
Abstract

“Improving the iterative methods in TNO DIANA using
physical properties of the underlying model”

Alex Sangers - December 10, 2013 at 16:00 in EEMCS Room 1.2

DIANA is a multi-purpose finite element software package that is
dedicated to e.g. structural and geotechnical engineering problems. The
solution of one or more systems of linear equations is a computational
intensive part of a finite element analysis. For this purpose a number of
direct and iterative methods are available in DIANA.

As the demand for larger finite element analysis grows every year, so lead
the corresponding models to large linear systems. Iterative methods have
proved to be effective to solve these systems.

The purpose of this research is to find out how the iterative methods of
DIANA can be improved. One technique considered is deflation, based on
the physical properties of the underlying problem. Another technique is
scaling the system based on the type of degree of freedom, such as
translation, rotation or pressure.
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Finite element analysis at DIANA (1/2)

Some relevant quantities:
u - displacements
ε - strain
σ - stress

In case of linear elastic behavior:

ε = Bmu,

with Bm the differential matrix,

σ = Dmε,

with Dm the elasticity matrix.
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Finite element analysis at DIANA (2/2)

K and f are assembled by

Kem =

∫
em

BT
mDmBm dV, fem =

∫
em

∑
i

femi dV

⇒ K =

nel∑
m=1

T T
mK

emTm, f =

nel∑
m=1

T T
mf

em ,

Result: Ku = f, K ∈ Rn×n, f ∈ Rn.

Computationally intensive part!
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Solution methods for linear systems

Direct and iterative methods.

Direct methods:

I LU or Cholesky decomposition

I Pardiso (parallel LU)

Iterative methods:

I Conjugate Gradient Method

I Generalized Minimal Residual Method

Properties of iterative methods:

I Require less memory

I In general less robust

I Effective for important classes of problems
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Iterative solution methods available at
DIANA

Symmetric case:
Conjugate Gradient (CG)

I Lanczos-based algorithm

I Strategy: orthogonalizes the residuals

I Optimality

I Short-recurrence

Nonsymmetric case:
(Restarted) Generalized Minimal Residual ( GMRES(s) )

I Arnoldi-based algorithm

I Strategy: minimizes the residuals

I Optimality (if no restart)

I Long-recurrence
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Preconditioning

The convergence of iterative methods depend on eigenvalues
and eigenvectors.

For SPD matrix K holds for the m-th CG iteration:

||u− um||K ≤ 2

[√
λmax/λmin − 1√
λmax/λmin + 1

]m
||u− u0||K

I Clustered eigenvalues yield good convergence for CG
I Clustered eigenvalues and well-conditioned eigenvectors

yield good convergence for GMRES

Preconditioning Ku = f ⇒ P−1Ku = P−1f ,

where:

I P ≈ K ⇒ P−1K ≈ I.
I Px = y is easy to solve.
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Substructuring and Domain decomposition

Substructuring

K ∼


A1 B1

. . .
...

Ans Bns

BT
1 . . . BT

ns
C


I No parallel

implementation

I Partitioning the elements

I No overlap in partitions

I One preconditioner

Domain decomposition

K =

nd∑
i=1

LT
i KiRi

I Parallel implementation

I Partitioning the nodes

I Overlap allowed in
partitions

I Dual preconditioner
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Enhancements

Required improvements:

I Jumps in material properties

I Multiple types of degrees of freedom

I Interface elements: ‘coupling’ elements

I Mixture elements: pressure-translation elements

I Nonlinear loops

Techniques:

I Deflation

I Scaling

I IDR(s)

Iterative methods at DIANA December 10, 2013

10



Enhancements

Required improvements:

I Jumps in material properties

I Multiple types of degrees of freedom

I Interface elements: ‘coupling’ elements

I Mixture elements: pressure-translation elements

I Nonlinear loops

Techniques:

I Deflation

I Scaling

I IDR(s)

Iterative methods at DIANA December 10, 2013

10



Deflation

Define

Π∈ = I − Z(Y TKZ)−1Y TK,

Π⊥ = I −KZ(Y TKZ)−1Y T ,

so that Π⊥K = KΠ∈.

Split u by

u = u∈ + u⊥

= (I −Π∈)u+ Π∈u.

First part u∈: u∈ = (I −Π∈)u = Z(Y TKZ)−1Y T f.
Second part u⊥: Ku⊥ = KΠ∈u = Π⊥Ku.

⇒ Π⊥Ku = Π⊥f.
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Deflation: choice of Z

Firstly, Y = Z.
Secondly,

I Eigenvector deflation:

Z =
(
v1 . . . vk

)
.

I Subdomain deflation:

Zij =

{
1 if i ∈ Gj ,
0 otherwise.

I Rigid body mode deflation:
Z is approximate null space of element matrices
corresponding to ‘near-rigid bodies’.
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Rigid body mode deflation: Example

Figure: Stiff sphere in block.

Young’s modulus E(x) =

{
1 if x ∈ block,

106 if x ∈ sphere.

‘Near-rigid body’ !
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Rigid body mode deflation: Z

Mathematically,
Kzi ≈ 0, zi rigid body mode with only value in sphere.

Suppose only one element in sphere with nodes
x1 = (x1, y1, z1) and x2 = (x2, y2, z2).

x1

x2

y1

y2

z1

z2

Z =



∅

1 0 0 0 −z1 y1
1 0 0 0 −z2 y2
0 1 0 z1 0 −x1
0 1 0 z2 0 −x2
0 0 1 −y1 x1 0
0 0 1 −y2 x2 0

∅


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Scaling

Example:
Translation degrees of freedom: O(t)
Rotation degrees of freedom: O(r)
Pressure degrees of freedom: O(p)

Right preconditioning:

KP−1x = f, u = P−1x,

with P = diag({t, r, p}).
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IDR(s)

Nonsymmetric systems: No ‘best’ algorithm.

IDR(s) forces residuals rn in subspace Gj of decreasing
dimension. Some freedom in algorithm remains.

GMRES(s) IDR(s)

Long recurrences Short recurrences
Optimal if no restart Not optimal

⇒ IDR(s) is likely to outperform GMRES(s) in case of restart

I Large systems of equations

I Ill-conditioned problems
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Rigid body mode deflation so far...

Figure: Convergence for Block5.

Analogue behavior for three stiff blocks in a block.
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Challenges

I Identification of rigid bodies
I Young’s modulus of materials
I Interface elements
I Spring elements
I (Shell elements)
I (Contact elements)

I Scaling
I Identifying orders of magnitude (units, expected solution)
I Combination with other preconditioners

I Nonlinear iteration loop
I When to reuse information?
I How to reuse information (rigid bodies, Ritz vectors, etc.)?
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