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1 Introduction

DIANA is an extensive multi-purpose finite element software package that is dedicated, but
not exclusive, to a wide range of problems arising in Civil engineering including structural,
geotechnical, tunneling, earthquake disciplines and oil & gas engineering. One of the com-
putationally most intensive parts of a finite element analysis is the solution of one or more
systems of linear equations, i.e., solving Ku = f . For this purpose a number of direct and
iterative solution methods are available in DIANA.

Iterative solution methods are particularly attractive for large-scale three-dimensional
(nonlinear) problems since they require less memory and, if properly working, are faster.
A major drawback is that iterative methods are not always robust, i.e., convergence can be
slow or they may not converge at all. Several techniques are available to increase the robust-
ness of iterative methods, such as preconditioning. Currently, the standard preconditioners
used in DIANA are diagonal scaling, Incomplete LU decompositions and substructuring
and in the context of domain decomposition are an additive Schwarz preconditioner and a
coarse grid correction available.

The purpose of this research is to find out what problems are occuring with the iterative
method of DIANA and how to solve these problems. One direction that will be considered
is deflation, with the purpose to increase robustness and convergence speed of the iterative
methods. Deflation is very suitable in combination with a preconditioner. The idea of
deflation is to split the solution into two parts. The part that is deflated (projected out of
the system) corresponds to the cause of slow convergence. The remaining part is converges
relatively fast.

In Section 2 are some mathematical notation and definitions discussed. Section 3 in-
troduces the Finite Element Method of DIANA. Section 4 describes the iterative solution
methods, preconditioners and other techniques that are currently available at DIANA. The
possible techniques to improve the iterative solver will be introduced in Section 5 and
thereafter, the research question and test problems will be addressed in Section 6. Lastly,
Section 7 illustrates how the deflation technique can be advantageous for the iterative
solution methods.

2 Notation and definitions

Let us introduce some common mathematical notation and definitions.

Definition 1 Let x ∈ Rn be a vector and A ∈ Rn×n be a matrix. Then A is defined:

Symmetric if A = AT .

Positive definite if xTAx > 0, ∀x 6= 0.

Definition 2 Let x ∈ Rn be a vector, A ∈ Rn×n be a positive definite matrix and p ∈ N.
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Then the following commonly used norms are defined by

||x||1 =
n∑
i=1

|xi|, ||x||2 =

√√√√ n∑
i=1

|xi|2,

||x||∞ = max
i=1,...,n

|xi|, ||x||A =
√
xTAx,

||A||p = max
x∈Rn\{0}

||Ax||p
||x||p

The latter norm is called a matrix norm and for p = 2 (Euclidean norm) holds that
||A||2 =

√
λmax(ATA).

Definition 3 Let A ∈ Rn×n a matrix. The condition number κ of A is defined as

κ(A) = ||A||2||A−1||2.

If, furthermore, A is symmetric positive definite, this reduces to

κ(A) =
λmax(A)

λmin(A)
.

Some norms are induced by an inner product as defined below.

Definition 4 Let x, y ∈ Rn be vectors and let A ∈ Rn×n be a positive definite matrix.
Then the following inner products are defined as

〈x, y〉2 =
n∑
i=1

xiyi = xT y,

〈x, y〉A = xTAy.

Any norm induced by an inner product satisfies ||x||∗ =
√
〈x, x〉∗. The 2-norm or Eu-

clidean norm in Definition 2 is induced by the Euclidean inner product and for positive
definite matrices A is the A-norm in Definition 2 induced by the A-inner product.

A nice property for matrices is to be self-adjoint.

Definition 5 A matrix (or any operator) A is self-adjoint if and only if

〈Ax, y〉 = 〈x,Ay〉.

Note that any symmetric matrix is self-adjoint.

Definition 6 Let the function f be defined on domain V . Let k ∈ N ∪ {∞} and p ∈ N 1.

1Typically, k = {1, 2,∞} and p = {1, 2}.
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Then the following function spaces are defined as

C(V ) := {f → C | f is continuous},
Ck(V ) := {f → C | f is k-times continuously differentiable},

Lp(V ) := {f → C |
∫
V
|f |p dV <∞},

L∞(V ) := {f → C | |f | is essentially bounded},

H(V ) := {f → C | ||f || =
√
〈f, f〉 is well-defined},

H1(V ) := {f ∈ L2(V ) | f has a weak derivative},
Hn(V ) := {f ∈ H1(V ) | f ′ ∈ Hn−1(V )}.

The function space H is called a Hilbert space and the function space Hn is called a Sobolev
space. Any space with a well-defined inner product is a Hilbert space. The mentioned weak
derivative above will be elaborated later. In addition, any lower index 0, such as f ∈ C1

0 (V ),
indicates that the corresponding function f is zero at the boundary Γ of V .

3 The Finite Element Method

To illustrate how the linear system of equations Ku = f is formed, consider the Poisson
problem on V with f ∈ L2(V ):{

−52 u = f, on V,
u = 0, on Γ = ∂V.

(3.1)

Often, partial differential equations (PDEs) arising from physics, such as (3.1), can be
written as a minimization problem. Such problems typically minimize the underlying po-
tential energy or seek the shortest path. The advantage of minimization problems is that
they admit a larger solution class than a PDE formulation. Althought of historical rele-
vance and importance and connection with physical meaning, the minimization problem
formulation is only applicable in specific cases.

A more general approach is the weak formulation. Both the minimization problem and
weak formulation lead to a formulation with fewer boundary conditions. The boundary
conditions explicitly described in the minimization problem are called essential boundary
conditions. Other boundary conditions that are present in the PDE but are absent in the
minimization problem are called natural boundary conditions. These natural boundary
conditions are only implicitly in the formulation of the minimization problem. As a rule of
thumb, for second order PDEs all boundary conditions regarding to u are essential and all
boundary conditions regarding to u′ are natural. For more information on the minimization
problem formulation, refer to [26].

3.1 The weak formulation

The weak formulation is another way (identical to the minimization problem if the min-
imization problem can be formulated) of admitting a larger solution class. The weak
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formulation uses the concept of weak derivatives. A weak derivative g ∈ L2(V ) of function
f ∈ L2(V ) satisfies the following:∫

V
g(s)λ(s) ds = −

∫
V
f(s)λ′(s) ds, ∀λ ∈ C1

0 (V ). (3.2)

Note that the (strong) derivative f ′ of f is also the weak derivative and that the weak
derivative g of f is also the (strong) derivative f ′ of f if it exists. An example of a function
with a weak derivative without a strong derivative is f = |x| on V = [−1, 1]. The strong
derivative f ′ of f does not exist on V , while the well-defined weak derivative is given by

g(x) =

{
1 if x ∈ (−1, 0)
−1 if x ∈ (0, 1)

. The function g is well-defined (almost-everywhere) and on

V \{0} it is equal to the strong derivative of f . Furthermore, since the function space C1(V )
is ||.||H1-dense in the function space H1(V ) [7], Equation (3.2) also holds for all λ ∈ H1

0 (V ).

Let us reconsider PDE (3.1), where the term 52u appears. This classical notation
yields that u should be twice differentiable. The weak formulation admits a larger solution
class, yielding u ∈ H2

0 (V ). Consider

−52 u = f (3.3)∫
V
−52 u λ dV =

∫
V
fλ dV, ∀λ ∈ H1

0 (V ) (3.4)∫
V
5u · 5λ−5 · (5u λ) dV =

∫
V
fλ dV, ∀λ ∈ H1

0 (V ) (3.5)∫
V
5u · 5λ dV −

∮
(5u λ) · n dΓ =

∫
V
fλ dV, ∀λ ∈ H1

0 (V ) (3.6)∫
V
5u · 5λ dV =

∫
V
fλ dV, ∀λ ∈ H1

0 (V ). (3.7)

Equality (3.4) results from multiplying with a test function λ ∈ H1
0 (V ), which satis-

fies the essential boundary conditions of u, and integrating on the whole domain. This is
equivalent to Equality (3.3) by the extension of DuBois-Reymond’s lemma [26]. Equality
(3.5) follows by Gauss divergence theorem and Equality (3.7) follows from the boundary
conditions of λ.

This approach results in a lower order problem (in derivatives) with the same unique
solution as the original differential equation. The weak formulation is a generalization of
the corresponding PDE; a solution of the PDE is also a solution of the weak formulation,
but not necessarily vice versa.

The Finite Element Method solves Equation (3.7) by approximating u by a linear com-
bination of so-called test functions, i.e., u ≈ un =

∑n
j=1 ujλj , where λj are test functions.

The domain V is divided into nel elements with each element consisting of a number of
(shared) nodes. The choice of the test functions λj ∈ H1

0 (0, 1) strongly determines the
sparsity of the resulting linear system of equations, which influences the required memory
and CPU time. We would like to preserve the underlying model sufficiently accurate and
usually the test functions λj satisfy λj(xi) = δij , in order to ensure that u(xi) = ui holds
in the nodes. The number of nodes per element varies with the specific choice of test func-
tions. Independent of the specific choice of λj , althought satisfying λj(xi) = δij , leads the
approximation un in our example in Equation (3.1) to
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∫
V
5un · 5λi dV =

∫
V
fλi dV∫

V
5(

n∑
j=1

ujλj) · 5λi dV =

∫
V
fλi dV

n∑
j=1

uj

∫ 1

0
5λj · 5λi dV =

∫
V
fλi dV.

(3.8)

Using a total of nel elements denoted by em, let us introduce

Kij =

∫
V
5λj · 5λi dV

=

nel∑
m=1

∫
em

5λj · 5λi dV =

nel∑
m=1

Kem
ij ,

fi =

∫
V
fλi dV

=

nel∑
m=1

∫
em

fλi dV =

nel∑
m=1

femi .

(3.9)

This notation leads to

n∑
j=1

Kijuj = fi, ∀i = {1, . . . , n}, (3.10)

Ku = f. (3.11)

The solution u of the linear system (3.11) can be found by a direct or iterative solution
method, as described in Section 4. The solution u of the original PDE in (3.1) is approxi-

mated by the solution u =
(
u1 . . . un

)T
found in (3.11) by u ≈ un =

∑n
j=1 ujλj .

3.2 Application of Finite Element Methods to structural problems

In a structural problem the displacements u, strains ε and stresses σ are often relevant pa-
rameters. The displacements are mostly directly calculated in the Finite Element Method,
using the approach in previous section.

The strain is a measure of deformation, representing the displacements between particles
relative to a reference length. Strain is therefore a dimensionless quantity. In general the
strain is a matrix, but often the strain is expressed as a vector (engineering notation) for
convenience [28]. The strain can be decomposed into normal and shear strain. The strain
is expressed as a function of the displacements and often the strain is some function of the
derivative of the displacements.

The stress is a measure of the internal forces per area (in case of compression compa-
rable to pressure) that elements exert on each other. Stress is therefore of dimension force
per area. Any strain generates a stress, as a reaction force on the deformation. Stress can
also occur due to the external environment, for example when a solid vertical bar supports
a hanging weight. Stress may exist even when strain is absent, or when no external forces
occur (such as with so-called built-in stress). The stress is expressed as a function of the
displacements and often the stress is some function of the second derivative of the dis-
placements. In general the stress is a matrix, but often the stress is expressed as a vector
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(engineering notation) for convience [28]. The formulation of the displacement-based Finite
Element Method is extensively described in Bathe [1].

Consider a static structural problem. The local strain ε can be calculated by ε = Bmu,
with Bm the local strain-displacement (differential) matrix. The stresses corresponding to
ε are given by σ = Dm(ε), with Dm the local stress-strain (elasticity) relation. Assuming
linear elastic behaviour this can be written as σ = Dmε with Dm the rigidity matrix, often
depending on Young’s modulus E and Poisson’s ration ν.

In element formulations the displacements u, strains ε and stresses σ are locally formu-
lated for each element using the interpolation matrix Nm. This matrix Nm is determined
by the test function λ as introduced in (3.4). The local matrices Bm and Dm depend on
Nm and vary from element to element. The matrix Tm maps the local element numbering
to the global numbering. The local stiffness matrices Km and the global stiffness matrix
K are formed by

Kem =

∫
em

BT
mDmBm dV

⇒ K =

nel∑
m=1

T TmK
emTm,

where nel is the number of elements. Note that in essence this is a specific (matrix)
formulation of the general weak formulation approach.

3.3 Elements

Elements exists in a lot of variants. All elements consist of a number of nodes and corre-
sponding degrees of freedom. Typically, the number of nodes per element is between one
and forty. Each node consists of up to three translational degrees of freedom and up to
three rotational degrees of freedom. Furthermore, also temperature or Lagrange multipli-
ers can be degrees of freedom and in mixture elements pressure degrees of freedom also
play a role. Geometrically speaking, DIANA offers nodal point elements, lines, triangles,
quadrilaterals, pyramids, wedges and bricks.

3.3.1 Structural elements

Structural elements usually consist of up to three translational degrees of freedom per node.
Rotational degrees of freedom are typical for special elements, such as shell elements. Stan-
dard type structural elements consists of a geometry and a material, the latter described
by Young’s modulus E and Poisson’s ration ν [24]. Young’s modules E indicates the ma-
terial elasticity property. Poisson’s ratio ν indicates the ratio of material deformation in
the plane perpendicular to the direction of the exerting compression or stretching. The
Young’s modulus of a material can be used to calculate the force it exerts under specific
strain. Assuming linear elasticity, the following three-dimensional relation can be given:
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σxx
σyy
σzz
σyz
σzx
σxy

 = C



εxx
εyy
εzz
εyz
εzx
εxy

 , (3.12)

where σ is the stress vector, ε is the strain vector and where the entries of the ‘stiffness’
matrix C depend on e.g. Poisson’s ratio ν and Young’s modulus E. Equation (3.12) is
the three-dimensional generalization of Hooke’s law for linear elastic material. In general,
there are 36 stiffness matrix components. However, for all applications in DIANA the
stiffness matrix is symmetric and depending on the application, more components may lose
independence. This reduces the number of independent components to 21 (anisotropic),
9 (orthotropic), 5 (transverse isotropic) or 2 (isotropic) [30]. If we consider just the one-
dimensional case, Hooke’s law reduces to

σ = Eε,

F = Aσ =
EA

L
∆u,

(3.13)

where F is the force, A is the cross-sectional area through which the force is applied, L is
the original length of object and ∆u is the relative displacement.

In structural mechanics it is common to use finite elements such as beam, plate and
shell elements. They are introduced in situations where classical elements perform poorly,
e.g., the underlying problem is governed by fourth-order equations. Therefore, the shape
of the elements, the degrees of freedom and the test function λ have to be adapted. These
elements yield assumptions on the stress-strain relation, influencing the ‘stiffness’ matrix C.

A specific type of structural elements is shell elements [23]. The essence of shell elements
is that the elements are planar (althought may be curved in that plane). In general two
hypotheses hold:

• Straight-normals. Particles that are originally on a straight line remain on a straight
line during deformations.

• Zero-normal-stresses. The stress through the thickness of the shell is zero.

In each shell-element node five (or six) degrees of freedom occur: three translational
degrees of freedom and two (or, if drilling rotations are included, three) rotational degrees
of freedom. A lot of principals of shells are described in Zienkiewicz [30].

3.3.2 Interface elements for structural analysis

DIANA offers three families of interface elements, namely structural interfaces, contact
elements and fluid-structure interfaces. Interface elements are placed between nodes, lines
or/and planes with special properties. Typical applications of structural interface elements
are elastic bedding, nonlinear-elastic bedding, discrete cracking, bond-slip along reinforce-
ment, friction between surfaces, joints in rock, masonry and so on [24]. Structural interface
elements can have an initial stress (traction).
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Contact elements model zones of possible contact. There are two types of contact ele-
ments: surface containing contact elements and surface containing target elements. Contact
elements can in general lead to slow convergence and should be avoided as much as possible
by using structural interface elements if possible.

The fluid-structure interface elements are used in fluid-structure interaction analysis,
coupling the fluids to the structure via pressure of the fluid and the normal displacement
of the structure.

The behavior of interface elements is nonlinear in general. For example, in cracking
the interface elements will act linearly at the beginning, but as the cracking starts to take
place the nonlinear behavior will become dominant. The transition of this behavior is hard
to compute, and in general more iterations per nonlinear loop and smaller increments are
required during the initiation of a crack.

The input for DIANA for interface elements are not Young’s modulus and Poisson’s
ratio, but the elastic stiffness D and depending on the application, the stiffness can be
specified per direction and can depend on maturity, temperature, friction, etc. [24]. In any
case the diagonal entries of D need to be specified. Assuming linear elasticity, the following
three-dimensional relation is given: τx

τy
τz

 =

 D1 0 0
0 D2 0
0 0 D3

 ∆xu
∆yu
∆zu

 , (3.14)

where τ is the traction vector (equivalent to the stress σ), D is the stiffness relation,
∆u is the relative displacement. Equation (3.14) is called Hooke’s law for linear elastic
material. If we consider just the one-dimensional case, Hooke’s law reduces to

τ = D∆u,

F = τA = DA∆u,
(3.15)

where F is the force and A is the cross-sectional area through which the force is applied.
If we compare the one-dimensional stiffness of a classical structural element in (3.13) with
an interface element in (3.15), then the one-dimensional relation is given by

F =

(
EA

L

)
∆u = (DA)∆u,

⇒ E

L
= D.

(3.16)

3.3.3 Spring elements

Spring elements act as continuous damping in specific locations in the finite element model
or model the interaction of the finite element model with its environment [24]. Spring
element can consist of one or two nodes, can model translational or rotational springs and
can be a spring and/or a dashpot. The spring constant k need to be specified. A spring
often models one-dimensional elasticity and for linear static analysis the following relation
holds (Hooke’s law):

F = k∆u, (3.17)
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where F is the force, k is the spring stiffness and ∆u is the relative displacement.
If we compare the spring stiffness relation with classical structural element stiffness

relation, then

F = k∆u =

(
EA

L

)
∆u,

⇒ k =
EA

L
.

(3.18)

3.3.4 Mixture elements

If deformation affects the pore pressures, one may extend a structural element with pore
pressure potential degrees of freedom. These elements are called mixture elements. All DI-
ANA’s plane strain, axisymmetric and solid structural elements can be extended to mixture
elements, adding a scalar pore pressure potential degree of freedom to each element node.
Also interface elements can be mixture elements. At fluid-structure interface elements the
additional pore pressure potential degrees of freedom are only one-side added, extending
only the first side to mixture.

In static analysis, the time derivatives are zero, yielding only a single-sided coupling
between stress and flow (flow influences stress only). In a dynamic analysis there is a two-
sided coupling. The pressure degrees of freedom are often of a different order of magnitude
than the translational degrees of freedom. Details of mixture elements can be found in
DIANA User’s Manual, Analysis Procedures [22], Section 60.2.

3.4 Element integration

The element integrals Kij and fi as in Equation (3.9) can be calculated using exact or
numerical integration. Often exact integration cannot be done. Numerical integration is
typically done by Newton-Cotes, composite Simpson, Lobatto or Gauss integration [22] in
the following way: ∫

em

f dV =

nξ∑
i=1

wξif(ξi), (3.19)

where ξi are the integration points, wξi is the weight function of the integration scheme and
nξ is the number of integration points. The number and location of required integration
points depends on the used integration scheme and the order of the test function.

Sometimes it suffices to integrate only the low-order terms in the element integration.
This is called the reduced integration scheme and is often sufficiently accurate for displace-
ments. For stress and strain solutions it is better to use the original (full) integration
scheme.

3.5 Nonlinear analysis

In nonlinear Finite Element Analysis the relation between the force vector f and the vector
u is no longer linear. The general behavioral description F (u) = 0 cannot be reformulated
to Ku = f as in the linear case. The solution of F (u) = 0 in the nonlinear case can be
found be iteratively solving the linear(ized) systems as follows:
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K̃(uk)vk = f̃(uk);

uk+1 = uk + vk,
(3.20)

where vk := uk+1 − uk. Forming and solving the linear system in (3.20) is the hard part.
A number of iterative approximations are available in DIANA: Newton, Modified Newton,
Quasi-Newton and linear and constant stiffness. Furthermore, continuation and line search
are used to speed up these nonlinear iterative methods.

Newton’s method solves F (u) = 0 using its Taylor expansion in the neighborhood of uk

by

F (uk+1) = F (uk) + J(uk)(uk+1 − uk) +O((uk+1 − uk)2),
= F (uk) + J(uk)vk,

where J = ∂F
∂u and in the second step the second order terms are ignored. A better ap-

proximation uk+1 = uk + vk can be constructed with the solution vk of J(uk)vk = −F (uk).
Note that u and F are vectors and J is the Jacobian matrix. Newton’s method is effective,
but the computation of the Jacobian J is very time consuming. Modified Newton, there-
fore, uses only the initial Jacobion matrix J(u0) so that each iteration is cheap. Of course,
in general more iterations are needed with Modified Newton. Quasi-Newton methods, such
as BFGS and Crisfield, use information of previous iterations to achieve better approxi-
mations than Modified Newton. The linear stiffness method uses the initial linear stiffness
matrix all the time (also for successive states, e.g. in time) and is therefore very cheap
per iteration (using a direct solution method) but yields slow convergence in general. The
constant stiffness method uses the constructed stiffness matrix of another method, keeping
it constant from that point on (also for successive states). The constant stiffness method
also yields very cheap iterations but slow convergence in general.

Speeding up these iterative methods can be done by continuation and line search. Con-
tinuation assumes relative continuous deformation, so that the previous increment is a first
prediction of the current increment. The line search algorithm is useful if the prediction
is far from the equilibrium, e.g., if strong nonlinearities take place. The line search algo-
rithm determines the amplification factor of the direction of the nonlinear iterative method.

In DIANA a nonlinear analysis is performed by using load or time stepping. In essence
these two types of stepping are similar: they both define a sequence of states. The following
problem illustrates how to solve a nonlinear problem using stepping. The following PDE
satisfies the Maxwell equations of a magnetic field in an AC dynamo.

−5 · (ν0νr 5 u) = J, (3.21)

where ν0 is a constant and where

νr = α+ (1− α)
|| 5 u||8

|| 5 u||8 + β
,

with α ∈ R, α 6= 1 and β ∈ R. If we are interested in the solution u that satisfies Equation
(3.21), then we have to solve a nonlinear problem. In DIANA this means that we define
one load step which is initialized at zero load and the zero solution and after the single step
the load is increased with J , yielding that solution u of Equation (3.21) is computed by a
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nonlinear iteration method such as Newton’s method. If the right-hand side vector is too
large or if the model is strongly nonlinear, the nonlinear iterations could converge slow or
not at all. This can be solved be applying several load steps to incrementally increase the
right-hand side.

In many applications one is not only interested in solving one nonlinear PDE, but
in several. The solutions can also affect subsequent solutions in next time/load steps,
e.g., material elasticity can nonlinearly change after deformation. Suppose the solution
vector ukm at time/load step k is converged after m nonlinear iterations. When apply the
continuation technique, the solution vector ukm does not need to be reset after convergence
of the nonlinear iteration method, but can be scaled and used as initial solution vector
uk+1
0 at time/load step k + 1.

4 Solution methods for linear systems available in DIANA

Consider the large linear system of equations Ku = f . Two classes of methods are avail-
able, namely direct and iterative methods. We will focus on the iterative methods due to
its attractive properties for large three-dimensional problems. The iterative methods for
solving Ku = f are numerous. The first category of iterative methods are called Basic It-
erative Methods (BIMs) and are based on a splitting K = P −N , followed by the iteration
scheme

um+1 = um + P−1rm, (4.1)

with rm = f − Kum the residual. The matrix P should resemble K is some way and it
should be easy to solve Px = y. Typical resulting methods are (damped) Jacobi, Gauss-
Seidel and SOR(ω). For increasing size of K, the BIMs converge very slow in general ( [27]).

One way to deal with this is to introduce a multigrid, which restricts the grid on a
coarser grid, optionally multiple levels. This ensures faster convergence on the restricted
matrix K̂. Thereafter, the solution is interpolated back on the fine grid where another BIM
iteration is performed.

The second category of methods are called Krylov subspace methods. These iterative
solvers are often more effective than the BIMs and are currently used within DIANA.

4.1 Krylov subspace methods

A Krylov subspace is defined by Km(K; r0) = span{r0,Kr0, . . . ,Km−1r0}, which is the
m-order Krylov subspace generated by matrix K with starting vector r0. Krylov sub-
space methods can be used to solve large systems of linear equations or to find eigenvalues,
without performing matrix-matrix operations. A large amount of Krylov subspace based
methods exist. In this report we mainly focus on (the derivation of) the well-known meth-
ods Conjugate Gradient (CG) and Generalized Minimal Residual (GMRES), since these
methods are currently available in DIANA.

Consider Km(K; r0) with r0 = f −Ku0 the initial residual. We will use the notation
Km if there is no ambiguity. A Krylov subspace method uses the span of the vectors in
subspace Km to reduce the residual rm.

The approximations um of u are based on a certain polynomial of degree m−1. In other
words, um = u0 + qm−1(K)f , where qm−1 is a certain polynomial of degree m − 1. The
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choice for the polynomial approximations strongly determines the success of the Krylov
method.

Arnoldi’s procedure is an algorithm for building an orthonormal basis of the Krylov
subspace Km(K; v1) [19].

Algorithm 1 Arnoldi
1 Choose a vector v1, such that ||v1||2 = 1
2 For j = 1, 2, . . . ,m Do:
3 hij = 〈Kvj , vi〉 for i = 1, 2, . . . , j

4 wj = Kvj −
∑j

i=1 hijvi
5 hj+1,j = ||wj ||2
6 If hj+1,j = 0 then Stop
7 vj+1 = wj/hj+1,j

8 EndDo

Every iteration j this algorithm multiplies the vector vj with K and orthonormalizes
the resulting vector wj with respect to all previous vi by a Gram-Schmidt procedure. The
Arnoldi algorithm stops if wj = 0. The resulting vectors v1, v2, . . . , vm are equal to the
orthonormalized (with respect to each other) vectors v1,Kv1, . . . ,K

m−1v1. This orthonor-
mal property is very useful, which will be elaborated later. This version of Arnoldi uses a
Gram-Schmidt procedure, but due to rounding errors often a more stable method is used,
such as modified Gram-Schmidt or Householder reflection.

Let the entries of H̄m be given by hij at the m-th iteration in Algorithm 1. The resulting
matrix H̄m ∈ R(m+1)×m is a Hessenberg matrix. This is a matrix with only nonzero entries
hij for j = i − 1, i, . . . ,m. Let us also define Vm = [v1 · · · vm], and Hm obtained from H̄m

by deleting its last row, so

Hm =


h11 · · · · · · · · · h1m
h21 h22 · · · · · · h2m

h32
. . . · · · h3m
. . .

. . .
...

hm,m−1 hmm

 .

The following equalities hold:

KVm = VmHm + wme
T
m (4.2)

= Vm+1H̄m (4.3)

V T
mKVm = Hm (4.4)

The equality of (4.3) can be seen by extracting from Algorithm 1

vj+1hj+1,j = wj = Kvj −
j∑
i=1

hijvi,

⇒ Kvj =

j+1∑
i=1

hijvi.
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Rewriting in matrix formulations leads to (4.3). Equality (4.2) follows by step 4 in
Algorithm 1, where wj is orthogonal with respect to all previous vi. By premultiplying
(4.2) with V T

m and using orthonormality of its columns follows equality (4.4).

The following subsections describe different solution methods that can be derived from
Arnoldi’s procedure or its symmetric variant, the Lanczos procedure. The first described
method is the Full Orthogonalization Method (FOM). It is not used in DIANA, but acts
as an introduction to the Generalized Minimimal Residual method (GMRES) and the
Conjugate Gradient method (CG). FOM solves non-symmetric problems by orthogonalizing
the residuals with respect to each other. The CG method applies the same strategy for
symmetric problems. GMRES solves non-symmetric problems by minimizing the residual.
The Conjugate Residual method (CR) applies the same strategy for symmetric problems,
but this method is less popular and will not be further discussed in this report. In addition
to these four iterative methods also other methods are developed, but we will not discuss
them in this report.

Arnoldi

FOM GMRES

orthogonal residual minimal residual

CG CR

Lanczos

4.1.1 Full Orthogonalization Method

The Arnoldi procedure becomes particularly interesting if we take in Algorithm 1 the
v1 = r0/||r0||2 := r0/β. Now, for any vector um ∈ (u0 +Km(K; r0)) there is a vector ym of
appropriate length such that um = u0 + Vmym.

The challenge is to find ym such that the residual corresponding to the calculated um is
small. Remember we take v1 = r0/β in Arnoldi’s method. It follows from KVm = Vm+1H̄m

that

rm = f −Kum = f −K(u0 + Vmym)

= r0 −KVmym
= βv1 − Vm+1H̄mym

= Vm+1(βe1 − H̄mym).

(4.5)

The residual is orthogonalized with respect to the current Krylov subspace Km(K; r0),
yielding the approximate solution um by solving

ym = H−1m βe1,

um = u0 + Vmym.
(4.6)

To determine whether the solution um is sufficiently accurate, Equation (4.5) is reduced

18



to
rm = f −Kum = βv1 − Vm+1H̄mym

= βv1 − VmHmym − hm+1,me
T
mymvm+1

= −hm+1,me
T
mymvm+1,

(4.7)

by Hmym = βe1. Taking the norm of Equation (4.7) yields ||rm||2 = |hm+1,mym(m)|, which
is cheap to evaluate.

Furthermore, as a consequence of Arnoldi’s procedure on r0/β, all residuals rm are
mutually orthogonal,

rm = f −Kum = −(hm+1,me
T
mym)vm+1

⇒ rm ∈ span{vm+1}
⇒ rm ⊥ span{v1, . . . , vm}
⇒ rm ⊥ ri, ∀i 6= m.

(4.8)

The FOM subsequently orthogonalizes all residuals and computes um by Equation (4.6).

4.1.2 Generalized Minimal Residual Method

DIANA uses restarted GMRES, which is based on the (full) GMRES algorithm. The full
GMRES procedure is similar to the FOM and can be described by Algorithm 1. DIANA
uses in the implementation of (restarted) GRMES a modified Gram-Schmidt procedure.

In the light of Equation (4.5), let us define the following operator

J(ym) = ||f −Kum||2 = ||f −K(u0 + Vmym)||2. (4.9)

To solve the system Ku = f it is clear that minimizing the Euclidean norm of the
residual, J(y), could be an advantageous strategy. Recall that at iterationm holds f−Ku =
Vm+1(βe1 − H̄my) from Equation (4.5). Taking the norm yields by orthonormality

J(y) = ||βe1 − H̄my||2. (4.10)

The GMRES method computes after sufficient convergence the solution um of the min-
imization problem (4.10) by

ym = argminy||βe1 − H̄my||2
um = u0 + Vmym.

The restarted GMRES method computes this solution um after sufficient convergence
or if the memory requirements of the Krylov vectors exceed a certain threshold. Restarted
GMRES is bounded by e.g. m iterations and thereafter u0 := um is used to restart GM-
RES. At DIANA the GMRES is restarted if 50% of the memory used by the system matrix
and the preconditioner is used for the Krylov vectors.

Full GMRES has optimal properties based on Km(K; .), but has long recurrences. Each
Krylov vector has to be stored and is used in each iteration, resulting in more CPU time
and it can lead to memory issues.

19



The Hessenberg matrix Hm has eigenvalues and eigenvectors which approximate the
eigenvalues respectively eigenvectors of matrix K. These eigenvalues and eigenvectors are
called the Ritz values and Ritz vectors. Since Hm typically is much smaller than K, only
the extreme eigenpairs are approximated. A QR algorithm could be used to determine the
Ritz values and vectors. This information can be reused in the nonlinear loop, see Section
5.1.

4.1.3 The Conjugate Gradient Method

For symmetric positive definite (SPD) matrices the Conjugate Gradient (CG) method is
a popular choice. SPD matrices K yield some nice properties, such as short-recurrence,
optimality and orthogonal residual based on Km(K; .). Looking at Arnoldi’s procedure,
note that by symmetry of K it follows from Equation (4.4) that

Hm = V T
mKVm = V T

mK
TVm = HT

m,

which implies that the Hessenberg matrix is a symmetric tridiagonal matrix Tm, so

Hm := Tm =


t11 t12
t12 t22 t23

t23
. . .

. . .
. . .

. . . tm−1,m
tm−1,m tmm

 .

Referring to Algorithm 1, this property results in a short-recurrence algorithm, since
each additional column of Tm only consist of two unique nonzero entries. Therefore, in
Algorithm 1 step 3 only tjj has to be calculated. In step 4 only tj−1,j and tjj can be
unequal to zero. To adapt to common notation introduce βj := ||wj−1||2 and hjj := α.
This yields the Lanczos procedure and can be viewed as a special (symmetric) case of
Arnoldi’s procedure [19].

Algorithm 2 Lanczos
1 Choose a vector v1, such that ||v1||2 = 1
2 For j = 1, 2, . . . ,m Do:
3 wj = Kvj − βjvj−1
4 αj = 〈wj , vj〉
5 wj = wj − αjvj
6 βj+1 = ||wj ||2. If βj+1 = 0 then Stop
7 vj+1 = wj/βj+1

8 EndDo

Note that due to symmetry the βj is reused in the update of wj . Also note that by
short-recurrences this version of Arnoldi is Modified Gram-Schmidt, since vj+1 is orthogo-
nalized with respect to all previous relevant predecessors.

Similar as with the non-symmetric case there are two popular strategies, namely orthog-
onalizing residuals or minimizing the residual. The strategy for CG is that the residuals rm
are orthogonalized with respect to each other. The SPD matrix K yields an easy-to-invert
matrix Tm, which can be decomposed by a direct LU decomposition of Tm = LmUm. The
bandwidth of Tm is only two, resulting in
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Tm = LmUm =


1
λ2 1

. . .
. . .

λm 1

 ·


η1 β2

η2
. . .
. . . βm

ηm

 . (4.11)

Consider Equation (4.4), which can be reduced in the symmetric case to

V T
mKVm = Tm = LmUm,

V T
mKVmU

−1
m = Lm,

U−Tm V T
mVmU

−1
m = U−Tm Lm.

(4.12)

Define Pm = VmU
−1
m , then Equation (4.12) reduces to

P TmVmPm = U−Tm Lm. (4.13)

This results in a symmetric and lower triangular matrix and therefore a diagonal ma-
trix. The columns of Pm are called the search direction vectors or conjugate vectors pj ,
j = 1, . . . ,m. From the resulting diagonal matrix in Equation (4.13) follows that the con-
jugate vectors pj are K-orthogonal, i.e., 〈pi,Kpj〉 = 0, ∀i 6= j.

The consequence of symmetry is that the residuals rj and K-conjugate pj can be con-
structed in a recurrence of two vectors, while for the nonsymmetric case the FOM requires
m vectors to compute the next iteration. Furthermore, the approximating solution vector
um can be updated every iteration. The resulting Conjugate Gradient algorithm applicable
for SPD matrices K is shown in Algorithm 3, adapted to common notation.

Algorithm 3 Conjugate Gradient
1 Compute r0 = f −Ku0, p0 = r0.
2 For j = 0, 1, 2, . . . ,until convergence, Do:
3 αj = 〈rj , rj〉/〈pj ,Kpj〉
4 uj+1 = uj + αjpj
5 rj+1 = rj − αjKpj
6 βj = 〈rj+1, rj+1〉/〈rj , rj〉
7 pj+1 = rj+1 + βjpj
8 EndDo

For a full derivation of the CG method please refer to [19]. In [19] is also shown that
the coefficients in Algorithm 3 can be used to directly compute Tm as

Tm =



1
α0

√
β0
α0√

β0
α0

1
α1

+ β0
α0

√
β1
α1

. . .
. . .

. . .
. . .

. . .
√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2


. (4.14)

Corresponding eigenvalues and eigenvectors of Tm in Equation (4.14) are called Ritz
values and Ritz vectors and they approximate the eigenvalues respectively eigenvectors of
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matrix K. A QR decomposition could be used to compute these eigenvalues and eigenvec-
tors. In the nonlinear loop this information can be reused, see Section 5.1.

The CG algorithm is the most popular choice for SPD matrices, combining optimality
and short-recurrence. To be precise, CG minimizes ||u− um||K using orthogonal residuals
rm = f−Kum. The convergence behavior of the CG method is determined by the condition
number (for SPD matrices) κ = λmax/λmin as by Definition 3 in Section 2. The following
bound for the CG method is well-known.

Theorem 1 Let K be a symmetric positive definite matrix. Then the error u− um of the
CG method at iteration m is bounded by

||u− um||K ≤ 2

[√
κ− 1√
κ+ 1

]m
||u− u0||K . (4.15)

This implies that small condition numbers κ ≥ 1 result in fast convergence. The proof can
be found in e.g. [19].

4.1.4 On other non-symmetric iterative methods

For general (non-symmetric) matrices K there exist several algorithms to solve Ku = f .
Some popular choices are Bi-CGSTAB, IDR(s), GMRES and restarted GMRES, but a
lot of other algorithms and variants exist. For non-symmetric matrices it is impossible
to combine the advantageous properties optimality and short-recurrence of CG. The Bi-
CGSTAB, IDR(s) and restarted GMRES algorithm are not optimal and full GMRES has
long recurrences. This implies that GMRES is preferable if the solution converges relatively
fast, but as soon as a restart is required due to memory issues, another short-recurrence,
non-optimal method could be preferable. In Section 5.3 the IDR(s) method is described as
an alternative for restarted GMRES. IDR(s) can be a valuable short-recurrence addition
to the methods currently available in DIANA.

4.2 Preconditioning

For any Krylov subspace method it is important to have a good preconditioner to ensure fast
and robust convergence. The idea is (in case of left preconditioning) that the preconditioned
matrix P−1K has better convergence properties than the original K. A good preconditioner
P should resemble K and it should be cheap to solve Px = y. Preconditioners are often
inspired by the BIM matrix P (where K = P − N , see Equation (4.1)) or by direct
methods. Preconditioning can be applied in different ways; from the left as in Equation
(4.16), centrally as in Equation (4.17) and from the right as in Equation (4.18).

P−1Ku = P−1f, (4.16)

P = LU ; L−1KU−1x = L−1f ; u = U−1x, (4.17)

KP−1x = f ; u = P−1x. (4.18)

4.2.1 Preconditioned CG

Central preconditioning preserves symmetry by P = LLT . This is advantageous for SPD
K, since CG can directly be applied on the symmetric system L−1KL−T .
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Left and right preconditioning destroy the symmetry of the system, even when P−1 is
symmetric. Yet, there is a solution to circumvent this by using other inner products than
the standard Euclidean inner product in CG iterations. Note that the left preconditioned
system P−1K is self-adjoint if the P -inner product is used

〈P−1Kx, y〉P = 〈Kx, y〉2 = 〈x,Ky〉2 = 〈x, P (P−1K)y〉2 = 〈x, P−1y〉P .

This implies that using the P -inner product yields symmetry in case of left precondi-
tioning.

Note that the right preconditioned system KP−1 is self-adjoint if the P−1-inner product
is used

〈KP−1x, y〉P−1 = 〈P−1KP−1x, y〉2 = 〈x, P−1KP−1y〉2 = 〈x,KP−1y〉P−1 .

This implies that using the P−1-inner product yields symmetry in case of right precon-
ditioning. Moreover, rewriting the CG algorithm for left preconditioning with the P -inner
product results in the same algorithm as rewriting the CG algorithm for right precondi-
tioning with the P−1-inner product. In other words, the left preconditioned CG algorithm
with the P -inner product is mathematically equivalent to the right preconditioned CG al-
gorithm with the P−1-inner product [19]. Moreover, the split preconditioning can also be
written to the same algorithm, which implies that all preconditioning techniques yield the
same solutions um.

4.2.2 Preconditioned GMRES

GMRES does not require a symmetric system. Therefore, preconditioning GMRES can be
done straightforwardly. Left preconditioning results in computing the initial residual at the
start of GMRES as

r0 = P−1(f −Ku0).

Right preconditioning yields computing the solution at the end of GMRES as

xm = x0 + P−1Vmym.

Split preconditioning P = LU is a combination of both by r0 = L−1(f − Ku0) and
um = u0 + U−1Vmym.

When comparing left, right and split preconditioning for GMRES, observe that the
spectra of the three associated operators P−1K, KP−1 and L−1KU−1 are identical. Still,
in practice some difference in convergence behaviour can be seen. Left preconditioning
minimizes the residual norm ||P−1(f −Kum)||2, but preserves the original iterations um.
Right preconditioning preserves the original residual norm, but requires to calculate um =
P−1xm after convergence. Although all norms on in a finite space are equivalent, it still
means that ill-conditioned systems can lead to different convergence behaviour due to
numerical issues. DIANA applies right preconditioning for restarted GMRES.

4.2.3 Diagonal scaling

One of the simplest choice for P is diagonal scaling with diagonal elements pii = kii.
The advantage of this preconditioner is that is very cheap to construct and very cheap to
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solve Px = y. The disadvantage is that this choice in general does not resemble K very
accurately, resulting in only slightly less iterations.

4.2.4 Incomplete LU decomposition

Incomplete LU (ILU) decompositions exist in different variants, although all ILU decom-
positions are based on the same idea, namely that the LU decomposition is only partially
done such that K ≈ P = LU . This partial decomposition resembles K and can act as
a preconditioner in a Krylov subspace method. In case of symmetric K, an incomplete
Cholesky (IC) decomposition K ≈ P = LLT is performed.

The standard preconditioner in DIANA is the ILU decomposition without fill-in, i.e.,
lij = uij = 0 if kij = 0. This makes sure that the sparsity pattern of K is unchanged,
saving memory and CPU time.

If the ILU decomposition with no fill-in fails to convergence, then a threshold τ for
fill-in is set up. This preconditioning is abbreviated by ILUT(τ). If needed, the threshold
τ for fill-in can be decreased, resulting in a more accurate and expensive approximation of
K. Note that we obtain the exact factorization if the drop tolerance is small enough, e.g.
τ = 0.

4.2.5 Other preconditioners

DIANA also offers a substructuring preconditioner. Furthermore, available in the context
of domain decomposition, are an additive Schwarz and a coarsening preconditioner.

4.3 Domain decomposition

The purpose of domain decomposition is to divide the domain into a number of subdo-
mains for parallel processing. The partitioning can be done in various ways, althought an
efficient partitioner should have three objectives: minimize the number of so-called overlap
degrees of freedom, minimize the variation in subdomain sizes and group together the de-
grees of freedom which have similar properties. The so-called overlap degrees of freedom
can be loosely described as degrees of freedom that occur in multiple domains (and will be
more precisely defined later this section). The first objective is to minimize communication
between subdomains and improve parallelism. The second objective ensures optimal (bal-
anced) parallel computation time. Lastly, the third objective is based on the observation
that the preconditioner becomes more effective in such partitionings [13]. One can think of
element types, degree of freedom types or material properties. This section we follow [13]
closely, since the implementation in DIANA is very similar.

A variety of domain decompositions have been developed and applied. It is hard to
satisfy the three above objectives all together and a preference has to be made. In DIANA,
the partitioning is done by using Metis [12], a graph partitioning open software package.
Metis partitions the degrees of freedom of the model. This implementation does make sure
that the partitioning is balanced, based on the underlying connectivity of the elements and
it also minimizes the overlap degrees of freedom. However, no other information, such as
material properties, element types or stiffness is used to determine the partitioning.
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Original degrees of freedom are called internal degrees of freedom, while the additional
degrees of freedom are called overlap degrees of freedom. Each degree of freedom is an
internal degree of freedom in exactly one subdomain, so an overlap degree of freedom in a
subdomain is also an internal degree of freedom in exactly one other subdomain. Although
the overlap degrees of freedom should be kept to a minimum, it might be advantageous to
have some overlap.

By defining the restriction operators for each of the nd subdomains, the matrix K can
be expressed in terms of the subdomain matrices Ki (which might be overlapping) by

K =

nd∑
i=1

LTi KiRi,

where Li and Ri are the left and right restriction operators corresponding to the i-th sub-
domain. The left restriction operators Li map the rows of the subdomain matrices to the
global matrix and the right restriction operators Ri map the column of the subdomain
matrices to the global matrix. The left restriction operator Li correspond to the internal
degrees of freedom of i-th subdomain, while the right restriction operator Ri corresponds
to internal and overlapping degrees of freedom of the i-th subdomain. Note that non-zero
columns of (Ri − Li) indicate the overlapping degrees of freedom of i-th subdomain.

The domain decomposition uses a two-level preconditioner. The first preconditioner is
an additive Schwarz (AS) preconditioner and the second is a coarse grid correction. The
AS preconditioner is used to combine the local preconditioners of each subdomain. The
coarse grid correction aims to provide global communication at each iteration in order to
make the convergence rate independent of the problem size and number of subdomains.

The AS preconditioner preserves symmetry (in case of symmetric subdomain precondi-
tioners P̂−1i ) by ignoring overlap and is constructed as follows:

P−11 =

nd∑
i=1

RTi P̂
−1
i Ri,

where P̂−1i is a subdomain preconditioner, such as ILU decomposition. If the additive
Schwarz preconditioner fails, the more effective restricted additive Schwarz (RAS) precon-
ditioner is being used, given by

P−11 =

nd∑
i=1

LTi P̂
−1
i Ri.

The RAS preconditioner, however, is non-symmetric and forces the use of GMRES(s) or
another non-symmetric method.

The second preconditioner is the coarse grid correction preconditioner P−12 . It is con-
structed in a similar way to classical multigrid, only the coarsening is extreme [20]. Applying
the coarse grid correction preconditioner in an additive way yields P−1 = I+P−12 , or in the
preconditioned case P−1 = P−11 + P−12 . Matrix P−12 is obtained by projecting the stiffness
matrix K in the following way:

P−12 = Z(ZTKZ)−1ZT = ZE−1ZT , (4.19)
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where Z is given by the rigid body modes of the nd subdomains. In three dimensions each
subdomain implies three translation and three rotation vectors, yielding the dimension of
Z equal to 6nd. In Section 5.1.4 more information can be found about the rigid body modes.

The coarse restrictor operators Ci ∈ R6×(6·nd) restrict a global coarse vector x to a
subdomain coarse vector xi with the property

CiC
T
j =

{
0 if i 6= j
I if i = j.

The computation of E−1 is most involved and is done by a QR-decomposition

E = QR,

with Q an orthonormal matrix and R an upper triangular matrix. This process can be
performed in parallel (as implemented in DIANA) by applying a Gram-Schmidt orthono-
malization procedure to the columns of E. For details we refer to [13].

DIANA is able to combine the preconditioners in an additive or a multiplicative way.
The additive way is simply the addition of the two preconditioners, i.e., the combined
preconditioner P−1 = P−11 + P−12 , which would be implemented as follows:

y1 = P−11 x,

y2 = P−12 x,

y = y1 + y2.

A more effective strategy [13] is the multiplicative way, which computes

ỹ = P−11 x,

r̃ = x−Kỹ,
y = P−12 r̃.

However, the multiplicative way needs additional communication between the threads
and one extra matrix-vector multiplication.

The user of DIANA can specify the number of available threads when using the iterative
solver. This number is equal to the number of subdomains the parallel iterative solver will
use.

4.4 Substructuring

Substructuring can be seen as a specific type of domain decomposition method without
overlapping subdomains. The idea is to treat a group of elements as a single substructure,
for example, if many elements in a nonlinear model behave linearly, these elements can
be put in a substructure. Substructuring in DIANA is implemented as a preconditioning
technique.

In substructuring the elements are partitioned and thereafter, the degrees of freedom
are divided in internal degrees of freedom and interface degrees of freedom. After reordering
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of ns substructures the stiffness matrix can be written as

K ∼


A1 B1

A2 B2

. . .
...

Ans Bns
BT

1 BT
2 . . . BT

ns C

 . (4.20)

The Ai indices are the internal degrees of freedom, where the coupling between these
substructures is done by the interface degrees of freedom Bi and BT

i . The idea is that the
reordered matrix K can easily be factorized as

A1

A2

. . .

Ans
BT

1 BT
2 . . . BT

ns C∗




I A−11 B1

I A−12 B2

. . .
...

I A−1ns Bns
I

 . (4.21)

Here, the computation of the so-called Schur complement given by

C∗ = C −
ns∑
i=1

BT
i A
−1
i Bi (4.22)

is the most time consuming part. Assuming all Ai are SPD, we can compute BT
i A
−1
i Bi using

a Cholesky factorization. Solving the system C∗u = f can be the most time consuming part
and the solution can be obtained by factorization of C∗ or an iterative solution method.
Substructuring can be effective, but has some disadvantages. If the ratio interface degrees
of freedom to internal degrees of freedom is high, then substructuring can be ineffective
due to the density of C∗.

4.5 Domain decomposition vs. substructuring

The current implementation in DIANA provides domain decomposition and substructur-
ing. These two preconditioning techniques are essentially different, but some differences at
DIANA are an implementation choice. The table below shows the mayor differences of the
implemented versions of domain decomposition and substructuring.

Substructuring Domain Decomposition

Not parallel Parallel

Partitioning of elements Partitioning of degrees of freedom

Partitioning on low level Partitioning on high level

Non-overlapping Allowed both (non-) overlapping

Renumbering the degrees of freedom Additive Schwarz preconditioner

Solution for Schur complement Coarse grid correction

Low impact on implementation High impact on implementation

(implemented as preconditioner) (implemented as solution method)

Example: Linear vs. nonlinear splitting Partitioning by Metis routine
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5 Enhancing iterative methods

This section elaborates what possible solution techniques can be applied to improve the
iterative methods.

5.1 Deflation

Deflation is a kind of preconditioning, which eliminates some small eigenvalues of K. These
eigenvalues are projected out of the system of equations. Deflation has been developed by
Nicolaides [17] and Dostál [2] and different deflation techniques have been improved and
exploited by many authors [3,4,11]. Deflation has some analogies with multigrid methods,
in the sense that deflation also uses two projections. To derive the deflation technique we
shall seek these two projectors Π∈ and Π⊥. These projectors are based on the interpolation
operator Z and restriction operator Y [4]. The splitting of solution u can be written as
follows:

u = u∈ + u⊥. (5.1)

Let the interpolation operator Z ∈ Rn×m be a basis for the Z and the restriction operator
Y ∈ Rn×m be a basis for Y with m � n. The part of the solution u in Z, u∈, can be
written as a linear combination of Z, implying u∈ = Zy. The residual r∈ = f − Ku∈ is
orthogonalized with respect to Y , i.e., r∈ ⊥ Y . This requirement [19] can be written as

Y T r∈ = 0,

Y T (f −Ku∈) = 0,

Y T (f −KZy) = 0.

By defining the Galerkin operator E = Y TKZ and rewriting above to u∈ results in

u∈ = Zy = ZE−1Y T f,

= ZE−1Y TKu.
(5.2)

Defining the projector Π∈ = I − ZE−1Y TK yields

u∈ = (I −Π∈)u.

Note that for projector Π∈ indeed holds (Π∈)2 = Π∈. Furthermore, the solution u∈

can be calculated directly as in the first statement of Equation (5.2). In general the ma-
trix Z consists of m columns with m� n, implying that this part is relatively easy to solve.

Equation (5.1) can also be written as

u = (I −Π∈)u+ Π∈u. (5.3)

The projector Π⊥ can be constructed by finding a solution for u⊥ := Π∈u. For this
purpose u⊥ is premultiplied by K, resulting in

Ku⊥ = KΠ∈u,

KΠ∈u = K(I − ZE−1Y TK)u,

= f −KZE−1Y TKu,

= (I −KZE−1Y T )f.

(5.4)
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Defining the projector Π⊥ = I −KZE−1Y T yields

KΠ∈u = Π⊥f.

Note that with indeed (Π⊥)2 = Π⊥. Using the identity Π⊥K = KΠ∈, Equation (5.4)
and introducing ũ as the solution of the system (5.5) to avoid ambiguity, the following
holds:

Π⊥Kũ = Π⊥f. (5.5)

The solution ũ of system (5.5) is the computational difficult part and can be solved iter-
atively. Deflation can in the light of Equation (5.5) be seen as a left preconditioner. The
singularity of this system is not necessarily a problem, as long as the corresponding right-
hand side is consistent (see [10] for CG). The projection Π⊥ is applied at the right-hand
side as well, thus it still holds that f = Kũ for some ũ.

The solution u = u∈+ u⊥ can be computed by combining the solutions u∈ respectively
ũ of Equation (5.2) respectively (5.5) into (5.3) as

u = ZE−1Y T f + Π∈ũ.

In case that matrix K is symmetric, it is advantageous to preserve symmetry in the
application of deflation. Note that to preserve symmetry, only Π⊥K = KΠ∈ is not suffi-
cient, but the requirement Π⊥K = K(Π⊥)T should hold. This implies Π∈ = (Π⊥)T and
thus Y = Z.

The non-symmetric case allows more freedom for the choice of Y and Z. Still, often
the choice Y = Z is made for certain properties. This results in a robust, non-singular
Galerkin operator E = ZTKZ. Furthermore, only one set of vectors need to be deter-
mined and stored. From this point on we take Y = Z for the non-symmetric case as well
and focus merely on the choice of Z.

Deflation is very suitable in combination with a preconditioner. Typically, deflation
could deal with the smallest eigenvalues, while a preconditioner deals with the largest
eigenvalues. The choice of Z strongly influences the effectiveness of deflation. A proper
choice for Z is an important but not so obvious part of deflation. A choice for Z could
be the span of the smallest eigenvectors of K. Other choices are subdomain deflation or
rigid body modes deflation. These typical options are elaborated in Sections 5.1.2, 5.1.3
and 5.1.4.

5.1.1 Convergence of deflation

The convergence of an iterative method is influenced by the condition number κ of K. The
condition number is defined as κ(K) = ||K−1||2 · ||K||2, which yield for symmetric positive
definite matrices κ = λmax

λmin
.

Deflation yields multiplying matrix K from the left by the projection matrix Π⊥. By
(effective) deflation some small eigenvalues are projected out of the system of equations
(projected to zero). This results in a decrease in κ and thus increase in convergence speed.
In [4] some theoretical bounds on the effective condition number of Π⊥K are given for SPD
matrices K.
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Theorem 2 Let K be symmetric positive definite, let Π⊥ = I − KZ(ZTKZ)−1ZT , Z ∈
Rn×m, and suppose there exists a splitting K = C + R such that C and R are symmetric
positive semidefinite with N (C) = span{Z} the null space of C. Then the effective condition
number of Π⊥K is bounded by

κeff(Π⊥K) ≤ λmax(K)

λm+1(C)
. (5.6)

The proof is given in [4]. Furthermore, in combination with a splitting Cholesky pre-
conditioner P = LLT the following bound can be given:

Theorem 3 Assume the conditions of Theorem 2 and let P = LLT be a symmetric
positive definite Cholesky-based preconditioner. Then the effective condition number of
L−1Π⊥KL−T is bounded by

κeff(L−1Π⊥KL−T ) ≤ λmax(L−1KL−T )

λm+1(L−1CL−T )
. (5.7)

The proof is given in [4]. These bounds yield that deflation can only improve the
effective condition number of the (preconditioned) system of equations Ku = f .

5.1.2 Eigenvalue deflation

A typical choice for Z is the span of the eigenvectors corresponding to the smallest eigen-
values. Such an approach certainly is effective, but there are also some disadvantages.

Firstly, a priori, the smallest eigenvectors are unknown. In some iterative methods such
as GMRES(s) and CG, the (approximate) eigenvectors can be computed relatively cheap.
These vectors can be used as a deflation space in the restart of GMRES(s), see e.g. [3,14].

Secondly, a large system of equations yields a large amount of eigenvectors. Deflating
a large amount of small eigenvectors means that the dimension of Z grows beyond its ef-
fectiveness.

Nevertheless, eigenvalue deflation has been shown to be effective. In CG and GMRES
the Ritz vectors can be used in deflation. In [3] and [14] the restart of GMRES is augmented
or deflated using approximated eigenvectors and in [5] and [6] is the CG method augmented
in nonlinear structural analysis problems. In DIANA these two types of eigenvalue deflation
can be an effective technique to speed up the convergence process.

5.1.3 Subdomain deflation

Let us divide the domain into d subdomains Gj , j = {1, . . . , nd}. Then we choose

Zij =

{
1 if i ∈ Gj ,
0 otherwise,

(5.8)

resulting in Z ∈ Rn×nd . If these domains have similar properties, then the convergence
of an iteration method could speed up. This approach is very well suitable with domain
decomposition, yielding parallel computations. DIANA uses a coarse preconditioner in
domain decomposition, which is analogue to an extension of this deflation technique by the
rigid body modes.
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5.1.4 Rigid body modes deflation

The idea of rigid body modes deflation is to treat a collection of elements as a rigid body
due to physical properties, such as material. The stiffness of a collection of elements can
(relatively) be very large and therefore it acts as one rigid body. These elements typically
cause the matrix K to be ill-conditioned, as the discontinuities in the physical properties
result in large jumps in the coefficients of K. Deflating the rigid body modes of these
collections of elements would improve the condition of K.

Let us consider an arbitrary three-dimensional problem. Assume we split the stiffness
matrix K = C +R with C containing nr independent singular submatrices corresponding
to some very stiff parts and one positive definite submatrix corresponding to the other
material. Using rigid body modes deflation, the subspace Z is equal to the span of the
null space of C, i.e., Z = N (C) = span{Znra } with Znra = {z1nra , . . . , z

6
nra} the nr times six

base vectors corresponding to the six rigid body modes of the aggregate. This results in
Z ∈ Rn×(6·nr).

The splitting K = C +R provides us the possibility to decouple the matrix K into dis-
joint matrices Ci with C =

⋃
iCi and mutual couplings Ri, with R =

⋃
iRi. If we choose

matrices Ci on basis of material properties, then the matrices Ci do not have irregular
jumps in its coefficients.

K = C +R =


C1

C2

. . .

Cn

+R.

Recall Theorem 2 and 3 for the bounds on the effective condition number of the de-
flated system Π⊥K and the preconditioned deflated system L−1Π⊥KL−T . The splitting of
K = C +R is here explicitly given.

The rigid body modes are spanned by the kernel base vectors of the corresponding
element stiffness matrix. The rigid body modes are the eigenvectors corresponding to
eigenvalue zero. The null space of the element matrices can therefore be approximated by
the rigid body modes of the element matrices. The rigid body motions (in three dimensions)
are given by three translations and three rotations. Equation (5.9) shows the rigid body
modes of a node at (x, y, z). Each column gives the translation in x-, y- and z-direction,
respectively rotation in x-, y- and z-direction. Each row represents a degree of freedom,
with the x-, y- and z-translation respectively the x-, y- and z-rotation degrees of freedom.

x-translation dof

y-translation dof

z-translation dof

x-rotation dof

y-rotation dof

z-rotation dof



1 0 0 0 −z y
0 1 0 z 0 −x
0 0 1 −y x 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.9)

Note that often the rotational degrees of freedom (rows four till six) are absent, depending
on the type of element. Furthermore, for the sake of completeness, all rigid body modes
should be correctly oriented with respect to the orientation of the nodes (which could differ
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from {(1, 0, 0), (0, 1, 0), (0, 0, 1)}).

Let p be the number of nodes in a element, then the rigid body modes are spanned by a
combination of the above vectors for nodes, increasing their length from 6 to 6p (actually,
the vectors are padded with zeros to length n). Sets of elements make up the bodies of
materials. The rigid body modes of a collection of elements is equal to the assembly of the
rigid body modes of the individual elements. Therefore, each body (collection of elements)
imply 6 deflation vectors in 3D, as each body has three translational and rotational degrees
of freedom [8].

5.1.5 Extension of rigid body modes deflation

Interface elements can model various phenomena, such as elastic bedding, cracking, bond-
slip along reinforcements, friction between interfaces, joints in rocks, contact and fluid-
structure relations. Some of these phenomena can be seen as modeling freedom and re-
strictions of parts of the model. For example, interface elements used to model friction or
contact allows translations and rotations, or joints in masonry allow translation in shear
direction. Rigid body mode deflation may be extendable for the following situations where
interface elements model some behavior:

• (Structural) Elastic or nonlinear-elastic bedding

• (Structural) Discrete cracking

• (Structural) Bond-slip between reinforcements

• (Structural) Friction between interfaces

• (Structural) Joints in rocks and masonry

• (Contact) Contact between two different bodies

Identifying rigid bodies in a model with interface and spring elements is not trivial at
all. In Section 3 in Equation (3.16) and (3.18) is the stiffness relation given for the dif-
ferent element types. These comparisons involve element sizes and the cross-sectional area
through which the force is applied. Furthermore, the parameters in interface element can
depend on time, previous stresses, temperature, pressure, etc. A great challenge of this re-
search will be to effectively identify the (approximate) rigid bodies in a model. Thereafter,
rigid body mode deflation can speed up the iterative solution method.

Information can also be reused in the nonlinear loop or maybe even in a dynamic anal-
ysis. Certain properties in the model may be unchanged during some nonlinear iteration,
implying that deflation vectors also may be unchanged. Therefore, the initialization time
of deflation could easily pay off in a nonlinear loop.

5.1.6 Comparison of deflation and additive coarse grid correction

With the knowledge of the coarse grid correction of Section 4.3, we recognize that the
Galerkin matrix E = ZTKZ is represented in the same way if Y = Z is the span of the
rigid body modes. If the coarse grid correction is used in an additive way, then it even
holds that the deflation projector Π⊥ = I − P−12 , with P−12 the coarse grid corrector.
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The coarse grid correction treats each subdomain as a rigid body, i.e., each subdomain
is represented by a six-dimensional subspace. Clearly, this is in general an extreme coars-
ening. Intuitively, the coarse grid correction provides a direct solution for the simplification
that each subdomain is a rigid body by solving P2x = y. This results in a convergence rate
almost independent of the number of subdomains.

With rigid body deflation, one or more subdomains, which act as a rigid body due to
e.g. material properties, are projected out of the system of equations. This deflated part
is computed directly and the non-deflated part is solved by using a traditional iterative
solver, such as CG or GMRES(s). The non-deflated system is Π⊥Ku = Π⊥f .

In both techniques the Galerkin matrix E = ZTKZ acts as a representation of the
subdomains using their rigid body modes. In [15] and [16] a comparison is made between
coarse grid correction and deflated preconditioning. It can be proven that, with arbitrary
full rank matrix Z, the effective conditioner number for deflation is always below the con-
dition number of the system preconditioned by the coarse grid correction. On the other
hand, deflation is slightly more expensive.

In [8] the rigid body modes deflation vectors and the subdomain deflation vectors are
combined. If nr rigid bodies are being distinguished and nd subdomains are formed, then
the total dimension of Z is (n × (6nr + nd)). The Galerkin operator used in the coarse
preconditioner in domain decomposition may be extended with the rigid body modes based
on material properties. In other words, the rigid body modes could also be implemented
as a coarse grid correction instead of deflation, and vice versa.

5.2 Scaling the degrees of freedom

In some elements different types of variables are present, such as in mixture elements
(pressure and translation) or in shell elements (translation and rotation). The magnitude
of these different types of variables can differ greatly due to the corresponding unit. This
large difference in magnitude can lead to an ill-conditioned stiffness matrix with large jump
in its coefficients. This yields slow convergence in general.

The type of degree of freedom for every degree of freedom is known before the solver
starts. This knowledge can be used to scale the degrees of freedom corresponding to their
type. This can be done by (right) preconditioning as in Equation (4.18). If P−1s only
consists of (diagonal) scaling, then it is symmetric and applicable for CG and GMRES.

Applying multiple preconditioning techniques implies that, after scaling with P−1s , the
second preconditioner P−1 preconditions the system KP−1s x = f , instead of being applying
to Ku = f .

5.3 Induced dimension reduction

Much research has been done on solving the nonsymmetric system Ku = f . The recently
proposed method IDR(s) [21] has proven to be highly efficient for some classes of appli-
cations. It is a short-recurrence Krylov subspace method, but, different from Bi-CG-type
algorithms, it is not typically based on the bi-Lanzcos method. These Bi-CG-type meth-
ods (such as CGS and Bi-CGSTAB) are essentially based on biorthogonal bases Km(K; r0)
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and Km(KH ; r0) := Km(K̄T ; r0). The IDR method is based on forcing the residuals rn in
subspace Gj which is of decreasing dimension.

The original IDR method was published in [29]. Any IDR(s) method is based on this
idea of IDR and its generalization is given in [21].

Theorem 4 Let K be any matrix in CN×N , let v0 be any nonzero vector in CN , and let
G0 be the full Krylov space KN (K, v0). Let S denote any proper subspace of CN such that
S and G0 do not share a nontrivial invariant subspace of K, and define the sequence Gj,
j = 1, 2, . . . as

Gj = (I − ωjK)(Gj−1 ∩ S),

where the ωj’s are nonzero scalars. Then
(i) Gj ⊂ Gj−1 ∀j > 0,
(ii) Gj = {0} for some j ≤ N .

For the proof please refer to [21]. The IDR(s) method assumes the space S to be the
left null space of some full rank N × s matrix P = ( p1 p2 · · · ps ), shortly noted by
S = N (PH).

The residuals rn are in the Krylov subspaces Kn(K; r0) and therefore, rn can be written
as qn−1(K)r0, where qn−1 is a certain polynomial of degree n− 1. If we are able to find a
recursion for rn, then it should also be possible to find a recursion for un, since

K∆un = −∆rn = (qn(K)− qn+1(K))r0,

where the operator ∆ is defined by ∆xj := xj+1 − xj . Therefore, the general Krylov
method can be described in the following form [21]:

rn+1 = rn − αKvn −
l̂∑
l=1

γl∆rn−l,

un+1 = un + αvn −
l̂∑
l=1

γl∆un−l,

(5.10)

with vn ∈ Kn(K; r0) \ Kn−1(K; r0). The integer l̂ is the depth of the recursion, e.g.,
using l̂ = n is a long recurrence. If we force the residual rn+1 into Gj+1 then

rn+1 = (I − ωj+1K)vn, with vn ∈ Gj ∩ S. (5.11)

If we choose

vn = rn −
l̂∑
l=1

γl∆rn−l, (5.12)

then we obtain the recursion of rn+1 in Equation (5.10) with α = ωj+1.

Now suppose rn,∆rn−l ∈ Gj , l = 1, . . . , l̂. This implies that vn ∈ Gj by (5.12). If we
choose γl such that vn ∈ S by Equation (5.11), then by Theorem 4 we have rn+1 ∈ Gj+1.

To satisfy this we need to find the correct γl. Taking l̂ = s yields a unique solution for γl
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in solving the s-by-s linear system.

Defining the matrices

∆Rn = ( ∆rn−1 ∆rn−2 · · · ∆rn−s ),

∆Xn = ( ∆xn−1 ∆xj−2 · · · ∆xn−s ),

then we can calculate rn+1 ∈ Gj+1 as follows:

Algorithm 4 IDR update residual
1 Solve: c ∈ Cs from (PH∆Rn)c = PHrn
2 v = rn −∆Rnc
3 rn+1 = v − ωj+1Kv

The choice for ωj+1 is unspecified and is typically chosen to minimize the residual norm,
provided that ωj+1 does not become very small (a threshold can be used).

A suitable IDR(s) algorithm for DIANA could be IDR(s)-biortho, described in [25]. On
some important problem classes it outperforms other short-recurrence iterative methods,
such as Bi-CGSTAB.

6 Research question and test problems

As the demand for larger and more accurate finite element analysis grows every year, so
do the corresponding models. These large three-dimensional problems can lead to millions
of degrees of freedom and thus, to an equally large system of equations. Iterative methods
have proved to be able to solve these systems in a reasonable time and require less memory
than the direct methods.

6.1 Research question

In Table 1 the current shortcoming of the iterative solvers are listed. There is a division in
requirements and wishes, based on priorities. The research question is as follows:

How can the iterative methods in DIANA be improved using physical properties of the
underlying model?

6.2 Test problems

The current problems listed in Table 1 are demonstrated by some test problems. The
performance of the iterative solvers is in some cases unsatisfactory. These test problems
serve as a basis of eliminating the limitations of the currently implemented iterative solvers.
An overview of the test problems is given in Table 2.

1. (Model1: Multiple materials, linear static analysis.)
Model1 is a linear geotechnical model from the field consisting of eight materials
which are more or less layers in the model. The model is shown in Figure 1. Model1
has 74.646 degrees of freedom of which 70.465 degrees of freedom are really free (no
boundary condition). The boundary conditions are positioned at the edges and at two
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Requirements

The iterative solver must be improved on models with jumps in material properties

The iterative solver must be improved on models with interface elements

The iterative solver must be improved on models with mixture elements

The iterative solver must be improved by reusing information in the nonlinear loop

Wishes

The iterative solver could be accelerated

The iterative solver could be improved on models with shell elements

The iterative solver could be extended by IDR(s)

The iterative solver could be using GPU or a similar computation strategy

(The iterative solver could be improved on models with jumps in element sizes)

Table 1: Requirements and wishes.

Figure 1: A graphical representation of test problems Model1 and Model2.

sides of the model, supporting all three translation directions. The load is focused
at a point in the middle layer of the model. The model contains some ‘ill-shaped
elements’, meaning that the volume of the element is relatively low compared with
the nodal distances. The solution converges in 199 CG iterations using the Incomplete
Cholesky (IC) preconditioner.

2. (Model2: Multiple materials, nonlinear static analysis.)
Model2 is similar to Model1, but with a nonlinear analysis. A number of load steps
can be applied. The nonlinear relation is solved by the constant stiffness method (see
Section 3.5). The solution is found in one nonlinear iteration using the CG method,
which converged in 198 iteration using the IC preconditioner. The nonlinearity of this
model can (should) be further increased to increase the amount of required nonlinear
iterations.

3. (Model3: Mixture elements, nonlinear static analysis.)
Model3 is a nonlinear geotechnical model of a block consisting of solely mixture ele-
ments of one material. Model3 has 38.324 degrees of freedom of which 34.998 degrees
of freedom are really free (no boundary condition). The boundary conditions are po-
sitioned at the edges and at two sides of the model, supporting all three translation
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directions. At one side the pressure is kept constant. The load is positioned uniformly
at the top plane. A number of load steps can be applied. The nonlinear relation is
solved by the constant stiffness method (see Section 3.5). The solution is found in one
nonlinear iteration using the GMRES method, which converged in 359 iteration using
the ILUT(τ = 10−6) preconditioner. The nonlinearity of this model can (should) be
further increased to increase the amount of required nonlinear iterations.

4. (Model4: Mixture elements and multiple materials, nonlinear static analysis.)
Model4 is a nonlinear geotechnical model of a block consisting of mixture elements
and two materials. The stiffer material is layered between two layers of the elastic
material. Model4 has 36.817 degrees of freedom of which 33.832 degrees of freedom
are really free (no boundary condition). The boundary conditions are positioned at
the edges and at two sides of the model, supporting all three translation directions.
At one side the pressure is kept constant. The load is positioned uniformly at the
top plane. A number of load steps can be applied. The nonlinear relation is solved
by the constant stiffness method (see Section 3.5). The solution is found in one
nonlinear iteration using the GMRES method, which converged in 396 iteration using
the ILUT(τ = 10−6) preconditioner. The nonlinearity of this model can (should) be
further increased to increase the amount of required nonlinear iterations.

5. (Model5: Linear elastic bedding modeled by interface elements, linear static analysis.)
Model5 is a linear model of a block standing on fixed interface elements, which func-
tion as a linear elastic bedding. Model5 has 211.806 degrees of freedom of which
206.681 degrees of freedom are really free (no boundary condition). The boundary
conditions are positioned at the edges and at two sides of the model, supporting all
three translation directions. The load is focused at the top plane corner of where the
support is located, which physically will result in tilting the block. The CG method
converges in 130 iterations using the IC preconditioner.

Figure 2: A graphical representation of test problems Model5 and Model6. The blue bottom
represents the linear elastic bedding.

6. (Model6: Linear elastic bedding modeled by spring elements, linear static analysis.)
Model6 is similar to Model5, but instead of interface elements, the linear elastic bed-
ding is modeled with spring elements. Model6 has 206.763 degrees of freedom of which
203, 401 degrees of freedom are really free (no boundary condition). The boundary
conditions are positioned at the edges and at two sides of the model, supporting all
three translation directions. The load is also focused at the top plane corner of where
the support is located. The CG method converges in 143 iterations using the IC
preconditioner.

7. (Model7: Interface elements, linear static analysis.)
Model7 is a linear model consisting of one material and a linear static analysis. The
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# free dof Element type # materials Analysis Symmetry

Model1 70.465 Brick 8 Linear Y

Model2 70.465 Brick 8 Nonlinear Y

Model3 34.998 Mixture brick 1 Nonlinear N

Model4 33.832 Mixture brick 2 Nonlinear N

Model5 206.681 Interface plane & Brick 1 Linear Y

Model6 203.401 Springs & Brick 1 Linear Y

Model7 21.764 Interface plane & Pyramid 1 Linear Y

Model8 21.764 Interface plane & Pyramid 2 Linear Y

Table 2: Overview of test problems.

interface elements ‘split’ the block into two parts as illustrated in Figure 3. The
interface elements are located at the edge of the blue and yellow part. Model7 has
24.333 degrees of freedom of which 21.764 degrees of freedom are really free (no
boundary condition). The boundary conditions are positioned at the edges, at all
outer surfaces of the lower part of the block and at two sides of the block. The
boundary conditions support several directions. The load is positioned uniformly at
the top plane. The stiffness of the interface elements is relatively low compared to

Figure 3: A graphical representation of test problems Model7 and Model8.

the stiffness of the material. The CG method requires 118 iterations to converge.

8. (Model8: Interface elements and multiple materials, linear static analysis.)
Model8 is similar to Model7, but with two materials. The CG method converges in
94 iterations using the IC preconditioner.

6.3 Methodology

Section 5 described what various methods could improve the iterative solver. An important
technique is deflation, described in Section 5.1. In particular deflation based on rigid body
modes is interesting, which is for example applicable on material properties [8]. In this
research rigid body mode deflation will be implemented at DIANA. Moreover, other possi-
ble applications of rigid body mode deflation will be explored involving interface elements,
spring elements and maybe shell elements. Furthermore, in the nonlinear iteration loop
information we could use deflation to reuse information from previous iterations by using
Ritz vectors or other previous deflation vectors. Section 5.2 explained how the different
types of degrees of freedom that are present in mixture and shell elements, can be scaled by
preconditioning. Section 5.3 described the IDR(s) algorithm for nonsymmetric matrices. In
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the light of the research question, this algorithm does not use the underlying model. Nev-
ertheless, IDR(s) could be a valuable additional method in the DIANA software. IDR(s)
allows reusing information from previous iterations, potentially exploitable by deflation,
and furthermore, a nonsymmetric short-recurrence solution method is currently absent at
DIANA.

6.4 Work plan

Firstly, rigid body mode deflation will be implemented in DIANA. Rigid body mode defla-
tion can be extended by recursive deflation, i.e., repeated deflation. This can additionally
be done in the nonlinear loop, so that the initialization time of deflation is less dominant
in the nonlinear analysis. Thereafter, deflation could be combined with domain decompo-
sition (with more than one domain).

Secondly, currently the mixture elements cause a poorly scaled system of linear equa-
tions. Using a (right) diagonal preconditioner with entries based on the type of degree
of freedom, much improvement could be possible. This preconditioner should also allow
multiple preconditioners, such as ILU decomposition.

Thirdly, more ideas for using deflation will be investigated. One idea is to use informa-
tion of the previous iterations at a restart of GMRES, or to gradually improve the deflation
vectors based on eigenvalues as soon as this information becomes available by the CG or
GMRES(s) method. Another idea is to use rigid body mode deflation in models with in-
terface elements, or possibly with shell elements. A possibility could be to deflate large
(dummy) stiffness imposed by interface elements and shell elements. Another possible im-
provement it is to deflate some user-imposed ‘nearly rigid bodies’, e.g., by linear bedding
or friction modeled by interface elements. All these ideas need to be further investigated.

Thereafter, if time allows, the short-recurrence iterative method IDR(s) could be im-
plemented in DIANA. The IDR(s) method for nonsymmetric matrices has recently been
developed [25]. It requires less memory, but does not have the optimality property of (full)
GMRES. Restarting GMRES yields slower convergence and in such cases, especially when
the system of equations is large, the IDR(s) method can outperform restarted GMRES in
memory requirements, amount of iterations and required time.

The work plan is illustrated in a Gantt chart in Figure 7 in Appendix B on page 45.

7 Illustrative results

This section illustrates the potential advantage of the deflation technique based on the rigid
body modes as described in Section 5.1.4. Test problem Block5 is shown in Figure 4 and
consists of 33.425 degrees of freedom and two materials. The inner material is very stiff
(factor 106) compared to the surrounding material. The block is supported at the ground
and at the top edges of the block and a load is put uniformly at the top plane of the block.
The inner sphere with high stiffness acts, by approximation, as a rigid body in the low
stiffness cube. Therefore, applying rigid body mode deflation based on material properties
on the sphere could lead to faster convergence, as the corresponding eigenvalues are close
to zero. The approximate computation time for PCG and DPCG reduces 13 seconds using
410 iterations to 6 seconds using 115 iterations.
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Figure 4: Test problem Block5 with high stiffness material (red sphere) in low stiffness
material (blue cube).

When applying current implementation on test problem Block5, we get a promising
result shown in Figure 5.

Figure 5: Illustrative result of rigid body mode deflation in comparison with other different
solution methods for test problem Block5.

In Figure 5 is abbreviated ddDPCG stands for domain decompositioned Deflated Pre-
conditioned Conjugate Gradient and all other abbreviations can be derived. All methods
use IC without fill-in. The domain decompositions consists of one domain, so essentially
the only difference is the added coarse grid correction. Figure 5 shows that the ddDPCG
method has nice behaviour; the residual decreases very regularly. The DPCG method
shows one jump in the decrease in residual, the PCG shows six jumps and the ddPCG,
althought not uneffective, is somewhat irregular and seems to show two or three jumps.

The jumps could be caused by ‘difficult’ eigenvalues of the system. Typically, PCG
has difficulty with reducing the residual in the span of the smallest eigenvectors (that is,
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the eigenvectors corresponding to the smallest eigenvalues). We know that real rigid body
modes are eigenvectors corresponding to eigenvalue zero, so the approximate rigid body
modes caused by the sphere are approximately zero. Deflation of those eigenvectors could
lead to the smooth decrease in residual, which is shown by the ddDPCG method in Figure
5. The reason for irregular behavior of the ddPCG method is probably due to the coarse
grid correction. This corrector uses basically the same information as the rigid body mode
deflation, but than on the whole domain instead of only on the sphere. The reason for the
single jump in DPCG is unknown. There could be a rigid body mode hidden in the geom-
etry of the block, which would also explain the relatively fast convergence of the ddPCG
compared to PCG.

Test problem Block9 consists of four materials. Three disjoint small cubes of high stiff-
ness materials are contained within a large block of low stiffness material. The difference
in stiffness between the small cubes and the block is of order 105 ∼ 106. The idea of test
problem Block9 is analogue to test problem Block5, although with three rigid bodies. In
this case, three rigid bodies imply 18 deflation vectors. Due to the sharp edges imposed
by the cubes, the iterative solver PCG performs poorly using 813 iterations and approxi-
mately 10.5 seconds. Using deflation (DCPG) this reduces to 135 iterations and less then
3 seconds. The convergence can be seen in Figure 6.

Figure 6: Illustrative result of rigid body mode deflation in comparison with other different
solution methods for test problem Block9.

The current implementation has severe short-comings, which need be to resolved:

• Only deflation based on material properties

• Model may not contain interface elements or spring elements

• Assumption that deflation of stiffest material is allowed; the stiffest materials are

41



deflated without checking the boundary conditions

• Assumption that each material is one rigid body, i.e., the corresponding elements are
all interconnected

• Only applicable for one domain

• Only applicable for symmetric stiffness matrices (Conjugate Gradient)

• Reusing information in a nonlinear loop is not possible

A Additional solution strategies

A.1 Algebraic multigrid

Multigrid methods are efficient iterative methods for the solution of linear systems. The
methods use two complementary processes, relaxation and coarse grid correction. In the
relaxation phase a BIM iteration is used to damp the low frequencies in the error. There-
after, the coarse grid correction damps the high frequencies by projecting the grid on a
restrictive coarse grid. This decomposition is analogue to deflation.

Two types of multigrid can be distinguished, namely geometric and algebraic multigrid.
The advantage of geometric multigrid is its efficiency, however, it can only be applied when
the geometric grid and underlying PDEs are explicitly known. The algebraic multigrid is
more adaptive and only need information from the stiffness matrix itself, although the costs
per iteration are slightly higher than with geometric multigrid.

It seems that algebraic multigrid based on aggregates has a strong analogy with defla-
tion. For the coarse grid projection of the algebraic multigrid we form

E = ZTKZ, (A.1)

with the projector Π∈ = (I − ZE−1ZTK). With aggregation-based multigrid we define

Zij =

{
1 if i ∈ Gj ,
0 otherwise,

similar as with subdomain deflation. The currently implemented coarse grid correction
uses a (rigid body) extension of this form of algebraic multigrid. This technique can also be
implemented as a stand-alone solution algorithm, where the coarsening process is repeatedly
applied, see e.g. [18]. For a comparison of algebraic multigrid with deflation see e.g. [9].

A.2 Physics-based domain decomposition

In Section 4 is discussed that an effective domain decomposition should have three ob-
jectives: minimize the number of overlap degrees of freedom, minimize the variation in
subdomain sizes and separate degrees of freedom associated with different material prop-
erties [13]. A partitioning algorithm, aiming at all three objectives and starting with the
third objective, is given in [13]. Such an approach could be advantageous compared to the
current implementation, where the third objective is neglected.
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B Planning

Figure 7 on page 45 illustrates the planning.
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Figure 7: Gantt chart
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