
Abstract

“Improving the iterative methods in TNO DIANA using
physical properties of the underlying model”

Alex Sangers - December 10, 2013 at 16:00 in EEMCS Room 1.2

DIANA is a multi-purpose finite element software package that is
dedicated to e.g. structural and geotechnical engineering problems. The
solution of one or more systems of linear equations is a computational
intensive part of a finite element analysis. For this purpose a number of
direct and iterative methods are available in DIANA.

As the demand for larger finite element analysis grows every year, so lead
the corresponding models to large linear systems. Iterative methods have
proved to be effective to solve these systems.

The purpose of this research is to find out how the iterative methods of
DIANA can be improved. One technique considered is deflation, based on
the physical properties of the underlying problem. Another technique is
scaling the system based on the type of degree of freedom, such as
translation, rotation or pressure.

Iterative methods at DIANA
Improving the iterative methods in TNO DIANA using

physical properties of the underlying model.

Alex Sangers

Delft Institute of Applied Mathematics
TNO DIANA

December 10, 2013

Iterative methods at DIANA December 10, 2013

2

Content

Finite Element Analysis at DIANA

Iterative solution methods at DIANA

Other solution techniques at DIANA

Enhancements

Illustrative results

Challenges

Iterative methods at DIANA December 10, 2013

3

Finite element analysis at DIANA (1/2)

Some relevant quantities:
u - displacements
ε - strain
σ - stress

In case of linear elastic behavior:

ε = Bmu,

with Bm the differential matrix,

σ = Dmε,

with Dm the elasticity matrix.

Iterative methods at DIANA December 10, 2013

4

Finite element analysis at DIANA (1/2)

Some relevant quantities:
u - displacements
ε - strain
σ - stress

In case of linear elastic behavior:

ε = Bmu,

with Bm the differential matrix,

σ = Dmε,

with Dm the elasticity matrix.

Iterative methods at DIANA December 10, 2013

4

Finite element analysis at DIANA (2/2)

K and f are assembled by

Kem =

∫
em

BT
mDmBm dV, fem =

∫
em

∑
i

femi dV

⇒ K =

nel∑
m=1

T T
mK

emTm, f =

nel∑
m=1

T T
mf

em ,

Result: Ku = f, K ∈ Rn×n, f ∈ Rn.

Computationally intensive part!

Iterative methods at DIANA December 10, 2013

5

Finite element analysis at DIANA (2/2)

K and f are assembled by

Kem =

∫
em

BT
mDmBm dV, fem =

∫
em

∑
i

femi dV

⇒ K =

nel∑
m=1

T T
mK

emTm, f =

nel∑
m=1

T T
mf

em ,

Result: Ku = f, K ∈ Rn×n, f ∈ Rn.

Computationally intensive part!

Iterative methods at DIANA December 10, 2013

5

Finite element analysis at DIANA (2/2)

K and f are assembled by

Kem =

∫
em

BT
mDmBm dV, fem =

∫
em

∑
i

femi dV

⇒ K =

nel∑
m=1

T T
mK

emTm, f =

nel∑
m=1

T T
mf

em ,

Result: Ku = f, K ∈ Rn×n, f ∈ Rn.

Computationally intensive part!

Iterative methods at DIANA December 10, 2013

5

Finite element analysis at DIANA (2/2)

K and f are assembled by

Kem =

∫
em

BT
mDmBm dV, fem =

∫
em

∑
i

femi dV

⇒ K =

nel∑
m=1

T T
mK

emTm, f =

nel∑
m=1

T T
mf

em ,

Result: Ku = f, K ∈ Rn×n, f ∈ Rn.

Computationally intensive part!

Iterative methods at DIANA December 10, 2013

5

Solution methods for linear systems

Direct and iterative methods.

Direct methods:

I LU or Cholesky decomposition

I Pardiso (parallel LU)

Iterative methods:

I Conjugate Gradient Method

I Generalized Minimal Residual Method

Properties of iterative methods:

I Require less memory

I In general less robust

I Effective for important classes of problems

Iterative methods at DIANA December 10, 2013

6

Solution methods for linear systems

Direct and iterative methods.

Direct methods:

I LU or Cholesky decomposition

I Pardiso (parallel LU)

Iterative methods:

I Conjugate Gradient Method

I Generalized Minimal Residual Method

Properties of iterative methods:

I Require less memory

I In general less robust

I Effective for important classes of problems

Iterative methods at DIANA December 10, 2013

6

Solution methods for linear systems

Direct and iterative methods.

Direct methods:

I LU or Cholesky decomposition

I Pardiso (parallel LU)

Iterative methods:

I Conjugate Gradient Method

I Generalized Minimal Residual Method

Properties of iterative methods:

I Require less memory

I In general less robust

I Effective for important classes of problems

Iterative methods at DIANA December 10, 2013

6

Solution methods for linear systems

Direct and iterative methods.

Direct methods:

I LU or Cholesky decomposition

I Pardiso (parallel LU)

Iterative methods:

I Conjugate Gradient Method

I Generalized Minimal Residual Method

Properties of iterative methods:

I Require less memory

I In general less robust

I Effective for important classes of problems

Iterative methods at DIANA December 10, 2013

6

Iterative solution methods available at
DIANA

Symmetric case:
Conjugate Gradient (CG)

I Lanczos-based algorithm

I Strategy: orthogonalizes the residuals

I Optimality

I Short-recurrence

Nonsymmetric case:
(Restarted) Generalized Minimal Residual (GMRES(s))

I Arnoldi-based algorithm

I Strategy: minimizes the residuals

I Optimality (if no restart)

I Long-recurrence

Iterative methods at DIANA December 10, 2013

7

Iterative solution methods available at
DIANA

Symmetric case:
Conjugate Gradient (CG)

I Lanczos-based algorithm

I Strategy: orthogonalizes the residuals

I Optimality

I Short-recurrence

Nonsymmetric case:
(Restarted) Generalized Minimal Residual (GMRES(s))

I Arnoldi-based algorithm

I Strategy: minimizes the residuals

I Optimality (if no restart)

I Long-recurrence

Iterative methods at DIANA December 10, 2013

7

Preconditioning

The convergence of iterative methods depend on eigenvalues
and eigenvectors.

For SPD matrix K holds for the m-th CG iteration:

||u− um||K ≤ 2

[√
λmax/λmin − 1√
λmax/λmin + 1

]m
||u− u0||K

I Clustered eigenvalues yield good convergence for CG
I Clustered eigenvalues and well-conditioned eigenvectors

yield good convergence for GMRES

Preconditioning Ku = f ⇒ P−1Ku = P−1f ,

where:

I P ≈ K ⇒ P−1K ≈ I.
I Px = y is easy to solve.

Iterative methods at DIANA December 10, 2013

8

Preconditioning

The convergence of iterative methods depend on eigenvalues
and eigenvectors.

For SPD matrix K holds for the m-th CG iteration:

||u− um||K ≤ 2

[√
λmax/λmin − 1√
λmax/λmin + 1

]m
||u− u0||K

I Clustered eigenvalues yield good convergence for CG
I Clustered eigenvalues and well-conditioned eigenvectors

yield good convergence for GMRES

Preconditioning Ku = f ⇒ P−1Ku = P−1f ,

where:

I P ≈ K ⇒ P−1K ≈ I.
I Px = y is easy to solve.

Iterative methods at DIANA December 10, 2013

8

Preconditioning

The convergence of iterative methods depend on eigenvalues
and eigenvectors.

For SPD matrix K holds for the m-th CG iteration:

||u− um||K ≤ 2

[√
λmax/λmin − 1√
λmax/λmin + 1

]m
||u− u0||K

I Clustered eigenvalues yield good convergence for CG
I Clustered eigenvalues and well-conditioned eigenvectors

yield good convergence for GMRES

Preconditioning Ku = f ⇒ P−1Ku = P−1f ,

where:

I P ≈ K ⇒ P−1K ≈ I.
I Px = y is easy to solve.

Iterative methods at DIANA December 10, 2013

8

Substructuring and Domain decomposition

Substructuring

K ∼


A1 B1

. . .
...

Ans Bns

BT
1 . . . BT

ns
C


I No parallel

implementation

I Partitioning the elements

I No overlap in partitions

I One preconditioner

Domain decomposition

K =

nd∑
i=1

LT
i KiRi

I Parallel implementation

I Partitioning the nodes

I Overlap allowed in
partitions

I Dual preconditioner

Iterative methods at DIANA December 10, 2013

9

Substructuring and Domain decomposition

Substructuring

K ∼


A1 B1

. . .
...

Ans Bns

BT
1 . . . BT

ns
C


I No parallel

implementation

I Partitioning the elements

I No overlap in partitions

I One preconditioner

Domain decomposition

K =

nd∑
i=1

LT
i KiRi

I Parallel implementation

I Partitioning the nodes

I Overlap allowed in
partitions

I Dual preconditioner

Iterative methods at DIANA December 10, 2013

9

Substructuring and Domain decomposition

Substructuring

K ∼


A1 B1

. . .
...

Ans Bns

BT
1 . . . BT

ns
C


I No parallel

implementation

I Partitioning the elements

I No overlap in partitions

I One preconditioner

Domain decomposition

K =

nd∑
i=1

LT
i KiRi

I Parallel implementation

I Partitioning the nodes

I Overlap allowed in
partitions

I Dual preconditioner

Iterative methods at DIANA December 10, 2013

9

Enhancements

Required improvements:

I Jumps in material properties

I Multiple types of degrees of freedom

I Interface elements: ‘coupling’ elements

I Mixture elements: pressure-translation elements

I Nonlinear loops

Techniques:

I Deflation

I Scaling

I IDR(s)

Iterative methods at DIANA December 10, 2013

10

Enhancements

Required improvements:

I Jumps in material properties

I Multiple types of degrees of freedom

I Interface elements: ‘coupling’ elements

I Mixture elements: pressure-translation elements

I Nonlinear loops

Techniques:

I Deflation

I Scaling

I IDR(s)

Iterative methods at DIANA December 10, 2013

10

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.
Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.
Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.

Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.

Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.
Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.
Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.
Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.

Iterative methods at DIANA December 10, 2013

11

Deflation: choice of Z

Firstly, Y = Z.
Secondly,

I Eigenvector deflation:

Z =
(
v1 . . . vk

)
.

I Subdomain deflation:

Zij =

{
1 if i ∈ Gj ,
0 otherwise.

I Rigid body mode deflation:
Z is approximate null space of element matrices
corresponding to ‘near-rigid bodies’.

Iterative methods at DIANA December 10, 2013

12

Deflation: choice of Z

Firstly, Y = Z.
Secondly,

I Eigenvector deflation:

Z =
(
v1 . . . vk

)
.

I Subdomain deflation:

Zij =

{
1 if i ∈ Gj ,
0 otherwise.

I Rigid body mode deflation:
Z is approximate null space of element matrices
corresponding to ‘near-rigid bodies’.

Iterative methods at DIANA December 10, 2013

12

Deflation: choice of Z

Firstly, Y = Z.
Secondly,

I Eigenvector deflation:

Z =
(
v1 . . . vk

)
.

I Subdomain deflation:

Zij =

{
1 if i ∈ Gj ,
0 otherwise.

I Rigid body mode deflation:
Z is approximate null space of element matrices
corresponding to ‘near-rigid bodies’.

Iterative methods at DIANA December 10, 2013

12

Deflation: choice of Z

Firstly, Y = Z.
Secondly,

I Eigenvector deflation:

Z =
(
v1 . . . vk

)
.

I Subdomain deflation:

Zij =

{
1 if i ∈ Gj ,
0 otherwise.

I Rigid body mode deflation:
Z is approximate null space of element matrices
corresponding to ‘near-rigid bodies’.

Iterative methods at DIANA December 10, 2013

12

Rigid body mode deflation: Example

Figure: Stiff sphere in block.

Young’s modulus E(x) =

{
1 if x ∈ block,

106 if x ∈ sphere.

‘Near-rigid body’ !

Iterative methods at DIANA December 10, 2013

13

Rigid body mode deflation: Example

Figure: Stiff sphere in block.

Young’s modulus E(x) =

{
1 if x ∈ block,

106 if x ∈ sphere.
‘Near-rigid body’ !

Iterative methods at DIANA December 10, 2013

13

Rigid body mode deflation: Z

Mathematically,
Kzi ≈ 0, zi rigid body mode with only value in sphere.

Suppose only one element in sphere with nodes
x1 = (x1, y1, z1) and x2 = (x2, y2, z2).

x1

x2

y1

y2

z1

z2

Z =



∅

1 0 0 0 −z1 y1
1 0 0 0 −z2 y2
0 1 0 z1 0 −x1
0 1 0 z2 0 −x2
0 0 1 −y1 x1 0
0 0 1 −y2 x2 0

∅



Iterative methods at DIANA December 10, 2013

14

Rigid body mode deflation: Z

Mathematically,
Kzi ≈ 0, zi rigid body mode with only value in sphere.

Suppose only one element in sphere with nodes
x1 = (x1, y1, z1) and x2 = (x2, y2, z2).

x1

x2

y1

y2

z1

z2

Z =



∅

1 0 0 0 −z1 y1
1 0 0 0 −z2 y2
0 1 0 z1 0 −x1
0 1 0 z2 0 −x2
0 0 1 −y1 x1 0
0 0 1 −y2 x2 0

∅



Iterative methods at DIANA December 10, 2013

14

Rigid body mode deflation: Z

Mathematically,
Kzi ≈ 0, zi rigid body mode with only value in sphere.

Suppose only one element in sphere with nodes
x1 = (x1, y1, z1) and x2 = (x2, y2, z2).

x1

x2

y1

y2

z1

z2

Z =



∅

1 0 0 0 −z1 y1
1 0 0 0 −z2 y2
0 1 0 z1 0 −x1
0 1 0 z2 0 −x2
0 0 1 −y1 x1 0
0 0 1 −y2 x2 0

∅


Iterative methods at DIANA December 10, 2013

14

Scaling

Example:
Translation degrees of freedom: O(t)
Rotation degrees of freedom: O(r)
Pressure degrees of freedom: O(p)

Right preconditioning:

KP−1x = f, u = P−1x,

with P = diag({t, r, p}).

Iterative methods at DIANA December 10, 2013

15

Scaling

Example:
Translation degrees of freedom: O(t)
Rotation degrees of freedom: O(r)
Pressure degrees of freedom: O(p)

Right preconditioning:

KP−1x = f, u = P−1x,

with P = diag({t, r, p}).

Iterative methods at DIANA December 10, 2013

15

IDR(s)

Nonsymmetric systems: No ‘best’ algorithm.

IDR(s) forces residuals rn in subspace Gj of decreasing
dimension. Some freedom in algorithm remains.

GMRES(s) IDR(s)

Long recurrences Short recurrences
Optimal if no restart Not optimal

⇒ IDR(s) is likely to outperform GMRES(s) in case of restart

I Large systems of equations

I Ill-conditioned problems

Iterative methods at DIANA December 10, 2013

16

IDR(s)

Nonsymmetric systems: No ‘best’ algorithm.

IDR(s) forces residuals rn in subspace Gj of decreasing
dimension. Some freedom in algorithm remains.

GMRES(s) IDR(s)

Long recurrences Short recurrences
Optimal if no restart Not optimal

⇒ IDR(s) is likely to outperform GMRES(s) in case of restart

I Large systems of equations

I Ill-conditioned problems

Iterative methods at DIANA December 10, 2013

16

IDR(s)

Nonsymmetric systems: No ‘best’ algorithm.

IDR(s) forces residuals rn in subspace Gj of decreasing
dimension. Some freedom in algorithm remains.

GMRES(s) IDR(s)

Long recurrences Short recurrences
Optimal if no restart Not optimal

⇒ IDR(s) is likely to outperform GMRES(s) in case of restart

I Large systems of equations

I Ill-conditioned problems

Iterative methods at DIANA December 10, 2013

16

Rigid body mode deflation so far...

Figure: Convergence for Block5.

Analogue behavior for three stiff blocks in a block.

Iterative methods at DIANA December 10, 2013

17

Rigid body mode deflation so far...

Figure: Convergence for Block5.

Analogue behavior for three stiff blocks in a block.

Iterative methods at DIANA December 10, 2013

17

Challenges

I Identification of rigid bodies
I Young’s modulus of materials
I Interface elements
I Spring elements
I (Shell elements)
I (Contact elements)

I Scaling
I Identifying orders of magnitude (units, expected solution)
I Combination with other preconditioners

I Nonlinear iteration loop
I When to reuse information?
I How to reuse information (rigid bodies, Ritz vectors, etc.)?

Iterative methods at DIANA December 10, 2013

18

Challenges

I Identification of rigid bodies
I Young’s modulus of materials
I Interface elements
I Spring elements
I (Shell elements)
I (Contact elements)

I Scaling
I Identifying orders of magnitude (units, expected solution)
I Combination with other preconditioners

I Nonlinear iteration loop
I When to reuse information?
I How to reuse information (rigid bodies, Ritz vectors, etc.)?

Iterative methods at DIANA December 10, 2013

18

Challenges

I Identification of rigid bodies
I Young’s modulus of materials
I Interface elements
I Spring elements
I (Shell elements)
I (Contact elements)

I Scaling
I Identifying orders of magnitude (units, expected solution)
I Combination with other preconditioners

I Nonlinear iteration loop
I When to reuse information?
I How to reuse information (rigid bodies, Ritz vectors, etc.)?

Iterative methods at DIANA December 10, 2013

18

Challenges

I Identification of rigid bodies
I Young’s modulus of materials
I Interface elements
I Spring elements
I (Shell elements)
I (Contact elements)

I Scaling
I Identifying orders of magnitude (units, expected solution)
I Combination with other preconditioners

I Nonlinear iteration loop
I When to reuse information?
I How to reuse information (rigid bodies, Ritz vectors, etc.)?

Iterative methods at DIANA December 10, 2013

18

Iterative methods at DIANA
Improving the iterative methods in TNO DIANA using

physical properties of the underlying model.

Alex Sangers

Delft Institute of Applied Mathematics
TNO DIANA

December 10, 2013

Iterative methods at DIANA December 10, 2013

19

	Finite Element Analysis at DIANA
	Iterative solution methods at DIANA
	Other solution techniques at DIANA
	Enhancements
	Illustrative results
	Challenges

