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1. Introduction

Numerical linear algebra is concerned with the study of algorithms for performing linear
algebra computations on computers. It is often a fundamental part of engineering and com-
putational science problems and it is put into practice in a lot of area’s. Within this field,
iterative methods methods play an important role. Methods like the Arnoldi method, the
Generalised Minimal Residual (GMRES) method and the Conjugate Gradient method make
it possible to solve complex problems on a computer that were impossible to solve in earlier
times.

The methods in this literature thesis are all examples of iterative methods. These are methods
that generate a sequence of improving approximate solutions, rather than finding an exact
solution in a finite number of steps. Moreover, these methods are examples of projection
methods. In a projection method we try to find an approximate solution xm in a subspace
Km, such that the residual rm = b−Axm is orthogonal to another subspace Lm. A Krylov sub-
space method is a projection method for which Km(A, r0) = span{r0, Ar0, A2r0 . . . , A

m−1r0}.
Krylov subspace methods work by forming a basis for the Krylov subspace.

One example of an iterative method is the IDR method, which was first proposed in 1980
by Peter Sonneveld [Wesseling and Sonneveld, 1980]. In recent years there has been renewed
interest in this method, which led to the IDR(s) method [Sonneveld and Van Gijzen, 2008]
[Simoncini and Szyld, 2010]. The IDR(s) method is the main topic of this graduation project.
We will see that the IDR(s) method fits perfectly in the framework of projection method and
Krylov subspace methods.

Structure of this literature thesis

Chapter 2 describes the definitions that are used frequently or are of great importance to
the rest of this thesis. Chapter 3 is the foundation of this thesis. It describes the theory
behind projection methods. It also gives a general sketch of what a projection method looks
like. Finally it explains what Krylov subspaces are and how they can be seen in the light op
projection methods.

Chapter 4 will make the reader acquainted with examples of Krylov subspace methods. These
can be divided into methods that solve eigenvalue problems and methods that solve linear
systems of equations. We will treat the Arnoldi method, the Lanczos method and the Bi-
Lanczos method as examples of methods that solve eigenvalue problems. Methods that solve
linear systems of equations include the Full Orthogonalisation Method, the GMRES method,
the Conjugate Gradient method and the Bi-Conjugate Gradient method. The Lanczos and
Bi-Lanczos method can also be adapted for solving linear systems of equations. Moreover,
chapter 4 also explains how all these method can be seen as projection methods. In chapter 5
we will see that the CG-type methods are mathematically equivalent to Lanczos-type methods.
Hence the convergence behaviour of these methods should be the same. We will illustrate
this with four examples.
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In chapter 6 we arrive at the core of this literature thesis, that is the IDR(s) method. We will
describe the IDR(s) algorithm and its performance. This chapter is the basis of this literature
thesis. In chapter 7 we will present some motivating examples that show the power of the
IDR(s) method. In the last chapter, chapter 8, we will describe the goals that we want to
achieve with this graduation project.
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2. Definitions

Throughout this thesis, we will use various definitions. The ones that are relevant and / or
frequently used are listed below.

Definition 2.1 (Inner product).
Let a and b be two vectors in Rn. The inner product (a, b) of a and b is defined as

(a, b) = aT · b =

n∑
i=1

ai · bi.

It is easy to see that (a, b) = (b, a), since multiplication is a commutative operation.

Definition 2.2 (Orthogonality).
Two vectors ai ∈ Rn and aj ∈ Rn are said to be orthogonal if (ai, aj) = 0 when i 6= j.

Vectors in a set S = {a1, a2, . . . , am} are said to be pairwise orthogonal if (ai, aj) = 0 ∀i 6= j.

Definition 2.3 (Orthonormality).
Two vectors ai ∈ Rn and aj ∈ Rn are said to be orthonormal if (ai, aj) = δij, where δij
denotes the Kronecker Delta function:

δij =

{
1 if i = j
0 if i 6= j.

Definition 2.4 (Eigenvalue, Eigenvector).
A scalar λ ∈ C is called an eigenvalue of A ∈ Cn×n if a nonzero vector x ∈ Cn exists such
that Ax = λx. The vector x is called an eigenvector of A associated with λ.

Definition 2.5 (Hessenberg Matrix).
An upper Hessenberg matrix Hn ∈ Rn×n is a matrix whose entries below the first subdiagonal
are all zero:

Hn =



h11 h12 h13 . . . h1(n−1) h1n
h21 h22 h23 . . . h2(n−1) h2n
0 h32 h33 . . . h3(n−1) h3n
0 0 h43 . . . h4(n−1) h4n
...

...
...

. . .
...

...
0 0 0 . . . hn(n−1) hnn


.

A lower Hessenberg Matrix Hn ∈ Rn×n is a matrix whose entries above the first superdiagonal
are all zero.
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3. Projection methods

In this chapter we will explore the area of projection methods. For the information in this
chapter, we have used the book‘Iterative methods for sparse linear systems’, written by Yousef
Saad [Saad, 2003], which is considered an influential book in Numerical linear algebra.

Consider the linear system

Ax = b, (3.1)

where A ∈ Rn×n and b ∈ Rn.

Contrary to direct methods, which try to find an exact solution, iterative methods try to
find an approximate solution to equation (3.1). The iterative methods that we will discuss in
chapter 4 are examples of projection methods. A projection method tries to find an approxi-
mate solution to equation (3.1) by extracting it from a subspace of Rn with dimension m ≤ n.
This subspace is often denoted by Km and is called the subspace of candidate approximants
or search subspace. From now on, we will use the latter.

In order to find an approximate solution, m constraints must be imposed on Km. This is
typically done by requiring that the residual vector r = b − Ax is orthogonal to m linearly
independent vectors. These vectors give rise to another subspace Lm with dimension m and
it is called the subspace of constraints or left subspace. Once again, we will use the latter
throughout the rest of my thesis.

There are two kinds of projection methods: orthogonal projection methods and oblique pro-
jection methods. In orthogonal projection methods the search subspace Km equals the left
subspace Lm and in oblique projection methods Lm and Km are different from each other.

3.1 General projection methods

Consider equation (3.1) and let Km and Lm be two subspaces of Rn with dimension m. Define
rm = b − Axm. A projection method onto the subspace Km and orthogonal to Lm tries to
find an approximate solution xm to equation (3.1) by requiring that xm belongs to Km such
that rm ⊥ Lm :

Find xm ∈ Km such that rm ⊥ Lm. (3.2)

These conditions are called the Petrov-Galerkin conditions. When Lm = Km, the Petrov-
Galerkin conditions are referred to as the Galerkin conditions.

It is also possible to use the initial guess x0 as a source of extra information to find an
approximate solution. The approximate solution must now be found in the affine subspace
x0 +Km instead of the vector space Km. Hence, (3.2) changes into:

Find xm ∈ x0 +Km such that rm ⊥ Lm. (3.3)

4



According to (3.3), it is possible to write xm = x0 + δ with δ ∈ Km. Using r0 = b− Ax0, we
can rewrite rm as:

rm = b−Axm = b−A(x0 + δ) = b−Ax0 −Aδ = r0 −Aδ.

Hence, (3.3) can be written as:

Find xm ∈ x0 +Km such that r0 −Aδ ⊥ Lm.

Let w be a vector in Lm. Since all vectors w ∈ Lm are orthogonal to rm = r0−Aδ, the inner
product (r0 −Aδ,w) = 0. The solution to equation (3.1) can now be defined as:

xm = x0 + δ, δ ∈ Km, (3.4)

(r0 −Aδ,w) = 0, ∀w ∈ Lm, (3.5)

where (r0 −Aδ,w) is the inner product of the vectors r0 − δA and w. In order to find the
approximate solution xm, we have to solve (r0 −Aδ,w) for δ.

In each step of a projection method, a new residual is calculated. This new residual should
be orthogonal to the search subspace Lm. Recalling that rm = r0−Aδ, Figure 3.1 illustrates
the orthogonality condition [Saad, 2003, p. 134].

Figure 3.1: Interpretation of the orthogonality condition

3.2 Matrix-vector representation of a projection process

Let the column-vectors of Vm = [v1, v2, . . . , vm] and Wm = [w1, w2, . . . , wm], both n × m
matrices, form orthonormal bases for Km and Lm respectively. The approximate solution to
equation (3.1) can be written as:

xm = x0 + Vmym, (3.6)
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This is true, since the approximate solution can be written as the initial guess plus a linear
combination of the orthonormal vectors in Km. The vector ym contains the coefficients for
the column vectors of Vm.

Vmym = [v1, v2, . . . vm] ym

=


v11y1 + v12y2 + . . .+ v1mym
v21y1 + v22y2 + . . .+ v2mym

...
vn1y1 + vn2y2 + . . .+ vnmym


= y1v1 + y2v2 + . . . ymvm,

where vnm is the n-th element of vm. When we substitute (3.6) in rm, we get

rm = b−Axm = b−Ax0 −AVmym = r0 −AVmym.

Since rm ⊥Wm by definition, the orthogonality condition in (3.5) can be written as

W T
m(r0 −AVmym) = 0 ⇐⇒ W T

mr0 =
(
W T
mAVm

)
ym.

If we assume that the matrix W T
mAVm is nonsingular (invertible), than we have an explicit

solution for ym and, since xm is a function of ym, also for xm:

ym =
(
W T
mAVm

)−1
W T
mr0

xm = x0 + Vm
(
W T
mAVm

)−1
W T
mr0

This gives rise to the following general algorithm for projection methods.

Algorithm 3.1 General Projection Method

1: Until convergence; Do
2: Select a pair of subspaces Km and Lm
3: Choose bases Vm = [v1, v2, . . . , vm] and Wm = [w1, w2, . . . , wm] for Km and Lm
4: rm := b−Axm
5: ym :=

(
W T
mAVm

)−1
W T
mr0

6: xm := x0 + Vmym
7: EndDo

In many projection methods, the matrix W T
mAVm does not have to be computed explicitly,

because it is a by- product of the algorithm. For instance, in FOM (see section 4.2.1) an
upper Hessenberg matrix Hm is calculated, which is equal to the matrix W T

mAVm.

6



We have assumed that the matrix W T
mAVm is nonsingular, but this might not always be

the case. However, there are two important cases in which the nonsingularity of W T
mAVm is

guaranteed [Saad, 2003, p. 136].

Theorem 3.1.
Let A, Km and Lm satisfy either one of the two following conditions

(i) A is positive definite and Lm = Km;

(ii) A is nonsingular and Lm = AKm.

Then the matrix B = W TAV is nonsingular for any bases Vm and Wm of Km and Lm
respectively.

Proof. see [Saad, 2003, p. 136].

3.3 Krylov subspace methods

Section 3.1 explained that a projection method searches for an approximate solution xm =
x0 +Km of a linear system Ax = b such that b−Axm ⊥ Lm, where x0 is the initial guess and
Km and Lm are subspaces of dimension m.

In Krylov subspace methods, the subspace Km is defined as:

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0},

where r0 = b − Ax0 is the initial residual. The vectors r0, Ar0, A
2r0, . . . , A

m−1r0 are called
the Krylov vectors.

There is a wide variety of Krylov subspace methods, such as the Full Orthogonalisation
Method (FOM, see section 4.2.1), the GMRES method (see section 4.2.2) and the Conjugate
Gradient method (CG, see section 4.2.4). Different Krylov subspace methods arise from
using different subspaces for Lm. Two widely used choices of Lm give rise to the best-known
techniques. The first one is simply Lm = Km and the other one is Lm = AKm. Other methods,
such as the Lanczos Biorthogonalisation method (see section 4.1.3), take Lm = Km(AT , r0).

Since xm ∈ Km, we can write xm as a linear combination of the first m Krylov vectors or
simply as a polynomial pm−1 in A of degree (m− 1), multiplied by r0:

xm =

m−1∑
j=0

αjA
j

 r0 = pm−1(A)r0,

with α ∈ R and A0 = I.

7



We can obtain a similar expression for the residuals. First we write:

rm = b−Axm = b−Ax0 +Ax0 −Axm = r0 −A(xm − x0).

Since xm− x0 ∈ Km, we have that A(xm− x0) ∈ Km+1. r0 is in any Krylov subspace, so also
in Km+1. Therefore rm ∈ Km+1. We can write rm as a linear combination of the first (m+ 1)
Krylov vectors or simply as a polynomial qm+1 of degree (m+ 1) in A multiplied by r0:

rm =

m+1∑
j=0

βjA
j

 r0 = qm+1(A)r0.

8



4. Krylov subspace methods

Numerical linear algebra is often concerned with two kinds of problems: eigenvalue problems
and solving (linear) systems of equations.

In an eigenvalue problem one tries to find an eigenvalue λ and an eigenvector u corresponding
to λ such that Au = λu. Eigenvalues have many applications in mathematics. For exam-
ple, eigenvalues can be used to get a better understanding of the convergence behaviour of
numerical methods. The second type of problem is finding the solution of a linear system of
equations. When given a matrix A and a vector b, one tries to find the solution x of the linear
system Ax = b.

There is a wide variety of methods available to solve either problem. Krylov subspace methods
are one of those. Krylov subspace methods can be put into several categories, depending on
the kind of problem we want to solve and the characteristics of A. Chapter 4 will discuss
several of these methods. Paragraph 4.1 will discuss several Krylov subspace methods to solve
eigenvalue problems and paragraph 4.2 will discuss several Krylov subspace methods to solve
linear systems of equations. Figure 4.1 shows the methods that will be discussed and shows
in which category they belong.

Figure 4.1: Krylov subspace methods

4.1 Krylov subspace methods for eigenvalue problems

In an eigenvalue problem, one wants to find the eigenvalues λ ∈ R and corresponding eigen-
vectors u ∈ Rn of a matrix A ∈ Rn×n. The eigenvalues can be found by solving the equation
det(A− λI) = 0, where I is the (n× n) identity matrix. The eigenvector corresponding to a
particular eigenvalue λi can be found by solving the equation (A− λiI)u = 0. However, this
is often an expensive calculation, since A might be a large dense matrix. The Arnoldi method
(see section 4.1.1), the Lanczos method (see section 4.1.2) and the Lanczos Biorthogonali-
sation method (see section 4.1.3) are three Krylov subspace methods for solving eigenvalue
problems that work around this problem.
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4.1.1 The Arnoldi method

The Arnoldi method [Saad, 2003, pp. 160-165] is a Krylov subspace method (see section
3.1). It finds the eigenvalues of a general non-Hermitian (nonsymmetric with aij ∈ R) matrix
A ∈ Rn×n. It was proposed by Walter Edwin Arnoldi in 1951 [Arnoldi, 1951]. For large
matrices, it can be very expensive to calculate the eigenvalues. The main idea of the Arnoldi
method is to find an upper Hessenberg matrix Hm ∈ Rm×m with m � n, whose eigenvalues
are accurate approximations to some of the eigenvalues of A. This is accomplished by building
an orthonormal basis of vectors Vm = [v1, . . . vm] for the search subspace Km, with

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}. (4.1)

In iteration j, an extra vector vj is added to the basis. Since Hm is much smaller than A,
the eigenvalues are much cheaper to compute. Algorithm 4.1 shows one possible form of the
Arnoldi method. The implementation can be found in appendix A.2.

Algorithm 4.1 The Arnoldi Method

1: Choose an initial vector v1 such that ||v1|| = 1
2: For j = 1, 2, . . . ,m Do
3: wj := Avj
4: For i = 1, 2, . . . , j Do
5: hij = (wj , vi)
6: wj := wj − hijvi
7: EndDo
8: hj+1,j = ||wj ||2
9: If hj+1,j = 0

10: Stop
11: EndIf
12: vj+1 = wj/hj+1,j

13: Build the Hessenberg matrix Hj and calculate its eigenvectors
14: If stop criterion satisfied
15: Stop
16: EndIf
17: EndDo
18: Approximate the eigenvalues and eigenvectors of A using the upper
19: Hessenberg matrix Hm and the orthonormal basis Vm.

First we have to choose a starting vector v1 with ||v1||2 = 1. In the remainder of the text,
we will use || · || for the Euclidian norm when there’s no ambiguity. Each subsequent basis
vector vj+1 (j = 1, . . . ,m) is calculated by multiplying the previous vector vj with A (line
3), orthogonalising it with respect to all the previous basis vectors using the modified Gram-
Schmidt process (lines 5-6) and finally orthonormalising it (line 12) [Saad, 2003, p. 12].
When the stopping criterion is satisfied, the algorithm calculates the Ritz values θi and the
eigenvectors si of Hm with i = 1, . . . ,m. The Ritz values of Hm are good approximations
to some of the eigenvalues of A. The eigenvectors ui of A can be approximated by the Ritz
vector Vmsi [Holub and Van Loan, 1996, p. 500].
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For the stopping criterion, we use ||rj || < 10−8, where ||rj || := ||Aui − λiui||, i = 1, . . . , j, is
the residual in the j-th iteration. Note that this stopping criterion is an expensive one, since
we have to compute a matrix-vector product in each iteration and A might be a large dense
matrix. Fortunately, we can work around this problem.

We substitute line 3 of the algorithm into line 6, line 6 into line 12 and we multiply both sides
of the equation with hj+1,j to obtain

hj+1,jvj+1 = Avj −
j∑
i=1

hijvi. for j = 1, . . . ,m

We can rewrite this as

Avj = hj+1,jvj+1 +

j∑
i=1

hijvi for j = 1, . . . ,m (4.2)

=

j+1∑
i=1

hijvi for j = 1, . . . ,m. (4.3)

If we define Vm = [v1, . . . , vm], we can write these equations in matrix-vector notation:

AVm = VmHm + hm+1,mvm+1e
T
m, (4.4)

= Vm+1H̄m, (4.5)

where A ∈ Rn×n, Vm ∈ Rn×m, Hm ∈ Rm×m, H̄m ∈ R(m+1)×j and eTm the transpose of the
m-th unit vector.

Equation (4.4) can be used to formulate an efficient stopping criterion for the Arnoldi method.
We substitute it into the definition of the residual and find (for j = 1, . . . ,m and i = 1, . . . , j):

||rj || = ||Aui − λiui||
= ||AVjsi − θiVjsi||
= ||VjHjsi + hj+1,jvj+1e

T
j si − θiVjsi||

= ||Vj(Hjsi − θisi) + hj+1,jvj+1si(j)||
= ||hj+1,jvj+1si(j)||
= ||hj+1,jsi(j)||
= |hj+1,j | · |si(j)|.

Equation (4.4) is used in the third line and the fifth line reduces to ||hj+1,jsi(j)||, because
||vj+1|| = 1, since the vectors in Vj = [v1, . . . , vj ] are pairwise orthonormal. Hence, we use
the stopping criterion:

|hj+1,j | · |si(j)| < 10−8. (4.6)
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In the j-th iteration, the algorithm produces j eigenvectors. The eigenvector(s) of Hj that
we should use, depends on which eigenvalue(s) of A. If we are interested in. For instance,
if we want to approximate the largest eigenvalue of A, then we should use the eigenvector
corresponding to the eigenvalue of Hj with the largest magnitude.

Finally, we have the following result:

Theorem 4.1.
A Hessenberg matrix produced by the Arnoldi method will be a tridiagonal matrix if A ∈ Rn×n
is a symmetric matrix.

Proof.

Recall that V T
mVm is equal to the identity matrix, since the column vectors of V T

m are pairwise
orthonormal. Multiplying both sides of equation (4.4) with V T

m , we have:

V T
mAVm = Hm. (4.7)

When we transpose both sides, we get

V T
mA

TVm = HT
m. (4.8)

Since A is symmetric, we have A = AT . Hence, equation (4.8) can be written as

V T
mAVm = HT

m. (4.9)

Since the right-hand sides of equations (4.7) and (4.9) are the same, we have HT
m = Hm. From

this it follows that Hj is a tridiagonal matrix, since every element above the first superdiagonal
and under the first subdiagonal must be 0 because of the structure of a Hessenberg matrix.

�

4.1.2 The Lanczos method

The Lanczos method [Saad, 2003, pp. 194-195] is a Krylov subspace method that is used for
finding the eigenvalues of symmetric matrices. It can be seen as a simplification of the Arnoldi
method for the case that A is symmetric. The Lanczos method was named after Cornelius
Lanczos, a Hungarian mathematician. Symmetry implies that the eigenvalues of A are real.
The Lanczos algorithm is especially useful in situations where a few of A’s largest or smallest
eigenvalues are desired [Holub and Van Loan, 1996, p. 470]. Just as the Arnoldi method, it
builds an orthonormal basis Vm for the Krylov subspace Km, which was defined in equation
(3.7). The Lanczos method also produces a tridiagonal matrix Tm. Algorithm 4.2 shows one
possible form of the Arnoldi method. The implementation can be found in appendix A.3.

In line 4-6 the algorithm finds a new search direction orthogonal to all the previous vectors v
and in line 11 orthonormalisation takes place. The vectors {vj}mj=1 are the ‘Lanczos vectors’
and they can be used to find an approximation to the eigenvectors of A. In order to do
this, all the Lanczos vectors have to be stored. The algorithm builds a (growing) tridiagonal
matrix Tj ∈ Rj×j in each iteration. Tj takes the following form:
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Tj =



α1 β2
β2 α2 β3 O

β3 α3
. . .

. . .
. . .

. . .

O
. . .

. . . βj
βj αj


. (4.10)

When the stopping criterion is satisfied (after m iterations), the Lanczos algorithm calculates
the Ritz values θi and the eigenvectors si of Tm with i = 1, . . . ,m. The Ritz values of Tm
are good approximations to some of the eigenvalues of A. The eigenvectors ui of A can be
approximated by the Ritz vector Vmsi.

Algorithm 4.2 Lanczos method

1: Choose an initial vector v1 such that ||v1||2 = 1.
2: Set β1 = 0 and v0 = 0.
3: For j = 1, 2, . . . ,m Do
4: wj := Avj − βjvj−1
5: αj := (wj , vj)
6: wj := wj − αjvj
7: βj+1 := ||wj ||2
8: If βj+1 = 0
9: Stop

10: EndIf
11: vj+1 := wj/βj+1

12: Set Tj = tridiag({βi}ji=2, {αi}
j
i=1, {βi}

j
i=2 ) and calculate its eigenvectors

13: If stop criterion satisfied
14: Stop
15: EndIf
16: EndDo
17: Approximate the eigenvalues and eigenvectors of A using the tridiagonal
18: matrix Tm and the orthonormal basis Vm.

We can formulate a cheap stopping criterion for the Lanczos method in the same way as we
did for the Arnoldi method. By substituting line 4 in line 6, line 6 in line 11, multiplying
both sides of the equation with βj+1 and rewriting this equation, we get

Avj = βjvj−1 + ajvj + βj+1vj+1 for j = 1, . . . ,m. (4.11)

From this expression it is very easy to see that an orthonormal basis can be build using only
three vectors in each step. Therefore, the Lanczos method is called a short-recurrence method,
an iterative method that only needs a few previous vectors to build a new one. This is contrary
to the Arnoldi method, which is a long-recurrence method: an iterative method which needs
all the previous vectors to build a new one. (compare equation (4.3) to equation (4.11)).
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However, we will see that we need all the basis vectors for approximating the eigenvectors of
A. (4.11) can be written in matrix-vector notation as

AVm = VmTm + βm+1vm+1e
T
m. (4.12)

Note that equation (4.12) is similar to equation (4.4) (with Hm replaced by Tm), since
hm+1,m = ||wm|| = βm+1. We can therefore use the same stopping criterion as used in
the Arnoldi method, that is:

|βj+1| · |si(j)| < 10−8. (4.13)

4.1.3 The Lanczos Biorthogonalisation method

Although the Arnoldi method has some good properties (it is a stable method with respect
to rounding errors and breakdown does not occur), it does have some disadvantages. Arnoldi
uses Modified Gram-Schmidt orthogonalisation of all vectors vj and this causes the work (the
number of vector operations) to increase quadratically in each subsequent step. Although
Hm is relatively small compared to A, this might result in having to restart the algorithm.
However, in this case the good convergence properties are lost [Vuik and Lahaye, 2010, p.107]

The Lanczos Biorthogonalisation method [Saad, 2003, pp. 230-233], also called the Bi-Lanczos
method or nonsymmetric Lanczos method, is a Krylov subspace method that uses biorthog-
onalisation to find the eigenvalues of a nonsymmetric matrix A. The Bi-Lanczos method
produces two sequences of vectors {vj}mj=1 and {wj}mj=1 that are biorthogonal. That means

that if Vm = [v1, . . . , vj ] and Wm = [w1, . . . wj ], then V T
mWm = W T

mVm = I. Vm and Wm are
two bases for the two subspaces Km(A, v1) and Km(AT , w1):

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Km(AT , w1) = span{w1, A
Tw1, (A

T )2w1, . . . , (A
T )m−1w1}.

Algorithm 4.3 shows one possible form of the Lanczos Biorthogonalisation method. The
implementation can be found in appendix A.4. First we have to choose two starting vectors
v1 and w1 such that (v1, w1) = 1. In line 4-6 the algorithm finds a new search direction
orthogonal to all the previous vectors v and in line 12 and 13 normalisation takes place.
Next, the algorithm builds a (growing) tridiagonal matrix Tj ∈ Rj×j in each iteration. Tj
takes the following form:

Tj =



α1 β2
δ2 α2 β3 O

δ3 α3
. . .

. . .
. . .

. . .

O
. . .

. . . βj
δj αj


. (4.14)
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Algorithm 4.3 Lanczos Biorthogonalisation method

1: Choose two vectors v1 and w1 such that (v1, w1) = 1.
2: Set β1 = δ1 = 0 and v0 = w0 = 0
3: For j = 1, 2, . . . ,m Do
4: αj := (wj , vj)
5: v̂j+1 = Avj − αjvj − βjvj−1
6: ŵj+1 = ATwj − αjwj − δjwj−1
7: δj+1 := |(v̂j+1, ŵj+1)|1/2
8: If δj+1 = 0
9: Stop

10: EndIf
11: βj+1 := (v̂j+1, ŵj+1)/δj+1

12: vj+1 = v̂j+1/δj+1

13: wj+1 = ŵj+1/βj+1

14: Set Tj = tridiag({δi}ji=2, {αi}
j
i=1, {βi}

j
i=2 ) and calculate its eigenvectors

15: If stop criterion satisfied
16: Stop
17: EndIf
18: EndDo
19: Approximate the eigenvalues and eigenvectors of A using the tridiagonal
20: matrix Tm and the basis Vm.

Note that βj+1 = ±δj+1. This is easily seen when looking at the formulas for βj+1 and δj+1

in line 7 and 11. If (v̂j+1, ŵj+1) is positive, then βj+1 = δj+1. If (v̂j+1, ŵj+1) is negative, then
βj+1 = −δj+1.

When the stopping criterion is satisfied (after m iterations), the Bi-Lanczos algorithm calcu-
lates the Ritz values θi and the eigenvectors si of Tm with i = 1, . . . ,m. The Ritz values of
Tm are good approximations to some of the eigenvalues of A. The eigenvectors ui of A can
be approximated by the Ritz vector Vmsi [Holub and Van Loan, 1996, p. 500]

By substituting line 5 in line 12, multiplying both sides of the equation with δj+1,j and
rewriting this equation, we get

Avj = βjvj−1 + αjvj + δj+1vj+1 for j = 1, . . . ,m.

We see that the Bi-Lanczos method is also a short recurrence method. The above expression
can be written in matrix-vector notation as

AVm = VmTm + δm+1vm+1e
T
m. (4.15)

We can use equation (4.15) to obtain a cheap stopping criterion for the Bi-Lanczos method in a
similar fashion as in the Arnoldi and Lanczos method. However, in the case of the Bi-Lanczos
method, the vectors v1, . . . vj are not orthonormal (||vj+1|| 6= 1). Hence, we obtain:

|δj+1| · |si(j)| · ||vj+1|| < 10−8. (4.16)

15



Note that we do not use the other basis Wm for finding the eigenvalues of A. This is a severe
drawback of the Lanczos Biorthogonalisation method, since the extra calculations are more or
less wasted. Moreover, there are more opportunities for the algorithm to break down. On the
other hand, the Bi-Lanczos algorithm only a few vectors of storage compared to the Arnoldi
method, since it is a short recurrence method (which Arnoldi is not) [Saad, 2003, p. 231].

4.2 Krylov subspace methods for solving linear systems

Suppose we want to solve the linear system Ax = b. Let Vj = [v1, . . . , vj ] be an orthonormal
basis for the Krylov subspace Kj . We can write the solution in the j-th iteration xj as a x0
and a linear combination of the vectors in Vj . Hence, xj = x0 + Vjyj , where yj is a vector
with coefficients for the vector vj . We now show how to find the coefficients for the column
vectors of Vj .

Define the residual in the j-th iteration as rj = b − Axj . Substituting xj in the expression
for the residual yields:

rj = b−Axj = b−Ax0 −AVjyj = r0 −AVjyj . (4.17)

Chapter 3 explained that in a projection method we have rj ⊥ Lj . If Lj = Kj , we find
V T
j rj ⊥ V T

j · Kj . Since Vj is an orthonormal basis for Kj , we find that V T
j rj = 0. If

Lj = A · Kj , we find that V T
j rj = 0. In a similar fashion, since the projection method still

builds an orthonormal basis for Kj . Multiplying both sides of equation (4.17) with V T
j gives:

V T
j rj = V T

j (r0 −AVjyj) = V T
j r0 − V T

j AVjyj = V T
j r0 −Bjyj = 0, (4.18)

where Bj = V T
j AVj . As seen in section 4.1.1 and section 4.1.2, V T

j AVj = Hj in the Arnoldi

method and V T
j AVj = Tj in the Lanczos method.

For the Bi-Lanczos method (with w1 = v1), we have Lj = Kj(AT , w1) = Kj(AT , v1) and we
arrive at the following equation (using W T

j rj =):

W T
j rj = W T

j (r0 −AVjyj) = W T
j r0 −W T

j AVjyj = W T
j r0 −Bjyj = 0,

where Bj is the tridiagonal matrix Tj from the Bi-Lanczos method.

Since v1 = w1 = r0/||r0||, β = ||r0||, vTi vj = δij and wTi vj = δij for i, j = 1 . . .m, we have:

V T
j r0 = ||r0|| · V T

j · v1 = βe1 and W T
j r0 = ||r0|| ·W T

j · w1 = βe1, (4.19)

where e1 is the first unit vector. Using equation (4.18) and equation (4.19), we find:

yj = B−1j βe1 (4.20)

xj = x0 + Vjyj . (4.21)
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4.2.1 The Full Orthogonalisation Method (FOM)

The Full Orthogonalisation Method (FOM) is a Krylov subspace method that is used for
solving linear systems of equations. It is based on the Arnoldi method. FOM is an orthogonal
projection method, meaning that Lm(A, v1) = Km(A, v1), with

Km(A, v1) = {v1, Av1, A2v1, . . . , A
m−1v1}

We can find a solution to a linear system Ax = b by using equation (4.20) and (4.21).
Algorithm 4.4 shows one possible form of the Arnoldi method. The implementation of the
algorithm can be found in appendix B.1.

Algorithm 4.4 Full Orthogonalisation Method (FOM)

1: Compute r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: For j = 1, 2, . . . ,m Do
3: wj := Avj
4: For i = 1, 2, . . . , j Do
5: hij = (wj , vi)
6: wj := wj − hijvi
7: EndDo
8: hj+1,j = ||wj ||2
9: If hj+1,j = 0

10: Stop
11: EndIf
12: vj+1 = wj/hj+1,j

13: yj = H−1j (βe1)
14: If stop criterion satisfied
15: Stop
16: EndIf
17: EndDo
18: x = x0 + Vmym

Until line 12, the algorithm is exactly the same as the Arnoldi method’s algorithm. In the
j-th iteration, the algorithm builds an orthonormal basis for Kj . In line 13 the coefficients
for the orthonormal column vectors of Vj are computed. After the algorithm finished, both
Vj and yj are used to compute the approximate solution xm in line 18. For the stopping
criterion, we use equation (4.22) with ε = 10−8 [Vuik and Lahaye, 2010, p. 56]:

||rj ||
||b||

=
||b−Axj ||
||b||

< 10−8. (4.22)

As in the Arnoldi method, it is not efficient to compute the residual directly. Instead we
substitute the approximate solution into equation (4.22) and using equation (4.4) in the third
line and equation (4.20) in the fourth line with Bj = Hj , we find:
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||rj || = ||b−Axj ||
= ||b−Ax0 −AVjyj ||
= ||r0 −AVjyj ||
= ||βv1 − VjHjyj − hj+1,jvj+1e

T
j yj ||

= ||βVje1 − βVje1 − hj+1,jvj+1yj(j)||
= ||hj+1,jvj+1yj(j)||
= |hj+1,j | · |yj(j)|.

Substituting this into equation (4.22) and rewriting it, we find the following stopping criterion:

|hj+1,j | · |yj(j)| < ||b|| · 10−8. (4.23)

4.2.2 The Generalised Minimal RESidual (GMRES) method

The Generalised Minimal RESidual method, abbreviated as the GMRES method, is a Krylov
subspace method for solving linear systems of equations. It minimises the residual norm in
each step. GMRES is an oblique projection method, so Lm 6= Km. Instead, we have:

Lm(A, v1) = AKm(A, v1) = span{Av1, A2v1, . . . , A
mv1}. (4.24)

Just as FOM, GMRES is based on the Arnoldi method. GMRES is almost similar to FOM.
However, there are some minor differences. Instead of equation (4.4), we use equation (4.5).
We cannot use equation (4.20), since H̄j isn’t a square matrix. However, using equations
(4.21) and (4.5) and substituting these in the equation for the norm of the residual yields:

||rj || = ||βe1 − H̄yj ||. (4.25)

We now define yj as the y that minimises equation (4.25):

yj = miny||βe1 − H̄jy||. (4.26)

yj can be computed in Matlab using the backslash operator. Algorithm 4.5 shows one possible
form of the GMRES method. The exact implementation can be found in appendix B.2.

Until line 12, the algorithm is exactly the same as the Arnoldi method’s algorithm. The
algorithm builds an orthonormal basis for Km. In line 13 the coefficients yj for the vectors
vj are calculated by solving a minimisation problem. In line 18 the approximate solution xm
is calculated. For the stopping criterion, we can use equation (4.22), together with equation
(4.25) and equation (4.26) to obtain:

||βe1 − H̄yj || < ||b|| · 10−8. (4.27)
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Algorithm 4.5 Generalised Minimal Residual method (GMRES)

1: Compute r0 = b−Ax0, β := ||r0||2 and v1 := r0/β
2: For j = 1, 2, . . . ,m Do
3: wj := Avj
4: For i = 1, 2, . . . , j Do
5: hij = (wj , vi)
6: wj := wj − hijvi
7: EndDo
8: hj+1,j = ||wj ||2
9: If hj+1,j = 0

10: Stop
11: EndIf
12: vj+1 = wj/hj+1,j

13: yj = miny||βe1 − H̄jy||
14: If stop criterion satisfied
15: Stop
16: EndIf
17: EndDo
18: x = x0 + Vmym

4.2.3 The Lanczos method for systems of equations

The Lanczos method can be adapted to solve linear systems of equations. It is an analogue of
FOM for symmetric matrices. The Lanczos method for systems of equations is an orthogonal
projection method, so Lm(A, v1) = Km(A, v1), where Km is defined as in equation (3.7).

In order to solve a linear system, all the Lanczos vectors need to be stored in a matrix
Vj = [v1, v2, . . . , vj ]. This matrix is needed for calculating a solution in each iteration. The
approximate solution of the linear system Ax = b can be calculated by using equations
(4.20) and (4.21). A possible algorithm is given in algorithm 4.6 on the next page. An
implementation is given in appendix B.3.

Until line 12 the algorithm is the same as the Lanczos method that is used for eigenvalue
problems. In line 11 the algorithm builds the tridiagonal matrix Tj , which was defined in
equation (4.10). In line 12 the coefficients yj for the vectors vj are calculated by solving a
minimisation problem. In line 18 the approximate solution xm is calculated.

In a similar way as in the Arnoldi method, we can derive a cheap stopping criterion. We
substitute equation (4.21) into equation (4.22). Using equation (4.12) and equation (4.20)
(with Bj = Tj), we find the following equation for the stopping criterion:

|βj+1| · |yj(j)| < ||b|| · 10−8. (4.28)

19



Algorithm 4.6 Lanczos method for systems of equations

1: Compute r0 = b−Ax0, β = ||r0|| and v1 = r0/β.
2: Set β1 = 0 and v0 = 0
3: For j = 1, 2, . . . ,m Do
4: wj := Avj − βjvj−1
5: αj := (wj , vj)
6: wj := wj − αjvj
7: βj+1 := ||wj ||2
8: If βj+1 = 0
9: Stop

10: EndIf
11: vj+1 := wj/βj+1

12: Set Tj = tridiag({βi}ji=2, {αi}
j
i=1, {βi}

j
i=2 )

13: yj := T−1j (βe1)
14: If stop criterion satisfied
15: Stop
16: EndIf
17: EndDo
18: x = x0 + Vmym

4.2.4 The Conjugate Gradient (CG) method

The Conjugate Gradient (CG) method is one of the best-known iterative methods for solving
linear systems of equations. It is an orthogonal projection method, so Lm(A, r0) = Km(A, r0),
where Km is defined in equation (3.7). The matrix A must be symmetric and positive definite
(xTAx > 0 for x 6= 0).

Let x be the exact solution of the linear system Ax = b. The idea of CG is to construct a
vector xj ∈ Kj in each iteration such that ||x − xj || is minimal. It turns out that it is not
possible to calculate this norm, since we do not know x beforehand. Instead we define a new
norm, called the A-norm: ||y||A =

√
yTAy [Vuik and Lahaye, 2010, p. 66]. In each iteration

we now compute the approximate solution xj such that

||x− xj ||A = min
xj∈Kj

||x− xj ||A.

This gives rise to the Conjugate Gradient method as seen in algorithm 4.7. An implementation
can be found in appendix B.4. In each iteration the algorithm calculates the new solution
xj+1, updates the residual rj+1 and updates the search direction pj+1. We use equation (4.22)
as a stopping criterion, where ||rj || is computed directly.

The search directions are A-orthogonal: ||pTi Apj || = 0 for i < j. The name of the method is
derived from the fact that rj+1, the new residual vector, is orthogonal (conjugate) to all the
previous search directions (gradients), so pTi rj+1 = 0 for i < j. Using this, we find that rj+1

is also orthogonal to the previous residuals:
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Algorithm 4.7 The Conjugate Gradient method (CG)

1: Compute r0 = b−Ax0 and p0 := r0
2: For j = 0, 1, 2, . . . m Do
3: αj := (rj , rj)/(Apj , pj)
4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: If stop criterion satisfied
7: Stop
8: EndIf
9: βj := (rj+1, rj+1)/(rj , rj)

10: pj+1 := rj+1 + βjpj
11: EndDo
12: x = xm

pTi rj+1 = (ri + βi−1pi−1)
T rj+1 = rTi rj+1 + βi−1pi−1Trj+1 = rTi rj+1 = 0 (4.29)

It is possible to derive the Lanczos method from CG and vice versa [Holub and Van Loan,
1996, §9.3.1 ; p. 528]. Moreover, CG is mathematically equivalent to the Lanczos method
for systems of equations and therefore the two methods give the same convergence results
(see section 5.1). One important difference is that the Lanczos method needs all the Lanczos
vectors vj for calculating the approximate solution: xj = x0 +Vjyj . In each iteration an extra
basis vector becomes available to approximate the solution more accurately. CG avoids this
by updating the solution in each iteration: xj+1 = xj + αjpj . Once an iteration is complete,
the previous vj are not needed anymore.

4.2.5 The Conjugate Residual (CR) method)

In section 4.2.4 we found that CG was an analogue of FOM for Symmetric Positive Definite
(SPD) matrices. Something similar holds for the Conjugate Residual (CR) method. It is an
analogue of GMRES for Hermitian matrices. Because of this, the CR method is an orthogonal
oblique method, that is: Lm = AKm, with Km as defined in equation (3.7). One possible
algorithm of the CR method can be found in algorithm 4.8. The implementation of the CR
method can be found in appendix B.5.

The algorithm is similar to the algorithm of CG. In each iteration the new solution xj+1,
the new residual rj+1 and the new search direction pj+1 are calculated. Just as in CG, the
residual is calculated directly using (4.22).

In the CR method, the residual vectors ri are A-orthogonal: riArj = 0 if i 6= j. Hence
the name of the method. Moreover, the vectors {Api}mi=1 are orthogonal. The convergence
behaviour of CR and CG is similar and since the CR method requires extra storage and one
extra vector update compared to CG, the latter is often preferred [Saad, 2003, pp. 203-204].
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Algorithm 4.8 The Conjugate Residual method (CR)

1: Compute r0 = b−Ax0 and set p0 := r0
2: For j = 0, 1, 2, . . . m Do
3: αj := (rj , Arj)/(Apj , Apj)
4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: If stop criterion satisfied
7: Stop
8: EndIf
9: βj := (rj+1, Arj+1)/(rj , Arj)

10: pj+1 := rj+1 + βjpj
11: Apj+1 = Arj+1 + βjApj
12: EndDo
13: x = xm

4.2.6 The Lanczos Biorthogonalisation method for systems of equations

Just as the Lanczos method can be adapted to solve linear systems of equations, so can
the Lanczos Biorthogonalisation method [Saad, 2003, p. 234]. This method is an oblique
projection method and it builds two biorthogonal bases for the Krylov subspaces

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(AT , w1) = span{w1, A
Tw1, (A

T )2w1, . . . , (A
T )m−1w1}.

A possible algorithm is given in algorithm 4.9 and the implementation can be found in ap-
pendix B.6. Until line 14 the algorithm is exactly the same as the ‘eigenvalue’ version of the
Bi-Lanczos algorithm. In line 14 the algorithm builds the tridiagonal matrix Tj , which was
defined in equation (4.14). In line 15 the coefficients yj for the vectors vj are calculated by
solving a minimisation problem. In line 20 the approximate solution xm is calculated.

We can derive a cheap stopping criterion for the Bi-Lanczos method for systems of equations
in a similar way as in the Lanczos method for linear systems (section (4.2.3)). Firstly, note
that the vectors vj are not orthogonal, so ||vj+1|| 6= 1. We substitute equation (4.21) into
equation (4.22). Using equation (4.15) and equation (4.20) (with Bj = Tj), we find the
following equation for the stopping criterion:

|δj+1| · |yj(j)| · ||vj+1|| < ||b|| · 10−8. (4.30)

Just as in the Bi-Lanczos method used for finding eigenvalues, the Bi-Lanczos method for
systems of equations has the drawback that it only uses the matrix Vj for finding the approx-
imate solution xj (section (4.2.3)). The vectors wj are essentially useless if it not desired to
solve the dual system ATx∗ = b∗.
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Algorithm 4.9 Lanczos Biorthogonalisation method for systems of equations

1: Compute r0 = b−Ax0, β = ||r0|| and v1 = w1 = r0/β.
2: Set β1 = δ1 = 0 and v0 = w0 = 0
3: For j = 1, 2, . . . ,m Do
4: αj := (wj , vj)
5: v̂j+1 = Avj − αjvj − βjvj−1
6: ŵj+1 = ATwj − αjwj − δjwj−1
7: δj+1 := |(v̂j+1, ŵj+1)|1/2
8: If δj+1 = 0
9: Stop

10: EndIf
11: βj := (v̂j+1, ŵj+1)/δj+1

12: vj+1 = v̂j+1/δj+1

13: wj+1 = ŵj+1/βj+1

14: Set Tj = tridiag({δi}ji=2, {αi}
j
i=1, {βi}

j
i=2 )

15: yj = T−1j (βe1)
16: If stop criterion satisfied
17: Stop
18: EndIf
19: EndDo
20: x = x0 + Vmym

4.2.7 The Bi-Conjugate Gradient (Bi-CG) method

The Conjugate Gradient algorithm is one of the most widely used algorithms to solve a linear
systems Ax = b. However, CG can only be used if A is an SPD matrix. When A is a general
matrix, one of the methods to consider is the Bi-Conjugate Gradient method (Bi-CG). It was
first proposed by Lanczos in 1952 [Lanczos, 1952]. The Bi-CG method is an oblique projection
method onto Km and orthogonal to Lm with

Km(A, v1) = span{v1, Av1, A2v1, . . . , A
m−1v1}

Lm(AT , w1) = span{w1, A
Tw1, (A

T )2w1, . . . , (A
T )m−1w1}.

where v1 = r0/||r0||. The vector w1 may be chosen arbitrarily provided that (v1, w1) 6= 0, but
normally it is chosen to be equal to v1.

A possible algorithm for the Bi-CG method is given in algorithm 4.10 and an algorithm is
given in appendix B.7. First we define the dual system of Ax = b as the system ATx∗ = b∗.
Next, we define r∗j = b∗−ATx∗j as the j-th residual of the dual system. rj∗ is often called the
‘shadow residual’. In each iteration, the algorithm calculates the updated solution xj+1, the
updated residual rj+1, the updated shadow residual r∗j+1, the new search direction pj+1 and
p∗j+1, the ‘shadow search direction’. We use equation (4.22) as a stopping criterion, where
||rj || is computed directly. In theory the Bi-CG method can be used to solve the dual system
too. To do this, we need to insert x∗j+1 = x∗j + αjp

∗
j after line 5 of the algorithm.
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Algorithm 4.10 Bi-Conjugate Gradient algorithm

1: Compute r0 = b−Ax0,.
2: Set p0 = r0, and p∗0 = r∗0
3: For j = 0, 1, 2, . . . ,m Do
4: αj := (rj , r

∗
j )/(pj , A

T p∗j )
5: xj+1 := xj + αjpj
6: rj+1 := rj − αjApj
7: r∗j+1 := r∗j − αjAT p∗j
8: If stop criterion satisfied
9: Stop

10: EndIf
11: βj := (rj+1, r

∗
j+1)/(rj , r

∗
j )

12: pj+1 := rj+1 + βjpj
13: p∗j+1 := r∗j+1 + βjp

∗
j

14: EndDo
15: x = xm

The Bi-CG method is similar to the Bi-Lanczos method for systems of equations, since they
both build two biorthogonal bases for the subspaces Km and Lm. Bi-CG can be derived from
the Bi-Lanczos method just as CG can be derived from the Lanczos method [Saad, 2003,
pp 196-200, 235]. Moreover, it is mathematically equivalent to the Bi-Lanczos method for
systems of equations. Bi-CG builds the LU factorisation [Poole, 2006, pp. 178-184] of the
tridiagonal matrix Tm from the Lanczos algorithm (Tm = LmUm, with Lm a lower triangular
matrix and Um an upper triangular matrix). For symmetric matrices the Bi-CG generates
the same solution as CG.

The method in which Bi-CG approximates the solution differs from the Bi-Lanczos method,
just as CG differs from the Lanczos method (see section 4.2.4). The Bi-Lanczos method
needs all the Lanczos vectors vj for calculating the approximate solution: xj = x0 + Vjyj .
In each iteration an extra basis vector becomes available to approximate the solution more
accurately. CG avoids this by updating the solution in each iteration: xj+1 = xj + αjpj .
Once an iteration is complete, the previous vj are not needed anymore.

4.2.8 The Bi-Conjugate Residual (Bi-CR) method

The Bi-CG method is an extension of CG for nonsymmetric matrices. Similarly, the Bi-
Conjugate Residual method (Bi-CR) was recently suggested as an extension to CR for non-
symmetric matrices [Sogabe et al., 2009]. Bi-CR is an oblique projection method which uses
AT in the left subspace:

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}

Lm(AT , r∗0) = span{r∗0, AT r∗0, (AT )2r∗0, . . . , (A
T )m−1r∗0}.
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Algorithm 4.11 Bi-Conjugate Residual algorithm

1: Compute r0 = b−Ax0 and set p0 = r0 and p∗0 = r∗0.
2: For j = 0, 1, 2, . . . ,m Do
3: αj := (rj , A

T r∗j )/(pj , A
T (AT p∗j ))

4: xj+1 := xj + αjpj
5: rj+1 := rj − αjApj
6: r∗j+1 := r∗j − αjAT p∗j
7: If stop criterion satisfied
8: Stop
9: EndIf

10: βj := (rj+1, A
T r∗j+1)/(rj , A

T r∗j )
11: pj+1 := rj+1 + βjpj
12: p∗j+1 := r∗j+1 + βjpj∗
13: EndDo
14: x = xm

A possible algorithm for Bi-CR can be found in algorithm 4.11. When we look closely at the
algorithm, we find that it is almost similar to the algorithm of Bi-CG. This is no coincidence,
since Bi-CR can be obtained by multiplying the initial shadow residual r∗0 in the Bi-CG
method by AT , that is: r∗0 7→ AT r∗0. This can be seen as follows.

Suppose sj+1 and tj+1 are polynomials of degree (j + 1). We can write (in a similar fashion
as in section 3.3) the shadow residual in the Bi-CG method as a polynomial in AT multiplied
by r∗0:

r∗j = sj+1(A
T )r∗0.

If r∗0 7→ AT r∗0 in the Bi-CG method, then

r∗j = sj+1(A
T )AT r∗0. (4.31)

Since p∗0 = r∗0, we have p∗0 7→ AT p∗0. In a similar fashion as for the shadow residual, we find:

p∗j = tj+1(A
T )AT p∗0. (4.32)

From equation (4.31) and (4.32), is it clear that all the shadow residuals and the ‘shadow
search vectors’ in the Bi-CG algorithm have been multiplied by AT . However, this will give
an algorithm that is exactly the same as the algorithm of the Bi-CR method. Hence, we have:

LBi−CRm (AT , r∗0) = AT · LBi−CGm (AT , r∗0) = LBi−CGm (AT , AT r∗0).
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5. Comparing CG-type methods
with Lanczos-type methods

Section 4.2.4 and section 4.2.7 mentioned that the Lanczos method and the Bi-Lanczos method
for systems of equations were mathematically equivalent to the CG method and Bi-CG method
respectively. Being mathematically equivalent, means that the convergence behaviour of
the (Bi)-CG method and the (Bi)-Lanczos method is the same. Hence, the residual vector
produced by both methods should be the same. In the next two sections we will discuss four
examples which show this.

5.1 Comparing CG with Lanczos for linear systems

In this section we will discuss the convergence behaviour of the CG method and the Lanczos
method for linear systems. We use the Matlab code in appendix C.1 and discuss two examples
of real SPD matrices: the two-dimensional Poisson matrix and a ‘Moler’ matrix.

5.1.1 Example 1 - The two-dimensional Poisson matrix

Consider the two-dimensional Poisson equation, which has a broad applicability in engineer-
ing.

−
(
∂2

∂x2
+

∂2

∂y2

)
ϕ(x, y) = f(x, y) (5.1)

We discretise this equation using finite difference method with the 5-point operator on an
n-by-n mesh. This results in the Poisson matrix of size n2, which is a pentadiagonal SPD
matrix. (5.2) gives an example for n = 3:

A =



4 −1 0 −1
−1 4 −1 0 −1 O

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
O −1 0 −1 4 −1

−1 0 −1 4


. (5.2)

A has eigenvalues of the form 4− 2 cos( πi
n+1)− 2 cos( πj

n+1) with i = 1 : n and j = 1 : n. Note
that the elements on the main diagonal are always 4 and that all the elements on the n-th
subdiagonal and the n-th superdiagonal are −1. Most of the elements on the first subdiagonal
and the first superdiagonal are -1, except for the elements that correspond to points on the
boundary of the mesh.

26



0 20 40 60 80 100 120 140 160 180 200
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of MATVECS

|r
|/|

b|

 

 

CG
Lanczos method for linear systems

Figure 5.1: Convergence behaviour of CG and Lanczos for the Poisson matrix with n = 100
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Figure 5.2: Convergence behaviour of CG and Lanczos for the Poisson matrix with n = 200
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In Figure 5.1 and Figure 5.2 we see the convergence behaviour of CG and the Lanczos method
for linear systems for the Poisson matrix for n = 100 and n = 200. On the horizontal axis
we see the number of matrix-vector operations (MATVECS) and on the vertical axis we see
the scaled residual norm ||r||/||b|| in powers of ten. For CG and the Lanczos method the
number of MATVECS is equal to the number of iterations. Both algorithms should stop
if ||r|| < ||b|| · 10−8 and we see that this happens after 183 MATVECS for n = 100 and
approximately 357 MATVECS for n = 200. Moreover, we see that both convergence curves
overlap exactly, meaning that the residual vectors are the same.

Matrix MATVECS CPU time

Poisson 100 183 0.0624s

Poisson 200 357 0.5460s

Table 5.1: Convergence for CG

Matrix MATVECS CPU time

Poisson 100 183 0.1872s

Poisson 200 357 1.4976s

Table 5.2: Convergence for Lanczos

In Table 5.1 and Table 5.2 we summarise the results. Although both methods need the same
number of MATVECS, we see that the CG method computes a solution more time-efficiently.

5.1.2 Example 2 - The Moler matrix

The Moler matrix can be invoked from Matlab’s ‘gallery’ by A = gallery(′Moler′, n, α). The
Moler matrix (named after Cleve Barry Moler, the inventor of Matlab) is a symmetric positive
definite n-by-n matrix which can be written as UTU , where U is an upper triangular matrix
with ones on the diagonal and α on the first n superdiagonals. One of the eigenvalues is small.
In this example, we have chosen α = −1, the default value. Furthermore A(i, j) = min(i, j)−2
and A(i, i) = i. For n = 9, this results in the following matrix:

A =



1 −1 −1 −1 −1 −1 −1 −1 −1
−1 2 0 0 0 0 0 0 0
−1 0 3 1 1 1 1 1 1
−1 0 1 4 2 2 2 2 2
−1 0 1 2 5 3 3 3 3
−1 0 1 2 3 6 4 4 4
−1 0 1 2 3 4 7 5 5
−1 0 1 2 3 4 5 8 6
−1 0 1 2 3 4 5 6 9


. (5.3)

In Figure 5.3 and Figure 5.4 we see the convergence behaviour of CG and the Lanczos method
for linear systems for the Moler matrix for n = 500 and n = 1000. On the horizontal axis we
see the number of matrix-vector operations (MATVECS) and on the vertical axis we see the
scaled residual norm ||r||/||b|| in powers of ten. Just as in the previous section, we see both
algorithms stop if ||r|| < ||b|| · 10−8. However, the Lanczos method for systems of equations
needs more MATVECS than the CG method. If n = 500, the CG method is finished after 58
MATVECS and the Lanczos methods for systems of equations is finished after 60 MATVECS.
For n = 1000 this is 83 MATVECS and 93 MATVECS respectively.
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Figure 5.3: Convergence behaviour of CG and Lanczos for the Moler matrix with n = 500
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Figure 5.4: Convergence behaviour of CG and Lanczos for the Moler matrix with n = 1000

29



The convergence behaviour of both methods follows the same trend, but the mathematical
rounding errors cause some discrepancies. These errors also result in a slightly different
number of MATVECS in both methods. However, since the difference is small, we can
conclude that the residual vectors of both methods are equal.

Matrix MATVECS CPU time

Moler 500 58 0.0156s

Moler 1000 83 0.2028s

Table 5.3: Convergence for CG

Matrix MATVECS CPU time

Moler 500 60 0.0312s

Moler 1000 93 0.3120s

Table 5.4: Convergence for Lanczos

In Table 5.3 and Table 5.4 we summarise the results. Although both methods approximately
need the same number of MATVECS, we see that the CG method computes a solution more
time-efficiently.

5.2 Comparing Bi-CG with Bi-Lanczos for linear systems

In this section we will discuss the convergence behaviour of the Bi-CG method and the Bi-
Lanczos method for linear systems. We use two examples of general real matrices: The
Rutishauser matrix and the Hanowa matrix, both from Matlab’s ‘gallery’ function. The
Bi-CG method and the Bi-Lanczos method for linear systems of equations both use two
MATVECS per iteration, so the number of iterations can be found by dividing the number
of MATVECS by 2. We use the Matlab code in appendix C.2.

5.2.1 Example 3 - The Rutishauser matrix

A Toeplitz matrix is a pentadiagonal n-by-n matrix with the first two subdiagonals and
superdiagonals are nonzero. When the second subdiagonal is 1, the first subdiagonal is -10,
the main diagonal is 0, the first superdiagonal is 10 and the second superdiagonal is 1, we call
this matrix a Rutishauser matrix, named after the Swiss mathematician Heinz Rutishauser.
It can be invoked from Matlab’s gallery by A = gallery(′toeppen′, n, 1,−10, 0, 10, 1). This
matrix has complex eigenvalues lying approximately on the line segment 2 cos(2t)+20i sin(t).
An example for n = 9 is given in (5.4).

A =



0 10 1
−10 0 10 1

1 −10 0 10 1 O
1 −10 0 10 1

1 −10 0 10 1
1 −10 0 10 1

O 1 −10 0 10 1
1 −10 0 10

1 −10 0


. (5.4)
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Figure 5.5: Convergence behaviour of Bi-CG and Bi-Lanczos for the Rutishauser matrix with
n = 100
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Figure 5.6: Convergence behaviour of Bi-CG and Bi-Lanczos for the Rutishauser matrix with
n = 200
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In Figure 5.5 and Figure 5.6 we see the convergence behaviour of Bi-CG and the Bi-Lanczos
method for linear systems for the Rutishauser matrix for n = 100 and n = 200. On the
horizontal axis we see the number of matrix-vector operations (MATVECS) and on the vertical
axis we see the scaled residual norm ||r||/||b|| in powers of ten.

Until about 200 MATVECS (100 iterations), the convergence behaviour of both methods is
exactly the same, since the convergence curves overlap. After this the Bi-CG method performs
better than the Bi-Lanczos method for both n = 100 and n = 200. For n = 100, the Bi-CG
method is finished after 336 MATVECS, while the Bi-Lanczos method is finished after 376
MATVECS. For n = 200, this is 572 MATVECS for the Bi-CG method and 624 MATVECS
for the Bi-Lanczos method. If we take n larger than 250 we see that both methods fail to
find a solution. Apparently, the Bi-CG and Bi-Lanczos method do not perform well for the
Rutishauser matrix.

Matrix MATVECS CPU time

Rutishauser
100

336 0.0156s

Rutishauser
200

572 0.0624s

Table 5.5: Convergence for Bi-CG

Matrix MATVECS CPU time

Rutishauser
100

376 0.0780s

Rutishauser
200

624 0.2340s

Table 5.6: Convergence for Bi-Lanczos

In Table 5.5 and Table 5.6 we summarise the results. We see that the CG method computes a
solution more time-efficiently while also needing fewer MATVECS. The number of MATVECS
differs significantly and this might be caused by rounding errors.

5.2.2 Example 4 - The Hanowa matrix

The Hanowa matrix is invoked from Matlab’s gallery by A = gallery(′hanowa′, n, d), where
n must be an even integer. It produces an n-by-n block 2× 2 matrix of the form

A =

(
d · eye(m) −diag(1 : m)
−diag(1 : m) d · eye(m)

)
, (5.5)

with m = n/2. The Hanowa matrix has complex eigenvalues which lie on the vertical line
d± ki, with 1 ≤ k ≤ m. For n = 8 and d = −1, we have the following matrix:

A =



−1 0 0 0 −1 0 0 0
0 −1 0 0 0 −2 0 0
0 0 −1 0 0 0 −3 0
0 0 0 −1 0 0 0 −4
−1 0 0 0 −1 0 0 0

0 −2 0 0 0 −1 0 0
0 0 −3 0 0 0 −1 0
0 0 0 −4 0 0 0 −1


. (5.6)
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Figure 5.7: Convergence behaviour of Bi-CG and Bi-Lanczos for the Hanowa matrix with
n = 100
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Figure 5.8: Convergence behaviour of Bi-CG and Bi-Lanczos for the Hanowa matrix with
n = 500
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In Figure 5.7 and Figure 5.8 we see the convergence behaviour of Bi-CG and the Bi-Lanczos
method for linear systems for the Hanowa matrix for n = 100 and n = 500. On the horizontal
axis we see the number of matrix-vector operations (MATVECS) and on the vertical axis
we see the scaled residual norm ||r||/||b|| in powers of ten. For n = 100 we see that both
convergence curves coincide until approximately 150 MATVECS. After this, the convergence
becomes a little bit more irregular, but both convergence curves follow the same trend and
the stopping criterion (||r|| < ||b|| ·10−8) is satisfied after 240 MATVECS for Bi-CG and after
236 MATVECS for Bi-Lanczos.

For n = 500 we see the same results as for n = 100. Both methods have the same residu-
als until 325 MATVECS. After this, convergence follows the same trend, but the residuals
differ slightly. The stopping criterion is satisfied after approximately 1450 MATVECS. The
Bi-Lanczos method is finished a few MATVECS earlier. The discrepancies are caused by
rounding errors. We can conclude that the residual vectors of both methods are equal.

Matrix MATVECS CPU time

Hanowa 100 240 0.0312s

Hanowa 500 1456 2.8080s

Hanowa 1000 3000 34.882s

Table 5.7: Convergence for Bi-CG

Matrix MATVECS CPU time

Hanowa 100 236 0.0780s

Hanowa 500 1452 2.3868s

Hanowa 1000 2992 28.782s

Table 5.8: Convergence for Bi-Lanczos

In Table 5.3 and Table 5.4 we summarise the results. We see that for n = 100 the Bi-CG
method is faster than the Lanczos method. For growing n, we see that the Bi-Lanczos method
finds a solution quicker. To make this plausible, we included the number of MATVECS and
the CPU time for n = 1000.
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6. The IDR(s) method

Krylov subspace methods are widely used to solve linear systems in the form Ax = b. In the
case A is symmetric and positive definite, the Conjugate Gradient method (see section 4.2.4
is often preferred. It combines optimal minimisation of the residual with short recurrences.
It computes a solution in N steps, where N is the number of matrix-vector multiplications.
Unfortunately it is not possible to find a method that uses short recurrences and minimises
the residual over some norm for a general matrix A [Faber and Manteuffel, 1984].

The search for such al algorithm for general A has taken two approaches. In the first ap-
proach, mathematicians were looking for methods in which the short recurrence requirement
was removed. GMRES is the most popular member of this family of methods. In the sec-
ond approach, mathematicians focussed on short recurrence methods without the optimality
condition. The archetype of this method is the Bi-CG method (see section 4.2.7). However
Bi-CG requires twice the work as CG. Other method, such as CGS [Sonneveld, 1989] and
Bi-CGSTAB [Van der Vorst, 1992] have been developed in order to overcome this problem,
but all these methods were more or less based on the Bi-CG method. There is however no
reason to believe that a different approach cannot yield faster methods.

This is where the Induced Dimension Reduction (IDR) method comes in. It was first proposed
by Peter Sonneveld in 1980 [Wesseling and Sonneveld, 1980]. IDR is a short recurrence method
and computes the solution in at most 2N matrix-vector multiplications, This makes it at least
at fast as the Bi-CG method. Over the years, IDR was completely overshadowed by CGS
and Bi-CGSTAB, but in recent years their had been renewed interest in IDR. One of the new
family of methods that was developed was IDR(s) with s ∈ N.

6.1 Derivation of the IDR(s) algorithm

The IDR(s) method is based on the IDR theorem, which was originally published in [Wesseling
and Sonneveld, 1980, p. 550]. The following theorem is an extension to complex matrices.

Theorem 6.1 (IDR Theorem).
Let A be any matrix in CN×N , let v1 be any nonzero vector in CN and let G0 be the full Krylov
space KN (A, v1). Let S denote any (proper) subspace of RN such that S and G0 do not share
a nontrivial invariant subspace of A, and define the sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA) (Gj−1 ∩ S) , (6.1)

where the ωj’s are nonzero scalars. The following holds:

(i) Gj ⊂ Gj−1 ∀j > 0;

(ii) Gj = {0} for some j ≤ N .

Proof. See [Sonneveld and Van Gijzen, 2008]
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The main idea of the IDR(s) method is to generate residuals rn that are forced to be in the
subspaces Gj , where j is nondecreasing for increasing n. The subspaces Gj are also called
the Sonneveld spaces. The first part of the IDR theorem tells us that Gj ⊂ Gj−1, so that the
dimension of the Sonneveld spaces reduces in each iteration. Hence the name of the method.
Using the second part of the IDR theorem, the j-th residual must eventually be in Gj = {0}
after at most N dimension reduction steps. If the residual is zero, we have found the solution
to the system Ax = b.

According to Sonneveld and Van Gijzen [Sonneveld and Van Gijzen, 2008] the residuals of
the IDR(s) method satisfy

rm+1 = rm − αAvm −
l̂∑
l=1

γl∆rm−l, (6.2)

where the γl and α are scalars in C and vn is any computable vector in Km(A, r0)\Km−1(A, r0).
The integer l̂ is the depth of the recursion.

Recall that we want the residual to be in the Sonneveld spaces. The residual rm+1 is in Gj+1

if

rm+1 = (I − ωm+1A) vm with vm ∈ Gj ∩ S, (6.3)

which can be seen directly from the definition of the Sonneveld spaces. Now define the (l̂×1)
vector c = (γ1 γ2 . . . γl̂) and the (N × s) matrix ∆Rm = (∆rm−1 ∆rm−2 . . . ∆rm−s) . We
choose vm to be

vm = rm −
l̂∑
l=1

γl∆rm−l = rm −∆Rmc, (6.4)

so that rm+1 satisfies equation (6.2) (with α = ωj+1)

Now define an (N × s) matrix P = (p1 p2 . . . ps) with pij ∈ C. Without loss of generality,
we assume that the subspace S is the left nullspace of P , that is S = {x ∈ CN : A∗x = 0}.
Since vm ∈ S, we have:

P ∗vm = 0. (6.5)

Substituting equation (6.4) in (6.5) yields:

(P ∗∆Rm) c = P ∗rm. (6.6)

Having l̂ unknowns and s equations, this system is in general uniquely solvable for c if l̂ = s
See also Figure 6.1.

With the vector c we can compute vn and rm+1.We know that rm+1 ∈ Gj+1. After updating
∆Rm to ∆Rm+1, we start a new iteration in which we calculate vm+1 and rm+2. Since we
have that vm+1 ∈ Gj ∩ S , we can conclude from equation (6.3) that also rm+2 ∈ Gj+1. We
repeat these steps s + 1 times, until the vectors rm+1, . . . , rm+s are in Gj+1. Since we now
have enough vectors in Gj+1. the next vector, rm+s+1, will be in Gj+2.
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Figure 6.1: Solving (P ∗∆Rm) c = P ∗rm

Of course, we also need to find an expression for the solution vector. We can easily find one
using equation (6.2) (with αm = ωj+1):

rm+1 = rm − ωj+1Avm −
l̂∑
l=1

γl∆rm−l (6.7)

= rm − ωj+1Avm −∆Rm−lc. (6.8)

Using rm = b−Axm, cancelling the b’s on both side and multiplying with A−1, we find:

xm+1 = xm + ωj+1vm −
l̂∑
l=1

γl∆xm−l (6.9)

= xm + ωj+1vm −∆Xm−lc. (6.10)

Equation (6.7) and (6.9) form the basis of IDR(s). One possible algorithm can be seen in
algorithm 6.1.

First we have to initialise the algorithm by choosing a matrix P and computing r0. Next, we
have to build ∆Rm+1 and ∆xm+1, which we need for building the spaces Gj+1. The algorithm
carries out the loop s+1 times in order to find s+1 vectors for Gj+1. In the calculation of the
first residual in Gj+1, we can choose ωj+1 freely, but often a value is chosen that minimises
||rm+1||. For the calculation of the subsequent residuals in Gj+1, the same value for ωj+1 must
be used.

By substituting line 25 into line 30 / 34 and line 30 / 34 in line 38, we obtain equation (6.10).
In a similar fashion, we can deduct equation (6.8) from the algorithm. For k=0, we substitute
line 25 into line 28, line 28 into line 29 (to choose the omega’s), line 29 into line 30 and line
30 into line 38. For 0 < k ≤ s, we substitute line 25 into line 34, line 34 into line 35 and line
35 into line 37. When s+ 1 vectors have been computed, the algorithm checks the stopping
condition and it starts over again if the stopping condition is not satisfied.

6.2 Performance of the IDR(s) method

The IDR theorem predicts that dimension reduction will take place, but not by how much.
The extended IDR theorem gives information about the rate of convergence.
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Algorithm 6.1 IDR(s)

1: Require A ∈ CN×N ; x0, b ∈ CN ; P ∈ CN×s; TOL ∈ (0, 1); MAXIT > 0
2: Ensure xm such that ||b−Axm|| < TOL
3: {Initialisation}
4: Calculate r0 = b−Ax0;
5:

6: {Apply s minimum norm steps to build enough vectors in G0}
7: For m = 0 to s− 1 Do
8: v = Arm ;
9: ω =

(
vHrm

)
/
(
vHv

)
;

10: ∆xm = ωrm;
11: ∆rm = −ωv;
12: rm+1 = rm + ∆rm;
13: xm+1 = xm + ∆xm;
14: EndFor
15: ∆Rm+1 = (∆rm . . .∆r0);
16: ∆Xm+1 = (∆xm . . .∆x0);
17:

18: {Building Gj spaces for j = 1, 2, 3, . . .}
19: m = s
20: {Loop over Gj spaces}
21: While ||rm|| > TOL and m < MAXIT Do
22: {Loop inside Gj spaces}
23: For k = 0 to s Do
24: Solve c from PH∆Rmc = PHrm;
25: v = rm −∆Rmc;
26: If k = 0 then
27: {Entering Gj+1}
28: t = Av;
29: ω =

(
tHv

)
/
(
tHt
)
;

30: ∆xm = −∆Xmc+ ωv;
31: ∆rm = −∆Rmc− ωt;
32: else
33: {Subsequent vectors in Gj+1}
34: ∆xm = −∆Xmc+ ωv;
35: ∆rm = −A∆xm;
36: End if
37: rm+1 = rm + ∆rm;
38: xm+1 = xm + ∆xm;
39: m = m+ 1;
40: ∆Rm = (∆rm−1, . . . ,∆rm−s);
41: ∆Xm = (∆xm−1, . . . ,∆xm−s);
42: End for
43: End while
44: x = xm
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Theorem 6.2 (Extended IDR theorem).
Let A be any matrix in CN×N , let p1, p2, . . . , ps ∈ CN be linearly independent, let P =
[p1, p2, . . . , ps], let G0 = KN (A, r0) be the full Krylov space corresponding to A and the vector
r0 and let the sequence of spaces {Gj , j = 1, 2, . . .} be defined by

Gj = (I − ωjA) (Gj−1 ∩ S) ,

where ωj are nonzero numbers, such that I −ωjA is nonsingular. Let dim (}j) = dj; then the
sequence {dj , j = 1, 2, . . .} is monotonically nonincreasing and satisfies

0 ≤ dj − dj−1 ≤ dj−1 − dj ≤ s.

Proof. See [Sonneveld and Van Gijzen, 2008]

From the extended IDR theorem, it is clear that the dimension reduction per step is between
0 and s. In practice, the reduction is s [Sonneveld and Van Gijzen, 2008]. If this is the case
throughout the whole process, we have the so called generic case. As a consequence of the
extended IDR theorem, we have the following corollary:

Corollary 6.3.
In the generic case IDR(s) requires at most N+N/s matrix-vector multiplications to compute
the exact solution.
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7. Numerical experiments with
IDR(s)

In this section we will give several examples that show the efficiency of the IDR(s) method.
These examples are taken from section 6 of the article written by Valeria Simoncini and
Daniel B. Szyld [Simoncini and Szyld, 2010]. In the examples we compare the convergence
behaviour of Bi-CG, full GMRES, and IDR(s). Bi-CG uses short-recurrences at the cost of
having to compute two matrix-vector operations (MATVECS) in each iteration. Full GMRES
had the benefit that it minimises the residual in each iteration, at the cost of having to store
all the previous orthonormal basis vectors to compute the next one. This makes GMRES very
slow compared to Bi-CG and IDR(s). However, it is interesting to see how short-recurrence
methods compare to full GMRES. For the plots of the convergence behaviour and the tables
we used the implementation in appendix C.3.

7.1 Example 7.1 - The convection-diffusion equation

Consider the centered finite difference discretisation in the unit cube of the operator

L(u) = −∆u+ β(ux + uy + uz) = −∆u+ β∇u

with homogeneous Dirichlet boundary conditions. This a convection-diffusion equation with
convection term β∇u and diffusion term −∆u. The reaction term ru vanishes, because we
set the reaction parameter r to zero. In each direction of the unit cube, we take 20 internal
nodes, which gives us a matrix of size n = 8000. This gives us a mesh size of h = 1/(20 + 1).

In Figure 7.1 (for β = 100) we see that the convergence behaviour of IDR(2), IDR(4) and
IDR(8) is much better than the convergence behaviour of Bi-CG. IDR(1) does also converge,
but it needs more MATVECS and more time. For β = 200 (see Figure 7.2), we see that
IDR(4) and IDR(8) still perform well, while IDR(2) now needs more MATVECS than Bi-CG
and IDR(1). IDR(1) does not find a solution after 1000 iterations.

Method MATVECS CPU time

GMRES 71 0.6552s

Bi-CG 158 0.0936s

IDR(1) 183 0.0936s

IDR(2) 124 0.0624s

IDR(4) 97 0.1092s

IDR(8) 84 0.0780s

Table 7.1: Example 7.1 with β = 100

Method MATVECS CPU time

GMRES 93 0.9984s

Bi-CG 234 0.1248s

IDR(1) - -

IDR(2) 454 0.2496s

IDR(4) 171 0.1092s

IDR(8) 123 0.1092s

Table 7.2: Example 7.1 with β = 200
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Figure 7.1: Convergence behaviour of Bi-CG, GMRES and IDR(s) with β = 100
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Figure 7.2: Convergence behaviour of Bi-CG, GMRES and IDR(s) with β = 200
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If we take β even larger (e.g. β = 500), all four IDR(s) methods are outperformed by
GMRES and Bi-CG. IDR(s) does not converge for s = 1, 2, 4, while IDR(8) needs more time
MATVECS to find a solution. This is caused by the larger convection term, which makes the
problem asymmetrical [Simoncini and Szyld, 2010, p.11].

In table 7.1 we see the exact number of iterations and the CPU-time for GMRES, Bi-CG and
IDR(s) for s = 1, 2, 4, 8. Note that GMRES needs the fewest iterations (as it should, since it
minimises the residual in each iteration), though it needs much more time to find a solution.

7.2 Example 7.2 - The Sherman4 matrix

From the Matrix Market1 we consider the Sherman4 matrix2. This nonsysmmetric, real matrix
of size 1104× 1104 is used in the simulation of oil reservoirs. It has the following structure:

Figure 7.3: Structure of the Sherman4 matrix

We now solve the system Ax = b, where b is A times a vector with ones in all its entries (so
the solution will be a vector with ones in all its entries). We use a tolerance of 10−8 and we
take 1000 as the maximum number of iterations.

In Figure 7.4 we can see the convergence behaviour of GMRES, Bi-CG and IDR(s). In this
example IDR(4) and IDR(8) are very beneficial to use, while IDR(2) and IDR(1) also need
less MATVECS to compute a solution.

1http://math.nist.gov/MatrixMarket/
2http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/sherman/sherman4.html
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Figure 7.4: Convergence behaviour of the Sherman4 matrix for GMRES, Bi-CG and IDR(s)

In Table 7.3 we can see the exact results. We see that the Bi-CG methods needs more
time to compute a solution than the IDR(2) and the IDR(4) method, while it needs close to
twice as much iterations. Furthermore, Bi-CG is as quick as IDR(1), but the latter needs
fewer iterations. GMRES needs the fewest iterations, but note that IDR(8) only needs 16
MATVECS more (about 10% more) than full GMRES, while it is roughly four times as fast.
For this example, the IDR(s) apparently works very well.

Method MATVECS CPU time

GMRES 120 0.2496s

Bi-CG 272 0.0468s

IDR(1) 204 0.0468s

IDR(2) 167 0.0156s

IDR(4) 147 0.0312s

IDR(8) 136 0.0624s

Table 7.3: Convergence behaviour of the Sherman4 matrix for GMRES, Bi-CG and IDR(s)
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7.3 Example 7.3 - The add20 matrix

The add20 matrix3 is another matrix from the Matrix Market. It is a real nonsymmetric
2395× 2395 matrix that is used in electronic circuit design. It has the following pattern:

Figure 7.5: Structure of the add20 matrix

We now solve the system Ax = b, where b is A times a vector with ones in all its entries (so
the solution will be a vector with ones in all its entries). We use a tolerance of 10−8 and we
take 1000 as the maximum number of MATVECS.

In Figure 7.6 we see the convergence behaviour for GMRES, Bi-CG and IDR(s) and in Figure
7.7 we see a close-up for IDR(4) and IDR(8). We see that IDR(1) has not converged after
1000 MATVECS and that IDR(2) performs poor compared to Bi-CG.

Method MATVECS CPU time

GMRES 295 2.0124s

Bi-CG 638 0.0936s

IDR(1) - -

IDR(2) 760 0.1872s

IDR(4) 484 0.1560s

IDR(8) 382 0.1248s

Table 7.4: Convergence behaviour of the add20 matrix for GMRES, Bi-CG and IDR(s)

3http://math.nist.gov/MatrixMarket/data/misc/hamm/add20.html
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Figure 7.6: Convergence behaviour of the add20 matrix for GMRES, Bi-CG and IDR(s)
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Figure 7.7: Convergence behaviour of the add20 matrix for GMRES, Bi-CG and IDR(s)
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In Table 7.4 we summarise the results. We see that IDR(4) and IDR(8) need fewer MATVECS
to find a solution, but it does take more time to do so. We see that for increasing s the
performance of IDR(s) also increases. Furthermore we see that GMRES is about 20 times as
slow as Bi-CG and 16 times as slow as IDR(8).

7.4 Example 7.4 - The jpwh 991 matrix

The jpwh 991 matrix4 is another matrix from the Matrix Market. It is a real nonsymmetric
991× 991 matrix that is used in circuit physics. It has the following pattern:

Figure 7.8: Structure of the jpwh 991 matrix

We now solve the system Ax = b, where b is A times a vector with ones in all its entries (so
the solution will be a vector with ones in all its entries). We use a tolerance of 10−8 and we
take 1000 as the maximum number of iterations.

In Figure 7.9 we see the convergence behaviour of the GMRES method, the Bi-CG method
and the IDR(s) method. From the plot it immediately becomes clear that the Bi-CG method
does not compute a solution. It returns flag = 4, which means that ‘one of the scalar
quantities calculated during Bi-CG became too small or too large to continue computing’.
We see that the different IDR(s) methods perform well on this problem. Note that the
convergence behaviour of the IDR(2) method is more irregular than the other three IDR(s)
methods, especially between ten and thirty MATVECS and during the last ten MATVECS.
It even needs more MATVECS than the IDR(1) method.

In Table 7.5 we summarise the results. We see that IDR(1) and IDR(2) need the same amount
of CPU time and the same holds for IDR(4) and IDR(8). Furthermore we see that IDR(1)
and IDR(2) are approximately three times as fast as GMRES and IDR(4) and IDR(8) are
approximately 6 times as fast.

4http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/cirphys/jpwh_991.html
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Figure 7.9: Convergence behaviour of the jpwh 991 matrix for GMRES, Bi-CG and IDR(s)

Method MATVECS CPU time

GMRES 57 0.1092s

Bi-CG - -

IDR(1) 72 0.0312s

IDR(2) 78 0.0312s

IDR(4) 67 0.0156s

IDR(8) 62 0.0156s

Table 7.5: Convergence behaviour of the jpwh 991 matrix for GMRES, Bi-CG and IDR(s)

7.5 Conclusions

We have seen in several examples that the IDR(s) method performs well in comparison
with the GMRES method and the Bi-CG method. IDR(s) beats the GMRES method when
computation time is concerned, although the GMRES method needs fewer iterations because
of the minimal residual norm. We have also seen that in some cases the IDR(s) method might
find an approximate solution faster than the Bi-CG method. although this is not always the
case. In these examples we do see that IDR(s) needs fewer iterations. This makes research
in the direction of more efficient IDR(s) algorithms justified.
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8. Research goals

Chapter 3 explained the theory behind projection methods. Recall that a projection method
wants to find and approximate solution xm in a Krylov subspace Km such that the residual
vector rm = b− Axm is in a Krylov subspace Lm. In chapter 4 we explored different Krylov
subspace method, either for finding the eigenvalues of a matrix A (general or SPD) or for
solving a linear system of equations and we saw how these methods fitted in the framework
of projection methods.

In recent years there has been renewed interest in the IDR(s) method. It turns out that the
IDR(s) method, which chapter 6 described, can also be seen as a projection method (which
are also called Petrov-Galerkin methods). In their paper ‘Interpreting IDR as a Petrov-
Galerkin method’ [Simoncini and Szyld, 2010], Valeria Simoncini and Daniel B. Szyld showed
that the IDR(s) method can be seen as a projection method. When the left subspace Lm
is appropriately chosen, we see that the IDR(s) method can be interpreted as a classical
Krylov subspace method satisfying the Petrov-Galerkin condition (see section 3.1). One part
of this graduation project is to make clear how the IDR(s) method can be seen as a projection
method. To do this, we will follow the approach that Simoncini and Szyld have taken.

As P. Sonneveld and M.B.Van Gijzen describe, the IDR(s) algorithm in section 6.1 is a ‘direct
translation of the IDR theorem into an actual algorithm’. However, there is some freedom in
this translation. We obtain mathematically different methods if we make different choices. For
instance, we have freedom in choosing the matrix P that defines the subspace S. Secondly,
there are different ways to define and calculate the residuals rj . Lastly, we might try to
improve the performance of IDR(s) by looking at different ways in which we can choose the
ω’s.

In the algorithm described by P. Sonneveld and M.B. Van Gijzen, the value of ωn+1 is chosen
by minimising the norm of the residual [Sonneveld and Van Gijzen, 2008]. This can be done
as follows:

||rn+1|| = ||vj − ωj+1Avj || let t = Avj (8.1)

= ||vj − ωj+1t|| (8.2)

= (vj − ωj+1t)
T (vj − ωj+1t) (8.3)

= vTj vj − 2ωj+1t
T vj + 2ωj+1t

T t (8.4)

Note that this is a polynomial in ωj+1. We can differentiate with respect to ωj+1 and find
that ||rj+1|| is minimal for

ωj+1 =
(t, vj)

(t, t)
. (8.5)

However, it is not clear that this approach always works. ωj+1 is chosen to minimise ||rj+1||,
but is is also used in the calculation of the subbsequent residuals, which might not be min-
imised by this particular ω. Furthermore, the algorithm might break down if ω ≈ 0. Indeed,

48



there are matrices for which the calculations of A fail systematically [Sonneveld and Van Gi-
jzen, 2008, p. 1044].

In their article, Valeria and Szyld propose a new version of the IDR(s) algorithm, called Ritz-
IDR. In this new version of IDR(s), they substitute the ωj+1’s with ‘the Ritz values obtained
by a preliminary generation of a small Krylov subspace of fixed dimension m0’. For instance,
one might use the Arnoldi method, the Lanczos method or the Bi-Lanczos method. They
then use a significant portion of the Ritz values that are largest in magnitude and use them
in the IDR(s) method for solving linear systems of equations. However, one might wonder
if this can be done more efficient, since the IDR(s) algorithm can also be modified to make
it suited for calculating Ritz values. This is the second topic that we want to cover in this
graduation research.

To conclude, we now summarise the two research questions for this graduation project. The
ultimate goal of this research is twofold. We want to have an answer to the following two
questions:

1. How can we put IDR in the framework of projection methods?

2. Can we improve the performance of the IDR(s) algorithm by using IDR(s) itself to find
the Ritz values?
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A. Implentations for eigenvalue
problems

A.1 Aanroep methodes.m

1 clear all
2 close all
3 clc
4

5 % defaults
6 maxit = 1000;
7 n = 100;
8

9 % symmetric matrix A
10 A = gallery('moler',n,−1);
11 A = gallery('poisson',n); n=size(A,1);
12

13 % nonsymmetric matrix A
14 A = gallery('hanowa',n);
15 A = gallery('rando',n,3);
16 A = gallery('toeppen',n);
17

18 % other defaults
19 b = A * ones(n,1);
20 x = zeros(n,1);
21

22 % execution of symmetric methods (Lanczos type)
23 [eigenvectors A,eigenvalues A,Residual,Iterations] = Lanczos(A)
24 [Solution, Residual, Iterations] = Lanczos system(A,b,x,maxit)
25 [Solution, Residual, Iterations] = CG(A,b,x,maxit)
26 [Solution, Residual, Iterations] = CR(A,b,x,maxit)
27

28 % execution of general methods (Arnoldi type)
29 [eigenvectors A,eigenvalues A,Residual,Iterations] = Arnoldi(A)
30 [Solution, Residual, Iterations] = FOM(A,b,x,maxit)
31 [Solution, Residual, Iterations] = GMRES(A,b,x,maxit)
32

33 % execution of general methods (Bi−Lanczos type)
34 [eigenvectors A,eigenvalues A,Residual,Iterations] = Bi Lanczos(A)
35 [Solution, Residual, Iterations] = Bi Lanczos system(A,b,x,maxit)
36 [Solution, Residual, Iterations] = Bi CG(A,b,x,maxit)
37 [Solution, Residual, Iterations] = Bi CR(A,b,x,maxit)
38

39 % execution of general methods (IDR−type)
40 [x,flag,relres,iter,resvec,H,eigenvaluesH,replacements]=idrs(A,b);

51



A.2 Arnoldi.m

1 function [eigenvectors A,eigenvalues A,Residual,Iterations]=Arnoldi(A)
2

3 n = length(A);
4

5 % Calculations & declarations
6 V(:,1) = ones(n,1) / norm(ones(n,1));
7

8 for j=1:n
9

10 w = A * V(:,j);
11

12 for i = 1:j
13 H(i,j) = w' * V(:,i);
14 w = w − H(i,j)*V(:,i);
15 end
16

17 H(j+1,j) = norm(w);
18

19 if j==n | | H(j+1,j) <= 1e−15
20 break
21 end
22

23 V(:,j+1) = w / H(j+1,j);
24

25 % Calculation of eigenvector (s) corresponding to eigenvalue with
26 % the largest magnitude
27 [EV,EW] = sorteig(H(1:j,1:j));
28 s = EV(:,j);
29

30 % Residual vector and stopping criterion
31 R(j) = H(j+1,j) * abs(s(j));
32 if R(j) < 10ˆ−8
33 break
34 end
35

36 end
37

38 % Calculation of eigenvalues and eigenvectors of H
39 [eigenvectors H,eigenvalues H] = sorteig(H(1:end−1,1:end));
40

41 % Approximation of the eigenvectors of A
42 eigenvalues A = diag(eigenvalues H);
43 eigenvectors A = V(1:end,1:j) * eigenvectors H;
44

45 % Number of iterations and residual vector
46 Residual = R';
47 Iterations = j;
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A.3 Lanczos.m

1 function [eigenvectors A,eigenvalues A,Residual,Iterations]=Lanczos(A)
2

3 n = length(A);
4

5 % Calculations & declarations
6 V(:,1) = zeros(n,1);
7 V(:,2) = ones(n,1) / norm(ones(n,1));
8

9 alpha(1) = 0;
10 beta(1) = 0;
11

12 for j=1:n
13

14 r = A * V(:,j+1);
15

16 alpha(j) = V(:,j+1)' * r;
17 r = r − alpha(j) * V(:,j+1) − beta(j)*V(:,j);
18 beta(j+1) = norm(r);
19

20 if j==n | | beta(j+1) == 0
21 break
22 end
23

24 V(:,j+2) = r / beta(j+1);
25

26 % Building T
27 k = length(alpha);
28 T = full(spdiags([beta(2:k+1)',alpha',beta(1:k)'],[−1 0 1],k,k));
29

30 % Calculation of eigenvector (s) corresponding to eigenvalue with
31 % the largest magnitude
32 [EV,EW] = sorteig(T);
33 s = EV(:,j);
34

35 % Residual vector and stopping criterion
36 R(j) = beta(j+1) * abs(s(j));
37 if R(j) < 10ˆ−8
38 break
39 end
40

41 end
42

43 % Calculation of eigenvalues and eigenvectors of T
44 [eigenvectors T,eigenvalues T] = sorteig(T);
45

46 % Approximation of the eigenvectors and eigenvalues of A
47 eigenvalues A = diag(eigenvalues T);
48 eigenvectors A = V(:,2:end−1) * eigenvectors T;
49

50 % Number of iterations and residual vector
51 Residual = R';
52 Iterations = j;
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A.4 Bi Lanczos.m

1 function [eigenvectors A,eigenvalues A,Residual,Iterations]=Bi Lanczos(A)
2

3 n = length(A);
4

5 % Calculations & declarations
6 V(:,1) = zeros(n,1);
7 W(:,1) = V(:,1);
8 V(:,2) = ones(n,1) / norm(ones(n,1));
9 W(:,2) = V(:,2);

10

11 alpha(1) = 0;
12 beta(1) = 0;
13 delta(1) = 0;
14

15 for j = 1:n
16

17 Vbar = A * V(:,j+1);
18 Wbar = A' * W(:,j+1);
19

20 alpha(j) = Vbar' * W(:,j+1);
21

22 Vbar = Vbar − alpha(j) * V(:,j+1) − beta(j) * V(:,j);
23 Wbar = Wbar − alpha(j) * W(:,j+1) − delta(j) * W(:,j);
24

25 Ubar = Vbar' * Wbar;
26

27 delta(j+1) = sqrt(abs(Ubar));
28

29 if delta(j+1) == 0
30 break
31 end
32

33 beta(j+1) = (Ubar) / delta(j+1);
34

35 W(:,j+2) = Wbar / beta(j+1);
36 V(:,j+2) = Vbar / delta(j+1);
37

38 % Building T
39 k = length(alpha);
40 T = full(spdiags([delta(2:k+1)',alpha',beta(1:k)'],[−1 0 1],k,k));
41

42 % Calculation of eigenvector (s) corresponding to eigenvalue with
43 % the largest magnitude
44 [EV,EW] = sorteig(T);
45 s = EV(:,j);
46

47 % Residual vector and stopping criterion
48 R(j) = abs(delta(j+1)) * abs(s(j)) * norm(V(:,j+2));
49 if R(j) < 10ˆ−8
50 break
51 end
52

53 end
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54

55 % Calculation of eigenvalues and eigenvectors of T
56 [eigenvectors T,eigenvalues T] = sorteig(T);
57

58 % Approximation of the eigenvectors of A
59 eigenvalues A = diag(eigenvalues T);
60 eigenvectors A = V(:,2:end−1) * eigenvectors T;
61

62 % Number of iterations and residual vector
63 Residual = R';
64 Iterations = j;
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B. Implementations for linear
solvers

B.1 FOM.m

1 function [Solution, Residual, Iterations]=FOM(A,b,x0,maxit)
2

3 % Calculations & declarations
4 r0 = b − A*x0;
5 R(1) = norm(r0);
6 normb = norm(b);
7 V(:,1) = r0 / R(1);
8

9 for j=1:maxit
10

11 w = A * V(:,j);
12

13 for i = 1:j
14 H(i,j) = w' * V(:,i);
15 w = w − H(i,j)*V(:,i);
16 end
17

18 H(j+1,j) = norm(w);
19

20 if H(j+1,j) <= 1e−15
21 break
22 end
23

24 V(:,j+1) = w / H(j+1,j);
25

26 % Solving a least−square problem for y
27 e 1 = zeros(j,1); e 1(1) = 1;
28 y = H(1:end−1,1:j) \ (R(1) * e 1);
29

30 % Residual vector and stopping criterion
31 R(j+1) = H(j+1,j) * abs(y(j));
32 if R(j+1) / normb < 10ˆ−8
33 break
34 end
35

36 end
37

38 Residual = R';
39 Solution = x0 + V(:,1:j)*y;
40 Iterations = j;
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B.2 GMRES.m

1 function [Solution, Residual, Iterations]=GMRES(A,b,x0,maxit)
2

3 % Calculations & declarations
4 r0 = b − A*x0;
5 R(1) = norm(r0);
6 normb = norm(b);
7 V(:,1) = r0 / R(1);
8

9 for j=1:maxit
10

11 w = A * V(:,j);
12

13 for i = 1:j
14 H(i,j) = w' * V(:,i);
15 w = w − H(i,j)*V(:,i);
16 end
17

18 H(j+1,j) = norm(w);
19

20 if H(j+1,j) <= 1e−15
21 break
22 end
23

24 V(:,j+1) = w / H(j+1,j);
25

26 % Solving a least−square problem for y
27 e 1 = zeros(j+1,1); e 1(1) = 1;
28 y = H \ (R(1) * e 1);
29

30 % Residual vector and stopping criterion
31 R(j+1) = norm(R(1) * e 1 − H * y );
32 if R(j+1) / normb < 10ˆ−8
33 break
34 end
35

36 end
37

38 Residual = R'; % Residual in each iteration
39 Solution = x0 + V(:,1:j)*y; % Solution
40 Iterations = j; % Number of iterations
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B.3 Lanczos system.m

1 function [Solution, Residual, Iterations] = Lanczos system(A,b,x0,maxit)
2

3 n = length(A);
4

5 % Calculations & declarations
6 r0 = b − A*x0;
7 R(1) = norm(r0);
8 normb = norm(b);
9

10 V(:,1) = zeros(n,1);
11 V(:,2) = r0/R(1);
12

13 alpha(1) = 0;
14 beta(1) = 0;
15

16 for j=1:maxit
17

18 r = A * V(:,j+1);
19

20 alpha(j) = V(:,j+1)' * r;
21 r = r − alpha(j) * V(:,j+1) − beta(j)*V(:,j);
22 beta(j+1) = norm(r);
23

24 if beta(j+1) == 0
25 break
26 end
27

28 V(:,j+2) = r / beta(j+1);
29

30 % Building T
31 k = length(alpha);
32 T = full(spdiags([beta(2:k+1)',alpha',beta(1:k)'],[−1 0 1],k,k));
33

34 % Solving a least−square problem for y
35 e 1 = zeros(j,1); e 1(1) = 1;
36 y = T \ (R(1) * e 1);
37

38 % Residual vector and stopping criterion
39 R(j+1) = norm(beta(j+1) * y(j));
40 if R(j+1) / normb < 10ˆ−8
41 break
42 end
43

44 end
45

46 Residual = R';
47 Solution = x0 + V(:,2:end−1)*y;
48 Iterations = j;

58



B.4 CG.m

1 function [Solution, Residual, Iterations] = CG(A,b,x,maxit)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 R(1) = norm(r);
7 normb = norm(b);
8

9 for j=1:maxit
10

11 y = r'*r;
12 z = A*p;
13

14 alpha = y / (z'*p);
15 x = x + alpha * p;
16 r = r − alpha * z;
17 beta = r'*r / y;
18 p = r + beta*p;
19

20 % Residual vector and stopping criterion
21 R(j+1) = norm(r);
22 if R(j+1) / normb < 10ˆ−8
23 break
24 end
25 end
26

27 Residual = R';
28 Solution = x;
29 Iterations = j;
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B.5 CR.m

1 function [Solution, Residual, Iterations] = CR(A,b,x,maxit)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 R(1) = norm(r);
7 normb = norm(b);
8

9 for j=1:maxit
10

11 y = r'*A'*r;
12 z = A*p;
13

14 alpha = y / (z'*z);
15 x = x + alpha * p;
16 r = r − alpha * z;
17 beta = r'*A*r / y;
18 p = r + beta*p;
19

20 % Residual vector and stopping criterion
21 R(j+1) = norm(r);
22 if R(j+1) / normb < 10ˆ−8
23 break
24 end
25 end
26

27 Residual = R';
28 Solution = x;
29 Iterations = j;
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B.6 Bi Lanczos system.m

1 function [Solution, Residual, Iterations] = Bi Lanczos system(A,b,x0,maxit)
2

3 n = length(A);
4

5 % Calculations & declarations
6 r0 = b − A*x0;
7 normb = norm(b);
8 R(1) = norm(r0);
9

10 V(:,1) = zeros(n,1);
11 W(:,1) = zeros(n,1);
12 V(:,2) = r0 / R(1);
13 W(:,2) = V(:,2);
14

15 alpha(1) = 0;
16 beta(1) = 0;
17 delta(1) = 0;
18

19 for j = 1:maxit
20

21 Vbar = A * V(:,j+1);
22 Wbar = A' * W(:,j+1);
23

24 alpha(j) = Vbar' * W(:,j+1);
25

26 Vbar = Vbar − alpha(j) * V(:,j+1) − beta(j) * V(:,j);
27 Wbar = Wbar − alpha(j) * W(:,j+1) − delta(j) * W(:,j);
28

29 Ubar = Vbar' * Wbar;
30

31 delta(j+1) = sqrt(abs(Ubar));
32

33 if delta(j+1) == 0
34 break
35 end
36

37 beta(j+1) = (Ubar) / delta(j+1);
38

39 W(:,j+2) = Wbar / beta(j+1);
40 V(:,j+2) = Vbar / delta(j+1);
41

42 % Building T
43 k = length(alpha);
44 T = full(spdiags([delta(2:k+1)',alpha',beta(1:k)'],[−1 0 1],k,k));
45

46 % Solving a least−square problem for y
47 e 1 = zeros(j,1); e 1(1) = 1;
48 y = T \ (R(1) * e 1);
49

50 % Residual vector and stopping criterion
51 R(j+1) = norm(delta(j+1) * y(j) * V(:,j+2));
52 if R(j+1) / normb < 10ˆ−8
53 break
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54 end
55

56 end
57

58 Residual = R';
59 Solution = x0 + V(:,2:end−1)*y;
60 Iterations = j;
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B.7 Bi CG.m

1 function [Solution, Residual, Iterations] = Bi CG(A,b,x,maxit)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 rster = r;
7 pster = p;
8 normb = norm(b);
9 R(1) = norm(r);

10

11 for j=1:maxit
12

13 y = r' * rster;
14 z = A * p;
15

16 alpha = y / (z' * pster);
17 x = x + alpha * p;
18 r = r − alpha * z;
19 rster = rster − alpha * A' * pster;
20

21 beta = (r' * rster) / y;
22 p = r + beta * p;
23 pster = rster + beta * pster;
24

25 % Residual vector and stopping criterion
26 R(j+1) = norm(r);
27 if R(j+1) < normb * 10ˆ−8
28 break
29 end
30

31 end
32

33 Residual = R';
34 Solution = x;
35 Iterations = j;
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B.8 Bi CR.m

1 function [Solution, Residual, Iterations] = Bi CR(A,b,x,maxit)
2

3 % Calculations & declarations
4 r = b − A*x;
5 p = r;
6 rster = r;
7 pster = p;
8 normb = norm(b);
9 R(1) = norm(r);

10

11 for j=1:maxit
12

13 y = rster' * A * r;
14 z = A * p;
15

16 alpha = y / (pster'*A*z);
17 x = x + alpha * p;
18 r = r − alpha * z;
19 rster = rster − alpha * A' * pster;
20

21 beta = rster'*A*r / y;
22 p = r + beta * p;
23 pster = rster + beta * pster;
24

25 % Residual vector and stopping criterion
26 R(j+1) = norm(r);
27 if R(j+1) < normb * 10ˆ−8
28 break
29 end
30

31 end
32

33 Residual = R';
34 Solution = x;
35 Iterations = j;
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B.9 IDRS.m

1 function [x,flag,relres,iter,resvec,H,replacements]=
2 IDRS(A,b,s,tol,maxit,M1,M2,x0,options)
3 %IDRS Induced Dimension Reduction method
4 % X = IDRS(A,B) solves the system of linear equations A*X=B for X.
5 % The N−by−N coefficient matrix A must be square and the right−hand
6 % side column vector B must have length N. A can also be a struct.
7 % The field A.name should contain the name of a function to perform
8 % multiplications with A. Other fields can be used to pass parameters
9 % to this function.

10 %
11 % X = IDRS(A,B,S) specifies the dimension of the 'shadow space'.
12 % If S = [], then IDRS uses the default S = 4. Normally, a higher S
13 % gives faster convergence, but also makes the method more expensive.
14 %
15 % X = IDRS(A,B,S,TOL) specifies the tolerance of the method.
16 % If TOL is [] then IDR uses the default, 1e−8.
17 %
18 % X = IDRS(A,B,S,TOL,MAXIT) specifies the maximum number of iterations.
19 % If MAXIT is [] then IDRS uses the default, min(2*N,1000).
20 %
21 % X = IDRS(A,B,S,TOL,MAXIT,M1) use preconditioner M1. If M1 is [] then no
22 % preconditioner is applied.
23 % IDRS(A,B,S,TOL,MAXIT,M1,M2) uses a factored preconditioner M = M1 M2.
24 % M1 and M2 can be structures. In that case the field M1.name and M2.name
25 % should contain function names for M1 and M2.
26 %
27 % X = IDRS(A,B,S,TOL,MAXIT,M1,M2,X0) specifies the initial guess.
28 % If X0 is [] then IDR uses the default, an all zero vector.
29 %
30 % X = IDRS(A,B,S,TOL,MAXIT,M1,M2,X0,OPTIONS) specifies additional options.
31 % OPTIONS must be a structure
32 % OPTIONS.SMOOTHING specifies if residual smoothing must be applied
33 % OPTIONS.SMOOTHING = 0: No smoothing
34 % OPTIONS.SMOOTHING = 1: Smoothing
35 % Default: OPTIONS.SMOOTHING = 0;
36 % OPTIONS.OMEGA determines the computation of OMEGA
37 % If OPTIONS.OMEGA = 0: a standard minimum residual step is performed
38 % If OPTIONS.OMEGA > 0: OMEGA is increased if
39 % the cosine of the angle between Ar and r < OPTIONS.OMEGA
40 % Default: OPTIONS.OMEGA = 0.7;
41 % OPTIONS.P defines the 'shadow' space
42 % Default: OPTIONS.P = ORTH(RANDN(N,S));
43 % OPTIONS.REPLACE determines the residual replacement strategy
44 % If |r | > 1E3 |b | TOL/EPS) (EPS is the machine precision)
45 % the recursively computed residual is replaced by the true residual
46 % once |r | < |b | (to reduce the effect of large intermediate residuals
47 % on the final accuracy)
48 % Default: OPTIONS.REPLACE = 0; (No residual replacement)
49 %
50 % [X,FLAG] = IDRS(A,B,S,TOL,MAXIT,M1,M2,X0,OPTIONS)
51 % also returns an information flag:
52 % FLAG = 0: required tolerance satisfied
53 % FLAG = 1: no convergence to the required tolerance within maximum
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54 % number of iterations
55 % FLAG = 2: check RELRES, possible stagnation above required
56 % tolerance level
57 % FLAG = 3: one of the iteration parameters became zero,
58 % causing break down
59 %
60 % [X,FLAG,RELRES] = IDRS(A,B,S,TOL,MAXIT,M1,M2,X0,OPTIONS)
61 % also returns the relative residual norm:
62 % RELRES = | | B − AX | | / | | B | |
63 %
64 % [X,FLAG,RELRES,ITER] = IDRS(A,B,S,TOL,MAXIT,M1,M2,X0,OPTIONS)
65 % also returns the number of iterations.
66 %
67 % [X,FLAG,RELRES,ITER,RESVEC] = IDRS(A,B,S,TOL,MAXIT,M1,M2,X0,OPTIONS)
68 % also returns a vector of the residual norms at each matrix−vector
69 % multiplication.
70 %
71 % [X,FLAG,RELRES,ITER,RESVEC,REPLACEMENTS] =
72 % IDRS(A,B,S,TOL,MAXIT,M1,M2,X0,OPTIONS)
73 % also returns the number of residual replacements
74 %
75 % The software is distributed without any warranty.
76 %
77 % Martin van Gijzen and Peter Sonneveld
78 % Copyright (c) September 2008
79 % Version August 9, 2010
80 %
81

82 if ( nargout == 0 )
83 help idrs;
84 return
85 end
86

87 % Check for an acceptable number of input arguments
88 if nargin < 2
89 error('Not enough input arguments.');
90 end
91

92 % Check matrix and right hand side vector inputs have appropriate sizes
93 funA = 0;
94 if isa(A,'struct')
95 funA = 1;
96 if isfield(A,'name')
97 function A = A.name;
98 else
99 error('Use field A.name to specify function name for

100 matrix−vector multiplication');
101 end
102 n = length(b);
103 else
104 [m,n] = size(A);
105 if (m ˜= n)
106 error('Matrix must be square.');
107 end
108 if ˜isequal(size(b),[m,1])
109 es = sprintf(['Right hand side must be a column vector of' ...
110 ' length %d to match the coefficient matrix.'],m);

66



111 error(es);
112 end
113 end
114

115 % Assign default values to unspecified parameters
116 if nargin < 3 | | isempty(s)
117 s = 4;
118 end
119 if ( s > n )
120 s = n;
121 end
122 if nargin < 4 | | isempty(tol)
123 tol = 1e−8;
124 end
125 if nargin < 5 | | isempty(maxit)
126 maxit = min(2*n,1000);
127 end
128

129 if nargin < 6 | | isempty(M1)
130 precL = 0;
131 elseif isa(M1,'struct')
132 if isfield(M1,'name')
133 function M1 = M1.name;
134 else
135 error('Use field M1.name to specify function name preconditioner');
136 end
137 precL = 1;
138 funL = 1;
139 else
140 if ˜isequal(size(M1),[n,n])
141 es = sprintf(['Preconditioner must be a matrix of' ...
142 ' size %d times %d to match the problem size.'],n,n);
143 error(es);
144 end
145 precL = 1;
146 funL = 0;
147 end
148

149 if nargin < 7 | | isempty(M2)
150 precU = 0;
151 elseif isa(M2,'struct')
152 if isfield(M2,'name')
153 function M2 = M2.name;
154 else
155 error('Use field M2.name to specify function name preconditioner');
156 end
157 precU = 1;
158 funU = 1;
159 else
160 if ˜isequal(size(M2),[n,n])
161 es = sprintf(['Preconditioner must be a matrix of' ...
162 ' size %d times %d to match the problem size.'],n,n);
163 error(es);
164 end
165 precU = 1;
166 funU = 0;
167 end
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168

169 if nargin < 8 | | isempty(x0)
170 x0 = zeros(n,1);
171 else
172 if ˜isequal(size(x0),[n,1])
173 es = sprintf(['Initial guess must be a column vector of' ...
174 ' length %d to match the problem size.'],n);
175 error(es);
176 end
177 end
178

179 % Other parameters
180 smoothing = 0;
181 angle = 0.7;
182 replacement = 0;
183 replacements = 0;
184 randn('state', 0);
185 P = randn(n,s);
186 P = orth(P);
187 U = zeros(n,s);
188 inispace = 0;
189

190 if ( nargin > 8 )
191 % Residual smoothing:
192 if isfield(options,'smoothing')
193 smoothing = options.smoothing > 0;
194 end
195 % Computation of omega:
196 if isfield(options,'omega')
197 angle = options.omega;
198 end
199 % Alternative definition of P:
200 if isfield(options,'P')
201 P = options.P;
202 if ˜isequal(size(P),[n,s])
203 es = sprintf(['P must be a matrix of' ...
204 ' size %d times %d to match the problem size.'],n,s);
205 error(es);
206 end
207 end
208 if isfield(options,'replace' )
209 replacement = options.replace > 0;
210 end
211 if isfield(options,'U0' )
212 U = options.U0;
213 if ˜isequal(size(U),[n,s])
214 es = sprintf(['U0 must be a matrix of' ...
215 ' size %d times %d to match the problem size.'],n,s);
216 error(es);
217 end
218 inispace = 1;
219 end
220 end
221

222 if nargin > 9
223 es = sprintf(['Too many input parameters']);
224 error(es);
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225 end
226

227 % END CHECKING INPUT PARAMETERS AND SETTING DEFAULTS
228

229 x = zeros(n,1);
230 % Check for zero rhs:
231 if (norm(b) == 0) % Solution is nulvector
232 iter = 0;
233 resvec = 0;
234 flag = 0;
235 relres = 0;
236 return
237 end
238

239 % Number close to machine precision:
240 mp = 1e3*eps;
241

242 % Initialize output paramater relres
243 relres = NaN;
244

245 % Compute initial residual:
246 x = x0;
247 normb = norm(b);
248 tolb = tol * normb; % Relative tolerance
249

250 if funA
251 r = b − feval( function A, x, A);
252 else
253 r = b − A*x;
254 end
255

256 if smoothing
257 x s = x0;
258 r s = r;
259 end
260

261 normr = norm(r);
262 resvec=[normr];
263 trueres = 0;
264

265 if (normr <= tolb) % Initial guess is a good enough solution
266 iter = 0;
267 flag = 0;
268 relres = 0;
269 return
270 end
271

272 G = zeros(n,s); M = eye(s,s);
273 om = 1;
274

275 % init coefficients for H
276 h.a = []; h.b = []; h.g = []; h.o = [];
277 al = zeros(s,1);
278

279 % Main iteration loop, build G−spaces:
280 iter = 0;
281 while ( normr > tolb && iter < maxit )
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282

283 % New righ−hand size for small system:
284 f = (r'*P)';
285 for k = 1:s
286

287 % Solve small system and make v orthogonal to P:
288 c = M(k:s,k:s)\ f(k:s);
289 v = r − G(:,k:s)*c;
290

291 % Store all gamma
292 h.g = [h.g,[zeros(k−1,1);c]];
293

294 % Preconditioning:
295 if ( precL )
296 if funL
297 v = feval( function M1,v,M1 );
298 else
299 v = M1\v;
300 end
301 end
302 if ( precU )
303 if funU
304 v = feval( function M2,v,M2 );
305 else
306 v = M2\v;
307 end
308 end
309 %
310 % Compute new U(:,k) and G(:,k), G(:,k) is in space G j
311 if ˜( iter <= s && inispace )
312 U(:,k) = U(:,k:s)*c + om*v;
313 end
314 if ( funA )
315 G(:,k) = feval( function A,U(:,k),A );
316 else
317 G(:,k) = A*U(:,k);
318 end
319 %
320 % Bi−Orthogonalise the new basis vectors:
321 for i = 1:k−1
322 al(i) = ( P(:,i)'*G(:,k) )/M(i,i);
323 G(:,k) = G(:,k) − al(i)*G(:,i);
324 U(:,k) = U(:,k) − al(i)*U(:,i);
325 end
326

327 % Store all alpha
328 h.a = [h.a,[al(1:k−1);1;zeros(s−k,1)]];
329

330 %
331 % New column of M = P'*G (first k−1 entries are zero)
332 M(k:s,k) = (G(:,k)'*P(:,k:s))';
333 if ( M(k,k) == 0 )
334 flag = 3;
335 return;
336 end
337 %
338 % Make r orthogonal to p i, i = 1..k
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339 beta = f(k)/M(k,k);
340 r = r − beta*G(:,k);
341 x = x + beta*U(:,k);
342 normr = norm(r);
343 if ( replacement && normr > tolb/mp ) trueres = 1; end;
344

345 % Store all beta
346 h.b = [h.b;beta];
347

348 %
349 % Smoothing:
350 if ( smoothing )
351 t = r s − r;
352 gamma = (t'*r s)/(t'*t);
353 r s = r s − gamma*t;
354 x s = x s − gamma*(x s − x);
355 normr = norm(r s);
356 end
357 resvec = [resvec;normr];
358 iter = iter + 1;
359

360 if ( normr < tolb | iter == maxit )
361 break
362 end
363

364 %
365 % New f = P'*r (first k components are zero)
366 if ( k < s )
367 f(k+1:s) = f(k+1:s) − beta*M(k+1:s,k);
368 end
369 end
370 %
371 if ( normr < tolb | iter == maxit )
372 break
373 end
374

375 %
376 % Now we have sufficient vectors in G j to compute residual in G j+1
377 % Note: r is already perpendicular to P so v = r
378

379 % Preconditioning:
380 v = r;
381 if ( precL )
382 if funL
383 v = feval( function M1,v,M1 );
384 else
385 v = M1\v;
386 end
387 end
388 if ( precU )
389 if funU
390 v = feval( function M2,v,M2 );
391 else
392 v = M2\v;
393 end
394 end
395
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396 % Matrix−vector multiplication:
397 if ( funA )
398 t = feval( function A,v,A );
399 else
400 t = A*v;
401 end
402

403 % Computation of a new omaga
404 om = omega( t, r, angle );
405

406 % Store all omega
407 h.o = [h.o;om];
408

409 if ( om == 0 )
410 flag = 3;
411 return;
412 end
413 %
414 r = r − om*t;
415 x = x + om*v;
416 normr = norm(r);
417 if ( replacement && normr > tolb/mp ) trueres = 1; end;
418 %
419 % Residual replacement?
420 if ( trueres && normr < normb )
421 if funA
422 r = b − feval( function A,x,A );
423 else
424 r = b − A*x;
425 end
426 trueres = 0;
427 replacements = replacements+1;
428 end
429 %
430 % Smoothing:
431 if ( smoothing )
432 t = r s − r;
433 gamma sm = (t'*r s)/(t'*t);
434 r s = r s − gamma sm*t;
435 x s = x s − gamma sm*(x s − x);
436 normr = norm(r s);
437 end
438 %
439 resvec = [resvec;normr];
440 iter = iter + 1;
441

442 end; %while
443

444 if ( smoothing )
445 x = x s;
446 end
447

448 if funA
449 relres = norm(b − feval( function A,x,A ))/normb;
450 else
451 relres = norm(b − A*x)/normb;
452 end
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453 if ( relres < tol )
454 flag = 0;
455 elseif ( iter == maxit )
456 flag = 1;
457 else
458 flag = 2;
459 end
460

461 % Build matrix H
462 n = length(h.b);
463 % n = min(length(h.b),size(A,2));
464 H = spalloc(n+1,n,n*(s+2));
465

466 m = length(h.o);
467 for j=0:m
468 for k=1:s
469 if j == 0
470 H(1:k+1,k) = diff([0;h.a(1:k,k)./h.b(1:k);0])./1; % h.o(0) = 1
471 else
472 if j*s+k <= n
473 H((j−1)*s+(k:s+k+1),j*s+k)=
474 diff([0;−h.g(k:s,j*s+k)./h.b((j−1)*s+
475 (k:s)); h.a(1:k,j*s+k)./h.b(j*s+(1:k));0])/h.o(j);
476 end
477 end
478 end
479 end
480

481 H = H(1:n,1:n);
482

483 return
484

485 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
486

487 function om = omega( t, s, angle )
488

489 ns = norm(s);
490 nt = norm(t);
491 ts = t'*s;
492 rho = abs(ts/(nt*ns));
493 om=ts/(nt*nt);
494 if ( rho < angle )
495 om = om*angle/rho;
496 end
497

498 return
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C. Other Matlab files

C.1 Example CG Lanczos.m

1 close all
2 clear all
3 clc
4

5 % Defaults
6 n = 100;
7 maxit = 1000;
8

9 choice = 1;
10 hold on;
11 xlabel('Number of MATVECS');
12 ylabel(' |r |/ |b |');
13 set(gca,'FontSize',16);
14 xlhand = get(gca,'xlabel');
15 ylhand = get(gca,'ylabel');
16 set(xlhand,'fontsize',20);
17 set(ylhand,'fontsize',20);
18 grid on;
19

20 % Generate the linear system
21 A = gallery('poisson',n); n = size(A,1);
22 b = A * ones(n,1);
23 x = zeros(n,1);
24

25 % Plot of the CG method
26 t = cputime;
27 disp('CG iteration...');
28 [Solution, Residual, Iterations] = CG(A,b,x,maxit);
29 time = cputime − t;
30 resvec = log10(Residual/Residual(1));
31 it = [0:1:length(resvec)−1];
32 plot(it,resvec,'r−+');
33 drawnow;
34 disp(['Iterations: ',num2str(Iterations)]);
35 disp(['CPU time: ',num2str(time),'s.']);
36 disp(' ');
37

38 % Plot of the Lanczos method for linear systems
39 t = cputime;
40 disp('Lanczos for linear systems iteration...');
41 [Solution, Residual, Iterations] = Lanczos system(A,b,x,maxit);
42 time = cputime − t;
43 resvec = log10(Residual/Residual(1));
44 it = [0:1:length(resvec)−1];
45 plot(it,resvec,'k−*');
46 drawnow;
47 disp(['Iterations: ',num2str(Iterations)]);
48 disp(['CPU time: ',num2str(time),'s.']);
49 disp(' ');
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50

51 legend('CG', 'Lanczos method for linear systems');
52 hold off;
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C.2 Example BiCG BiLanczos.m

1 close all
2 clear all
3 clc
4

5 % Defaults
6 n = 100;
7 maxit = 1000;
8

9 choice = 1;
10 hold on;
11 xlabel('Number of MATVECS');
12 ylabel(' |r |/ |b |');
13 set(gca,'FontSize',16);
14 xlhand = get(gca,'xlabel');
15 ylhand = get(gca,'ylabel');
16 set(xlhand,'fontsize',20);
17 set(ylhand,'fontsize',20);
18 grid on;
19

20 % Generate the linear system
21 A = gallery('toeppen',n);
22 b = A * ones(n,1);
23 x = zeros(n,1);
24

25 % Plot of the Bi Lanczos method
26 t = cputime;
27 disp('Bi−CG for linear systems iteration...');
28 [Solution, Residual, Iterations] = Bi CG(A,b,x,maxit);
29 time = cputime − t;
30 resvec = log10(Residual/Residual(1));
31 it = [0:2:2*(length(resvec)−1)];
32 plot(it,resvec,'r−+');
33 drawnow;
34 disp(['Iterations: ',num2str(Iterations)])
35 disp(['CPU time: ',num2str(time),'s.'])
36 disp(' ')
37

38 % Plot of the Bi Lanczos method for linear systems
39 t = cputime;
40 disp('Bi−Lanczos iteration...');
41 [Solution, Residual, Iterations] = Bi Lanczos system(A,b,x,maxit);
42 time = cputime − t;
43 resvec = log10(Residual/Residual(1));
44 it = [0:2:2*(length(resvec)−1)];
45 plot(it,resvec,'k−*');
46 drawnow;
47 disp(['Iterations: ',num2str(Iterations)]);
48 disp(['CPU time: ',num2str(time),'s.']);
49 disp(' ');
50

51 legend('Bi−CG', 'Bi−Lanczos method for linear systems');
52 hold off;
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C.3 Example IDRS.m

1 %
2 % IDRS parameterised testproblems
3 %
4 % The software is distributed without any warranty.
5 %
6 % Martin van Gijzen
7 % Copyright (c) August 2010
8 %
9

10 clear all;
11 close all;
12 clc;
13

14 % Defaults:
15 h = 1/21;
16 eps = −1;
17 beta(1) = 100;
18 beta(2) = 100;
19 beta(3) = 100;
20 r = 0;
21

22 % Generate matrix
23 m = round(1/h)−1;
24 if ( m < 1 )
25 error('h too small, should be large than 0.5');
26 end
27 n = m*m*m;
28 Sx = gallery('tridiag',m,−eps/hˆ2−beta(1)/(2*h),2*eps/hˆ2,
29 −eps/hˆ2+beta(1)/(2*h));
30 Sy = gallery('tridiag',m,−eps/hˆ2−beta(2)/(2*h),2*eps/hˆ2,
31 −eps/hˆ2+beta(2)/(2*h));
32 Sz = gallery('tridiag',m,−eps/hˆ2−beta(3)/(2*h),2*eps/hˆ2,
33 −eps/hˆ2+beta(3)/(2*h));
34 Is = speye(m,m);
35 I = speye(n,n);
36 A = kron(kron(Is,Is),Sx) + kron(kron(Is,Sy),Is)+ kron(kron(Sz,Is),Is) −r*I;
37

38 x = linspace(h,1−h,m);
39 sol = kron(kron(x.*(1−x),x.*(1−x)),x.*(1−x))';
40 b = A*sol;
41

42 % Defaults for the iterative solvers:
43

44 tol = 1e−8;
45 maxit = 1000;
46

47 choice = 1;
48 scrsz = get(0,'ScreenSize');
49 fig = figure('Position',[scrsz(1) + scrsz(3)/2 scrsz(4)/2
50 scrsz(3)/2 scrsz(4)/2]);
51 hold on;
52 xlabel('Number of MATVECS')
53 ylabel(' |r |/ |b |')
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54 set(gca,'FontSize',16)
55 xlhand = get(gca,'xlabel');
56 ylhand = get(gca,'ylabel');
57 set(xlhand,'fontsize',20)
58 set(ylhand,'fontsize',20)
59 grid on;
60

61 t = cputime;
62 disp('GMRES iteration...');
63 [x, flag, relres, iter, resvec] = gmres(A, b, [], tol, 400 );
64 time = cputime − t;
65 resvec = log10(resvec/resvec(1));
66 figure(fig);
67 it = [0:1:length(resvec)−1];
68 plot(it,resvec,'k−+');
69 drawnow;
70 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))])
71 disp(['Iterations: ',num2str(iter(2))]);
72 disp(['CPU time: ',num2str(time),'s.']);
73 disp(' ');
74

75 t = cputime;
76 disp('Bi−CG iteration...');
77 [x, flag, relres, iter, resvec] = bicg(A, b, tol, maxit );
78 time = cputime − t;
79 resvec = log10(resvec/resvec(1));
80 figure(fig);
81 it = [0:2:2*(length(resvec)−1)];
82 plot(it,resvec,'b−+');
83 drawnow;
84 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))])
85 disp(['Iterations: ',num2str(iter)]);
86 disp(['CPU time: ',num2str(time),'s.']);
87 disp(' ');
88

89 s = 1;
90 t = cputime;
91 disp('IDR(1) iteration...');
92 [x, flag, relres, iter, resvec] = idrs( A, b, s, tol, maxit );
93 time = cputime − t;
94 resvec = log10(resvec/resvec(1));
95 figure(fig);
96 it = [0:1:length(resvec)−1];
97 plot(it,resvec,'r−+');
98 drawnow;
99 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);

100 disp(['Iterations: ',num2str(iter)]);
101 disp(['CPU time: ',num2str(time),'s.']);
102 disp(' ');
103

104 s = 2;
105 t = cputime;
106 disp('IDR(2) iteration...');
107 [x, flag, relres, iter, resvec] = idrs( A, b, s, tol, maxit );
108 time = cputime − t;
109 figure(fig);
110 resvec = log10(resvec/resvec(1));
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111 it = [0:1:length(resvec)−1];
112 plot(it,resvec,'r−x');
113 drawnow;
114 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);
115 disp(['Iterations: ',num2str(iter)]);
116 disp(['CPU time: ',num2str(time),'s.']);
117 disp(' ');
118

119 s = 4;
120 t = cputime;
121 disp('IDR(4) iteration...');
122 [x, flag, relres, iter, resvec] = idrs( A, b, s, tol, maxit );
123 time = cputime − t;
124 resvec = log10(resvec/resvec(1));
125 figure(fig);
126 it = [0:1:length(resvec)−1];
127 plot(it,resvec,'r−*');
128 drawnow;
129 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);
130 disp(['Iterations: ',num2str(iter)]);
131 disp(['CPU time: ',num2str(time),'s.']);
132 disp(' ');
133

134 s = 8;
135 t = cputime;
136 disp('IDR(8) iteration...');
137 [x, flag, relres, iter, resvec] = idrs( A, b, s, tol, maxit );
138 time = cputime − t;
139 resvec = log10(resvec/resvec(1));
140 figure(fig);
141 it = [0:1:length(resvec)−1];
142 plot(it,resvec,'r−s');
143 drawnow;
144 disp(['Final accuracy: ', num2str(norm(b−A*x)/norm(b))]);
145 disp(['Iterations: ',num2str(iter)]);
146 disp(['CPU time: ',num2str(time),'s.']);
147 disp(' ');
148

149 legend('GMRES', 'Bi−CG', 'IDR(1)', 'IDR(2)', 'IDR(4)', 'IDR(8)' );
150 hold off;
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C.4 Sorteig.m

1 function [EV2,EW2] = sorteig(H)
2 % takes a square matrix H as input. the output is a diagonal matrix
3 % EW2 with the eigenvalues on the diagonal from smallest tot largest
4 % and a matrix EV with the corresponding eigenvectors
5

6 [EV EW] = eig(H);
7

8 EW2 = diag(sort(diag(EW),'ascend'));
9 [c, ind]=sort(diag(EW),'ascend'); % store the indices of which columns

10 % the sorted eigenvalues come from
11 EV2=EV(:,ind); % arrange the columns in this order
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