads

H(θ) =

+∞
∑′

k=0

akTk(θ), where Tk(θ) = cos(k cos−1(θ)), (6.43)

and with coefficients

ak =
2

π

∫ 1

−1

1√
1 − θ2

H(θ)Tk(θ)dθ. (6.44)
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There holds Tk(cosx) = cos(kx) and the transformation θ = cos(x) gives

ak = − 2

π

∫ 0

π

sin(x)
√

1 − cos2(x)
H(cosx) cos(kx)dx

=
2

π

∫ π

0

H(cosx) cos(kx)dx. (6.45)

The coefficients of H(θ) of a Chebyshev series are identical with the Fourier-cosine coefficients of H(cosx)
on the interval [0, π] and so both series expansions are equivalent under transformation. For functions
supported on any other finite interval [a, b] the Fourier-cosine series expansion can easily by obtained via
a change of variables.

Although the insistent advice in [5] to use the Chebyshev, or the equivalent Fourier-cosine series, we test
the Fourier-sine series expansion. The Fourier-sine series expansion for the call payoff function gcall(y)
reads

ĝcall
SIN (y) =

N−1
∑

k=1

Wk sin

(

kπ
y − a

b− a

)

, (6.46)

where

Wk =
2

b− a

∫ b

a

gcall(y) sin

(

kπ
y − a

b− a

)

dy =
2

b− a
K(χSIN

k (0, b) − ψSIN
k (0, b)), (6.47)

with χSIN
k (z1, z2) and ψSIN

k (z1, z2) as defined in Appendix B.

The Fourier-sine expansion always has value zero at the boundaries of the expansion interval, which may
affect the convergence rate. Results for [a, b] = [−2, 2], K = 100 and N = 23 are shown in Figure 6.18.
The errors are worse for the Fourier-sine series expansion, compared to the Fourier-cosine expansion.
Furthermore, the errors of the Fourier-cosine expansion decrease at a faster rate than the errors of the
sine expansion.
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Figure 6.18: Fourier-cosine and Fourier-sine expansion gcall(y) and the error (K = 100, [a, b] = [−2, 2]
and N = 23).

The sine functions sin(kπ y−a
b−a ) are equal to zero for y = a and y = b, and so is the series expansion at

the boundary points. Because of that, the error of the sine expansion at boundary point b = 2 remains
equal to gcall(b) ≈ 639. Difficulties of the Fourier-sine expansion arise from their boundary values.

The COS formula for pricing options, equation (6.18), is a combination of the estimated density recovery
coefficients and the payoff coefficients. A similar SIN formula does not work satisfactorily, because it is
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hampered by the Fourier-sine expansion of the call payoff function. Valuation of put options using a SIN
formula faces the same problems.

6.3.4 Modified Fourier method

Recently modifications of the classical Fourier series expansions are developed. In [19] the sin(kπθ) func-
tions (on [−1, 1]) are replaced by sin((k− 1

2 )πθ), whereas the cosine terms remain the same. They showed
that this modified Fourier expansion converges pointwise at a faster rate than the Fourier expansion for
nonperiodic functions. The modified Fourier series expansion can by used to approximate the density
and payoff functions. In this section we explain a method to pricing option using this series expansion
and we perform tests to analyse the error.

The modified Fourier series expansion of a function H(θ) supported on the finite interval [−1, 1] reads
([19]):

H(θ) ∼
+∞
∑′

k=0

ck cos (kπθ) +

+∞
∑

k=1

sk sin
(

(k − 1
2 )πθ

)

, θ ∈ [−1, 1], (6.48)

with

ck =

∫ 1

−1

H(θ) cos (kπθ) dθ and sk =

∫ 1

−1

H(θ) sin
(

(k − 1
2 )πθ

)

dθ. (6.49)

For a function h supported on the finite interval [a, b] ∈ R the modified series expansion can be obtained
via a change of variables:

x =
a+ b

2
+
b− a

2
θ. (6.50)

We get

h(x) ∼
+∞
∑′

k=0

ck cos

(

kπ
2x− (b + a)

b− a

)

+

+∞
∑

k=1

sk sin

(

(k − 1
2 )π

2x− (b+ a)

b− a

)

, x ∈ [a, b], (6.51)

with

ck =

∫ b

a

h(x) cos

(

kπ
2x− (b + a)

b− a

)

dx and sk =

∫ b

a

h(x) sin

(

(k − 1
2 )π

2x− (b + a)

b− a

)

dx. (6.52)

In Section 4.1 the Fourier-cosine series expansion of the density function and the payoff function are used
to estimate an expected value. In [10] a similar COS method for pricing call and put options was derived,
see equation (6.18). Now we use the modified Fourier series expansion to develop the so-called Mod-4
method. The option price approximation reads

v(t0, x) = e−r∆t

∫

R

g(y)f(y|x)dy

≈ e−r∆t

∫ b

a

g(y)f(y|x)dy

≈ e−r∆t

∫ b

a

g(y)





+∞
∑′

k=0

Gc
k(x) cos

(

kπ
2y − (b + a)

b− a

)

+

+∞
∑

k=1

Gs
k(x) sin

(

(k − 1
2 )π

2y − (b+ a)

b− a

)



 dy.

(6.53)

The conditional density is replaced by its modified Fourier expansion in y on [a, b], with series coefficients
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{Gc
k(x)}+∞

k=0 and {Gs
k(x)}+∞

k=1 defined by

Gc
k(x) :=

2

b− a

∫ b

a

f(y|x) cos

(

kπ
2y − (b+ a)

b− a

)

dy,

Gs
k(x) :=

2

b− a

∫ b

a

f(y|x) sin

(

(k − 1
2 )π

2y − (b+ a)

b− a

)

dy. (6.54)

We interchange summation and integration and insert the definitions

V c
k :=

2

b− a

∫ b

a

g(y) cos

(

kπ
2y − (b + a)

b− a

)

dy,

V s
k :=

2

b− a

∫ b

a

g(y) sin

(

(k − 1
2 )π

2y − (b + a)

b− a

)

dy,

which are the modified Fourier series coefficients of the payoff function. Truncation of the series results
in

v(t0, x) ≈
b− a

2
e−r∆t





N−1
∑′

k=0

Gc
k(x)V c

k +

N−1
∑

k=1

Gc
s(x)V

s
k



 . (6.55)

The coefficients Gc
k and Gc

k can be approximated in a similar way as in equation (4.13):

Gc
k(x) ≈ 2

b− a

∫

R

f(y|x) cos

(

kπ
2y − (b + a)

b− a

)

dy

=
2

b− a
ℜ
[∫

R

f(y|x)e i2kπ
b−a

ydye−ikπ (b+a)
b−a

]

=
2

b− a
ℜ
[

ϕlevy

(

2kπ

b− a

)

eikπ 2x−(b+a)
b−a

]

:= F c
k (x).

Gs
k(x) ≈ 2

b− a
ℑ
[

ϕlevy

(

2(k − 1
2 )π

b− a

)

ei(k− 1
2 )π 2x−(b+a)

b−a

]

:= F s
k (x). (6.56)

We end up with the Mod-4 formula:

v̂(t0, x) := e−r∆t
(

N−1
∑′

k=0

ℜ
[

ϕlevy

(

2kπ

b− a

)

eikπ 2x−(b+a)
b−a

]

V c
k .

+

N−1
∑

k=1

ℑ
[

ϕlevy

(

2(k − 1
2 )π

b− a

)

ei(k− 1
2 )π 2x−(b+a)

b−a

]

V s
k

)

. (6.57)

The modified Fourier coefficients of a call payoff function read

V c
k =

2

b− a
K(χc

k(0, b) − ψc
k(0, b)),

V s
k =

2

b− a
K(χs

k(0, b) − ψs
k(0, b)),

(6.58)

where the analytical solution of functions χc
k(z1, z2), χ

s
k(z1, z2), ψ

c
k(z1, z2), ψ

s
k(z1, z2) can be found in

Appendix C.

The error convergence of the Mod-4 method is analysed for a call option with terminal time T = 100.
Figure 6.19 shows the results, for which the same parameter values as for Figure 6.11(a) are used. The
roundoff plateau is reached about two times faster in N , compared to the COS method. However, two
summations need to be calculated which doubles the computation time. Possibly the implementation can
be done efficiently in order to reduce the computation time, which is important in financial applications.
The largest modified Fourier coefficients and cosine-Fourier coefficients are of the same order of magnitude
and have the same accuracy. Because of that, the minimal error reached by the mod-FOUR method is
about the same as by the COS method.
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Figure 6.19: Convergence error call option price by Mod-4 method, T = 100 (x0 = 0, L = 10).

6.4 Conclusion and discussion

We started in Section 6.1 with the COS density recovery of the standard normal distribution function.
The estimated Fourier-cosine coefficients and the error of the recovery converge supergeometrically. How-
ever, the errors have a minimal attainable value, represented by the roundoff plateau. Higher precision
calculations enable us to decrease the attainable error, but this takes much more time.

After that the payoff function of the call and put options were considered in Section 6.2. The series
expansion with a small number of coefficients N is less accurate for the call payoff function compared to
the put payoff, because the call payoff function is unbounded whereas the put payoff is bounded by K.
Besides, a larger integration interval [a, b], which results in larger coefficients for the call payoff function,
has a negative effect on the error.

The estimated Fourier-cosine coefficients of the density function and the coefficients of the payoff expan-
sion were combined in the COS option pricing formula in Section 6.3. First the series truncation error ǫ2
was studied. The error convergence is supergeometric, until a roundoff plateau is reached. The attainable
error is determined by the accuracy of the largest coefficient amax. Since a larger interval [a, b] results
in larger coefficients for the call payoff series expansion, the call options error is not accurate for large
terminal time T = 100.

After this the integration range truncation error ǫ1 and ǫ3 were explored. We showed that an interval [a, b]
which is defined only based on the density function, the error ǫ4, or the characteristics of the stochastic
process may be inaccurate. A larger integration interval lowers the error ǫ5 for given x. However, by
this also the roundoff plateau for the call option error is higher. There is a trade-off between a smaller
truncation error and smaller roundoff errors. Put option do not suffer from this as their payoff function
is bounded, which results in smaller payoff series coefficients.

For the choice of the integration interval [a, b] we recommend, if possible, to take into account the char-
acteristics of the payoff function too. A smaller interval gives rise to a larger error ǫ5. However, a larger
interval has two drawbacks. Firstly, convergence takes longer for larger intervals since the series expansion
is hampered by this. Secondly, the minimal attainable error may be higher if the coefficients are larger.
Since the value of the coefficients is known, we are able to estimate this accuracy. We advice to carefully
consider the pros and cons of possible integration intervals.
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Higher precision calculations have a positive effect on the error if the number of coefficients N is suffi-
ciently large, because the computed coefficients are more accurate. The main disadvantage is the longer
computation time this takes. Possibly the Mod-4 method, which we developed in Section 6.3.4, may
reduce the computation time. However, this method did not result in a lower call option price error
because the coefficients have the same order of accuracy.

The tests gave insight into possible difficulties we may face using the more involved dike-COS method,
which we will discuss in the next section.
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7 Numerical experiments with dike-COS method

The dike-COS method is tested on a model for a small island from [32]. This model is simplified and
not yet for practical use. However, this model will show that the method can be applied to a stochastic
impulse control problem. The numerical computations are done using Matlab 7.7.0. The computer used
has a Core2Duo 2.33 GHz CPU with 2 GB RAM.

For the numerical experiments the following parameters are used:

• Time lattice details:
t0 = 0 yr, T = 300 yr, M = 300 (∆t = 1 yr). (7.1)

• Process parameters:

µ3 = 0.025, σ3 = 0.15, ρ = 0.05, X
(1)
0 = 425 cm, X

(3)
0 = mlnAC log(3.4 · 104). (7.2)

• Extreme water level occurrences:

λ = 1 yr−1, k1 = 8.16299 · 10−1cm−1, k2 = 1.88452 · 102cm, λp = 1.2 · 10−2cm−1. (7.3)

We use an average water level process of the form dY
(2)
t = µw(t)dt. Reference [22] has based this model

on the predicted increase of water level over all climate scenarios proposed by the KNMI ([23]). The drift
µw is time-dependent and is given by

µw(t) =































0.5 for t ∈ [0, 50),
0.7 for t ∈ [50, 100),
0.9 for t ∈ [100, 150),
0.7 for t ∈ [150, 200),
0.5 for t ∈ [200, 250),
0.3 for t ∈ [250, 300].

(7.4)

Further we use the following model for the construction costs

b+(x1, u) = kf + ku

(

u2 tan(φ) + u(2x1 tan(φ) + z −H tan(φ))
)

, (7.5)

with constants kf = mlnAC22.975, ku = 1.921 ·10−4mlnAC/cm2, φ = 1.25, H = 0 cm and z = 500 cm. The
costs b+(x1, u) are increasing in x1 and u, as can be seen in Figure 7.1.

A justification of the parameter values and the functions fJ (y), lp(y), w(t) and b+(x1, u) can be found
in [22] and [32]. For more information about the discount rate for climate change analysis we refer to [20].

Integration range [a, b]
In Section 6.3.2 and 6.4 we concluded that we need to choose the integration interval [a, b] carefully. An
interval defined only based on the density function is not always accurate and it is advised to consider
the characteristics of the payoff function too. The payoff at terminal time T , v(T, x1, x3), is known and
is a call-like function in x3. However, we do not have much information about the ‘payoff functions’
v(t−m, x1, x3) at the other time levels, except that these functions are call-like too. Furthermore, the
behaviour of the option values in the recursive algorithm is involved and it is difficult to determine a
priori a correct interval [a, b]. [32] based his computational domain on the expectation of the economic
value and we partly adopt this. Although the awareness that an interval based only on the characteristics
of the density function is not necessarily accurate, we start with

[a, b] =

[

c1 − L
√

c2 +
√
c4, c1 + L

√

c2 +
√
c4

]

, (7.6)
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Figure 7.1: Construction costs b+(x1, u).

where c1, c2 and c4 are the first, second and fourth cumulant of X
(3)
T , conditioned on X

(3)
0 , respectively.

For the underlying Brownian motion we have c1 = X
(3)
0 + (µ3 − 1

2σ
2
3)T , c2 = σ2

3T and c4 = 0. We will
vary the value L in Section 7.2 and determine a good estimate for interval [a, b]. The interval for L = 2
is like the interval used in [32], which was found sufficiently large. However, we will use at least value
L = 3 in Section 7.2 since we think that our method suffers more from boundary errors.

An advantage of the proposed interval is the ability to determine the portion of the possible log-economic

value paths X
(3)
t that is covered. As we saw before, the probability that the normally distributed random

variable X
(3)
T is in the interval [c1 − L

√
c2, c1 + L

√
c2], is 1 − erf(L/

√
2).

The contents of the remainder of this section are as follows. Firstly, the approximated real option prices
and construction domains are compared to their exact solution at time tM−1. Then we discuss the
results for the dike height problem with six possible dike increase levels. Finally a discussion, including
the validation of the method, is presented in Section 7.3.

7.1 Exact solution at time tM−1

We can find the continuation value at time tM−1 analytically. This gives, assuming that the error resulting
from the Trapezoidal rule can be neglected, exact option values v(tM−1, x1, x3) and exact construction
domains Ai

M−1(x1). So, we have the possibility to compare the solution from the dike-COS-method with
the exact solution at that time lattice.

There holds

Xtm+1 |Xtm
∼ N

(

Xtm
+ (µ3 −

1

2
σ2

3)∆t, σ2
3∆t

)

, (7.7)
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and with equation (7.7) the continuation value at time tM−1 reads:

c(tM−1, x1, x3) = e−ρ∆t

∫

R

v(tM , x1, y)f(y|x3)dy

=
λβ(x1 − w(T ))

ρ− µ3

e−ρ∆t

√
2πσ3

√
∆t

∫

R

eye
− 1

2

„

y−x3−(µ3− 1
2

σ2
3)∆t

σ3
√

∆t

«2

dy

= e(µ3−ρ)∆t+x3
λβ(x1 − w(T ))

ρ− µ3
. (7.8)

The COS method gives the approximation

ĉ(tM−1, x1, x3) = e−ρ∆t

N−1
∑′

k=0

ℜ
[

ϕlevy

(

kπ

b− a

)

eikπ
x3−a

b−a

]

Vk(t−M , x1). (7.9)

Similar as in Section 6.3 the truncation error can be found analytically:

ǫ1(tM−1, x1, x3|[a, b]) = e(µ3−ρ)∆t+x3
λβ(x1 − w(T ))

ρ− µ3

[

N(a1 − σ3

√
∆t) + (1 −N(b1 − σ3

√
∆t))

]

, (7.10)

with

a1 =
a− x3 − (µ3 − 1

2σ
2
3)∆t

σ3

√
∆t

and b1 =
b− x3 − (µ3 − 1

2σ
2
3)∆t

σ3

√
∆t

. (7.11)

In Figure 7.2 the errors obtained for x1 = 425 cm and various values of L, are shown. The upper plot in
the figure shows the logarithmic absolute value of the exact continuation value and the approximated so-
lutions ĉ(tM−1, x1, x3). The inaccuracies at the left side of the computational domain are due to roundoff
errors in the terms Vk(t−M , x1). The second plot represents the error compared to the exact solution. We
set N = 212 and the roundoff plateau is reached, so no further improvement is found for higher values
of N . The integration range truncation errors ǫ1 are shown in the third plot. This error is largest close
to the boundary b, but the total error is reduced by error ǫ3 in the same way as we explained in Section
6.3.2. The roundoff errors dominate in the middle of the computational domain. The roundoff plateau
is lower for smaller sized integration intervals, because then the Fourier-cosine series expansion of the
call-like function v(tM , x1, y) is more accurate (as discussed in Section 6.2). The continuation value is
lower for a higher dike level and a smaller error will be obtained, since the expansion of a lower function
v(tM , x1, y) is more accurate.

The expected value of the economic value at time tM−1 is about mlnACe18. For the log-economic value
x3 = 18 the error is of order 10−3. It is difficult to tell in advance whether this is accurate enough for the
remainder of the dike-COS method. However, the tests of this algorithm in Section 7.2 show convergence
up to eight decimals, which is accurate enough for practical use.

Multiple Precision

In Figure 7.2 we see that the roundoff plateau for L = 6 and x1 = 425 cm has value about 10−3. The
exact continuation value for a log-economic value x3 = 18 is c(tM−1, 425, 18) ≈ 3.24 · 106. Also here
higher precision calculations can lower the roundoff plateau and improve the attainable error, see Figure
7.3.

The upper plot shows the coefficients

bk := e−ρ∆t b− a

2
Fk(x3)Vk(t−M , x1) (7.12)

and the lines indicate the values 2−p
bmax. Error convergence for various precisions is shown in the lower

plot. The roundoff plateau is reached when all coefficients are below ebmax, with e a constant propor-
tional to the ‘machine epsilon’ 2−p, by a factor about 100. For the last time in this thesis we showed
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Figure 7.2: Error approximated continuation value ĉ(tM−1, x1, y), x1 = 425 (N = 212).
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how higher precision calculations can ‘delay’ the roundoff plateau and lower the minimal attainable error.

Exact construction points

Next we will analyse the estimated construction domains at time lattice M − 1. We consider the case
of only two possible dike increase levels, u0 = 0 cm and u1 = 40 cm. In Section 5.2 the corresponding
construction points y∗m(x1) were introduced. They represent the log-economic values for which the optimal
dike increase changes from u0 to u1. The construction points at time tM−1 can be determined analytically.
Solving the root of

k(y) := v(tM−1, x1, y) − v(tM−1, x1 + u1, y) − b(x1, u
1) (7.13)

results in:

y∗M−1(x1) =

log

(

b(x1, u
1)

d(tM−1, tM , x1) − d(tM−1, tM , x1 + u1) + e(µ3−ρ)∆t λ
ρ−µ3

(β(x1 − w(T )) − β(x1 + u1 − w(T )))

)

.

(7.14)

In the dike-COS method we determine the root of

k̂(y) := v̂(tM−1, x1, y) − v̂(tM−1, x1 + u1, y) − b(x1, u
1). (7.15)

In test cases we saw that the algorithm from Section 4.2.1 did not always converge to the correct con-
struction points. This may be due to the inaccuracy of the COS formula around the boundaries a and b
or due to the roundoff errors. Both will be illustrated by an example below.

In Table 7.1 the exact construction points are shown. The approximated construction points, which are
found using the approximated real option prices, are also calculated. The incorrect values are coloured in
red. The error resulting from the Trapezoidal rule can be neglected, because Nt was set to 2000. Besides
we used N = 212, for which the roundoff plateau is reached, and the results are the same as for a higher
number of coefficients in the series expansion.

XXXXXXXXXX
y∗M−1(x1)

x1 425 465 505 665 705 745

exact 6.8823 10.1832 13.4851 26.6812 29.9774 33.2661
approx. (L = 6, b = 30.1476) 6.8823 10.1832 13.4851 26.6812 30.0208 30.1476
approx. (L = 10) 6.5956 10.1826 13.4854 26.6812 29.9774 33.2661

Table 7.1: Exact and approximated construction points.

First we discuss the construction points found using L = 6. Note that y∗M−1(745) is set equal to boundary

point b. The approximated construction point yM−1(705) is too high, because the functional k̂(y) is lower
than the exact solution close to boundary b, see Figure 7.4. This can be explained as follows. Assume
that Nt and N are chosen sufficiently large, so that the errors ǫTrap and ǫ2 are not relevant and that the
roundoff error is not significant. The error ǫ5 is positive in the vicinity of boundary b. Then the error
resulting from approximation of k(y) by k̂(y) is dominated by

k(y) − k̂(y) ≈ ǫ5(tM−1, x1, y) − ǫ5(tM−1, x1 + u, y)

= e−ρ∆t

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
z − a

b− a

)

(

Vk(t−M , x1) − Vk(t−M , x1 + u)
)

]

f(z|y)dz > 0.

(7.16)
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Since the function v(tM , x1, z) is larger than v(tM , x1 + u, z), the above error is positive for y close to

b. It follows that the estimated function k̂ is lower than the true function for values y close to b. From
that we can deduce that the use of function k̂ can result in a larger construction point. Since the area
where the integration range truncation error occurs is small, the difference between the estimated and
exact construction point is at most as large as the size of that area. Besides, the function k(y) is small
for y close to the construction point, which will reduce the propagating error from using the incorrect
construction point.
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Figure 7.4: Incorrect construction point y∗M−1(705), L = 6, due to truncation errors.

Incorrect construction points y∗M−1(425), y∗M−1(465) and y∗M−1(505), which are found with L = 10, have
another origin. These errors are caused by the roundoff errors in the COS formula. From Figure 7.2
we can deduce that the roundoff plateau is of order 10 for dike level x1 = 425 cm and L = 10. This
error results in a completely incorrect construction point, as shown in Figure 7.5. The use of higher
precision calculations would improve the approximation of the option values and by that also help to
find the correct construction points. Since the roundoff plateau is lower for the higher dike levels, the
corresponding estimated construction points are more accurate.

The dike-COS method results in incorrect construction points if they are located in the vicinity of the
boundary points, no matter what the size of the interval is. However, in Section 5.3 we concluded that
the error propagation due to an incorrect construction point is not necessarily large. Since the area
where integration range truncation errors occur is small, the difference between the estimated and true
construction domains is at most as large as the size of that area. A larger integration interval resembles
the original domain beter, but results in a higher roundoff plateau and so the construction points are less
accurate for higher values of L. Besides, error convergence takes longer for larger values of L.

We try to find a compromise between those inaccuracies. Based on the results we recommend to choose
an interval [a, b] as small as possible, but the integration interval should not become too small. Then the
remaining question is: “When is the integration interval too small?” If the real option value increases
significantly with larger interval, then the interval is too small since this indicates that the truncation
error is still large. However, be aware of the fact that also larger roundoff errors, introduced by a larger
interval, may give rise to a larger option value. In Section 7.2 we will carefully choose the interval [a, b].
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Figure 7.5: Incorrect construction point y∗M−1(425), L = 10, due to roundoff errors.

7.2 Tests dike-COS method for an island

Tests for six possible dike increase levels are performed in this section. We take U = {0, 20, 40, 60, 80, 100}
cm. The selection of this set is relevant according to the corresponding results of [32] and [22]. In our

tests we calculate the costs of flood protection at time t0 = 0 with initial dike level X
(1)
0 = 425 cm

and initial log-economic value of endangered goods X
(3)
0 = log(3.4 · 104), that is the real option value

v̂(t0, X
(1)
0 , X

(3)
0 ). We also calculate the control for an economic value of endangered goods equal to its

expected value:

Et0,x[exp(X
(3)
t )] = eX

(3)
0 eµ3t. (7.17)

The corresponding optimal dike re-informcement times are named the construction times.

Dike level grid x1

The initial dike level is X
(1)
0 = 425 cm and for efficiency reasons we take x1 ∈ [425, 445, 465, 485, . . .]

cm. In the formulation of the stochastic impulse control problem an infinite number of dike increases is
in principle possible. In our discrete problem 299 dike heightenings would be possible, which suggests a
number of dike level grid points D > 300. However, in the computations a much smaller grid size D is
sufficiently in order to receive the same results as for a larger grid size, which takes more computation
time. On the other hand, too few grid points restricts the number of possible dike reinforcements and
affects the real option price. So, there is a kind of convergence of the real option value in D, which ends
for a sufficiently large value D. We set the following requirement:

Requirement 1. (Number of dike level grid points D)
The number of dike level grid points, D, is chosen so that a larger grid size than D does not change the
real option price anymore.

For a larger interval [a, b] for the stochastic log-economic process, a larger number of dike level grid
points is found to be necessary. In the computations with L = 10 the smallest grid size that satisfies
Requirement 1 is D = 22.

Different values N and L
For the first test we take D = 22, Nt = 2000 and Nbis = 80 and we vary the values L and dd, with
N = 2dd. Table 7.2 shows the real option values, which are converging in N . It takes longer to reach
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a certain level of accuracy for larger L, because a larger integration domain [a, b] is considered and this
hampers the Fourier-cosine series expansion. The roundoff plateau is reached for a value dd = 9 or higher.
Then the approximated real option values are determined up to order 10−12. We find that it is optimal
to increase the dikes by amount u1 = 40 cm at times 146, 185, 232 and 293 year if the economic value
follows its expected value. A star behind the option values denotes incorrect construction times.

H
H

H
H

H
dd

L
3 4 5 6

7 0.054641240657122 0.054639775446674 0.054692112772278 0.054792918686524
8 0.054641228170803 0.054639394656118 0.054639397409261 0.054640233884875
9 0.054641228170836 0.054639394656626 0.054639393884868 0.054639393888552
10 0.054641228170837 0.054639394656630 0.054639393884868 0.054639393888602
11 0.054641228170845 0.054639394656578 0.054639393884862 0.054639393888611
12 0.054641228170843 0.054639394656622 0.054639393884867 0.054639393888628

H
H

H
H

H
dd

L
7 8 9 10

7 0.05881685976427* 0.15771593001764* 0.26737494457923* -7.27116764048778*
8 0.054642533152485 0.05522974047843* 0.08394024278452* 0.08594733953757*
9 0.054639393888217 0.054639393597885 0.054639854708965 0.054671755101117
10 0.054639393888749 0.054639393888550 0.054639394116050 0.054639393902084
11 0.054639393888760 0.054639393888599 0.054639394115560 0.054639393869343
12 0.054639393888802 0.054639393888803 0.054639394115929 0.054639393883667

Table 7.2: Real option values v̂(t0, X
(1)
0 , X

(3)
0 ), effect of dd and L (D = 22, Nt = 2000, Nbis = 80).

H
H

H
H

H
dd

L
3 4 5 6 7 8 9 10

7 49 56 64 72 80 90 98 104
8 65 75 87 98 111 124 137 147
9 96 113 132 152 173 196 216 231
10 159 190 223 258 295 339 373 402
11 302 371 411 477 551 626 697 752
12 563 691 822 968 1131 1301 1470 1453

Table 7.3: CPU times (s), effect of dd and L (D = 22, Nt = 2000, Nbis = 80).

A higher value L implies a larger integration interval [a, b] and this resembles the original domain better.
Therefore, we would expect a kind of convergence in L. However, the method is affected by the roundoff
errors especially for higher values L, see Section 7.1. This may lead up to incorrect construction domains.
So, there is a trade-off between a smaller truncation error and smaller roundoff errors. The results in the
table are satisfactorily, but we suppose that for higher values L the roundoff errors have an increasing
influence. An accuracy about eight decimals is obtained, which is sufficiently accurate in practice. We
decide to use L = 6 ([a, b] = [−1.03, 30.15]) in the sequel of Section 7.2. Then a dike level grid size
D = 16 suffices to fulfil Requirement 1. We did not find that one of the boundaries affects the option
value more significantly, which we did in the case of pricing European options in the end of Section 6.3.2.
Because of that we hold on to the proposed interval (7.6).

Computation time has order O(N log2N), which fits in with the computation times in Table 7.3. We will
use dd = 10 hereafter. The method takes longer for larger L, because then there are fewer construction
domains outside the interval [a, b]. The Bisection method is not used if the root is not in the interval
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considered.

Number of Bisection iterations

Next the influence of the number of iterations of the Bisection method is analysed. The Bisection method
gives only a domain in which the root of an equation is present. Without using any other information,
the optimal estimate for the location of the root is the midpoint of the smallest range found. In that
case, the absolute error of the values yi

m(x1) and y0
m(x1) from Section 4.2.1, after Nbis iterations, is at

most

ǫBis :=
b− a

2Nbis+1
, (7.18)

assuming that the approximated real option values are accurate enough.

The option prices converge in Nbis and only fifteen Bisection iterations already give an accuracy of eight
decimals, see second column of Table 7.4. Also the maximal absolute error of the construction domains
Ai

m(x1) is calculated, with the construction domains for Nbis = 80 as reference values. The error is de-
creasing in Nbis and matches to ǫBis for small values Nbis. The computation time is linear in the number
of Bisection iterations. To save computation time we take Nbis = 30 in the computations to follow.

Nbis v̂(t0, X
(1)
0 , X

(3)
0 ) max. |error| Ai

m(x1) ǫBis CPU time (s)

10 0.054639898069154 1.540 · 10−2 1.522 · 10−2 80
15 0.054639394346814 4.756 · 10−4 4.757 · 10−4 93
20 0.054639393889160 1.486 · 10−5 1.487 · 10−5 106
30 0.054639393888593 3.566 · 10−8 1.451 · 10−8 132
40 0.054639393888570 1.366 · 10−7 1.417 · 10−11 158
50 0.054639393888573 9.191 · 10−8 1.385 · 10−14 183
60 0.054639393888602 0 1.352 · 10−17 202
80 0.054639393888602 ref. values 1.289 · 10−23 236

Table 7.4: Effect number of Bisection iterations Nbis, reference value Nbis = 80 (D = 16, Nt = 2000, L =
6, dd = 10).

Damage function

While solving the dike height problem, the proportional damage function d̂(tm−1, tm, x1|Nt) is invoked
(M − 1)D + 1 times. For the estimation of the time integral in equation (4.5), Nt integration steps are
used. According to Table 7.5, the option values are decreasing in Nt, due to the convexity of the inte-
grand G(s) = λe(s−tm−1)(µ3−ρ)β(x1−w(s)) for many parameter values. Then the expected flooding costs

are overestimated for low Nt. This is confirmed by the value exp(X
(3)
0 )d̂(0, 140, 425), which represents

the expected flooding costs, at time t = 0, until time t = 140 for a constant dike level of 425 cm. We
take 140 time Nt integration steps for the estimation. This value is also decreasing in Nt, see the third
column in the table. The computational complexity is linear in Nt, but this is not clearly visible from the
computation times since the computations of the proportional damage function do not take much time.
We use Nt = 500 in the sequel of this section.

Control law

Figure 7.6 shows the optimal control law at different time levels. Note that the y-axis represents the
economic value of endangered goods instead of its logarithmic value. The combination of a dike level and
economic value prescribes the optimal dike increase level. This control law resembles the results in [32]
and validates the dike-COS method by that.

Computational issues

The Matlab function to determine the construction domains took most time. In every Bisection iteration

87



7 NUMERICAL EXPERIMENTS WITH DIKE-COS METHOD

Nt v̂(t0, X
(1)
0 , X

(3)
0 ) exp(X

(3)
0 )d̂(0, 140, 425|140.Nt) CPU time (s)

1 0.054643980565217 0.030464763124572 125
5 0.054639577366423 0.030459784657939 125

10 0.054639439756035 0.030459629074051 125
25 0.054639401227439 0.030459585512857 126
50 0.054639395721874 0.030459579288269 126

100 0.054639394345947 0.030459577732698 126
250 0.054639393960807 0.030459577297203 127
500 0.054639393905492 0.030459577234736 128

1000 0.054639393891919 0.030459577219379 129
2000 0.054639393888593 0.030459577215585 131

Table 7.5: Effect integration steps Nt (D = 16, L = 6, dd = 10, Nbis = 30).
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Figure 7.6: Dike height control law (Nt = 500, Nbis = 30, dd = 10, L = 6).
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two option values v̂(tm, x1, y) need to be evaluated. Perhaps the algorithm can be speed up by imple-
mentation of a faster method to determine the construction domains. As we remarked before, Newton’s
method is faster, but less robust, compared to the Bisection method. Also a combination of these two
methods, by which the Bisection method is used to determine a ‘good’ initial value for Newton’s method,
did not work satisfactorily, because it needed ‘trial and error’ to discover how accurate the initial value
had to be. Moreover, calculation of the matrix-vector products Mw, although done efficiently by the
FFT algorithm, takes a significant part of the computation time.

7.2.1 Variation of parameters

So far, we only varied the method parameters L, dd, Nbis and Nt. Next we study the variation in
the model parameters. Firstly the time lattice parameters are changed. Then the effect of the process
parameters, and finally the effect of the water level parameters, is studied. The following fixed parameters
are used:

L = 6, dd = 10, Nbis = 30, Nt = 500. (7.19)

The dike level grid size is changed during the parameter variation in order to satisfy Requirement 1. Since
parameter variation investigates the effect on the real option values and not longer the convergence is
studied, we round off the real option values to six decimal places. Also the construction times, which are
the optimal dike reinforcement times corresponding to an economic value of endangered goods equal to its
expected value, are calculated. The values between brackets after the construction times denote the cor-
responding optimal dike increase levels. When this is omitted, a heightening by amount 40 cm is optimal.

Number of control times M − 1
In practice not a fixed discrete time grid at which the dikes can be increased is prescribed. However, de-
creasing the number of control times makes the problem not very unrealistic as the true decision making
process is not continuous. Since the computational complexity is linear in M , a lower value M will reduce
the computation time significantly, as appears from Table 7.6. The real option values are decreasing in
M , because an increasing number of control times gives more flexibility, which is profitable and lowers
the expected costs in this model.

M dt Construction times v̂(t0, X
(1)
0 , X

(3)
0 ) CPU time (s)

300 1 146 185 232 293 0.054639 127
250 1.2 145.2 184.8 231.6 292.8 0.054653 106
200 1.5 145.5 184.5 231 292.5 0.054674 84
150 2 146 184 232 292 0.054712 63
100 3 144 186 231 291 0.054795 42
50 6 144 186 234 294 0.055101 21
30 10 150 180 230 290 0.055637 13
10 30 150 180 240 270 0.060753 4

Table 7.6: Effect number of control times M (D = 16).

Terminal time T
The dike height problem is modelled on a finite horizon. It is assumed that the dike and water level
remain constant after the terminal time. In [22] these assumptions are justified because all arctic and
mountain ice is predicted to melt in the foreseeable future and the sea level will stay constant once all ice
has melted. A lowered terminal time does not effect the solution greatly, see Table 7.7, and we deduce
that the terminal time T = 300 was chosen large enough so that the terminal condition has a negligible
effect on the present value function. Then the discount factor is e−ρT ≈ 3.06 ·10−7, which almost neglects
the costs at the end of the time horizon.
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T Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

300 146 185 232 293 0.054639
275 146 185 232 0.054638
250 146 185 232 0.054633
225 146 185 0.054570
200 146 185 0.054355

Table 7.7: Effect terminal time T , ∆t = 1 (M = T ).

Different discount rates ρ
If the economic value follows its expected value it is optimal to increase the dikes in 146, 185, 232 and
293 years. This is in line with the dike reinforcement times in [32]. In that research a continuous set of
possible dike increase levels was used and construction times 148, 190, 239 and 296 year were found with
dike increase levels varying from 33.89 to 42.80 cm.

At first sight, performing the first dike reinforcement after 146 years seems very late. The construction
costs of the first reinforcement are mlnAC47.40. However, the discount factor e−ρ·146 ≈ 6.76 · 10−4 highly
diminishes the discounted costs at the present and delays heightening. It is clear that discounting has a
huge impact on the costs. Because of that we investigate the effect of the risk adjusted discount factor.

ρ Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

0.03 142(60) 199 250 299 0.991676
0.04 143 182 229 289 0.223078
0.05 146 185 232 293 0.054639
0.06 147 187 235 297 0.014958
0.08 150 191 239 298 0.001890
0.10 153 193 242 299 0.000597

Table 7.8: Effect risk adjusted discount factor ρ.

The risk adjusted discount factor has a significant influence on the expected flood protection costs and the
construction times, see Table 7.8. The real option values are affected significantly if ρ is only changed from
0.05 to 0.04 or 0.06. A lower discount rate values the discounted future flooding costs higher and gives,
although the discounted construction costs are higher, rise to earlier dike construction times. Contrary, a
higher discount rate values the discounted future costs lower and delays the heightenings. Choosing the
risk adjusted discount factor ρ is often difficult and not objective, which is a main drawback of using the
dynamic programming approach when risks cannot be hedged.

µ3 Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

0.015 165 215 285 0.024604
0.020 154 197 253 0.037313
0.025 146 185 232 293 0.054639
0.030 138 174 215 266 0.077522
0.035 132 165 201 245 298 0.106959

Table 7.9: Effect expected economic growth rate µ3.

Economic value of endangered goods

Next we change the expected economic growth rate µ3 and economic volatility σ3. The results are shown
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in Table 7.9 and Table 7.10. Not surprisingly, the costs of flood protection are increasing in µ3 and this
advances the heightenings. The real option values are decreasing in σ3, because less volatility reduces
the change on a realisation with very high costs. This is apparently more significant than the reduced
probability on a realisation with low costs. The expected economic value is independent of the economic
volatility, therefore the volatility does not significantly affect the construction times.

σ3 Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

0.05 145 184 231 291 0.080049
0.10 145 185 231 292 0.069289
0.15 146 185 232 293 0.054639
0.20 146 186 233 294 0.039675
0.30 148 168 237 296 0.017664

Table 7.10: Effect economic volatility σ3.

Worst-case scenario

The average water level process w(t) we used in the previous tests, was based on the predicted increase
of water level over all climate scenarios proposed by the KNMI ([23]). [22] states that the drift µw(t) in
equation (7.4) is around 25% higher for all t in the worst-case scenario. This worst-case scenario water
level is denoted by

wextr(t) :=

∫ t

0

1.25µw(s)ds = 1.25w(t). (7.20)

We define a third scenario, with lower water level, by wlow(t) := 0.75w(t). Figure 7.7 shows the three
piecewise linear average water levels and Table 7.11 gives the construction times and real option values
for the three different scenarios. The worst-case scenario rises flood protection costs by a factor 2.3.
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Figure 7.7: Deterministic average water level scenarios wlow(t), w(t) and wextr(t).

Extreme water level parameters
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Scenario Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

wlow(t) 176 230 299 0.017674
w(t) 146 185 232 293 0.054639
wextr(t) 128 157 192 233 287 0.130315

Table 7.11: Effect average water level w(t).

The extreme water levels occurrences are modelled by four parameters:

λ, the intensity rate of the extreme water level process qt,
k1, reciprocal of scale parameter of the Gumbel distribution for extreme water level sizes,
k2, location parameter of the Gumbel distribution for extreme water level sizes,
λp, rate parameter in fraction lost function lp.

(7.21)

We vary these parameters one after the other. Firstly, the intensity rate λ, in which the real option value
is increasing according to the results in Table 7.12.

λ Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

0.5 153 194 243 299 0.036494
1 146 185 232 293 0.054639
1.5 141 180 226 285 0.069113
2 138 177 221 279 0.081640
3 134 172 215 271 0.103264

Table 7.12: Effect intensity rate λ.

Variables k1 and k2 are the parameters of the Gumbel distribution. The mean of the extreme water level
sizes is k2 +γEM/k1, with γEM ≈ 0.58 the Euler-Mascheroni constant. Not surprisingly, the flood protec-
tion costs are increasing in k2, see Table 7.13. The variance of the extreme water level sizes, (π/k1)

2/6,
is decreasing in k1, like the mean. Both cut down the costs of flood protection if k1 is raised, see Table 7.14.

k2 Construction times E[J ] v̂(t0, X
(1)
0 , X

(3)
0 )

1.68452 · 102 165 207 260 175.52 0.020966
1.78452 · 102 155 195 244 299(20) 185.52 0.033955
1.88452 · 102 146 185 232 293 195.52 0.054639
1.98452 · 102 137 175 220 277 205.52 0.087676
2.08452 · 102 129 165 207 260 215.52 0.140872

Table 7.13: Effect Gumbel distribution parameter k2.

At last we consider the effect of rate parameter λp. The function lp is chosen to match the geographical
distribution of the economic goods on the island and the flow patterns of water on the island due to
differences in altitude (see [22]). This is difficult and requires large amounts of data. The lives of the
inhabitants of the island are modelled as part of the economic value. Since people’s lives can nowadays
often be rescued during a flood, lp was chosen to approach one only slowly:

lp(y) = max(1 − e−λpy, 0). (7.22)

A larger rate parameter λp implies higher flood losses and a higher real option value (Table 7.15).
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k1 Construction times E[J ] Var(J ) v̂(t0, X
(1)
0 , X

(3)
0 )

7.16299 · 10−2 130 164 204 253 299 196.51 320.60 0.163881
7.66299 · 10−2 138 175 219 274 195.98 280.13 0.091717
8.16299 · 10−2 146 185 232 293 195.52 246.86 0.054639
8.66299 · 10−2 153 194 244 299 195.12 219.19 0.034222
9.16299 · 10−2 161 203 258 194.75 195.92 0.022285

Table 7.14: Effect Gumbel distribution parameter k1.

λp Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

0.6 · 10−2 152 193 242 299 0.037935
1.2 · 10−2 146 185 232 293 0.054639
2.4 · 10−2 140 178 223 282 0.076134
4.8 · 10−2 135 172 216 272 0.101033
9.6 · 10−2 131 168 210 264 0.125851
12.0 · 10−2 130 166 209 262 0.133119

Table 7.15: Effect rate parameter λp.

Initial dike level

Finally, we investigate the effect of the initial dike level. Not surprisingly, Table 7.16 shows that that the
construction times are advanced when the initial dike level is lower. The value function for an initial dike
level of 575 cm matches to exp(X

(3)
0 )d(0, 300, 575) ≈ 0.0000114, which represents the expected flooding

costs, at time t = 0, over the whole time horizon when the dike level remains equal to 575 cm.

X
(1)
0 (cm) Construction times v̂(t0, X

(1)
0 , X

(3)
0 )

300 24 69 108 141 180 226 285 27.31634
325 54 94 129 165 207 260 7.988053
375 104 137 175 219 277 0.599131
425 146 285 232 293 0.054639
475 195 245 0.004717
525 260 0.000288
575 - 0.000011

Table 7.16: Effect initial dike level X
(1)
0 .

7.3 Discussion

This discussion consists of two parts, the first part is about the validation of the dike-COS method and
the second part about the contingent claims approach.

Validation

Tests of the dike-COS method are worked out one after the other. We started with a comparison between
the approximated real options values and their exact solution at time tM−1. After that we made some
critical notes on the estimation of the construction domains. However, we suppose that the possible in-
correct construction domains in the vicinity of the boundaries a and b do not significantly affect the real
options values in the middle of the computational domain. The results in Tables 7.2, 7.4 and 7.5 show
satisfactory convergence in the method parameters N , [a, b], Nbis and Nt. Validation of the dike-COS
method is mainly based on the control law in [32], on page 31, Figure 7. Our Figure 7.6 resembles these
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results closely. Validation has also taken place for the COS formula for pricing call and put options.

The processes are modelled on a large time horizon, T = 300, but it is difficult to predict, for example, the
water level rise after the next century. Besides, we may doubt whether the geometric Brownian motion
used to model the economic value of endangered goods is realistic, especially on the long term. However,
the real option value is not significantly affected by the characteristics of the processes in the distant
future.

Hedging risk, contingent claims approach

As we discussed before it is better to use the contingent claims approach (CCA) than the dynamic pro-
gramming principle approach (DPPA) if information about possible hedge instruments is available. The
partial differential equation resulting from the CCA can be converted back to a value function. Then a
risk-free interest rate is used for discounting and the expectation is taken under a risk-neutral measure,
see, for example, Section 2.7.

In our example with the island no information about possible hedge instruments was available and a risk
adjusted discount rate was used. Suppose that hedge instruments exist to hedge the risks of floods or
the economic uncertainty and discounting is done with the risk-free interest rate. The risk-free rate is
usually lower than the risk adjusted discount rate and the results in Table 7.8 show that this leads to a
higher real option value. However, the drift of the stochastic process is reduced under the risk-neutral
measure, which reduces the option value (Table 7.9). We wonder when the option values resulting from
the dynamic programming approach and the contingent claims approach are similar. The same question
can be asked for the real option values in the harvesting problem, Section 2.8.1 and Section 2.8.2. In
[18] necessary and sufficient conditions for the DPPA price equal to the CCA price are derived. If there
exist hedge instruments to hedge the risks of floods or the economic uncertainty, then probably a same
analysis applies for the dike height problem. Then all costs of risk factors like societal risk should be
carefully taken into account.
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8 The dike-Q-COS method: A Fourier-cosine valuation method

for two-factor Lévy processes

In this part the dike height model with two stochastic processes is considered. The economic value
of endangered goods is stochastic. Furthermore, we use a stochastic average water level, instead of a
deterministic one. The dike-COS method from Section 4 is extended to handle this problem. We start
in Section 8.1 with the formulation of the model. Then we explain the COS convolution formula and
the Quadrature-COS formula, in order to develop the dike-Q-COS method in Section 8.4. Tests of this
recursive algorithm for an island are performed in Section 8.6.

8.1 Second model for the dike height problem

The future climate change and temperature rise, which depend mainly on the concentration green house
gasses, are uncertain. Because of that there is a highly uncertain future water level, contrary to the model
with deterministic water level w(t) in Section 4. In an attempt to match this uncertainty, we proposed
the following stochastic model for the average water level in Section 3.3.1

Y
(2)
t = w(t) + σwW

(2)
t , (8.1)

where σw ≥ 0 is the constant water level volatility. We define the surplus water level process by

X
(2)
t := σwW

(2)
t ∼ N (0, σ2

wt). (8.2)

The deterministic function w(t) is known and the process X
(2)
t is a zero mean Brownian motion with

variance σ2
wt. In Figure 8.1 simulated paths for σw = 1 are shown.
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Figure 8.1: Simulated paths stochastic average water level Y
(2)
t = w(t) +X

(2)
t , σw = 1.

Let Xt = [X
(1)
t , X

(2)
t , X

(3)
t ]′ denote the state process. The second model is summarised by:

dX
(1)
t = 0, for t ∈ (tm, tm+1),

dX
(2)
t = σwdW

(2)
t , for t ∈ (tm, tm+1),

dX
(3)
t = (µ3 − 1

2σ
2
3)dt+ σ3dW

(3)
t , for t ∈ (tm, tm+1),

Xtm
= Xt−m

+ [um, 0, 0]′, m ∈ N.

(8.3)
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Remark 8.1. Under this model the water level may become negative. This is not a problem since the

initial water level Y
(2)
0 = w(0) is just a reference value, whereas, in the financial world, models for asset

prices do often not allow negative values.

Again at any time t one has to decide whether to increase the dike height, and if so by which amount,
or to do nothing and wait until the next time. Let v(t, x) = v(t, x1, x2, x3) denote the expected costs of
flood protection at time t, with dike level x1, surplus water level x2 and log-economic value of endangered
goods x3, under optimal heightenings. This value function is represented by:

v(t, x1, x2, x3) = inf
u∈U

Et,x





∑

τi∈[t,T ]

e−ρ(τi−t) exp(X(3)
τi

)lp(w(τi) +X(2)
τi

+ Jτi
−X(1)

τi
)

+
∑

t≤tm<T

e−ρ(tm−t)b(X
(1)

t−m
, um) + e−ρ(T−t)bT (X

(1)
T , X

(2)
T , X

(3)
T )



 ,

(t, x) = (t, x1, x2, x3) ∈ [0, T ]× R3, (8.4)

where τi denote the times at which an extreme water level occurs. After terminal time T the dike height
and surplus water level are assumed to remain constant and the terminal costs are given by the expected
flooding costs hereafter:

v(T, x1, x2, x3) = bT (x1, x2, x3)

:= ET,x





∑

τi∈[T,∞)

e−ρ(τi−T ) exp(X(3)
τi

)lp(w(T ) + x2 + Jτi
− x1)





=
λβ(x1 − w(T ) − x2)

ρ− µ3
exp(x3). (8.5)

The associated HJB-QVI reads

max
[

− vt(t, x) + ρv(t, x) − Lv(t, x) − λ exp(x3)β(x1 − x2),

v(t, x) − inf
u∈U

[v(t, x + (u, 0, 0)) + b(x1, u)]
]

= 0, (t, x) = (t, x1, x2, x3) ∈ [0, T ) × R3,(8.6)

with

Lv(t, x) = (µ3 −
1

2
σ2

3)
∂v

∂x3
(t, x) +

1

2
σ2

w

∂2v

∂x2
2

(t, x) +
1

2
σ2

3

∂2v

∂x2
3

(t, x). (8.7)

For the extended dike-COS method we use the same discrete time grid as before, t0, . . . , tm, . . . , tM , and
the same finite set of dike increase levels U = {u0, . . . , uK}. The dynamic programming principle gives,
for m = M, . . . , 1

v(tm−1, x1, x2, x3) = Etm−1,x





∑

τi∈[tm−1,tm]

e−ρ(τi−tm−1) exp(X(3)
τi

)lp

(

w(τi) +X(2)
τi

+ Jτi
− x1

)





+ Etm−1,x
[

e−ρ∆tv(t−m, x1, X
(2)
tm
, X

(3)
tm

)
]

. (8.8)

The first part, the running costs from flooding, is discussed in Section 8.2 and the continuation part
comes up in Section 8.3. At the control times it holds that:

v(t−m, x1, x2, y) = Mv(tm, x1, x2, y)

= min
ui∈U

[

v(tm, x1 + ui, x2, y) + b(x1, u
i)
]

, (m 6= 0,M). (8.9)
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8.2 COS convolution formula for the expected flood losses

In this section we use the convolution of density functions to develop the COS convolution for estimation
of the flood losses during the time interval [tm−1, tm]. They depend on the total water level,

w(s) +X(2)
s + Jsdqs, (8.10)

and the expected discounted flood losses read:

Etm−1,x





∑

τi∈[tm−1,tm]

e−ρ(τi−tm−1) exp(X(3)
τi

)lp

(

w(τi) +X(2)
τi

+ Jτi
− x1

)





=

∫ tm

tm−1

λe−ρ(s−tm−1)Etm−1,x[exp(X(3)
s )lp

(

w(s) +X(2)
s + J − x1

)

]ds

=

∫ tm

tm−1

λe−ρ(s−tm−1)Etm−1,x[exp(X(3)
s )]Etm−1,x[lp(w(s) +X(2)

s + J − x1)]ds

= exp(x3)

∫ tm

tm−1

λe(s−tm−1)(µ3−ρ)Etm−1,x[lp(w(s) +X(2)
s + J − x1)]ds

:= exp(x3)d(tm−1, tm, x1, x2). (8.11)

First we approximate the time integral in the proportional damage function d by an integration rule.

Then the expectation is approximated by a COS formula for the sum X
(2)
s + J .

The time integral is approximated by applying the equidistant Composite Trapezoidal rule, with Nt

integration steps:

d1(tm−1, tm, x1, x2) =

Nt
∑

p=0

ypH(tm−1, x1, x2, ϑp), (8.12)

where
H(tm−1, x1, x2, ϑp) := λe(ϑp−tm−1)(µ3−ρ)Etm−1,x[lp(w(ϑp) +X

(2)
ϑp

+ J − x1)], (8.13)

and yp denote the weights of the quadrature node ϑp ∈ [tm−1, tm] with p = 0, 1, 2, . . . , Nt. We remark
that the function H does not represent the Hamiltonian in this section. Note that the expectation can

be represented by a double integral since there are two random variables, X
(2)
s and J . However, the

convolution of both density functions enables us to reduce it to a single integral:

H(tm−1, x1, x2, ϑp) = λe(ϑp−tm−1)(µ3−ρ)Etm−1,x[lp(w(ϑp) +X
(2)
ϑp

+ J − x1)]

= λe(ϑp−tm−1)(µ3−ρ)

∫

R

∫

R

lp(w(ϑp) + x+ y − x1)fX
(2)
ϑp

|X(2)
tm−1

(x|x2)dxfJ (y)dy

= λe(ϑp−tm−1)(µ3−ρ)

∫

R

lp(w(ϑp) + z − x1)

∫

R

f
X

(2)
ϑp

|X(2)
tm−1

(z − y|x2)fJ (y)dydz

= λe(ϑp−tm−1)(µ3−ρ)

∫

R

lp(w(ϑp) + z − x1)fZϑp |X
(2)
tm−1

(z|x2)dz, (8.14)

where the function f
Zs|X(2)

tm−1

(z|x2) is the convolution of f
X

(2)
s |X(2)

tm−1

and fJ :

f
Zs|X(2)

tm−1

(z|x2) :=

∫

R

f
X

(2)
s |X(2)

tm−1

(z − y|x2)fJ (y)dy. (8.15)

Since the process X
(2)
s and the extreme water level size J are independent, the characteristic function of

Zs = X
(2)
s + J is the product of both individual characteristic functions:

ϕ
Zs|X(2)

tm−1

(u|x2) = ϕ
X

(2)
s |X(2)

tm−1

(u|x2)ϕJ (u)

= eiux2ϕ
X

(2)
s −X

(2)
tm−1

(u)ϕJ (u). (8.16)
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In the next step the expectation in the function H is approximated by a COS formula. The COS method,
for an integration domain [aZ , bZ ] ⊂ R, NZ terms in the series expansion, and the above relation give
the following formula:

Ĥ(tm−1, x1, x2, ϑp)

:= λe(ϑp−tm−1)(µ3−ρ)

NZ−1
∑′

k=0

ℜ
[

ϕ
Zϑp |X

(2)
tm−1

(

kπ

bZ − aZ
|x2

)

e
−ikπ

aZ
bZ−aZ

]

Vk(x1 − w(ϑp))

= λe(ϑp−tm−1)(µ3−ρ)

NZ−1
∑′

k=0

ℜ
[

ϕ
X

(2)
ϑp

−X
(2)
tm−1

(

kπ

bZ − aZ

)

ϕJ

(

kπ

bZ − aZ

)

e
ikπ

x2−aZ
bZ−aZ

]

Vk(x1 − w(ϑp)),

(8.17)

with (for aZ ≤ x ≤ bZ)

Vk(x) =
2

bZ − aZ

∫ bZ

aZ

lp(z − x) cos

(

kπ
z − aZ

bZ − aZ

)

dz (k 6= 0)

=
2

bZ − aZ

∫ bZ

aZ

max(1 − e−λp(z−x), 0) cos

(

kπ
z − aZ

bZ − aZ

)

dz

=
2

bZ − aZ

∫ bZ

x

(1 − e−λp(z−x)) cos

(

kπ
z − aZ

bZ − aZ

)

dz

=
2

bZ − aZ

∫ bZ

x

cos

(

kπ
z − aZ

bZ − aZ

)

dz − eλpx 2

bZ − aZ

∫ bZ

x

e−λpz cos

(

kπ
z − aZ

bZ − aZ

)

dz

=
2

kπ

(

sin(kπ) − sin

(

kπ
x− aZ

bZ − aZ

))

+
2e−λp(bZ−x)

(kπ)2 + λ2
p(bZ − aZ)2

·
[

(aZ − bZ)λpe
λp(bZ−x)

· cos

(

kπ
x− aZ

bZ − aZ

)

+ λp(bZ − aZ) cos(kπ) + kπeλp(bZ−x) sin

(

kπ
x− aZ

bZ − aZ

)

− kπ sin(kπ)

]

,

V0(x) = 2
bZ − x

bZ − aZ
− 2

1 − e−λp(bZ−x)

λp(bZ − aZ)
. (8.18)

We name this the COS convolution formula. Other density functions than the Gumbel distribution can
easily be incorporated as long as the characteristic function is known. A COS formula can also be derived
to estimate the function β(h) for the model with deterministic water level (Section 4.3) if the density
function of J is unknown whereas the characteristic function is known.

We end up with

d̂(tm−1, tm, x) :=

Nt
∑

p=0

ypĤ(tm−1, x1, x2, ϑp)

= λe(ϑp−tm−1)(µ3−ρ)
Nt
∑

p=0

yp

NZ−1
∑′

k=0

ℜ
[

ϕ
X

(2)
ϑp

−X
(2)
tm−1

(

kπ

bZ − aZ

)

ϕJ

(

kπ

bZ − aZ

)

e
ikπ

x2−aZ
bZ−aZ

]

Vk(x1 − w(ϑp)).

(8.19)

Remark 8.2. We can rewrite the function H as

H(tm−1, x1, x2, ϑp) = λe(ϑp−tm−1)(µ3−ρ)Etm−1,x1,x2 [β(x1 − w(ϑp) −X
(2)
ϑp

)]

= λe(ϑp−tm−1)(µ3−ρ)

∫

R

β(x1 − w(ϑp) − x)f
X

(2)
ϑp

|X(2)
tm−1

(x|x2)dx. (8.20)

This is a one-dimensional integral. One might wonder why we do not apply the COS method to this
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expectation. However, no analytical solution for the corresponding Fourier-cosine coefficients,
∫ z2

z1

β(x1 − w(θp) − x) cos

(

kπ
x− z1
z2 − z1

)

dx, (8.21)

was found.

8.3 Quadrature-COS formula for the continuation value

In [12] a method for pricing Bermudan and discretely monitored barrier options under the Heston stochas-
tic volatility model has been developed. Under this two-dimensional model the variance of the logarithm
of the stock price is modelled by a square-root process. The method is a combination of a Fourier-cosine
series expansion and a high-order quadrature rule in the other dimension. We follow a similar way to
estimate the two-factor expectation in the continuation part of the real option value in equation (8.8).

We consider the continuation value

c(tm−1, x1, x2, x3) := Etm−1,x
[

e−ρ∆tv(t−m, x1, X
(2)
tm
, X

(3)
tm

)
]

= e−ρ∆t

∫

R2

v(t−m, x1, y2, y3)f(y|x)dy. (8.22)

The processesX
(2)
t andX

(3)
t are independent, so the conditional density function is f(y|x) = f2(y2|x2)f3(y3|x3),

where f2 and f3 are the density functions of the surplus water level process and the log-economic value,
respectively. Truncation of the outer-integral yields

c1(tm−1, x1, x2, x3) = e−ρ∆t

∫ b2

a2

∫

R

v(t−m, x1, y2, y3)f3(y3|x3)dy3f2(y2|x2)dy2

=

∫ b2

a2

G(t−m, x1, y2, x3)f2(y2|x2)dy2, (8.23)

with

G(t−m, x1, y2, x3) := e−ρ∆t

∫

R

v(t−m, x1, y2, y3)f3(y3|x3)dy3. (8.24)

The outer-integral is approximated by applying a J-point equidistant Composite Trapezoidal rule:

c2(tm−1, x1, x2, x3) =

J−1
∑

q=0

wqf2(θq|x2)G(t−m, x1, θq, x3), (8.25)

where wq denote the weights of the quadrature node θq with q = 0, 1, 2, . . . , J − 1.. In the last step the
conditional expectation that is represented by function G is replaced by a COS formula, resulting in

ĉ(tm−1, x1, x2, x3) = e−ρ∆t
J−1
∑

q=0

wqf2(θq|x2)

N−1
∑′

k=0

ℜ
[

ϕ3levy

(

kπ

b− a

)

eikπ
x3−a

b−a

]

Vkq(t
−
m, x1), (8.26)

with

Vkq(t
−
m, x1) =

2

b− a

∫ b

a

v(t−m, x1, θq, y3) cos

(

kπ
y3 − a

b− a

)

dy3 (8.27)

and ϕ3levy(u) = ϕ3(u|0) the characteristic function of the log-economic process. Finally, we interchange
the summations:

ĉ(tm−1, x1, x2, x3) = e−ρ∆tℜ





N−1
∑′

k=0

J−1
∑

q=0

wqf2(θq|x2)ϕ3levy

(

kπ

b− a

)

Vkq(t
−
m, x1)e

ikπ
x3−a

b−a





= e−ρ∆tℜ





N−1
∑′

k=0

Qk(tm−1, x2, x1)e
ikπ

x3−a

b−a



 , (8.28)
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where

Qk(tm−1, x2, x1) :=

J−1
∑

q=0

wqf2(θq|x2)ϕ3levy

(

kπ

b− a

)

Vkq(t
−
m, x1). (8.29)

We call this equation the Q(uadrature)-COS formula. Let Φ denote the J × J ×N matrix with entries
[

wqf2(θq|x2)ϕ3levy

(

kπ
b−a

)]

k,q,p
. This matrix is time-independent.

Addition of the expected flood losses and the continuation value yields

v̂(tm−1, x1, x2, x3) := exp(x3)d̂(tm−1, tm, x1, x2) + e−ρ∆tℜ





N−1
∑′

k=0

Qk(tm−1, x2, x1)e
ikπ

x3−a

b−a



 . (8.30)

Remark 8.3. The average water level process Y
(2)
t (equation (8.1)) can cover a wider range than the

surplus water level process X
(2)
t (equation (8.2)), see Figure 8.1. Using the surplus water level instead

allows to narrow the truncation of the outer integral in (8.23) more and therefore less integration points
are required. This is the reason why we use the surplus water level. Other processes for the water level can
easily be used, as long as the density function is known. In order to have a time-independent matrix Φ,
a stationary process is preferred. If the density function is unknown, whereas the characteristic function
is known, then the COS density recovery can be used to estimate the density function.

8.4 Recursion formula for coefficients Vkq

Similar to the backward recursion of the coefficients in Section 4.2, we can find a recursive algorithm for
the terms Vkq(t

−
m, x1).

Coefficients at time t−M
The coefficients Vkq(t

−
M , y1) have an analytical representation:

Vkq(t
−
M , x1) =

2

b− a

∫ b

a

v(T, x1, θq, y) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

∫ b

a

λβ(x1 − w(T ) − θq)

ρ− µ3
exp(y) cos

(

kπ
y − a

b− a

)

dy

=
λβ(x1 − w(T ) − θq)

ρ− µ3

2

b− a
χk(a, b). (8.31)

Coefficients at time t−m, 1 ≤ m ≤M − 1
Assume that we can find the so-called construction domains Ai

m(x1, θq) ⊂ [a, b], which represent the
intervals with log-economic values for which it is optimal to perform a heightening by amount ui at
time tm, for dike level x1, if the surplus water level has value θq. We can split the integral into parts,
independent of k, but in dependence of q:

Vkq(t
−
m, x1) =

2

b− a

∫ b

a

v(t−m, x1, θq, y3) cos

(

kπ
y3 − a

b− a

)

dy3

=
2

b− a

∫ b

a

min
ui∈U

[

v(tm, x1 + ui, θq, y3) + b(x1, u
i)
]

cos

(

kπ
y3 − a

b− a

)

dy3

=

K
∑

i=0

2

b− a

∫

Ai
m(x1,θq)

v(tm, x1 + ui, θq, y3) cos

(

kπ
y3 − a

b − a

)

dy3

+

K
∑

i=1

2

b− a

∫

Ai
m(x1,θq)

b(x1, u
i) cos

(

kπ
y3 − a

b− a

)

dy3

:=
K
∑

i=0

Ckq(A
i
m(x1, θq), tm, x1) +

K
∑

i=1

Bk(Ai
m(x1, θq), x1, u

i) (m 6= 0,M). (8.32)
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The approximation of the first parts reads

Ĉkq(z1, z2, tm, y1)

=
2

b− a

∫ z2

z1

v̂(tm, y1, θq, y3) cos

(

kπ
y3 − a

b− a

)

dy3

=
2

b− a

∫ z2

z1

exp(y3)d̂(tm, tm+1, y1, θq) cos

(

kπ
y3 − a

b− a

)

dy3

+
2

b− a

∫ z2

z1

e−ρ∆tℜ





N−1
∑′

j=0

Q̂j(tm, θq, x1)e
ijπ

x3−a

b−a



 cos

(

kπ
y3 − a

b − a

)

dy3

=
2

b− a
d̂(tm, tm+1, y1, θq)χk(z1, z2) + e−ρ∆tℜ





N−1
∑′

j=0

Mk,j(z1, z2)Q̂j(tm, θq, y1)



 . (8.33)

The terms Bk are known analytically, see equation (4.22). We end up with a matrix-vector product
representation:

V̂q(t
−
m, x1) =

L
∑

i=0

2

b− a
d̂(tm, tm+1, x1 + ui, θq)χ(Ai

m(x1, θq)) +

L
∑

i=0

e−ρ∆tℜ{M(Ai
m(x1, θq))ŵ

i}

+

L
∑

i=1

2

b− a
b(x1, u

i)ψ(Ai
m(x1, θq)), (m = 1, . . . ,M − 2), (8.34)

with

ŵi := {ŵi
j}N−1

j=0 with ŵi
j := Q̂j(tm, x1 + ui, θq), ŵi

0 =
1

2
Q̂0(tm, x1 + ui, θq). (8.35)

At time t−M−1 we use the exact vector:

wi := {wi
j}N−1

j=0 with wi
j := Qj(tM−1, x1 + ui, θq), wi

0 =
1

2
Q0(tM−1, x1 + ui, θq). (8.36)

Algorithm

The algorithm the solve the dike height problem under the model with a stochastic water level now reads

Algorithm 2. (Dike-Q-COS method)

Initialisation:

• Calculate coefficients Vkq(t
−
M , x1) for k = 0, 1, . . . , N − 1, q = 0, 1, . . . , J − 1 and all possible

dike levels x1.

• Prepare the matrix Φ.

Main loop to recover V̂ (t−m, x1):
For m = M − 1 to 1:

• Determine the construction domains Ai
m(x1, θq).

• Compute V̂q(t
−
m, x1) for all possible dike levels and q = 0, 1, . . . , J − 1 (with the help of the

FFT algorithm).

• Compute Q̂(tm−1, x1, θq) for all possible dike levels and q = 0, 1, . . . , J − 1.

Final step:

Compute v̂(t0, x1, x2, x3) by inserting V̂kq(t
−
1 , x1) into equation (8.30).
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Construction domains

In [12] Newton’s method is used to find the early-exercise points for pricing Bermudan options. This
algorithm is applied for all θq simultaneously. However, here the construction domains Ai

m(x1, θq) are
determined for each θq separately, using the Bisection method and by the same algorithm as in Section
4.2.1. We did not discover a way to speed up the determination of the construction domains. Parallel
computing may be used to perform the calculations for all θq simultaneously.

Computational complexity

Two extra complexity dimensions are added to the overview in (4.30):

J, number of integration points θq,
NZ , the number of coefficients in the series expansion in equation (8.17).

(8.37)

Calculation of the first coefficients Vkq(t
−
M , x1) is of order O(NJD). However, the computational effort in

the initialisation step is dominated in J by preparation of the matrix Φ, which takes O(NJ2) operations.
Determination of the construction domains and calculation of the new coefficients V̂ (t−m, x1) are both
linear in J . Computation of the new terms Q̂ has order O(NJ2D) complexity. The computational
complexity of the proportional damage function is linear in NZ . The complexity of the main loop is
therefore

O
(

(M − 1)
[

DKJ(Nbis +NtNZ +N log2N) +NJ2D
]

)

. (8.38)

The computational complexity of the final step has order O(NtNZ +N).

Authors contribution

The dike-Q-COS method is mainly based on the COS method for pricing financial options under the
two-dimensional Heston model ([12]) and the dike-COS method. As we discussed before we need to keep
track of the dike level and a kind of cashflow from flooding costs is added, which expands the algorithm.
We used the convolution of density functions to develop the COS convolution for estimation of the two-
dimensional expectation in the proportional damage function d. We noticed that is useful to consider
the so-called surplus water level in order to narrow the range of the process that is used to model the
stochastic average water level.

8.4.1 Extensions to alternative models

In Section 3.3 we proposed some extensions of the first dike height model. A model with stochastic
average water level has been employed before. Here we discuss how the dike-Q-COS method may be
adapted to apply it to the models with recovery rate and soil compression and deterioration rate.

In general, these extensions add an extra space-dimension to the value function. The calculation of the
expected flood losses and the continuation value gets more involved by that. The expectations with re-
spect to the additional random variable can be estimated by using a quadrature rule, as we did in Section
8.3. However, this will significantly increase the computational complexity.

Soil compression and deterioration rate

In Section 3.3.3 we discussed the model with a soil compression and deterioration rate. The process ςt
was assigned to recall the time of the last heightening. By this an extra space dimension was added to
the value function. A rate of soil compression and deterioration was added by function γ. If this function
is deterministic, depending on ςt, then the dike level process between the control times is known and the
expectations do not depend on this variable. Probably much more dike level grid points are required in
order to work with compressed levels, which increases the computation time significantly. Besides, the
calculation of the proportional damage function is more involved when the dike level changes.
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Recovery rate

A model including a recovery rate for the flood losses was proposed in Section 3.3.4. The flood losses

that are not yet recovered are remembered by the additional process X
(4)
t , which adds an extra space

dimension to the problem. The jumps in the processes X
(3)
t and X

(4)
t are time-dependent, so they do not

satisfy the requirements of a Lévy process as they do not have stationary increments. The processes can
be approximated by Lévy processes on the time interval [tm, tm+1] by considering a time-independent
recovery rate and a constant average water level during that period. The most difficult part by adapting
the dike-Q-COS method to this problem is finding the appropriate characteristic functions and density
functions. Maybe a PDE method to solving the associated Hamilton-Jacobi-Bellman equation will be
easier to apply in this case.

8.5 Error Analysis

In this section we analyse the error of the dike-Q-COS method. There are similarities to the error analysis
of the dike-COS method with deterministic water level (Section 5). We focus on the additional elements.

8.5.1 Local error dike-Q-COS method

We start with analysing the local error of the Composite Trapezoidal integration rule plus the COS con-
volution formula and the error in the derivation of the Quadrature-COS formula.

The error introduced by approximation of the proportional damage function with the Composite Trape-
zoidal rule, with Nt integration steps, is denoted by

ǫd1(tm−1, tm, x1, x2|Nt) := d(tm−1, tm, x1, x2) − d1(tm−1, tm, x1, x2|Nt). (8.39)

The function H is approximated by the COS convolution formula and we define

ǫCOSconv(NZ , [aZ , bZ ]) := sup
m,x1,x2,ϑp

|H(tm−1, x1, x2, ϑp) − Ĥ(tm−1, x1, x2, ϑp|NZ , [aZ , bZ ])|. (8.40)

The rate of convergence depends on the convolution of density functions fZs
, according to the analysis

in Section 5.1. The error introduced by the COS convolution formula results in

ǫd2(tm−1, tm, x1, x2|Nt, NZ , [aZ , bZ ]) := d1(tm−1, tm, x1, x2|Nt) − d̂(tm−1, tm, x1, x2|NZ , [aZ , bZ ], Nt)

=

Nt
∑

p=0

yp

(

H(tm−1, x1, x2, ϑp) − Ĥ(tm−1, x1, x2, ϑp)
)

≤ ǫCOSconv

Nt
∑

p=0

yp. (8.41)

The total local error introduced by approximation of the proportional damage function is

ǫd(tm−1, tm, x1, x2|NZ , [aZ , bZ ], Nt)| := d(tm−1, tm, x1, x2) − d̂(tm−1, tm, x1, x2|NZ , [aZ , bZ ], Nt)

≤ ǫd1(tm−1, tm, x1, x2|Nt) + ǫd2(tm−1, tm, x1, x2|NZ , [aZ , bZ ], Nt).

(8.42)

The local error of the Quadrature-COS formula is defined by

ǫQCOS(tm−1, x1, x2, x3|N, [a, b], J, [a2, b2]) := c(tm−1, x1, x2, x3) − ĉ(tm−1, x1, x2, x3|N, [a, b], J, [a2, b2]).
(8.43)

Errors in approximation of c are introduced in three steps: the truncation of the integration range over
the surplus water level, discretization of the surplus water level dimension and approximation of the
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integral with the Composite Trapezoidal rule, and the error introduced by the COS formula. We will
discuss the three errors one after the other:

1. Surplus water level integration range truncation error:

ǫc1(tm−1, x1, x2, x3|[a2, b2]) := c(tm−1, x1, x2, x3) − c1(tm−1, x1, x2, x3|[a2, b2])

= e−ρ∆t

∫

R\[a2,b2]

∫

R

v(t−m, x1, y2, y3)f3(y3|x3)dy3f2(y2|x2)dy2

= e−ρ∆t

∫

R\[a2,b2]

G(t−m, x1, y2, x3)f2(y2|x2)dy2. (8.44)

This error depends on the speed of decay to zero of the function G, which is increasing in the surplus
water level, times the surplus water level density.

2. Discretization error induced by approximating the surplus water level integral with the Composite
Trapezoidal rule:

ǫc2(tm−1, x1, x2, x3|J, [a2, b2]) := c1(tm−1, x1, x2, x3|[a2, b2]) − c2(tm−1, x1, x2, x3|J, [a2, b2]). (8.45)

The quadrature error converges with order O(J−2) if G(t−m, x1, x, x3)f2(x|x2) ∈ C2([a2, b2]) ([1]).

3. The error introduced by using the COS method: The function G is approximated by

Ĝ(t−m, x1, θq, x3) := e−ρ∆t

N−1
∑′

k=0

ℜ
[

ϕ3levy

(

kπ

b− a

)

eikπ
x3−a

b−a

]

Vkq(t
−
m, x1). (8.46)

The error

ǫCOS(tm−1, x3|N, [a, b]) := sup
x1,θq

|G(t−m, x1, θq, x3) − Ĝ(t−m, x1, θq, x3|N, [a, b])| (8.47)

converges exponentially in N for smooth densities if the integration range [a, b] is sufficiently wide, as
discussed in Section 5.1. The summation over the terms Ĝ results in the error:

ǫc3(tm−1, x1, x2, x3|N, [a, b], J, [a2, b2]) := c2(tm−1, x1, x2, x3|J, [a2, b2]) − ĉ(tm−1, x1, x2, x3|N, [a, b], J, [a2, b2])

=

J−1
∑

q=0

wqf(θq|x2)
(

G(t−m, x1, θq, x3) − Ĝ(t−m, x1, θq, x3)
)

≤ ǫCOS(tm−1, x3|N, [a, b])
J−1
∑

q=0

wqf2(θq|x2)

≈ ǫCOS(tm−1, x3|N, [a, b])
∫ b2

a2

f2(y2|x2)dy2

≤ ǫCOS(tm−1, x3|N, [a, b]). (8.48)

The local error of the Q-COS method can be bounded by

|ǫQCOS(tm−1, x1, x2, x3|N, [a, b])| ≤ |ǫc1(tm−1, x1, x2, x3|[a2, b2])| + |ǫc2(tm−1, x1, x2, x3|J, [a2, b2])|
+ |ǫCOS(tm−1, x3|N, [a, b])|. (8.49)

The local error of the dike-Q-COS-method reads

ǫLoc(tm−1, x1, x2, x3) := v(tm−1, x1, x2, x3) − v̂(tm−1, x1, x2, x3)

= exp(x3)ǫd(tm−1, tm, x1, x2) + ǫQCOS(tm−1, x1, x2, x3). (8.50)
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Following the arguments in Section 5.1 shows that for integration intervals [aZ , bZ ], [a2, b2] and [a, b]
chosen sufficiently wide and Nt, J and NZ sufficiently large, the series truncation error ǫ2 of the COS
method dominates the overall local error. The error convergence is exponentially in N dimension if
f3(y3|x3) ∈ C∞([a, b]), and quadratic in J dimension if G(t−m, x1, x, x3)f2(x|x2) ∈ C2([a2, b2]).

Remark 8.4. The dike-Q-COS method is inaccurate in the vicinity of boundary values a and b, like
the dike-COS method. Besides, errors occur for x2 close to the boundaries a2 and b2, because then the
summation

∑J−1
q=0 wqf(θq|x2) is not accurate.

8.5.2 Error propagation in the backward recursion

Again the coefficients Vkq(t
−
m, x1) are recovered recursively, backwards in time, as in the dike-COS method.

The error ǫ may propagate through time. In this section we study the error in the Fourier coefficients,

εkq(t
−
m, x1) := Vkq(t

−
m, x1) − V̂kq(t

−
m, x1) (8.51)

and
|ε(t−m)|∞ := max

k,q,x1

|εkq(t
−
m, x1)|. (8.52)

Again the case of only two possible dike increase levels is considered, u0 and u1 and the results can easily
be extended to the case of more dike increase levels. The construction points y∗m(x1, θq) denote the change
from no dike increase to an optimal reinforcement by amount u1. We assume that the construction points
are exact, in other words the error resulting from applying the Bisection method is not significant. Errors
may be introduced if incorrect points are found, then a similar analysis as in Section 5.3 applies. The
theory in this section resembles the dike-COS method error analysis in Section 5.2.

Theorem 8.1. With [a, b] ⊂ R sufficiently large the error ε(t−m) converges as the local error ǫLoc for all
1 ≤ m ≤M − 1.

Proof by induction:
Step 1: Base case

The terms Bk are exact, see equation (4.22), so at time t−M−1 we have

εkq(t
−
M−1, x1) = Ckq(a, y

∗
M−1(x1, θq), tM−1, x1) − Ĉkq(a, y

∗
M−1(x1, θq), tM−1, x1)

+ Ckq(y
∗
M−1(x1, θq), b, tM−1, x1 + u1) − Ĉkq(y

∗
M−1(x1, θq), b, tM−1, x1 + u1)

:= εkq(a, y
∗
M−1(x1, θq), tM−1, x1) + εkq(y

∗
M−1(x1, θq), b, tM−1, x1 + u1), (8.53)

where

εkq(z1, z2, tM−1, y1) =
2

b− a

∫ z2

z1

(v(tM−1, y1, θq, y) − v̂(tM−1, y1, θq, y)) cos

(

kπ
y − a

b− a

)

dy. (8.54)

The coefficients Vkq(t
−
M , y1) are exact, see equation (8.31), so the only error caused by the Q-COS formula

is the local error ǫLoc. We obtain:

εkq(z1, z2, tM−1, y1) =
2

b− a

∫ z2

z1

ǫLoc(tM−1, y1, θq, y|N, [a, b], J, [a2, b2], NZ , [aZ , bZ ], Nt) cos

(

kπ
y − a

b − a

)

dy.

(8.55)

We can bound the error by:

|εkq(z1, z2, tM−1, y1)| ≤ 2

b− a

∫ z2

z1

|ǫLoc(tM−1, y1, θq, y|N, [a, b], J, [a2, b2], NZ , [aZ , bZ ], Nt)|dy

∼ O (ǫLoc) . (8.56)

Adding up the two terms results in

|ε(t−M−1)|∞ ∼ O (ǫLoc) . (8.57)
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Step 2: Inductive step

If

|ε(t−m+1)|∞ ∼ O(ǫLoc) (Induction Hypothesis) (8.58)

then

|ε(t−m)|∞ ∼ O (ǫLoc) . (8.59)

Proof: Take m ∈ {1, . . . ,M − 2} fixed. For the estimation of v(tm, x1, x2, x3) the Q-COS formula with
approximations V̂kq(t

−
m+1, y1) is used. This estimated real option value is denoted by v(tm, x1, x2, x3).

The use of the approximations V̂kq(t
−
m+1, y1) introduces an extra error to Vkq(t

−
m, x1):

εkq(t
−
m, x1) = Ckq(a, y

∗
m(x1, θq), tm, x1) − Ĉkq(a, y

∗
m(x1, θq), tm, x1)

+ Ckq(y
∗
m(x1, θq), b, tm, x1 + u1) − Ĉkq(y

∗
m(x1, θq), b, tm, x1 + u1)

:= εkq(a, y
∗
m(x1, θq), tm, x1) + εkq(y

∗
m(x1, θq), b, tm, x1 + u1), (8.60)

where

εkq(z1, z2, tm, y1) =
2

b− a

∫ z2

z1

(v(tm, y1, θq, y) − v(tm, y1, θq, y) cos

(

kπ
y − a

b− a

)

dy

=
2

b− a

∫ z2

z1

(d(tm, tm+1, y1, θq) − d̂(tm, tm+1, y1, θq))e
y cos

(

kπ
y − a

b− a

)

dy

+
2

b− a

∫ z2

z1

(c(tm, y1, θq, y) − ĉ(tm, y1, θq, y) cos

(

kπ
y − a

b − a

)

dy

+
2

b− a

∫ z2

z1

(ĉ(tm, y1, θq, y) − c(tm, y1, θq, y)) cos

(

kπ
y − a

b− a

)

dy, (8.61)

with c obtained by inserting V̂kq(t
−
m+1, y1) in the Q-COS formula:

c(tm, y1, θq, y) = e−ρ∆t

N−1
∑′

j=0

J−1
∑

p=0

ℜ
[

wpf(θp|θq)ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

V̂jp(t−m, x1)

= e−ρ∆t

N−1
∑′

j=0

J−1
∑

p=0

ℜ
[

wpf(θp|θq)ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

(Vjp(t−m+1, y1) − εjp(t
−
m+1, y1))

= ĉ(tm, y1, θq, y) − e−ρ∆t

N−1
∑′

j=0

J−1
∑

p=0

ℜ
[

wpf(θp|θq)ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

εjp(t
−
m+1, y1).

(8.62)

εkq(z1, z2, tm, y1) consist of three parts, one related to error ǫd, one related to the local error of the Q-COS
formula, and one related to the terms εjp(t

−
m+1, y1). The first part equals:

2

b− a
(d(tm, tm+1, y1, θq) − d̂(tm, tm+1, y1, θq))χ(z1, z2) ∼ O(ǫd). (8.63)

The second part can be bounded as before by:

2

b − a

∫ z2

z1

ǫQCOS(y1, θq, y|N, [a, b], J, [a2, b2]) cos

(

kπ
y − a

b− a

)

dy ∼ O (ǫQCOS) . (8.64)

The third part is equal to:

εkq(z1, z2, tm, y1) =
2

b− a

∫ z2

z1

(ǫ(t−m+1, y1, θq, y)) cos

(

kπ
y − a

b− a

)

dy, (8.65)
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where

ǫ(t−m+1, y1, θq, y) = e−ρ∆t

N−1
∑′

j=0

J−1
∑

p=0

ℜ
[

wpf(θp|θq)ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

εjp(t
−
m+1, y1). (8.66)

For this part we start with applying the Cauchy-Schwartz inequality to error ǫ:

(eρ∆tǫ(t−m+1, y1, θq, y)))
2 =





J−1
∑

p=0

wpf(θp|θq)







N−1
∑′

j=0

ℜ
[

ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

εjp(t
−
m+1, y1)











2

≤
J−1
∑

p=0

(wpf(θp|θq))
2

J−1
∑

p=0







N−1
∑′

j=0

ℜ
[

ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

εjp(t
−
m+1, y1)







2

.

(8.67)

Using the same arguments as in Section 5.2 we obtain







N−1
∑′

j=0

ℜ
[

ϕ3levy

(

jπ

b− a

)

eijπ
x3−a

b−a

]

εjp(t
−
m+1, y1)







2

≤
(

R(N)e−(N−1)ν(W (N) +N)
)2

∼ O
(

ǫ2Loc

)

, (8.68)

where the Induction Hypothesis is used for the inequality. R(N) varies less than exponentially in N .

Assume
∑J−1

p=0 (wpf(θp|θq))
2 has an upper bound for all θq. Adding up the parts gives

εkq(t
−
m, x1) ∼ O(ǫd) +O(ǫQCOS) +O (ǫLoc) = O (ǫLoc) . (8.69)

This completes the proof. �

8.5.3 Numerical experiments COS convolution formula

In this section we go more deeply into the error of the COS convolution formula. Errors of the COS
convolution formula are introduced in three steps: the truncation of the integration range, truncation
of the series expansion and the substitution of the series coefficients of the convolution function by the
characteristic functions approximation. Comparable to the errors in Section 5.1 we define

ǫZ1 (tm−1, x1, x2, ϑp|[aZ , bZ ]) := λe(ϑp−tm−1)(µ3−ρ)

∫

R\[aZ ,bZ ]

lp(w(ϑp) + z − x1)fZϑp |X
(2)
tm−1

(z|x2)dz (8.70)

and

ǫZ4 (tm−1, x2, ϑp) :=

∫

R\[aZ ,bZ ]

f
Zϑp |X

(2)
tm−1

(z|x2)dz. (8.71)

Also ǫZ3 (tm−1, x1, x2, ϑp|NZ , [aZ , bZ ]) is defined in the same way as the errors in Section 5.1.

Integration range [aZ , bZ ]
Similar to the truncation range [a, b] in Section 6.3, we start with the suggestion

[aZ , bZ ] =

[

c1 − LZ

√

c2 +
√
c4, c1 + LZ

√

c2 +
√
c4

]

, LZ = 10, (8.72)

with cumulants given by

c1 = Etm−1,x[Zϑp
] = x2 + k2 + γEM/k1,

c2 = Vartm−1,x(Zϑp
) = σ2

w(ϑp − tm−1) + (π/k1)
2/6,

c4 = γ2(Zϑp
)c22 = 12

5 c
2
2,

(8.73)
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where γ2 is the (excess) kurtosis. The kurtosis is a measure of the heaviness of the tails of a distribution.

γ2(X
(2)
ϑp

) = 0 and γ2(J ) = 12/5. The kurtosis satisfies the following linearity property: If X and Y are

two independent random variables, it holds that ([15])

γ2(X + Y ) = γ2(X) + γ2(Y ). (8.74)

This interval would result in a small error ǫZ4 . However, the error ǫZ1 might be large, even for larger values
LZ . This is illustrated by Figure 8.5.3, where we take

tm−1 = 0, x1 = 425, x2 = 0, ϑp = 10 and σw = 1. (8.75)

Equation (8.72) gives [aZ , bZ ] = [−60.37, 451.41]. The figure illustrates that the truncation range error
ǫZ1 is larger, notwithstanding the fact that the total error will be reduced by ǫZ3 in the same way as we
discussed in Section 6.3.2. We find the truncation range should not be based only on the density func-
tion, because then it does not include the properties of function lp. We have found this by an numerical
experiment below.
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y
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2(y|x
2
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p
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2(y|x

2
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b

Figure 8.2: Functions f
Zϑp |X

(2)
tm−1

(z|x2) and lp(w(ϑp) + z − x1)fZϑp |X
(2)
tm−1

(z|x2).

The characteristic function of the Gumbel distributed extreme water levels reads (see Appendix F):

ϕJ (u) = Γ

(

1 − i
u

k1

)

eik2u, (8.76)

and the characteristic function of the normally distributed surplus water level is (see Appendix F)

ϕ
X

(2)
s −X

(2)
tm−1

(u) = e−
1
2σ2

w(s−tm−1)u
2

. (8.77)

We estimate the proportional damage function d(tm−1, tm, x1, x2) for

tm−1 = 0, tm = 150, x1 = 425, x2 = 0, σw = 0 and Nt = 2000. (8.78)
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In other words, the average water level Y
(2)
t is modelled as deterministic and equal to w(t). The approx-

imated proportional damage function converges in NZ and LZ (see Table 8.1) to

d̂(0, 150, 425|Nt) ≈ 0.141418867757724 · 10−5. (8.79)

which is the proportional damage function with deterministic average water level w(t) from Section
4. The roundoff plateaus are reached for NZ = 29, so no further improvement is realised by using a
higher value NZ . The proportional damage function is increasing in LZ , because this corresponds to a
larger integration interval [aZ , bZ ]. The results for LZ = 10 are not very satisfactorily, although this
corresponds to a very small error ǫZ4 . The expected flood losses are underestimated, primarily because of
the integration range truncation error ǫZ1 . The same convergence results are obtained for σw 6= 0. The
value x1 −w(ϑp) denotes where function lp becomes positive and varies from about 245 to 800 cm in our
experiments in Section 8.6. In order to have a small error ǫZ1 we propose

[aZ , bZ ] = [0, 900]. (8.80)

This interval performs satisfactorily according to the results in Table 8.1. With this we showed that it
is useful to take the characteristics of the function lp into account too when choosing the integration
interval [aZ , bZ ]. We take [aZ , bZ ] = [0, 900] fixed in the sequel. Computation time is saved by this, since
the interval is not computed for every separate set of variables anymore.

P
P

P
P

P
P

PP
LZ

NZ 27 28 29

10 0.140806205630514 · 10−5 0.140925657279090 · 10−5 0.140925657289235 · 10−5

12 0.142558812124158 · 10−5 0.141414083553131 · 10−5 0.141414082290749 · 10−5

14 0.135325884579892 · 10−5 0.141418807923046 · 10−5 0.141418823563926 · 10−5

[aZ , bZ ] = [0, 900] 0.100515090473518 · 10−5 0.141419199899692 · 10−5 0.141418868748732 · 10−5

Table 8.1: Prop. damage d̂(0, 150, 425, 0|Nt = 2000) for σw = 0 (d̂(0, 150, 425|Nt = 2000) ≈ 0.141 · 10−5).

Next the influence of the surplus water level parameter σw is studied. Again we calculate the proportional
damage function d̂(0, 150, 425, 0|Nt = 2000). The approximations are converging in NZ and again the
roundoff plateau was reached for NZ = 29, so the results are the same as for a higher value NZ . Not
surprisingly, the results in Table 8.2 show a higher expected proportional loss for a higher water level
volatility. This is due to the convexity of the function β(h). The proportional damage function can also
be approximated by application of two times a Composite Trapezoidal rule. We have validated that this
method does result in similar values. We prefer to use the COS convolution formula to stay in line with
the rest of the dike-Q-COS method.

σw d̂(0, 150, 425, 0)

0 0.141418868 · 10−5

0.0001 0.141418869 · 10−5

0.5 0.157083287 · 10−5

1 0.215856522 · 10−5

2 0.794441701 · 10−5

3 6.758277069 · 10−5

Table 8.2: Prop. damage function d̂(0, 150, 425, 0|Nt = 2000), effect σw ([aZ , bZ ] = [0, 900], NZ = 29).
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8.6 Tests dike-Q-COS method for an island

In this section the dike-Q-COS method is tested with the model for an island. We use the same model
parameters as is Section 7, except for M = 60 in order to save computation time. Besides, only two
possible dike increase levels, u0 = 0 and u1 = 40 cm, are used. More possible dike increase levels may be
used, but this takes more computation time. Further we take

L = 6, Nbis = 20, Nt = 200 and X
(2)
0 = 0 cm. (8.81)

The corresponding option values resulting from the dike-COS method in Section 4 are given in Table 8.3.
For this method the average water level was modelled by a deterministic process. The real option values
are somewhat higher than the results in Section 7.2, because we use lower values M and Nt and only one
positive dike increase level is at one’s disposal. The optimal dike reinforcements times are 145, 185, 230
and 290 years if the economic value follows its expected value.

dd v̂(t0, X
(1)
0 , X

(3)
0 ) CPU time (s)

7 0.055030149963327 3
8 0.055009861122490 4
9 0.055009861122647 7
10 0.055009861122485 12

Table 8.3: Real option values v̂(t0, X
(1)
0 , X

(3)
0 ), dike-COS method (Algorithm 1).

We start in Section 8.6.1 with a low average water level volatility σw = 0.0001. This models a deter-
ministic water level and enables us to validate the dike-Q-COS method. In Section 8.6.2 true water
level volatility values σw = 1 and 2 are used. The standard deviation of the surplus water level at the
terminal time is σw

√
T cm. So, the probability that the terminal water level is between 162.7 and 197.3

cm is about 68% in the case of the model with σw = 1. Then with the same probability Y
(2)
100 ∈ [50, 70] cm.

We calculate the real option values and the optimal control for an economic value of endangered goods

and surplus water level equal to their expected values, namely eX
(3)
0 eµ3t and zero, respectively. Besides,

the optimal impulse control strategies for surplus water levels equal to −σw

√
t and +σw

√
t are calculated.

Integration range [a2, b2]
In Section 8.6.2 we will discuss scenarios of various deterministic average water levels and we apply the
dike-COS method to them. They show that both a lower and a higher average water level affect the costs
of flood protection. Because of that we propose to take

[a2, b2] =
[

− L2
√
c2, L2

√
c2

]

, (8.82)

where c2 is the second cumulant of X
(2)
T , given X

(2)
0 . For the zero mean Brownian process we have

c2 = σ2
wT .

8.6.1 Low water level volatility, σw ≈ 0

For the first tests we take a very low value σw = 0.0001, representing an almost deterministic average
water level equal to w(t). The proportional damage function d̂(tm−1, tm, x1) from Section 4, equation

(4.5), is used since this resembles with d̂(tm−1, tm, x1, x2) for low value σw. The approximated option
values are denoted by:

ṽ(tm−1, x1, x2, x3) := exp(x3)d̂(tm−1, tm, x1 − x2) + ĉ(tm−1, x1, x2, x3). (8.83)
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Different values L2, corresponding to different interval [a2, b2], are used. Besides, the number of integra-
tion points J and dd, with N = 2dd, are varied. The results are shown in Table 8.4. The real option
values converge in J and L2 to the corresponding real option prices of the model without stochastic water
level (Table 8.3), but they are a little bit higher since the volatility is not exactly equal to zero. Besides,
the same dike construction times 145, 185, 230 and 290 years are found for an economic value and surplus
water level that follow their expected value.

A larger value L2 represents a larger integration interval [a2, b2]. A too low value L2 excludes plausible
surplus water level processes, which might underestimate the real option value. However, the convergence
in J takes longer for higher values L2, since a larger integration interval is subdivided in J sub-intervals.
A compromise is obtained by L2 = 6.

The computational complexity is almost linear in both N log2N and J , as follows from Table 8.5.

L2

H
H

H
H

H
dd

J
51 101 151 201

4

7 0.055037881292403 0.055030137064325 0.055030137326402 0.055030137422127
8 0.055017592527721 0.055009848247368 0.055009848508300 0.055009848601505
9 0.055017592527941 0.055009848247561 0.055009848508464 0.055009848601682
10 0.055017592527903 0.055009848247445 0.055009848508396 0.055009848601586

5

7 0.055827112226863 0.055030149989055 0.055030149992631 0.055030149991798
8 0.055806827547545 0.055009861146289 0.055009861147282 0.055009861148044
9 0.055806827547646 0.055009861146469 0.055009861147398 0.055009861148211
10 0.055806827547512 0.055009861146357 0.055009861147332 0.055009861148098

6

7 0.065741110812577 0.055030150382392 0.055030150029351 0.055030150029974
8 0.065720751781606 0.055009861537914 0.055009861184444 0.055009861184390
9 0.065720751781811 0.055009861538100 0.055009861184608 0.055009861184555
10 0.065720751781684 0.055009861537961 0.055009861184493 0.055009861184484

7

7 0.124304206466018 0.055030301561679 0.055030150027933 0.055030150029507
8 0.124285534058618 0.055010012718394 0.055009861184737 0.055009861184199
9 0.124285534059254 0.055010012718554 0.055009861184953 0.055009861184332
10 0.124285534059025 0.055010012718448 0.055009861184820 0.055009861184264

8

7 0.497631249069457 0.055037895545429 0.055030150029898 0.055030150029328
8 0.497602903800888 0.055017606748362 0.055009861185167 0.055009861184529
9 0.497602903802333 0.055017606748577 0.055009861185374 0.055009861184653
10 0.497602903801567 0.055017606748379 0.055009861185309 0.055009861184532

Table 8.4: Real option values ṽ(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) for σw = 0.0001.

H
H

H
H

H
dd

J
51 101 151 201

7 56 114 175 238
8 78 162 249 342
9 123 256 398 552
10 215 452 707 992

Table 8.5: CPU times (s), σw = 0.0001, L2 = 6.

COS-convolution formula

Now we study the convergence in NZ using the true ‘two-dimensional’ proportional damage function from
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Section 8.2. So, we calculate the option values

v̂(tm−1, x1, x2, x3) = exp(x3)d̂(tm−1, tm, x1, x2) + ĉ(tm−1, x1, x2, x3). (8.84)

In order to save computation time we set Nt = 10. The convergence in dd, J and L2 is the same as we saw
before and we take dd = 9, J = 151 and L2 = 6 fixed. We use interval [aZ , bZ ] = [0, 900], as we proposed
in Section 8.5.3, and vary the number of coefficients NZ in the series expansion of the COS convolution
formula. The results in Table 8.6 demonstrate that the approximated option values are converging in
value NZ . The option value v̂ equals ṽ closely for large NZ , which justifies the use of the proportional
damage function from Section 4 for low value σw .

ṽ(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) CPU time (s)

0.055011014354350 465

v̂(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) CPU time (s)

NZ

27 0.045328118714308 675
28 0.055011129736715 869
29 0.055011014657749 1168
210 0.055011014657715 1810

Table 8.6: Real option values v̂(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) for σw = 0.0001.

8.6.2 Stochastic average water level

Next we use a true stochastic average water level, with both σw = 1 and σw = 2. Again we save com-
putation time by using the proportional damage function from Section 4 and consider the approximated
option values ṽ(tm−1, x1, x2, x3).

The results for σw = 1, see Appendix G, show once more the convergence in the parameters L2, J and

dd and we obtain the real option value ṽ(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) ≈ 0.061499. Not surprisingly, the costs of

flood protection increase if we use a stochastic water level. The computation times are comparable to the
ones in Table 8.5. A volatility of value σw = 2 leads to similar convergence results and then an option
value about 0.083085 is found.

The optimal heightening times are 145, 185, 230 and 290 years if the economic value and surplus water
level follow their expected value. If instead the surplus water level follows the process −σw

√
t or +σw

√
t,

then construction times 160, 205 and 255 years, and 130, 165, 210 and 265 years are found, respectively.
This indicates that dike reinforcements are advanced if the surplus water level is positive, which corre-
sponds to a higher water level. The construction times for the three different water level volatilities are
summarised in Table 8.7.

P
P

P
P

P
P

PP
X

(2)
t

σw
0.0001 1 2

−σw

√
t 145 185 230 290 160 205 255 180 225 285

0 145 185 230 290 145 185 230 290 145 185 230 290

+σw

√
t 145 185 230 290 130 165 210 265 115 150 190 240 295

Table 8.7: Construction times for various surplus water level realisations.

COS-convolution formula

Again we study the convergence in the number of coefficients NZ in the series expansion of the COS
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convolution formula. In order to save computation time we set Nt = 10, dd = 9 and J = 151 and we
use L2 = 6. The results in Table 8.8 show that the approximated option values converge in NZ . Besides,
this demonstrates that the option value v̂ is a little bit higher than ṽ, because the proportional damage
is higher for σw = 1 than for σw = 0 (see Table 8.2). Since it takes significantly longer to calculate ṽ
compared to v̂, we prefer the latter.

ṽ(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) CPU time (s)

0.061500334602229 466

v̂(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) CPU time (s)

NZ

27 0.055197115592179 712
28 0.061801857554217 909
29 0.061801837891613 1223
210 0.061801837891611 1850

Table 8.8: Real option values v̂(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) for σw = 1.

Deterministic water level scenarios

Many policymakers use scenarios to weigh up their decisions. For example, the Royal Netherlands Mete-
orological Institute (KNMI) uses four different scenarios to predict the future sea level rise. We wonder
whether the use of a model with stochastic water level adds additional insight and relevance to the dike
height analysis. Table 8.9 shows the real option values and construction times for different deterministic
water level scenarios. In other words, we take the deterministic water level w(t) in Section 4 equal to
each of these scenarios and apply the dike-COS method, Algorithm 1. It is clear that a higher water level
results in higher flood protection costs and advances the heightenings.

Average water level Construction times v̂(t0, X
(1)
0 , X

(3)
0 )

w(t) − 4
√
t 200 265 0.0046716

w(t) − 2
√
t 120 220 280 0.0176809

w(t) − 1
√
t 155 200 250 0.0319046

w(t) 145 185 230 290 0.0550099

w(t) + 1
√
t 135 170 215 265 0.0911208

w(t) + 2
√
t 125 160 195 245 295 0.1458113

w(t) + 4
√
t 110 140 170 210 255 295 0.3427038

Table 8.9: Real option values for scenarios of deterministic water level (Algorithm 1).

We propose the following rule-of-thumb to estimate the real option value under a model with stochastic
water level using various deterministic water level scenarios:

v̆(t0, x1, x3) := [ N(−2) N(−1) N(0) N(1) N(2) ] ·













v̂(t0, x1, x3)−2σw

v̂(t0, x1, x3)−1σw

v̂(t0, x1, x3)0σw

v̂(t0, x1, x3)+1σw

v̂(t0, x1, x3)+2σw













, (8.85)

where N(.) is the standard normal distribution function and v̂(t0, x1, x3)nσw
denotes the option value

under the average water level scenario w(t) + nσw

√
t. The above equation represents a weighted average

over five different water level scenarios. We obtain the following option values:

v̆(t0, X
(1)
0 , X

(3)
0 ) =

{

0.060577, for σw = 1,
0.080261, for σw = 2.

(8.86)
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They correspond closely to the option values we found using the dike-Q-COS method. We can argue
whether it is better to use the scenarios and the dike-COS method with option value v̆(t0, x1, x3) or the
dike-Q-COS method with stochastic average water level. The former is less time-consuming and the real
options prices of both do not differ much. However, the latter ones can give a more complete picture of
the effects of various water level realisations. Besides, we did not know beforehand whether the scenarios
method would lead up to a similar real option value as the dike-Q-COS method. This is only established
afterwards when both were implemented.
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9 Summary and conclusion

This section presents a summary of the report and the main results that are obtained in this thesis. Also
suggestions for further research are made.

9.1 Summary

Financial options are contracts which define rights on stocks in a financial market. Real options arise
in for example economical, personal or societal context. The holder has a real option in the sense of a
real ‘choice’. Real options appear in for example the dike height problem, where one has to make opti-
mal choices about when to increase the dike level and by which amount. Another example is the forest
harvesting problem, where one can determine the harvesting time.

(Real) option prices can often be formulated as a stochastic optimisation problem. The impulse control
problem represents a problem class which incorporates jumps on the state process, like an instantaneous
jump in the dike level, with general form:

v(t, x) = sup
{tm,ξm}

Et,x





∫ T

t

e−ρ(s−t)f(s,Xs)ds+
∑

t≤tm<T

c(Xt−m
, ξm)e−ρ(tm−t) + e−ρ(T−t)g(XT )



 . (9.1)

The dynamic programming principle can be derived from the above representation. The infinitesimal
version results in the Hamilton-Jacobi-Bellman (HJB) equation. Two pricing methods for financial and
real options have been discussed. The first method is called the dynamic programming approach. In this
case we assume that risks cannot be hedged and the holder asks a risk adjusted discount rate for holding
the option. In the second approach it is assumed that the asset markets are rich enough to be able to
hedge risks and the market will not reward the holder for holding his risky option. This method is called
the contingent claims approach.

We focused on the dike height problem based on [22] and [32]. The state dynamics of a basic model
consisted of the dike height and the stochastic economic value of endangered goods, which is exposed to
possible floods. The average water level was supposed to follow a deterministic function. Occurrences of
extreme water level may cause flooding and they were added to the model. The controller can perform
dike heightenings at certain construction costs. A recursive algorithm based on Fourier-cosine series
expansions, called the dike-COS method, enabled us to solve the dike height problem. With this we
obtained a control law, which describes when it is optimal to increase the dikes and by which amount,
depending on the economic value of endangered goods and the current dike level in comparison with the
water level. Parameter variation showed that the real option value, in other words the expected costs of
flood protection under optimal heightenings, increases in the expected economic growth and the intensity
rate of extreme water level and decreases in the risk adjusted discount rate.

An alternative model, incorporating a stochastic average water level, was also considered and we developed
an extended two-dimensional algorithm. The results showed that the expected costs of flood protection
increase if the volatility of the average water level is increased. A method which considers several scenarios
of deterministic water level, instead of a stochastic level, may perform satisfactorily to estimate the real
option value under uncertain water level rise.

9.2 Conclusion

A general conclusion is given in this section, based on the research questions defined in Section 1.1. Each
question is answered below:

• Q(uestion): Can we adapt the COS pricing method for Bermudan or swing options to solve the
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dike height impulse control problem?
A(nswer): Yes. The presented dike-COS method, for solving the dike height problem under the
first basic model, is a combination of the COS method for pricing Bermudan and swing options.
Similar to the Bermudan option we took a finite number of control times. The possibility to make
an optimal decision between some choices is very similar to choices with pricing a swing option. The
main difference between these two financial options and the dike height real option is the possible
jump in the dike level at the control times in the dike height problem. Because of that we need
to keep track of the dike level and an extra dimension was added to the COS method. Besides,
our real option remains valid after a dike heightening and the dikes can be increased more than
once, whereas a Bermudan option can be exercised only once. Also a kind of cashflow from flooding
costs in the dike height problem was added, which is efficiently estimated using the analytical
representation of the function β(h).

• Q: How can we efficiently calculate the optimal dike increase level?
A: The so-called construction domains are determined using the algorithm described in Section 4.2.1
and the Bisection method. Newton’s method did not perform satisfactorily since it requires a ‘good’
initial value. Uniqueness of results to justify the algorithm for determination of the construction
domains is assumed on the basis of the results in [32]. The determination of the construction
domains takes a significant part of the computation time and an improvement in the future will be
useful.

• Q: What can we tell about the error convergence of the numerical method and the errors close to
the boundaries of the computational domain?
A: The error of the dike-COS method converges exponentially in the number of terms N in the
Fourier-cosine series expansions for density functions that belong to C∞([a, b]). However, the tests
showed that the error convergence can be spoilt by roundoff errors. We performed extensive numer-
ical tests to analyse the error by means of the COS formula for pricing European options. The error
is large in the vicinity of the boundaries, which may give rise to incorrect construction domains.
However, if the integration interval [a, b] is sufficiently wide, then the incorrect construction domains
at the boundaries will not significantly affect the option prices in the middle of the computational
domain. Furthermore, a larger truncated integration interval resembles the original domain better.
On the other hand, the roundoff errors are increasing for larger intervals [a, b], which leads to a
higher roundoff plateau, and convergence takes longer. We carefully tried to find a compromise
between both inaccuracies. Besides, we found that it is not always accurate to define the interval
[a, b] only based on the density function or other characteristics of the stochastic process. It is
advisable to take the characteristics of the payoff function into account too. The dike-COS method
showed satisfactory convergence in the method parameters N , Nt and Nbis for an example of an
island. The method is validated by the resulting control law (Figure 7.6), which matches to the
results in [32]. The computational complexity is order O(N log2N). Possibly a method based on
modified Fourier series expansion may improve the computation time.

• Q: Is it possible to extend the pricing method to using it with more than one stochastic process,
such as both stochastic water level and economic value?
A: Yes, we extended the dike-COS method to the dike-Q-COS method. The continuation value
now also depended on a stochastic average water level. A quadrature rule was used to approximate
the additional dimension. We used the surplus water level in order to reduce the size of the domain
of the second stochastic process. For the expected flooding costs we developed the so-called COS
convolution formula, which relies on the independence of two random variables. The method was
validated using a very low water level volatility, which resembled the model of the island with the
deterministic water level. A higher volatility gives rise to higher real option values. The computa-
tional complexity of the dike-Q-COS method is almost linear in the number of integration points,
J , but the computation time is significantly increased by the second dimension.

In general, extensions such as stochastic water level, soil compression rate and recovery rate add an
extra space-dimension to the value function. The calculation of the expected flood losses and the
continuation value gets more involved by that. The expectations with respect to the additional ran-
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dom variable can be estimated by using a quadrature rule. However, this will significantly increase
the computational complexity. Maybe a PDE method to solving the associated Hamilton-Jacobi-
Bellman equation will be easier to apply in some cases.

• Q: How do the real option prices differ when it is possible to hedge the risks of, for example, floods?
A: The main drawback of the dynamic programming approach (DPPA) is the fact that it is difficult
to determine the risk adjusted discount rate ρ. This rate, although it is not objective, is of interest
for many policymakers. If the markets are rich enough to be able to hedge risks the holder will not
be rewarded for holding his risky (real) option and we may apply the contingent claims approach
(CCA). The partial differential equation resulting from the CCA can be converted back to a value
function. Then a risk-free interest rate is used for discounting, which results in a higher option
value. Besides, the expectation is taken under a risk-neutral measure, which may lead up to a lower
option value. Unfortunately, there was no information available about possible hedge instruments
for the example of an island. In [18] necessary and sufficient conditions were derived for the DPPA
price equal to the CCA price in the harvesting problem. If hedge instruments exist to hedge the
risks of floods or the economic uncertainty, then probably a same analysis applies for the dike height
problem.

9.3 Outlook

In this final section we present some recommendations for future research.

Firstly, we would like to validate the dike-COS method using a more realistic model. The method may
also be extended to the case of several dike rings of different heights and dunes, as done in [22] for a
discrete model.

Secondly, we would further investigate the modified Fourier series expansions, which we introduced in
Section 6.3.4. This field has received substantial interest and is explored by, for example, [19]. Faster
converging series reduce the computation time. However, if the largest coefficients remain of the same
order, and by that of the same accuracy, then we do not expect smaller errors.

The COS method for two-factor Lévy processes is extended by using a quadrature rule for the additional
dimension. Fourier-cosine series are also available for more dimensional functions. However, the problem
we face is how to calculate the corresponding coefficients. If the coefficients at the terminal time do not
have an analytical solution this hampers the fast method. Interesting research to a ‘true’ two-dimension
COS method can be performed.

Pricing Bermudan options is an example of an optimal stopping problem. In [11] the COS method was
applied to this problem. The dike height problem is an example of a stochastic impulse control problem.
On the other hand, in some stochastic control problem one has the possibility to control the drift or dif-
fusion term of the state dynamics in many different ways. Adapting the COS method to such problems
in general would introduce difficulties, because the characteristic function could depend on the control
process. This is another challenge we may take.
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C FUNCTIONS χC
K , χS

K , ψC
K AND ψS

K

Appendix

A Functions χk and ψk

The functions χk and ψk are given by:

χk(z1, z2) =

∫ z2

z1

ey cos

(

kπ
y − a

b− a

)

dy and ψk(z1, z2) =

∫ z2

z1

cos

(

kπ
y − a

b− a

)

dy. (A.1)

Maple 9.5 provides the following analytically solutions:

χk(z1, z2) =
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
z2 − a

b− a

)

ez2 − cos

(

kπ
z1 − a

b− a

)

ez1

+
kπ

b− a
sin

(

kπ
z2 − a

b− a

)

ez2 − kπ

b− a
sin

(

kπ
z1 − a

b− a

)

ez1

]

. (A.2)

ψk(z1, z2) =

{ [

sin
(

kπ z2−a
b−a

)

− sin
(

kπ z1−a
b−a

)]

b−a
kπ , for k 6= 0,

z2 − z1, for k = 0.
(A.3)

B Functions χSINk and ψSINk

The functions χSIN
k and ψSIN

k are given by:

χk(z1, z2) =

∫ z2

z1

ey sin

(

kπ
y − a

b − a

)

dy and ψk(z1, z2) =

∫ z2

z1

sin

(

kπ
y − a

b− a

)

dy. (B.1)

Maple 9.5 provides the following analytically solutions:

χSIN
k (z1, z2) = − 1

1 +
(

kπ
b−a

)2

[

kπ

b− a
cos

(

kπ
z2 − a

b − a

)

ez2 − kπ

b− a
cos

(

kπ
z1 − a

b− a

)

ez1

− sin

(

kπ
z2 − a

b− a

)

ez2 + sin

(

kπ
z1 − a

b− a

)

ez1

]

. (B.2)

ψSIN
k (z1, z2) =

{

−
[

cos
(

kπ z2−a
b−a

)

− cos
(

kπ z1−a
b−a

)]

b−a
kπ , for k 6= 0,

0, for k = 0.
(B.3)

C Functions χck, χ
s
k, ψ

c
k and ψsk

The functions χc
k and ψc

k are given by:

χc
k(z1, z2) =

∫ z2

z1

ey cos

(

kπ
2y − (b+ a)

b− a

)

dy and ψc
k(z1, z2) =

∫ z2

z1

cos

(

kπ
2y − (b + a)

b − a

)

dy.

(C.1)

Maple 9.5 provides the following analytically solutions:

χc
k(z1, z2) =

1

1 +
(

2kπ
b−a

)2

[

cos

(

kπ
2z2 − (b + a)

b− a

)

ez2 − cos

(

kπ
2z1 − (b + a)

b− a

)

ez1

+
2kπ

b− a
sin

(

kπ
2z2 − (b + a)

b− a

)

ez2 − 2kπ

b− a
sin

(

kπ
2z1 − (b+ a)

b− a

)

ez1

]

. (C.2)
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ψc
k(z1, z2) =

{ [

sin
(

kπ 2z2−(b+a)
b−a

)

− sin
(

kπ 2z1−(b+a)
b−a

)]

b−a
2kπ , for k 6= 0,

z2 − z1, for k = 0.
(C.3)

The functions χs
k and ψs

k are given by:

χs
k(z1, z2) =

∫ z2

z1

ey sin
(

(k − 1
2 )π 2y−(b+a)

b−a

)

dy and ψs
k(z1, z2) =

∫ z2

z1

sin
(

(k − 1
2 )π 2y−(b+a)

b−a

)

dy

(C.4)

Maple 9.5 provides the following analytically solutions:

χc
k(z1, z2) =

1

1 +

(

2(k− 1
2 )π

b−a

)2

[

sin

(

kπ
2z2 − (b+ a)

b− a

)

ez2 − sin

(

kπ
2z1 − (b + a)

b− a

)

ez1

+
2(k − 1

2 )π

b− a
cos

(

kπ
2z1 − (b + a)

b− a

)

ez1 − 2(k − 1
2 )π

b− a
cos

(

kπ
2z2 − (b+ a)

b− a

)

ez3

]

.(C.5)

ψc
k(z1, z2) =

{

[

cos
(

(k − 1
2 )π 2z1−(b+a)

b−a

)

− cos
(

(k − 1
2 )π 2z2−(b+a)

b−a

)]

b−a

2(k− 1
2 )π

, for k ≥ 1, (C.6)

D Function Mk,j

The function Mk,j is given by

Mk,j(z1, z2) :=
2

b− a

∫ z2

z1

eijπ y−a
b−a cos

(

kπ
y − a

b− a

)

dy. (D.1)

Using the relation

eiu = cos(u) + i sin(u) (D.2)

gives

Mk,j(z1, z2) = − i

π

(

M c
k,j(z2, z2) +M s

k,j(z1, z2)
)

,

where

M c
k,j(z2, z2) =







(z2−z1)πi
b−a , for k = j = 0,

exp
“

i(j+k)
(z2−a)π

b−a

”

−exp
“

i(j+k)
(z1−a)π

b−a

”

j+k , otherwise,
(D.3)

and

M s
k,j(z2, z2) =







(z2−z1)πi
b−a , for k = j,

exp
“

i(j−k)
(z2−a)π

b−a

”

−exp
“

i(j−k)
(z1−a)π

b−a

”

j−k , for k 6= j.
(D.4)

E Black-Scholes price and errors

The value of a European call option, under geometric Brownian motion asset price, reads

v(t, x) = Et,x[g(XT )], (E.1)

with (∆t = T − t0)

XT |X0 ∼ N
(

X0 + (r − 1

2
σ2)∆t, σ2∆t

)

. (E.2)
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We find

vBScall(t0, x) = e−r∆t

∫

R

K(ey − 1)+f(y|x)dy

=
e−r∆t

√
2πσ

√
∆t

K

∫ ∞

0

(ey − 1)e
− 1

2

„

y−x−(r− 1
2

σ2)∆t

σ
√

∆t

«2

dy

=
e−r∆t

√
2π

K

∫ ∞

c1

(ezσ
√

∆t+x+(r− 1
2σ2)∆t − 1)e−

1
2 z2

dz

=
ex

√
2π
K

∫ ∞

c1

e−
1
2 (z−σ

√
∆t)2dz −Ke−r∆t(1 −N(c1))

= exK(1 −N(c2)) −Ke−r∆t(1 −N(c1)) (E.3)

where

c1 =
−x− (r − 1

2σ
2)∆t

σ
√

∆t
and c2 = c1 − σ

√
∆t. (E.4)

Using similar arguments we find the integration range truncation error (a ≤ 0 ≤ b):

ǫ1(x|[a, b]) = e−r∆t

∫

R\[a,b]

K(ey − 1)+f(y − x)dy

= e−r∆t

∫ ∞

b

K(ey − 1)f(y − x)dy

= exK(1 −N(b2)) −Ke−r∆t(1 −N(b1)), (E.5)

where

b1 =
b− x− (r − 1

2σ
2)∆t

σ
√

∆t
and b2 = b1 − σ

√
∆t. (E.6)

The put-call parity ([14]) yields

vBSput(t0, x) = Ke−r∆t −Kex + vBScall(t0, x), (E.7)

For a put option we find (a ≤ 0 ≤ b):

ǫ1(x|[a, b]) = e−r∆t

∫

R\[a,b]

K(1 − ey)+f(y|x)dy

= e−r∆tK

∫ a

−∞
(1 − ey)f(y − x)dy

= −exKN(a2) +Ke−r∆tN(a1), (E.8)

where

a1 =
a− x− (r − 1

2σ
2)∆t

σ
√

∆t
and a2 = a1 − σ

√
∆t. (E.9)

The error ǫ4 for both options reads

ǫ4(x|[a, b]) =

∫

R\[a,b]

f(y|x)dy

=
1√

2πσ
√

∆t

∫

R\[a,b]

e
− 1

2

„

y−x−(r− 1
2

σ2)∆t

σ
√

∆t

«2

dy

= N(a1) + (1 −N(b1)). (E.10)
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F Characteristic functions

Definition F.1. (Characteristic function)
The characteristic function of a random variable X is defined by ([13])

ϕ(u) = E[eiuX ]. (F.1)

Gumbel distribution

The characteristic function of a Gumbel distributed random variable J , with scale parameter 1/k1 > 0
and location parameter k2 ∈ R, reads

ϕJ (u) =

∫

R

eiuyfJ (y)dy

= k1

∫

R

eiuyek1(k2−y)−ek1(k2−y)

dy

= k1e
iuk2

∫
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∫
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−i u
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∫ 0
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i u
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e−z dz

z

= eiuk2

∫ ∞

0

z
i u

k1
+1−1

e−zdz
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(

1 + i
u

k1

)

eiuk2 , (F.2)

with Γ the gamma function Γ(s) =
∫∞
0
zs−1 e−z dz.

Normal distribution

The characteristic function of a normally distributed random variable N , with mean µ and standard
deviation σ, reads

ϕN (u) =

∫

R

eiuyfN (y)dy

=
1√
2πσ

∫

R

eiuye−
1
2 (

y−µ
σ )

2

dy

= eiuµ 1√
2π

∫

R

eiuσze−
1
2 z2

dz

= eiuµ− 1
2σ2u2 1√

2π

∫

R

e−
1
2 (z−iuσ)2dz

= eiuµ− 1
2σ2u2

. (F.3)

G Results for average water level volatility σw = 1
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L2

H
H

H
H

H
dd

J
51 101 151 201

4

7 0.061528296819761 0.061520746952236 0.061520787226090 0.061520780009096
8 0.061506626843016 0.061499059910717 0.061499060125004 0.061499060201963
9 0.061506626843262 0.061499059911018 0.061499060125160 0.061499060202116
10 0.061506626843205 0.061499059910837 0.061499060125093 0.061499060202022

5

7 0.062331197833475 0.061520516504900 0.061520475802555 0.061520681339659
8 0.062309563770279 0.061499070851573 0.061499070852184 0.061499070852947
9 0.062309563770589 0.061499070851752 0.061499070852377 0.061499070853188
10 0.062309563770514 0.061499070851625 0.061499070852239 0.061499070853089

6

7 0.072611304220836 0.061520964137796 0.061520766949960 0.061520905427958
8 0.072589386809512 0.061499071200220 0.061499070884378 0.061499070884533
9 0.072589386809631 0.061499071200406 0.061499070884673 0.061499070884785
10 0.072589386809593 0.061499071200247 0.061499070884465 0.061499070884687

7

7 0.133315995968833 0.061520953969986 0.061520942235856 0.061520840147851
8 0.133293349995292 0.061499213849266 0.061499070884488 0.061499070884377
9 0.133293349995844 0.061499213849528 0.061499070884684 0.061499070884603
10 0.133293349995467 0.061499213849410 0.061499070884535 0.061499070884411

8

7 0.514188273979021 0.061528308901562 0.061520720467859 0.061520766931375
8 0.514132465218316 0.061506638874520 0.061499070884759 0.061499070884489
9 0.514132465220316 0.061506638874829 0.061499070885044 0.061499070884735
10 0.514132465219732 0.061506638874664 0.061499070884868 0.061499070884547

Table G.1: Real option values ṽ(t0, X
(1)
0 , X

(2)
0 , X

(3)
0 ) for σw = 1.
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