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Abstract
In the open world, machine learning (ML) models can encounter a multitude of unknown or novel classes.
In a surveillance, safety, or security use case, unknown samples can pose potential threats that are hard to
detect since those samples have never been trained on. At the same time, most of the unknowns that will
be encountered by a surveillance ML model will be harmless. This results in too many unwanted alerts and
manual analyses, of harmless unknowns that have been flagged.

Through this thesis, for the first time (to the best of our knowledge), a method is developed that can
automatically assess the relevance of unknown classes, by modelling their image features as clusters (or
distributions) and comparing them using statistical distance measures. Our use case lies in computer vision
for military applications, where based on the user input, relevance is defined. We define road vehicles as
relevant classes and use those for our training set. Our aim is to build a model that can successfully classify
new unseen road vehicles as ‘relevant unknowns’, while also successfully classifying harmless unknown
birds that are not part of the training set, as ‘irrelevant unknowns’. On the DomainNet data-set, we
demonstrate that our novel method can very accurately determine the relevance of unknown classes at test
time for both low and high-dimensional data, with AUC scores ranging from 0.99 to a perfect 1.00.
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1
Introduction

’Real knowledge is to know the extent of one’s ignorance.’ - 孔夫子 (Kǒng Fūzǐ)
blabla
We humans learn largely through our senses; our eyes, ears, nose, hands, and mouth are our tools for
discovery. Whenever we venture into new environments with new objects, we are able to recognise and
classify these new instances based on what we have learned so far. Even when we observe something that is
unfamiliar to us and we have never seen before, the human mind is aware that this is something we do not
know. To showcase this, we request you to identify each of the following animals in the images in Fig. 1.1:

Figure 1.1: A cat, a dog, and an unknown animal.

You can tell that the first two animals are a cat and a dog, because you are likely to have seen these animals
before and learnt what they are. Conversely, because you have probably not learnt nor seen the third crea-
ture, you would not be able to identify it and tell us that you simply ’do not know’ what it is. Computers,
however, do not inherently have access to this level of intelligence when encountering unknown objects. An
average neural network, using e.g. a standard softmax classifier, will falsely classify an unknown class as
something it does know, resulting in a wrong label [1]. A deep learning model trained on cats and dogs only,
would correctly classify the first two images as ’cat’, and ’dog’ respectively, but also forcefully and falsely
classify the last as either ’cat’ or ’dog’. This occurs as the unknown class was not part of the training set;
either because it would be too expensive to keep training the model on more and more classes, or for simply
the fact that one did not have access to its training data (the new creature has never been discovered before,
making any data about it nonexistent). It is precisely this concept that led to this thesis in computer vision.

This chapter further introduces the problem above by discussing its motivation and a realistic variant found
in the industry. Furthermore, it presents the goals and structure of this thesis.

1.1. Problem & Motivation
The relevance of research on this specific classification topic is two-fold; it is useful to both the industry and
academia. From an industrial perspective, the problem of detecting unknown classes or instances can be
extended to various sectors, ranging from credit card fraud detection in finance, to anomalous gene expression
signatures in cancer treatment [2]. From an academic perspective, the field of detecting unknown classes
is still under-explored and becoming increasingly popular. Its problems challenge state-of-the-art (SOTA)

1



1.1. Problem & Motivation 2

algorithms from academic literature to find solutions; therefore a novel approach with mathematical rigour
could generate refreshing insights to the same problem while encouraging new research directions.

1.1.1. TNO’s case & Societal Impact
TNO (Nederlandse Organisatie voor Toegepast Natuurwetenschapelijk Onderzoek, i.e. the Dutch Organi-
sation for Applied Scientific Research), is an independent research institute. It was founded by law in 1932
to make optimum use of scientific knowledge in solving high-priority societal and economic themes faced by
the Dutch government and the industry.

Today TNO’s reach has extended beyond the Netherlands and its research portfolio encompasses a wide
variety of scientific fields, ranging from sustainable energy to maritime technology and defence. Their
operations within those fields are categorised into ’focus areas’; this thesis was carried out at the ’Intelligent
Imaging’ department which is an expertise group within the focus area of ’Defense, Safety & Security’.

Figure 1.2: Visual overview of TNO’s Defense, Safety & Security focus area, one where TNO often partners with military and
security professionals of the Dutch Ministry of Defense and governments abroad.

The Intelligent Imaging research group is engaged in applying state-of-the-art image processing, visual pattern
recognition, and artificial intelligence (e.g. computer vision) to themes which directly contribute to national
security and safe society. Recall the case of the unknown animal of Fig. 1.1, its more realistic and industrial
equivalent within the safety & security domain would be the identification/detection of unknown vehicles.
Take a surveillance drone/robot for example, armed with a computer vision model trained on cars and trucks.
Once it ventures into some area of interest at test time, it can encounter things that it has never seen before:

Figure 1.3: A surveillance drone, trained on cars and trucks, encounters three unknown vehicles at test time.

This model, when encountering vans, might classify some vans as ’car’ and some vans as ’truck’, as a van
is similar to both, but not the same. While a regular van might not pose any significant danger, a strange
unidentified vehicle that looks like a car, or an unknown military vehicle that has similar features to a truck,
definitely could. It is in these use cases where detection of unknowns can mean threat prevention; and why
TNO allocates resources to study this problem from different angles at the Intelligent Imaging department.

1.1.2. Scientific Goal vs. State-of-the-Art
The problem described above has become increasingly popular since various modern day use cases can depend
on the detection of unknowns [2] and since especially neural networks, the most principal and ubiquitous type
of model in computer vision, are vulnerable to unknown samples [1, 3, 4]. As a result, many attempts and
techniques to solve this were made in related and recent work (Chapter 3). Therefore, our goal was to find a
scientific niche in order to contribute. As we were given a lot of freedom at TNO, we allocated our literature
study to formulate and design our own thesis topic: Distinguishing relevant classes from irrelevant classes
in out-of-distribution detection (OOD). OOD (explained in Chapter 3) has become an umbrella term of a
way to detect unknown classes vs. known classes (in-distribution or ’ID’). After exploring recent literature
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we noticed that while many works present new OOD techniques that detect whether a class is ’known vs
unknown’, there were no works that, to the best of our knowledge, analyse whether the detection of such an
OOD class was actually relevant or helpful to the use case. The example below in Fig. 1.4 illustrates this.

In the surveillance or safety use case described above, only knowing whether a class is ID or OOD is not
enough as it does not take safety risks into account. For example, the drone might encounter many things
that is has not been trained on like harmless birds, animals, or a lost screwdriver; all rightfully flagged as
OOD but nothing worthy of raising the alarm. An unidentified vehicle, however, could potentially pose risks
and is therefore more interesting/relevant.

Figure 1.4: SOTA models train on low-resolution data, and work well when OOD classes are substantially different from
training classes. It is much easier to detect that images of landscapes and wood textures are OOD, when training on vehicles.
Our model can do OOD detection when classes are very close to our training set (testing on unknown vehicles, when training

on vehicles) and also tell whether a sample is relevant to our use case or not.

Based on what a user defines as relevant, our model can detect which classes at test time are unknown
and will separate those classes into relevant and irrelevant classes. Fig. 1.5 serves as a demo of our work,
showcasing actual model output: our model is trained on images of the buses and encounters thousands of
images at test time. Based on what it has learned, it will classify all road vehicle classes as relevant and all
other classes as irrelevant.

Figure 1.5: Based on examples of a relevant, known class (e.g., ‘bus’ - top row), our method can classify test images as either
known or unknown, where the unknowns are divided into relevant (other vehicles, middle row) and irrelevant (non-vehicles,

bottom row).
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1.2. Main Contributions & Methodology
Below are listed the main contributions of this thesis, for which a visual overview is provided in Section 3.3.2.

1. Relevance Detection: Our most significant contribution is detecting whether a class is relevant or
irrelevant, after it has been determined whether it is ID or OOD. In this contribution we propose a
way to pre-specify a sense/measure of relevance that can be tailored to the specific the use case, such
that this solution can be generalised to different domains beyond surveillance & security.

2. Distribution approach: Until now, only single points/samples of each class were used at test time in
analyses, i.e. detecting a single OOD van, or single OOD bird at test time. It is quite plausible that one
would encounter many instances of OOD birds and OOD vehicle classes, with varying characteristics.
Therefore, we propose to leverage statistical properties of those groups of OOD classes by treating
them as distributions. When treated as distributions (either point clouds, probability densities, etc.),
a whole arsenal of mathematical techniques from analysis and probability theory are at one’s disposal.

3. Using realistic data: Contemporary literature mostly employs simple low-resolution data-sets (which
does not align with reality, and often tests to detect OOD classes that are substantially different from
their training data. Detecting that an unknown frog is OOD when trained on cars is far easier than
detecting that vans are OOD, as vans and car look alike.

4. Varying prior information (domain knowledge): Through this we showcase and test how well OOD
relevance detection works as we know more, or less of the domain we are operating in. For example,
given that vehicle classes are of interest, we aim to test what happens to relevance detection; can the
model better detect unknown vehicles as relevant and unknown birds as irrelevant, if we train on 4
vehicles (car, bus, truck, van), instead of only training on 1 class (car)?

’Knowing the extent of your ignorance is true knowledge’, paraphrased from the Chinese philosopher Kǒng
Fūzǐ, is what we aim to do with our contributions. By adding relevance detection and prior knowledge, we
are playing around with the extent of a model’s ignorance; knowing that a class is unknown is a great start,
but knowing that a class is unknown ánd (ir)relevant can be considered true knowledge in some use cases.
While all four are main contributions, the first three are also true novelties in the field as we have, to the
best of our knowledge, not encountered anything similar in previous studies and literature.
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1.2.1. Proposed solution (simplified)

Figure 1.6: Simplified pipeline of our solution at test time, allowing for the 4 outputs shown in Fig. 1.4 .

The details and design choices of the pipeline above are thoroughly discussed in Chapter 4, so below follows
a concise description only.

1. After the test input images are loaded, they are sent to a neural network of choice to generate image
features (Section 2.4.1). These features are meaningful vector representations of each image that can
be used for further computations and analyses. The neural network is trained beforehand.

2. We use a SOTA OOD detection algorithm of choice (Chapter 3) to separate the classes of test data
into two groups. These groups contain the exact same image features, separated into an OOD batch
and ID batch. The OOD algorithm is trained beforehand on ID classes (e.g. car & truck), to detect
OOD classes at test time (e.g. van, hammer).

3. We then cluster within both these ID and the OOD batches to get ID class clusters {QID
1 ,QID

2 , . . .},
and OOD class clusters {QOOD

1 ,QOOD
2 , . . .}, which we treat/sample as distributions. In addition, we

also sample distributions {P1,P2 . . .}, of our training classes (the ones we have seen before testing).
4. In the last phase of the pipeline, various (statistical) distance measures d are used to determine whether

an unknown distribution QOOD
1 at test time is close to our learned distribution of e.g. a car Pcar by

calculating d(Pcar,QOOD
1 ). If d is small, then QOOD

1 is likely relevant and vice versa.

Example: Let QOOD
1 ,QOOD

2 be unknown data clusters of a hammer and a van respectively a test
time, and Pcar a training clusters sampled during training. One can expect that d(Pcar,QOOD

1 ) >
d(Pcar,QOOD

2 ) because vans are closer to cars, than hammers. This means that even without knowing
what QOOD

1 ,QOOD
2 are, we can tell that one is more relevant than the other.

1.3. Research Questions
The main objective of this thesis is to answer the following question:

(How) Can relevant unknown classes be distinguished from irrelevant unknown classes?

Sub-questions
SRQ1: Which technique to detect unknown classes is most suitable for such a task?

(a) Which field of techniques: Anomaly Detection, Novelty Detection, Open-Set Recognition, OOD?
(b) Which detection models?

SRQ2: How can we leverage the statistical properties of OOD classes to distinguish relevant from irrelevant?

(a) Parametric or non-parametric approach?
(b) What kind of distance measures work best? f−divergences, L2, statistical distances?

SRQ3: What role does the dimensionality of the data play in relevance detection?
SRQ4: How can the performance of our solution pipeline be measured?

(a) What experimental setup best measures this performance?
(b) What performance metrics should be used?
(c) When is this solution poor/unusable?

SRQ5: How does prior information about the domain, and related classes to the OOD classes of interest help
detection?
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1.4. Thesis Outline & Reader’s Guide
The first two chapters from now on provide theoretical background from the literature.

• Chapter 2 provides general theoretical background on deep learning and computer vision; a basic
understanding on how image processing, and how neural networks learn and work with image features.

• Chapter 3 focuses on the specific problem at hand and aims to find a direction of the thesis through
a literature review. We explore what research has thus far been conducted and compile results of a
select number of papers whose insights we can use. The end of this chapter will provide an overview
of insights and research gaps that we can use to start working on a solution.

The next two chapters are concerned with the design and implementation/testing of our solution. In these
chapters one will see that the solution is inspired by the theoretical background found in earlier chapters,
but also adapted to better fit our problem specifically.

• Chapter 4 builds our solution (and pipeline) from the ground up and is derived from the tech-
niques found in literature. All design choices and explanations of the approach are treated here and
will be supported by its corresponding mathematical foundations taken from measure theory, vector
norms/metrics, and (high-dimensional) statistical distances.

• Chapter 5 starts off with our data-set and the pre-processing that will be done prior to experimentation.
Next, various configurations of our model are discussed and a setup for the main experiments is laid
out. Preliminary tests and adjustments to our design choices are also treated here.

At last, Chapter 6 draws conclusions and recommends topics for future research.

Figure 1.7: A visual of the thesis outline, denoting each chapter and the corresponding research question that is answered.



2
Theoretical Background Computer Vision

Computer vision is a field of artificial intelligence (AI) that enables computers and systems to derive mean-
ingful information from visual input like digital images and videos. One can say that if AI allows computers
to think, computer vision allows computers to see, observe, and understand our world. It a multidisciplinary
field concerned with the image processing, classification, and object detection among other things, and used
to visually analyse and detect real-world objects like humans and cars. This thesis is mainly centred around
the image processing and classification aspects of computer vision as we use deep learning to perform these
tasks. In today’s world, deep learning (neural networks) is an indispensable tool in image related tasks; the
advent of deep learning has disrupted the field of image processing altogether by introducing new methods
based on neural networks [5], which could handle vast amounts of data and do good feature extraction.

Chapter goals

1. Providing a brief introduction of computer vision & deep learning - Sections 2.1, 2.2 and 2.4
Since a neural network will form a main building block in our solution, the structure, training,
and operational dynamics of a neural network shall be treated with mathematical rigour.

2. Preparing the reader for Related Work (next chapter) - Section 2.3
We briefly treat essentials of how a network is used to classify data, in order to understand how this
concept will be extended to classifying unknown classes in the next chapter.

2.1. Image Processing & High-dimensional data
Before a computer vision algorithm like our solution can make sense of what object, creature, or class is
inside an image, we need to establish the notion of an image first. For the mathematical modelling of images,
we distinguish the following two cases:

Definition 2.1.1 (Continuous (ideal) Image) A continuous planar image can be represented as a mapping
f : Ω → R, where f(x, y) is the value (intensity) at the spatial coordinates (x, y) ∈ Ω , and Ω ⊂ R2 denotes
the domain of the image (rectangle).

Definition 2.1.2 (Discrete (digital) Image) Given an image f : Ω → R. When x and y, and the intensity
values f(x, y) are all finite discrete quantities, the image is referred to as a digital image.

The formalisation above allows one to easily perform mathematical transformations and operations like
filtering, smoothing, compression etc.

2.1.1. Representing our input data: an image as a matrix
The obvious connection between the ideal images (with infinite value) and the discrete image (with finite
values) is the fact that the domain Ω into N1 × N2 × · · · × Nd small rectangles called pixels. Discretising
coordinates (x, y) is called sampling and discretising intensity values f(x, y) is called quantisation. Applying

7
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both sampling and quantisation results exactly in what we will feed our model: a digital image represented
as an M ×N matrix:

f =


f(0, 0) f(0, 1) · · · f(0, N − 1)
f(1, 0) f(1, 1) · · · f(1, N − 1)

...
... · · ·

...
f(M − 1, 0) f(M − 1, 1) · · · f(M − 1, N − 1)


M×N

where each entry’s value corresponds to the intensity of a pixel. Take a grayscale image, the intensity of each
pixel falls into the interval [Lmin, Lmax], i.e. Lmin ≤ f(x, y) ≤ Lmax. The number of gray levels is defined by
the bit depth k > 0 of an image: L = 2k, 8-bit images are common and make 28 = 256 distinct gray levels.
This means that images take values in {0, 1, . . . , 255} as depicted in Fig. 2.1a.

(a) Representation of a grayscale image where a value of 0 corresponds to ’black’ and
a value of 255 to ’white’ [6].

(b) Three ’grayscale’ copies of a colour image, per
channel/primary colour [7].

Figure 2.1: Matrix representations of an image.

This works similarly for 8-bit RGB colour images which we will be using; such an image is now defined as a
2D vector-valued function f : Ω → R3, with

f(x, y) = (fR(x, y), fG(x, y), fB(x, y)) ,

where each colour R,G,B, has intensities from 0 to 255. As a consequence, RGB colour images are composed
of three channels where each channel is the ’grayscale’ copy of the image (Fig. 2.1b), but in one of the
primary colours. All three of these channels loaded into a neural network.

2.1.2. High-dimensional input
It is important to note that images are not read as a matrix by neural neural networks, but as a vector.
As an example, take a grayscale digital image of the number ’9’, fnine : Ω → R, which is a low resolution
(28 × 28 pixels) image from the MNIST data-set. When read, all pixels of each row are collected into a
column vector; 28 rows with 28 pixels per row make a vector that is 784 entries long, i.e. x ∈ R784.

(a) Representation of the number ”9” of the MNIST data-set [8]. (b) Feeding the 784-pixel vector to a neural network [9].

Figure 2.2: Image pixels flattened into vector before it is fed to a neural network.

This showcases that even the most crudest of images results into data of a substantial dimension (784D). Any
realistic use case will deal with images of at least hundreds by hundreds pixels ⇒ x ∈ R>104 . Fortunately, it
is not the resolution, but the amount of the extracted features (Section 2.4.1) that can cause complexities
for when we will be doing analyses using distance metrics (Chapter 4).
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2.2. Deep Feedforward Neural Network
(Deep) feedforward neural networks, also called multilayer perceptrons (MLP), are the most elementary
neural networks from which more advanced and contemporary structures were later derived [5, 10, 11]. They
are called ’deep’ because of the multiple layers in the network, that are stacked on top of each other which
can result into a structure of substantial depth. Feed-forward is used to denote that there are no connections
in which outputs of the model are fed back into itself. This section and the sections that will follow, treat
the fundamentals of the MLP only, as most of it still holds true for more complex architectures and because
this material suffices to understand and appreciate the rest of the thesis.

2.2.1. Network Structure
As shown in Fig. 2.3, a neural network is essentially a computation graph comprised of 3 parts (input,
hidden, output) where information flows from the input layer, through the hidden layer, to arrive at the
output (prediction) layer without any recurrences or feedback. Each node in the network is called a neuron
(inspired from the neurons/nerve cells that constitute the human brain), hence its name.

x1

x2

x3

Input
Layer

h
(1)
1

h
(1)
2

h
(1)
3

Hidden
Layer

y1

y2

Output
Layer

Figure 2.3: A single (hidden) layer feedforward neural network with input x ∈ Rn=3 and output y ∈ Rm=2.
L = 1, and (k0, k1, k2) = (3, 3, 2)

The main goal of a deep feedforward neural network is to approximate some mapping f , given some input
vector (e.g. an image) x ∈ Rn, to arrive at an output y ∈ Rm [12]. Before we go through the learn-
ing/approximation process in the next sections, let us first mathematically formalise the operations within a
neural network more rigorously. For each (hidden) node, information is passed as follows.

Σ

b
(0)
1

x1

x2

x3

σ

Activation
y1

y2

ω
(1)
1,1

ω
(1)
2,1

ω
(0)
1,1

ω
(0)
1,2

ω
(0)
1,3

Figure 2.4: Mathematical operation in the MLP in Fig. 2.3, from input (ℓ = 0) through a single hidden neuron (blue) (ℓ = 1)
to output (ℓ = 2).

Let ℓ ∈ {0, 1, . . . , L, L + 1} denote the layers of the network, where ℓ = 0 is used for the input layer,
{1, . . . , L} represent the hidden layers, and ℓ = L+1 is the output layer. Within the network, information is
passed from the previous layer ℓ−1, through a weighted connection before it reaches a node in the next layer
ℓ. For each connection with weight wℓij , i indicates the index of the neurons of the next layer, j the index of
the neurons of the preceding layer, and the subscript ℓ denotes, in this case, the layer the connection origi-
nates from. For each layer we also define the node width as kℓ, see Fig. 2.3 for a visualisation of this notation.
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For an MLP to be able to approximate both linear and nonlinear mappings, a combination of an affine
mapping and a nonlinear activation function is used above (more on this in Section 2.2.3). After a small
bias bℓi is added to the sum, it is fed a nonlinear activation function σ : R → R , and sent to the neuron in
the next layer. This process is repeated as an MLP is comprised of multiple layers.

2.2.2. Mappings & Network Parameters
Each operation between the layers can be formulated as a mapping f ℓi (x) : Rk

ℓ−1 → Rkℓ [13] as follows:

f ℓi (x) = σ

kℓ−1∑
j=1

wℓ−1
ij f ℓ−1

j (x) + bℓ−1
i


f0
j (x) = xj , f(x) =

kL∑
j=1

wL1,jf
L
j (x) + bL

(2.1)

Where f0
j (x) and f(x) are the mappings, defined at the input and output respectively.

As mentioned before, the above mapping is a composition of an affine mapping and a nonlinear activation
function. To treat them separately, let us collect the parameters weights and biases in a matrix/vector:

W ℓ =
(
wℓij
)
∈ Rkℓ+1×kℓ , bℓ =

(
bℓi
)

We can now define affine mappings ψW ℓ,bℓ : Rk
ℓ−1 → Rkℓ , dependent on these parameters, as follows:

ψW ℓ,bℓ(yℓ) =W ℓyℓ + bℓ, where yℓ = f(x;W ℓ−1, bℓ−1) := σ
(
W ℓ−1x+ bℓ−1

)
(2.2)

The notation of Eq. (2.2) might seem rather superfluous and confusing, but in reality, it simplifies the
notation of Eq. (2.1) and directly portrays the computation of a neural network; the input at layer l is a
matrix multiplication and addition, applied point wise by a nonlinear function, of the output at layer l − 1.
Using this, we can now define a neural network as a composition of functions:

NN (x | Θ) := f(x) = ψWL,bL ◦ σ ◦ · · · ◦ σ ◦ψw0,b0 (2.3)

With Θ :=
(
θ0, . . . , θL

)
∈ Rp now denoted as the network parameters per layer and p as the total param-

eters, where the parameter vector per layer is defined as θℓ =
{
W ℓ, bℓ

}
. It is precisely these parameters

that the network will attempt to learn by changing and tweaking its values in order to arrive at a suitable
approximation (see Section 2.4 for this learning process).

To illustrate this notation’s simplicity, take the following neural network with fixed activation functions,

x1

x2

x3

y1

y2

Figure 2.5: An MLP that passes input vector x ∈ R3 through three hidden layers: h1 = f1(x),h2 = f2 (h1) ,h3 = f3 (h2),
to arrive at a vector-valued output ŷ ∈ R2

its output can be decomposed in the following hierarchical manner:

ŷ = f(x;W ℓ=4, bℓ=4) =W 4h3 + b
4

h3 = σ
(
W 3h2 + b

3
)

h2 = σ
(
W 2h1 + b

2
)

h1 = σ
(
W 1x+ b1

)
where x is the input vector.

(2.4)
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This very decomposition showcases deep learning’s core strength; through a deep sequence of a simple
composition functions, highly complex patterns can be approximated with arbitrary precision. In fact, the
Universal Approximation Theorem (UAT) [14] is a (set of) theorem(s) that proves the class of feedforward
neural networks are capable of approximating any real valued continuous function defined on compact subsets
of Rd, with arbitrary precision. That is to say; for any non-affine continuous function σ : R → R, there is a
sum f̂(x), for which

|f(x)− f̂(x)| < ε for all x ∈ Rd

where ε > 0 and f̂(x) is defined as in Eq. (2.1). See the next section for a brief treatment of these non-affine
functions σ.

2.2.3. Activation Functions
Activation functions are present in the neural networks to add non-linearity to their architecture. As a
consequence, neural networks are able to extract non-linear patterns in the data. Without these non-linear
functions, a neural network’s utility is restricted to a great extent as it would be nothing more than an
exalted linear transformation of its input.

Definition 2.2.1 (Activation function) An activation function at a node in a computational network is a
non-linear mapping σ : R → R that defines the output of that node given an input or set of inputs. It
determines the relationship between the input x and output σ(x) of a node.

The main idea behind the activation function besides adding non-linearity, is to decide whether a neuron
’fires up’ or not. Meaning that an activation function suppresses neurons whose inputs are of no significance
to the overall application of the neural network and ’activates’ those that are not. It does this by using a
threshold; if the weighted input from the previous node reaches a certain value it fires up, and vice versa if
not. This response depends on the function as we can see in Fig. 2.6.

The most commonly used activation functions are the sigmoid function, tanh function and the ReLU (Recti-
fied Linear Unit). The function share similarities as well as differences; the sigmoid

(
(1 + e−x)

−1
)

and tanh
function have properties of having a smooth derivative and normalised outputs, while the ReLU (max{0, x})
has unbounded output and is computationally faster [15].
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Figure 2.6: The sigmoid, tanh, and ReLU activation functions (from left to right).

While selecting the optimal activation function depends on the use case, there are quite some more notable
differences between the ones we mentioned but analysing those is beyond the scope of this thesis as we shall
see in Section 4.2. We therefore would like to refer to the works of Nwankpa et al. [16] and Shaw [17] for
an extensive comparison.

2.3. Supervised Learning & Classification
Recall that in Section 2.2.2, we pointed out that a neural network can be used to approximate functions.
The reason why we are in need of a such a function approximator is because the main problem of this thesis,
presented in Chapter 1, is characterised as a supervised learning task.

Definition 2.3.1 (Supervised learning) A machine learning task of learning a function that maps an input
(some input image) to an output (label/name of the class in the image), based on example input-output
pairs (training data).
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What this boils down to is that given some input image, a neural network needs to tell us what it is by
assigning a label. We proceed to lay out the notations and fundamentals of this learning setting, as it will
be used extensively throughout this thesis.

2.3.1. Classification framework
In supervised machine learning, the task constitutes an input space X = Rd, a label (output) space e.g.
Y = {car, truck, . . . , bus}, and a labelling function that relates the two. The goal is to find a labelling
function, that is either modelled by some mapping f : X → Y, or by a probability distribution P (y | x),
for all x ∈ X and y ∈ Y , such that it outputs the learning task’s labelling of any input vector x with high
probability. In our case, we have selected a neural network as our learner f (since that is state-of-art in
computer vision). Thus, the task is to train a neural network fθ, parameterised by θ, which computes the
posterior probabilities over Y : fθ(x) = {p(y | x); y ∈ Y}. That is, given an observation/image x ∈ X ,
what is the probability that the image belongs to the label y ∈ Y?

Our learner is given access to a set of pre-labelled data (training data-set) D = {(xi, yi)}ni=1 which is sam-
pled independent and identically distributed (i.i.d) from a data-generating joint probability distribution PXY

defined over X × Y . In short: D = {(xi, yi)}ni=1
i.i.d∼ PXY , where each xi represents the image data, and

each yi the corresponding label.

Both regression and classification exist in the supervised learning setting, and our case is clearly a classification
problem. The only implication this has is that all y ∈ Y assume discrete values, known as class labels.

2.3.2. Softmax
More activation functions exist than we covered in the previous section, but there is one more that plays an
especially prominent role in deep learning as it is used to classify the input at the end of the neural network;
the softmax activation function.

Definition 2.3.2 (Softmax function) The softmax is an activation function σ : Rk → [0, 1]k that converts
a vector of numbers into a vector of probabilities, where the probabilities of each value are proportional to
the relative scale of each value in the input vector.

σ(x) =
exi∑k
j=1 e

xj

for i ∈ {1, . . . , k} and x = (x1, . . . , xk) ∈ Rk (2.5)

The softmax function, first used in statistical mechanics as the Boltzmann distribution used to characterise
state of a system of particles with respect to temperature and energy [18], has found its way into machine
learning through statistical decision theory [19] and is now frequently used in multi-class classification. It is
mainly used as the activation function at the output layer of neural networks. The other activation functions
like the ones in the previous section are used in the middle (hidden) layers at each node, and while they can
be used at the output layer as well, they are not fit for applications beyond binary classification. In softmax,
the exponential function is applied to each element xi of the input vector x and then normalised by dividing
by the sum of all the exponentials. This process guarantees that the elements in the output vector σ(x) sum
up to 1, giving a clear probability of input belonging to any particular class.

(a) Transforming raw output to output
probabilities [20]. (b) Softmax function at the output layer of a network [21].

Figure 2.7: An example of softmax used to classify a colour out of multiple options (multiple classes) [21]. Since the
probability that the observation is green is highest, the classification given by the softmax will be ’green’.
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2.4. Training Neural Networks
No matter how advanced and sophisticated a machine model might be at its core, when poorly trained it
will not amount to much. In this section, we will treat how a neural network is trained, and based on what
the output probabilities that determine which image belongs to which class label y ∈ Y are calculated.

2.4.1. Feature generation
At test time (after training), before the softmax can even make a prediction ŷ, the image vector x of an input
(which are just pixel values) needs to be transformed into meaningful information; a feature vector. Features
are certain properties of data that have meaning; take an image of a horse for instance, image features that
one can think of for a feature vector are [colours, shape of the animal, amount of legs, . . . , fur texture]T .
Neural networks are trained to extract these features from an image vector x and transform it into a more
meaningful feature vector h(x; θ). The amount and kind of features that are learnt differ per network. Most
neural networks learn more complex features as the data progresses through the layers; the first layer learns
edges, the second layer learns shapes, the third layer learns objects, the fourth layer learns eyes, and so on.
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Figure 2.8: Adapted version of our pipeline with feature vector h(x; θ).

Ideally, after a neural network has been trained well enough, it will likely generate a feature vector h(x) that
captures the semantic information of an image accurately. That is, when seeing a car, the values in h(x) for
the hypothetical features ’fur’, ’ears’, ’legs’ should be low, while they should be high for features like ’metal’,
’wheels’, etc. Therefore the output probabilities σ(h(x)) calculated by the softmax will likely be highest for
the class label y = ’car’. High quality feature generation will be of paramount importance to our pipeline
and will further be discussed in Section 4.2.

2.4.2. Loss function & Backpropagation
Training a neural networks starts with feeding the network with example input-output pairs (training data).
The network’s initial predictions will contain errors at first, therefore optimisation is required before the
network can be deployed. To check whether a prediction ŷ made by the softmax is actually equal to the true
label y⋆ ∈ Y , loss functions L are used.

Such a loss function is used to train the model through an optimisation algorithm (Section 2.4.3) and
quantifies the model’s loss; how close the model’s outputs are from the true/desired values. Various loss
functions exist [22] and they can be as simple as the MSE ( 1

n

∑n
i=1 (ŷi − y⋆i )

2) but the selection of such
a function depends on the use case. Since our use case corresponds to a multi-class classification problem
we use the (categorical) cross-entropy as a loss function which is a common and SOTA choice [23, 24] it is
defined as:

LCE(y
⋆, ŷ) = −

N∑
i=1

y⋆i ln (f(ŷi)) = −
n∑
i=1

y⋆i ln

(
eŷi∑n
j=1 e

ŷj

)
, (2.6)

where y⋆i are the true labels (ground truths) and ŷi are the predicted scores for each class i in the n possible
classes. The function f refers in our case to the softmax activation function that is applied to the predicted
scores at the final layer of the model. The cross entropy loss is derived from the KL-divergence1 and shows
how far away a prediction is from the ground truth. Since the ground truth labels y⋆ ∈ Y are usually one-hot

1See Section 4.2.2 for more information.
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encoded, y⋆i ∈ Y contains only one non-zero element and the loss function therefore reduces to:

LCE(y
⋆, ŷ) = − ln

(
eŷi∑n
j=1 e

ŷj

)
(2.7)

The goal now is to minimise this loss before this network is deployed at test time, e.g. for what values of
the network parameter (weight and biases, Section 2.2.2) does the network make a prediction for which the
loss is the smallest? To find out, we need derivatives of the loss function with respect to these parameters,
which are then backpropagated through the network in order to adjust these weight and biases.

The process above is called backpropagation because one moves ”from back to front”; we use the chain rule
to calculate the derivative from the last layer which is the one directly connected to the loss function, all the
way to the first layer, which is the one that takes the input data. For the (categorical) cross-entropy loss the
derivative with respect to the outputs ŷn is as follows:

∂LCE
∂ŷn

=
∂

∂ŷn

[
− ln

(
eŷi∑n
j=1 e

ŷj

)]

= − ∂

∂ŷn

[
ŷi

]
+

∂

∂ŷn

ln
 n∑
j=1

eŷj


The first term of the derivative is

∂ŷi
∂ŷn

=

{
1 if i = n
0 otherwise = 1{i=n}

For the second part,
∂

∂ŷn

ln
 n∑
j=1

eŷj

 =
1∑N

j=1 e
ŷj

· ∂

∂ŷn

 N∑
j=1

eŷj


=

eŷn∑N
j=1 e

ŷj

Combining both, results in
∂LCE
∂ŷn

= 1{i=n} +
eŷn∑N
j=1 e

ŷj

= 1{i=n} + f(ŷn)

(2.8)

Now that we have an expression of the derivative of LCE with respect to any of the outputs ŷi of the network,
one can obtain the derivative of LCE with respect to any particular weight wℓij by using the chain rule of
differentiation:

∂LCE
∂wℓij

=

n∑
i=1

∂LCE
∂ŷi

∂ŷi
∂wℓij

(2.9)

Recall from Eq. (2.4) that at each layer we essentially compute a function of the form y = σ
(
W ℓx+ bℓ

)
,

the inner derivatives per layer (second product term in Eq. (2.9)) are therefore given by

∂y

∂wℓij
= σ′

(
W ℓx+ bℓ

)
x

In short, backpropagation is an automatic differentiation algorithm [25] that calculates the derivatives of L
w.r.t. the weights in the network. It does not minimise L yet, that is why we need an optimisation algorithm
which will be treated in the next subsection.
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2.4.3. Optimisation
Even simple MLPs, that classify low-resolution 28x28 images like handwritten digits (Fig. 2.2) will have 784
input neurons. As an example, take the amount of hidden layers to be 2 with only 16 neurons each, and 10
output neurons (as there are 10 digits to be classified), already leads to 784×16+16×16+16×10 = 12960
weights, and 16 + 16 + 10 = 42 bias terms, making a loss function of a total of 13, 002 parameters. For
simplicity we collect all parameters per layer in Θ :=

(
θ0, . . . , θL

)
so we can denote the loss as L(Θ).

Gradient Descent: How Neural Networks Learn
Finding the minimum of the loss function explicitly by direct calculation the derivatives and setting those to
zero is a nontrivial task for a function with such a vast amount of parameters. In a typical loss landscape
Fig. 2.9, it is evident that there are multiple local minima one can find depending on the starting point.
The gradient descent algorithm is an iterative method that finds the global minimum by checking when L
decreases the most quickly. Note that since the gradient vector ∇ of a multi-variable function gives the
direction of steepest increase, the negative gradient −∇L(Θ) gives the steepest descent for our loss.

Figure 2.9: Gradient descent landscape where the loss is graphed and traversed from a random starting point L(Θ0) to find a
minimum, taken from [26].

Keep in mind that we are only interested in minimising the loss, because we want to find a set of weights &
biases collected in Θ :=

(
θ0, . . . , θL

)
that makes the network perform best. So given a randomly selected

starting point Θ0, we want to ’descend’ from L(Θ(0)) to a position L(Θ(1)) that is lower. The gradient
descent algorithm iteratively calculates the next point using the gradient vector at the current position. The
obtained value ∇L(Θ) is subtracted from the current position and therefore makes a step into the direction
where L(Θ) decreases fastest. The whole process is captured by the following:

Θ(i+1) = Θ(i) − η∇ΘL
(
Θ(i)

)
(2.10)

As opposed to other methods like Newton-Raphson (which requires the Hessian matrix and therefore ∇2),
gradient descent only requires the gradient, making it a first-order method that optimises Θ(i) at each step.
Note that, for Θ =

(
θ0, . . . , θL

)
, we update according to

θ
(i+1)
L = θ

(i)
L − η∇θL

L
(
Θ(i)

)
The parameter η > 0, known as the learning rate, scales the gradient and thus controls the step size.
Choosing η too small causes slower convergence or may reach the maximum iteration before reaching the
optimal point. Conversely, if η is too large the algorithm may not converge to the optimal point as it would
’jump’ around near it, or even to diverge completely. This makes η a major component in the algorithm.

Stochastic Gradient Descent: How Neural Networks Learn Faster
In practice it takes computers a tremendous amount of time to calculate the influence of every single training
example (which easily can be in the thousands of images) in every single gradient descent step. While true
gradient descent involves backpropagation for all training examples and averaging them out, stochastic
gradient descent (SGD) does this only for one random point on each iteration causing the updates to have a
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higher variance, but also faster convergence. As a result, from a computational perspective, it performs much
better in large-scale data-sets and is therefore widely used as the optimisation algorithm in deep learning.
Suppose, for each iteration i, we have an unbiased estimator G(i) of ∇L

(
Θ(i)

)
, i.e.,

E
[
G(i) | θ0, . . . , θL

]
= ∇θL

L
(
Θ(i)

)
Each stochastic gradient descent iteration is then give by

θ
(i+1)
L = θ

(i)
L − ηG(i)

2.4.4. Regularisation
Like any machine learning model, neural networks too are prone to overfitting. Overfitting happens when
the network optimises very well on the training set, to such an extent that it does not learn right features
and does not generalise on new data at test time. For this reason, common practice in neural networks is
the incorporation of regularisation of the weight parameters. The regularised loss function will then be

L̃(θ) = L(θ) + λΓ(θ) (2.11)

where λ is a positive scalar and Γ(θ) is a function penalising the value of the weights. The biases should
not be penalised because that can lead to underfitting [12]; biases typically require less data to fit accurately
than the weights. As each bias controls only a single variable, we do not induce too much variance by leaving
the biases unregularised. It is common to penalise the values of the weights by the L1 or L2-norm, adding
a small term induces bias which in turn decreases variance which is called the bias-variance trade-off.

Figure 2.10: Three cases of model behaviour that can occur after training [27].

The unbiasedness of the network is traded to reduce the variance, by adding parameters. One should be
careful though, as adding more network parameters can causes another descent in the loss after the bias-
variance trade-off has already been taken into account, known as double descent [28].

In summary:

• Backpropagation is an automatic differentiation algorithm that calculates the derivatives of the loss
w.r.t. the weights in a neural network. Its goal is to obtain what relative proportions in a change in
weights and biases, causes the most rapid decrease in loss.

• Stochastic gradient descent is an optimisation algorithm for minimising the loss by using the gradients
calculated by backpropagation to optimise the network parameters Θ.

• Backpropagation and SGD are used together to train neural network models.

Now that we have established the elementary building blocks and operational dynamics of computer vi-
sion/neural networks from literature, we can explore the related work done on use case where an image x
belongs to a label ȳ /∈ Y , i.e. images of classes that are not part of the training set and therefore unknown.
The next chapter deals with the examination of related work and provides an insight into how machine
learning models like neural networks are used to classify classes that are not part of the training set.



3
Related Work: OOD detection

The starting point of this thesis was to study a problem in which unknown classes in images could be detected
by a robot. We were given the freedom to find our own topic and build the thesis based on that, meaning
that the specific problem and direction were not defined before starting the study on related work. This
chapter is therefore also on finding a thesis topic before studying the work related to that topic, and for that
reason it is structured into three sections with the following goals.

Chapter goals

1. Finding a topic by exploring techniques to detect unknowns - Section 3.1
We answer the first research question by achieving this as we look for the most suitable category of
techniques that detect unknowns. After studying a taxonomy of detection techniques we narrow down
our focus to OOD detection.

2. Exploring the selected topic (OOD detection) - Section 3.2
OOD detection has been around for a few years and new techniques are being developed as we speak.
Through this section we delve into the technical details of OOD detection and find the most promising
results from existing work that can help solve our problem.

3. Analysing Research Gaps & Formulating Scientific Niche - Section 3.3
After determining that OOD detection will be used in this thesis and studying a selection of works in
OOD, we look for novel ways in which we can solve our problem while contributing to this field.

3.1. Techniques for detecting unknowns
Numerous methods to detect unknown samples exist in machine learning and engineering [29, 30, 31].
Depending on the use case, the unknown sample is at times called an anomaly, an abnormality or a novelty,
but both are often used interchangeably. In fact, even the names of the various techniques to detect unknowns
are used interchangeably, causing confusion among researchers [32]. After a quick exploration of the field
of detection for unknown classes, we have found that all methods to tackle problems like our use case in
Section 1.1.1 can be categorised into four main approaches:

Table 3.1: The 4 main categories for detecting
unknowns.

Anomaly Detection (AD)
Novelty Detection (ND)

Open-Set Recognition (OSR)
Out-of-Distribution Detection (OOD)

What causes further complications is that the techniques in Table 3.1 have shared concepts, with similar
goals, but have been investigated independently. This independent research has led researchers to use the
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names of these techniques interchangeably despite subtle and/or fundamental differences between them, e.g.
technique A in paper X is called novelty detection, but is in fact the same as technique B in paper Y which
is called anomaly detection. This has caused a great deal of confusion among practitioners, thus a proper
taxonomy has to be developed in order to select the method that suits our purpose best.

3.1.1. Taxonomy
Previous literature studies [30, 31, 32, 33] have attempted to clear the confusion on the techniques in
Table 3.1. After carefully studying these works, we have tried to reach or create some general consensus
between them, and based on that we have found that these techniques are distinguished by two principal
factors:

• the occurrence of distribution shifts;
• the capability of classifying single or multiple classes.

We will treat distribution shifts in detail in Section 3.1.2 before covering the properties of the detection tech-
nique themselves in Section 3.1.3 and making a final selection. This subsection serves as a point of reference
for the reader as it contains a taxonomy of the whole field. We have decided to present this taxonomy prior
to the analysis of all techniques, as it will support the reader in recognising the topics and therefore also in
getting a solid grasp of the material.

Table 3.2: Taxonomy of AD/ND/OSR/OOD based on [32].

Covariate Shift Semantic Shift
Single class Single class Multi-class

Covariate Anomaly Detection Semantic Anomaly Detection
One-class Novelty Detection Multi-class Novelty Detection

Open-Set Recognition
Out-of-Distribution Detection

Table 3.2 helps us realise immediately, even before analysing any of the techniques in Table 3.1, that only the
techniques under semantic shift will be of significance to our thesis since our case is a multi-class problem.
In the next section we treat the distinguishing factors in this taxonomy so that Section 3.1.3 can expand
further on the techniques themselves.

3.1.2. Distribution Shift
Distribution shift is the phenomenon when the joint distribution PXY of the input set X and output set Y,
differs between training and test stages. As it is also one of the determining factors that distinguish the
techniques above from each other [32], it is helpful to cover this first. Within the scope of machine learning,
there are two general types of distribution shifts that impact the above techniques:

1. covariate shift (also called sensory shift);
2. semantic shift (also called label shift).

To illustrate this, let X be the input (covariate /sensory) and Y the output (semantic/label) spaces. Also
let the input data be realisations of the joint distribution PXY . A distribution shift, like in Fig. 3.1, occurs
either due to a change in the marginal distributions PX , PY , or both.

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

Training P
Testing P

Figure 3.1: Shift in joint probability distribution of the data, due to a change in PX and/or PY at test time.
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Let the distribution of inputs (covariates) be denoted by PX during training time, and PX , and P ′
X during

testing. The notation is equivalent for the distribution of outputs (labels) PY , P
′
X .

Definition 3.1.1 (Covariate shift) We speak of covariate shift when the distribution of inputs PX can
change over time, while the labelling function PY|X does not change. In that case, the ’normalities’ (known
classes) are from PX and the ’abnormalities’ (unknowns) from P ′

X . It is called covariate shift because it is
caused by a shift in the distribution of the covariates (inputs/features): PX 6= P ′

X .

Among distribution shifts, covariate shift is the most widely studied and Fig. 3.2 demonstrates why this
phenomenon can be so significant.

Figure 3.2: Shift in marginal distribution PX , for a classifier trained on cars & trucks. Classes stay the same so PY does not
change. Input samples at training time (left), input samples at testing time (right).

While the training data is comprised of photos, the test data now contains only cartoons. This implies that
training is done on a data-set with substantially different characteristics/features from the test set, leading
to higher errors as the label space Y has not changed.This is an example of domain and style shift within
covariate shift, another case of covariate shift is adversarial examples, where training data is augmented with
noise [1], also leading to the same classes at testing time, but with a difference in appearance.

Definition 3.1.2 (Semantic shift) We speak of semantic shift when the distribution of outputs PY can
change over time. The labels ȳ of classes at testing time are now not in the label space Y, but in Y ′ as they
have not been trained on. In that case, the ’normalities’ (known classes) are from PY and the ’abnormalities’
(unknowns) from P ′

Y . It is called semantic shift because it is caused by a shift in the distribution of the
semantic labels (outputs): PY 6= P ′

Y .

Within the setting of the previous example, this means that the classifier attempts to go beyond only
classifying cars and trucks and aims to detect new classes (Fig. 3.3). It is precisely this shift that is of
utmost relevance to our research since we do not expect to see cartoons in a surveillance/security setting
(so no change in PX ) , while we do expect to see unknown vehicle classes (change in PY).

Figure 3.3: Shift in marginal distribution PY , for a classifier trained on cars & trucks. Classes at testing time are now
different; the van (second image) and futuristic vehicle (third image) belong to a label y /∈ Y ⇒ change in PY .

In Fig. 3.3, the distribution of our label space Y, now changes when we are presented an unfamiliar/unknown
class (van and futuristic vehicle), as our model does not have a label for it yet.
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3.1.3. Comparison & Selection of Detection Technique
The techniques in our taxonomy all detect an unknown sample in one way or another. The notion on what
is ’unknown’ is based on some ’predefined normal behaviour’ that a new sample deviates from, but its formal
definition would depend on the metric that is used to measure it:

• Density-Based: model the normal/training data with probabilistic models and flag test data as an
’unknown’ when it is in low-density regions of this model.

• Distance-Based: calculate the distance (e.g. Lp-norm) between training (normal) data, and testing
data. If the distance exceeds a threshold, the sample is ’unknown’.

Definition 3.1.3 (Density-based ’unknown’) An ’unknown’ is an observation x ∈ X that deviates sub-
stantially from the predefined normal behaviour/ground truth PN on X , i.e. lies in a low probability region
under PN . Let PN have a corresponding probability density function pN (x), the set of ’unknowns’ can then
be defined as follows

Up = {x ∈ X | pN (x) ≤ τ} , τ ≥ 0, (3.1)
where the probability pN (x) of U under PN , can be arbitrarily small.

Definition 3.1.4 (Distance-based ’unknown’) An ’unknown’ is an observation x ∈ X that deviates sub-
stantially from the predefined normal behaviour/ground truth set of training samples N ⊂ X , i.e. lies far
away from the centroid of N : µN . Let d be a distance metric defined on X the set of ’unknown’s can then
be defined as follows

Ud = {x ∈ X | d(x,µN ) ≤ τ} , τ ≥ 0, (3.2)
where the distance d(x,µN ) can be arbitrarily small.

Based on the taxonomy, it is clear which techniques fall under semantic shift multi-class classification and are
therefore qualified for our research: Semantic Anomaly Detection, Multi-class novelty detection, Open-
Set Recognition, and OOD detection. Fig. 3.4 shows that for the multi-class case, the four techniques
are essentially equivalent, so why should one favour one over the other? We will very briefly go over each
technique and finally conclude why we select OOD for our research.
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Figure 3.4: Each detection technique with image examples, adapted from [32]. For the multi-class case we see that all four
techniques are (almost) equivalent.

Anomaly & Novelty Detection
Anomaly Detection (AD) and Novelty Detection (ND) are identical. Researchers tend to use the word
’anomaly’ whenever the sample that should be detected in ’unwanted’ or ’contrasting’, like noisy images
in surveillance, or strange behaviour in fraud detection. The term ’novelty’ generally used for detecting
something unknown, new, and interesting.

Recent works in AD [30, 31] have shown that their focus is mostly on covariate shift problems using Variational
Auto-encoders (VAE) [34, 35] or generative models like Generative Adversarial Networks (GANs) [36, 37].
The main issue with these techniques is that they work well for pixel-level detection of anomalies (differences



3.1. Techniques for detecting unknowns 21

in patterns/pixels), rather than semantic level (understanding what the anomaly is) [31], while works in
novelty detection focus on “novel class detection”[38, 39], indicating that it is focusing on detecting
semantic shift. Both are interchangeable, but novelty detection appreciates new classes as resources for
potential future use with a positive learning attitude, which aligns with our work.

Open-Set Recognition
Most machine learning models are trained with the assumption that the data at test time is assumed to
be drawn i.i.d. from the same distribution as the training data, this is called the closed-world assumption.
Open-Set Recognition (OSR), first coined by Scheirer et al. [40], acknowledges that models can encounter
classes outside of their training set. It is almost equivalent to ND, except for the fact that OSR has increased
supervision, categorised as follows:

• Known Known Classes (KKC): Training samples that we know they are known. They are already
given and labeled.

• Known Unknown Classes (KUC): Training samples that we know they are not known: they do
not belong to the known categories. E.g. background images, or any image that we know is not
categorized into the known classes are in this group. They are already given and labeled.

• Unknown Known Classes (UKC): Training samples that we do not know they are known. For
example, known test time samples are in this group. These are not given at the training phase.

• Unknown Unknown Classes (UUC): Training samples that we do not know they are not known:
unknown test time samples are in this group. These are not given at the training phase.

If a sample is flagged as ’known’, OSR formally requires further correct classification of it, e.g. after a car
image is flagged as ’known’, it should subsequently be further classified as ’car’. This is a stronger condition
that is not present in the other techniques, and also not a requirement for our use case.

Out-of-distribution detection
While the related and sometimes equivalent counterparts of OOD detection like AD, ND and OSR have been
around longer, the term of ’out-of-distribution detection’ (OOD) first formally emerged in 2017 for a solution
specifically made for neural networks [41]. Nguyen, Yosinski, and Clune pointed out in the paper ”Deep
Neural Networks are Easily Fooled” [4], that neural networks make notoriously high confidence predictions
when presented OOD input.

Nguyen, Yosinski, and Clune, realised that the false predictions (with high confidence) of anomalous data
by neural networks was caused by the softmax function of the neural network [4]. As shown in Fig. 2.7,
when presented a new test sample x, the softmax computes a probability of how likely it is that the sample
belongs to each class y1, . . . , yk ∈ Y .

Figure 3.5: Neural networks can be fooled by anomalous data; making them believe that noise is a penguin. Taken from [4].

Since these probabilities are computed with the fast-growing exponential function, minor additions to the
softmax inputs, can lead to considerable changes in the output distribution, hence the overconfident predic-
tions of neural networks. Hendrycks and Gimpel pursue this issue [41] and conclude that softmax classifier
probabilities are not directly useful as confidence estimates, but also show that simple statistics derived from
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softmax distributions can still provide an effective way to determine whether an example is misclassified, or
from a different distribution. Their proposed solution to this, among other OOD techniques, will be discussed
in Section 3.2, where we delve into the technical details and previous studies on OOD.

Rationale for OOD.
For our use case we need semantic shift and multi-class classification, but we have seen in the previous
sections that multi-class AD/ND, or OSR in some way, already suits our purpose. So does OOD. But a
reason to favour OOD above the others is that OOD detection is a more generalised category, encompassing
both AD, ND, and OSR according to Yang et al. in [32], giving us an extra degree of freedom. Additional
and more specific motivations for selecting OOD for this thesis are:

• OOD techniques in the papers we will see in the next section are specifically designed to work well
with neural network architectures. Since we will definitely leverage the power of deep learning in this
thesis, rather than rely on classical statistical models, this is useful to us.

• OOD is relatively new, expanding as we speak, and full of potential. This makes it an inherently more
exciting topic for us.

Having said this, the first direction of this thesis has been decided and all formalisms and techniques will
be based on that direction. But funnily enough, since we are genuinely interested in the new classes we
will encounter, we are in fact also doing a form of novelty detection. Furthermore, in our use case we go
beyond the closed-world assumption and acknowledge that not all information about the world is known,
which implies that we research an open-world problem. And finally, our theoretical framework will be formally
based on the theory of OOD detection, specifically for neural networks. All of this combined implies that we
will be researching: Novelty detection, in an open world setting, using OOD techniques.

3.2. Exploring OOD Detection
In spite of being a relatively new subject (under this name), much work has already been and is being done
on OOD detection. Especially considering the fact that techniques from ND,AD, and OSR, also fall within
the conceptual framework of OOD detection and have been around much longer. In this section we concisely
present 5 insights, divided over 5 subsections, from recent work that is relevant for this thesis. These results
serve either as a starting point, or inspiration for our scientific niche.

All results will be applied to our use case and setting, where we use neural networks to classify image
data. The main idea behind OOD for neural networks, as denoted in the previous subsection, is to find
an alternative for the softmax function such that OOD samples will not be classified as ’known’ with high
confidence.

Figure 3.6: OOD detection for neural networks; replacing the softmax function σ with a scoring function g to classify input as
’ID’ or ’OOD’.

The next subsections will deal with various options for g and things we need to take into account when
building our solution.
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3.2.1. Insight 1: Formalised OOD detection

Paper Author & Reference Year
Provable Guarantees for Understanding Out-of-distribution Detection Morteza and Li [42] 2021

While Hendrycks and Gimpel were the first to set up a direct solution for OOD detection with neural networks
in 2016, and many works have been done even before that under a different name than OOD detection,
Morteza and Li were the first to formalise the theory of OOD in [42].

Recall the classification framework of Section 2.3 where X is the input space and Y is the label space. Let
P in
XY the data-generating distribution defined over X × Y of the in-distribution (ID) data, and P in

X , P in
Y the

joint and marginal distributions. Given a classifier f : X → Y that learns to map a given input to the label
space, the goal is to determine whether a new sample x ∈ X at test-time, is generated from P in

X or not.

I.e. given a classifier f learned on training samples from in-distribution P in
XY , the goal is to design a binary

function estimator
g : X → { in, out }

that tells us whether a new sample is in-distribution (ID) or out-of-distribution (OOD) [42].
To determine the nature of a new test sample x, both the marginal distribution P in

X and/or P out
X can

theoretically speaking be used. However, due to the lack of knowledge on the OOD data, and therefore
P out
X , we are naturally compelled to base our scoring function g on the probability density P in

X .

y = 1

Unknown class from
out-of-distribution data

y = − 1

y ∉ {+ 1,− 1}

Figure 3.7: On the left, the ID data distribution P in
X comprises of two classes Y = {−1,+1}, indicated by green and blue

dots respectively. On the right, new unknown data is presented. In OOD detection, the model should label these instances
(orange dots) as ’OOD’, rather than misclassifying them into known classes (blue and green dots). [42]

Definition 3.2.1 (Ideal Classifier) An ideal classifier for OOD detection based on the data density P in
X is

defined as follows

gideal
λ (x) =

{
in pin

X (x) ≥ λ

out pin
X (x) < λ

where pinX is the density function of P in
X and λ is the threshold, which is chosen so that a high fraction

(e.g., 95%) of in-distribution data is correctly classified. [42]

Note that this is exactly in line with our definition (Definition 3.1.3) for an OOD sample, where the density of
predefined normality pN (x) is now defined by pin

X (x) with threshold λ. The 95% here is due to convention;
95 % is two standard deviations away from the mean and therefore often chosen, but it can be any number
that suits the use case. The explicit use of the term ’ideal’ is because the classifier f is trained on samples
from P in

XY(x), and it is generally speaking hard to directly obtain pin
X (x) due to possible intractability:

pin
X (x) =

∑
j

pin
XY (x, yj) (3.3)

=

k∑
j=1

pin
X|Y (x | yj) · pinY (yj) (3.4)
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In practice, calculating the exact marginal distribution above becomes intractable in high dimensions, making
it computationally expensive. Therefore, with Definition 3.2.1 as our starting point, the main challenge in
designing g lies in finding alternative scoring function that is close, or if possible, proportional to pin

X (x).

3.2.2. Insight 2: Comparison of scoring functions

Scoring function g Paper Author & Reference Year
1. MSP(f,x) A Baseline for Detection Misclassified and OOD examples in Neural Networks Hendrycks and Gimpel [41] 2016
2. M(f,x) A Simple Unified Framework for Detecting OOD Samples and Adversarial Attacks Lee et al. [43] 2018
3. E(f,x) Energy-based Out-of-distribution Detection Liu et al. [44] 2020
4. GEM(f,x) Provable Guarantees for Understanding Out-of-distribution Detection Morteza and Li [42] 2021

Ever since Hendrycks and Gimpel have paved the way to find an alternative to the softmax, various of
scoring functions for neural networks have been sought and developed to improve OOD detection. With
Definition 3.2.1 in mind, we need to find a function that is proportional to pin

X (x), given the output f(x) of
a classifier f . We briefly compare 4 functions that have been proposed in recent years, but note that more
scoring functions are developed continuously.

1. Maximum Softmax Probability
Hendrycks and Gimpel noticed that while the softmax does falsely misclassify OOD samples as known with
high probability, the probability of incorrect and OOD samples tends to be lower than the prediction probability
for correct (ID) samples. Therefore, they propose to take the maximum of the softmax function [41], which
in general and short notation would be maxi pY|X (yi | x), as the softmax computes the probability of a
label yi, given an input x.

gMSPλ (x) =

{
in MSP(f,x) ≥ λ

out MSP(f,x) < λ
where MSP(f,x) = max

i
pY|X (yi | x) (3.5)

A variation on the MSP called ODIN [45] was introduced later where temperature scaling was added, which
is a method for recalibrating prediction probabilities [46].

2. Maximum Mahalanobis Distance
In [43], Lee et al. assumed (and later verified) that the classes of their ID data, and the features of those
classes generated by a neural network, follow class-conditional Gaussian distributions. Thus, sample class
means µ̂i and covariances Σ̂ were computed, such that a new sample x could be compared to it:

gMλ (x) =

{
in M(f,x) ≥ λ

out M(f,x) < λ
where M(f,x) = max

i

√
(f(x)− µi)

⊤
Σ−1 (f(x)− µi) (3.6)

The Mahalanobis distance
√
(f(x)− µi)

⊤
Σ−1 (f(x)− µi) is a measure that compares a sample to a known

distribution, more on this will be treated in Chapter 4.

3. Energy Score
The energy score [44] was derived from Energy Based Modelling (EBM), which is a field of its own and
beyond the scope of this thesis. For now, it suffices to know that EBM uses an energy function E(·) from
statistical mechanics, that assigns high values (energies) to unobserved input, and low energies to observed
input, making it a contender for OOD detection. More details on EBM and the choice of E(·) in [47].

gE
λ(x) =

{
in E(f,x) ≥ λ

out E(f,x) < λ
where E(f,x) = − log

k∑
j=1

exp (fj(x)) (3.7)

4. GEM Score
Gaussian mixture based Energy Measurement (GEM) [42], combines the Mahalanobis distance with the
Energy score as follows:

gGEMλ (x) =

{
in GEM(f,x) ≥ λ

out GEM(f,x) < λ
where GEM(f,x) = −E(M(f,x)) (3.8)
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That is, GEM(f,x) = log
∑k
i=1

[
exp

(√
(f(x)− µi)

⊤
Σ−1 (f(x)− µi)

)]
.

The scoring functions above can appear to be very abstract and non-intuitive, so one should keep in mind
that, ultimately, they are used to get a score for every sample that decides whether the sample is ID or OOD.
Morteza and Li have shown in [42], that the GEM function is the only one that is, to a particular degree,
proportional to the ideal classifier. It is log-proportional to be precise, i.e. ∝ log

(
pinX (x)

)
, while the other

scoring functions are not proportional at all. This might lead one to think that it is superior as well, but the
results say otherwise. In Table 3.3 we find the performance of all scoring functions on the CIFAR data-set,
we see that the Mahalanobis and the GEM score are on par with each other.

Table 3.3: Performance of scoring functions trained on the CIFAR data-sets. All scores are averaged over multiple tests, each
containing different OOD data. Test results are courtesy of Liu et al. and Morteza and Li, details can be found in [42, 44].

If one is not familiar with the performance metrics FPR, AUROC, AUPR, please see Chapter 5.

ID data-set Method FPR [%] ↓ AUROC [%] ↑ AUPR [%] ↑
Softmax score [Hendrycks and Gimpel, 2016] 51.04 90.90 97.92
ODIN [Liang et al., 2018] 35.71 91.09 97.62

CIFAR-10 Mahalanobis [Lee et al., 2018] 36.96 93.24 98.47
Energy score [Liu et al., 2020] 33.01 91.88 97.83
GEM [Morteza and Li, 2021] 37.21 93.23 98.47

CIFAR-100

Softmax score [Hendrycks and Gimpel, 2016] 80.41 75.53 93.93
ODIN [Liang et al., 2018] 74.64 77.43 94.23
Mahalanobis [Lee et al., 2018] 57.01 82.70 95.68
Energy score [Liu et al., 2020] 73.60 79.56 94.87
GEM [Morteza and Li, 2021] 57.03 82.67 95.66

We would like to point out that the GEM and Mahalanobis scoring functions rely heavily on the Gaussian
mixture model assumptions of the data as it only needs the sample mean and variance (which is sufficient
to describe a Gaussian, but not other distributions). While this is the case for the CIFAR data-set, this does
not hold true for all computer vision data-sets as we shall see in Chapter 4.

3.2.3. Insight 3: OOD detection performance changes under certain parameters

Paper Author & Reference Year
Provable Guarantees for Understanding Out-of-distribution Detection Morteza and Li [42] 2021
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic Space Huang and Li [48] 2021
OOD Detection in High-Dimensional Data Using Mahalanobis Distance Maciejewski, Walkowiak, and Szyc [49] 2022

Recent work has found that the scoring functions, and therefore OOD detection, behave differently under
the change of the following parameters:

1. The number of ID classes
OOD detection algorithms are challenged when the label space of the ID data increase, i.e. when the
ID data-set contains a large amount of classes. The explanation is as follows: A model is trained on a
certain set of ID data, samples that deviate enough from them are labelled unknown. It is impossible
to precisely define and anticipate those OOD classes in advance; you often do not know which classes
are unknown, otherwise you would have trained you model on it. This results in a large space of
uncertainty. As the number of ID classes increases, the amount of ways that OOD data may occur
increases correspondingly. In short, more ID classes trained, means more ways a new sample can be
unknown, increasing the space of uncertainty and making detection more difficult.

2. The dimension of the data
A classical problem within statistics; when the amount of features (dimension of the data) increases
to such an extent that it is of comparable size or larger than the amount of observations, estimations
of statistical models become either unstable or do not exist [49, 50].

3. How close the ID and OOD data are from each other
This is straightforward and to be expected as classes that are semantically more different are easier to
detect, e.g. if ID= car, then it is easier to detect that a frog is OOD, than a bus.
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Fig. 3.9 depicts how the performance of the MSP scoring function drops rapidly as the amount of ID classes
increases from 50 to 1000 [48], tested on 4 OOD data-sets: iNaturalist, SUN, Places, and Textures.
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Figure 3.8: Performance of OOD detection using MSP scoring function when trained on the ImageNet-1k data-set, taken
from [48]. Here iNaturalist, SUN, Places, and Textures indicate the OOD data-sets that have been used, see Fig. 3.12 for

a visual overview of what these data-sets are like. High AUROC (low FPR) indicates high performance.

Fig. 3.9 showcases the performance of the GEM scoring function when all three parameters are increased
incrementally. Increasing the number of classes yields to a rate of decrease in performance that is similar to
the MSP: an increase of 0→100 classes leads to an increase of 0̃.25-0.30 in FPR.
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Figure 3.9: Testing has been done on the CIFAR-10 and CIFAR-100, indicated by the two lines in the first two figures [42].
Each curve is averaged over 5 different runs, with similar OOD data-sets as in Fig. 3.8.

The tests done on GEM furthermore show that as the distance between ID and OOD grows, detection
performance increase, while growth in dimension does not. This behaviour is supported by the work of
Maciejewski, Walkowiak, and Szyc [49] for the Mahalanobis scoring function.

These are all notable insights for choosing the amount of classes and data-set in our own experimental setup
in Chapter 5.

3.2.4. Insight 4: Feeding scoring functions explicit OOD data through Outlier
Exposure

Paper Author & Reference Year
Deep Anomaly Detection with Outlier Exposure Hendrycks, Mazeika, and Dietterich [51] 2018

Take pin the be the distribution of ID data Din, and pout to be the distribution of OOD data Dout. It is
difficult, if not impossible in most cases, to even anticipate or successfully guess what pout is in advance.
The idea of Outlier Exposure (OE), is to expose the model to explicit OOD data from an auxiliary data-set
DOE such that it has a better understanding of what OODs might look like and can generalise better when
being presented an actual OOD sample. Hendrycks, Mazeika, and Dietterich in [51] train a model through
regularisation on a small set of OOD data that one has access to beforehand, to help it learn heuristics to
detect whether a sample is ID or OOD. They have found that heuristics generalise to new and unseen OOD
samples at test time as well.
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Below we present the main insights of this work that can be of relevance to our thesis:
1. Synthetic OODs in DOE

out do not increase performance:
A common method to quickly create an OE data-set of OOD data is to distort ID data with noise (covariate
shift). Hendrycks, Mazeika, and Dietterich have attempted to do this, but it did not amount to much as
the classifier f recognised a pattern. According to their experiments, it is better to use realistic data (see
insight 3 below).
2. Data in the OE set should not be similar to training data
Whenever this is the case, performance is improved with marginal results only. In other words, if the ID set
only contains vehicles (car, truck), exposing the model to unknown vehicles (e.g. vans), will not help the
model detect an unknown military vehicle (e.g. tank).
3. Dtest

out and DOE
out need not be close to improve performance:

This means that the classes in our OE set do not have to be similar to the OOD classes we encounter at
test time, which is great as one often does not have the slightest clue of what one will see at test time. In
Hendrycks, Mazeika, and Dietterich, tests were done where the ID data consisted of house numbers, and
the OOD data at test time of emojis. In the OE set, images of natural landscapes were used, which are not
at all close to house numbers nor emojis.

Could this potentially mean that we can detect strange/alien vehicles by exposing our model to images of
French cheese platters? Likely not, as the OOD classes we are interested in are close to our ID data, while
the OE method trains to model to spot large deviations.

3.2.5. Insight 5: Prior knowledge of classes related to our OOD classes might
improve detection

Paper Author & Reference Year
Few-Shot Learning with Intra-Class Knowledge Transfer Roy et al. [52] 2020

The work of Roy et al. [52] is not a method we will use as it is based on GANs and covariate shift (while we
look for semantic shift), but it led to an inspiring insight that we could use to develop our scientific niche.
They propose a method that leverages statistical properties of a few-shot class (a class that it only seen a
few times) and trained ID classes (classes is has seen) to detect OOD classes (classes it has never seen).

Figure 3.10: Left: Leveraging the properties of a panther (few shot class), and different types of house cats, to better detect
unknowns of the felid animal class (lions, tigers, cheetahs etc.). Right: clusters of samples of each animal in feature space.[52]

Roy et al. point out that when classes are close in feature space, their statistical mean and variance are
similar as well [52]. Conversely, when the classes are far away, their statistical mean and variance are dif-
ferent too. This means that one can leverage intra-class knowledge of neighbour classes to detect new classes.

This idea leads to two thoughts that should be explored for this thesis:
1. If we have prior information of the domain and situation our robot/drone will be operating in, e.g.

detection of unknown vehicles, can we use statistical information of a prototype/few-shot vehicle to
spot new unknown vehicles?

2. Can it help us distinguish OOD classes from each other? Given a prior information vehicles, can we
use that to distinguish irrelevant OODs (hammers, birds) from relevant OODs (vehicles)?
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3.3. Research Gaps & Possible Niche
Starting out from a real-world case, we have ventured into the world detection techniques for unknown
classes (specifically OOD literature) and made a selection of papers whose contents align with our purpose.
In this section we present the research gaps we have found through this study, and a scientific niche.

3.3.1. Research Gaps
.

1. Realistic Data-sets
First and foremost, we point out that contemporary literature mostly employs simple and crude data-
sets, both for classification and for OOD detection. The CIFAR data-set (32 × 32 pixel images) is
ubiquitous in OOD papers and is often used as the main data-set. These images are crude and contain
therefore far less information resulting into less rich features. A far more realistic choice would for
instance be using images of the domainnet data-set (varying resolutions; around 300× 400) [53].

Figure 3.11: Images of cars and trucks take from the CIFAR and domainnet data-set. Left: CIFAR, right: domainnet.

In addition, OOD scoring functions/techniques are, to the best of our knowledge, always tested on
OOD data-sets that are semantically different in a substantial way. The detection of plants or even
textures as OOD is interesting to showcase the theoretical performance of a novel scoring function,
but is not at all relevant nor realistic from an industry perspective. In our case, it would be much
interesting how well OOD techniques can spot unknown vehicles, rather than an image of the Grand
Canyon.
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Figure 3.12: OOD data-sets used in contemporary literature, taken from [48].

2. Prior Knowledge & Relevance Detection
In real-world applications, knowledge of the problem setting and scope is known. Research on OOD
detection is by definition general and therefore does not exploit this knowledge to improve detection.
An OOD model could flag a 1000 samples a day as OOD, but which of these samples were actually
relevant to our use case? One can imagine that an OOD plant, or OOD sky image is not as alarming
as an OOD tank. In our case, a major contribution would therefore be the capability to distinguish
relevant OOD from irrelevant OODs.

3. Distribution Approach
So far, OOD detection has been done on single input samples at test time. Say that a drone has
ventured into new territory for a full day and has encountered a great deal of OOD samples, many
belonging to the same class. It would be interesting to see if having access to multiple samples of an
OOD class (multiple samples of a strange vehicle) can yield more distinguishing power between relevant
and irrelevant classes. If one can treat the collection of samples per OOD class as a distribution, one
can use statistical distance measures to perform inference.
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3.3.2. Axioms
In order to build a proper pipeline (in the next chapter) for relevance detection, we define the following sets
as a starting point.

Axiom 1 All classes ci that will be trained and/or tested with our pipeline on come from 2 main (disjoint)
sets: ID & OOD.

Axiom 2 The ID and OOD sets consist of 2 disjoint subsets, based on whether a class in this set is interesting
to our use case or not.

Figure 3.13

The OODR class is of most interest to us. Below we sketch a toy problem that is in line with our domain-
specific use case, to visualise the 4 sets we will be classifying the output of our pipeline to:

• IDR: relevant classes that we have trained on.
• IDI : irrelevant classes that we have trained on.
• OODR: relevant classes that we have not trained on.
• OODI : irrelevant classes that we have not trained on.

Figure 3.14

With these axioms in mind, we design and present our methodology in Chapter 4.



4
Methodology & Design Challenges

Based on the research gaps and scientific niche presented in Chapter 3, we construct a pipeline of the solution
of thesis from scratch and we thoroughly discuss its design choices and challenges.

Chapter goals

1. Presenting/motivating the design choices of each step of the pipeline - Section 4.1 to Section 4.5
Here we zoom in on each step of the solution pipeline to treat its design challenges/choices.

2. Answering the second (sub) research question: statistical properties of the data - Section 4.5
In the fifth building block we address how we can leverage the statistical properties of the data in
feature space, to determine relevance.

3. (Partly) answering the third (sub) research question: dimensionality of the data - Section 4.5
Dimensionality of the data has an effect on the performance of distance measures, we treat these
effects of high dimensions in the fifth building block as well. The full answer to this question shall be
provided in Chapter 5, through experimental results.

4.1. Methodology Overview

Figure 4.1: The simplified pipeline of our solution at test time, allowing for the 4 outputs shown in Fig. 1.4.

Before we dive into the details of each step, we present a high-level look at the proposed solution again, as
a point of reference. The first three blocks require the background knowledge that is provided in Chapters 2
and 3, while the fourth and the fifth blocks are more self-contained.

Each step/module of the pipeline is treated in its own section, which are all structured as follows:

• Motivation of that module/used technique
• Challenges
• Explanation of its operational dynamics
• (optional) Link to research question

30
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4.2. Neural Network Feature Generation
The neural network plays a principal role in most contemporary computer vision pipelines. As explained in
Section 2.4.1, a neural network learns the information (features) from the image data as the image passes
through the layers and the information of each feature is stored in the entries of a feature vector h(xi; θ).

Figure 4.2: Input of this block: image data xi. Output of this block: feature vector h(xi; θ).

Without features, one does not have the information of the data that will be used to teach a classification
model which class belongs to which label, which class is OOD/ID, which class is relevant/irrelevant etc.
Therefore we need a feature generator at the start of our pipeline, but which one? Countless networks exist.

4.2.1. Motivation for the CLIP Neural Network
For the neural network in our pipeline, we have selected CLIP: a pre-trained neural network developed by
OpenAI, trained on 400 million images [54]. Details on the CLIP network are treated in Appendix A.1. Our
rationale behind CLIP is directly linked to the challenges of this building block and is three-fold:

1. Saving a substantial amount of time/resources → Since CLIP is pre-trained, we do not (necessarily)
need to (re)train the network ourselves which allows us to focus on our niche.

2. High performance → CLIP has proven, for data-sets of common and everyday classes it has never
seen before, that it is competitive with fully supervised neural network architectures like ResNet50
[55]. This means that we are likely to be better off to use CLIP without re-training, than to train a
fully supervised network. That is, as long as we are not using it for abstract data-sets/tasks like lymph
node detection, or satellite images [54].

3. Rich feature space → CLIP is trained on a vast amount of classes, and has learnt a substantial variety
of features, resulting in a rich feature space, i.e. the vectors h(xi; θ) are very rich and meaningful.
This is such a key attribute that we will further discuss this below.

Imagine that each image feature vector h(xi; θ), per class, is plotted in a 2D feature space (Fig. 4.3).
Depending on the class, the feature vector will have different values and therefore a different location in
feature space. Let us inspect the case where a given feature space is ’not rich’, i.e. a feature space of a
simple neural network that has only ever been trained on 3 vehicles: car, truck, and bicycle (green), and
encounters at test time the classes pickup truck, bus, motorcycle, airplane, and bird (blue).

Figure 4.3: Due to a lack of learnt features, OOD classes that are totally different, can be equally far away.
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A military ship would (for us) be semantically closer to a car/truck than a bird would be, for instance be-
cause military ships are be made of metal (like cars and truck) and birds have wings and feathers. Fig. 4.3
showcases that when some features are not learnt (e.g. the features ’metal’, ’wings’, ’feathers’), 2 (OOD)
classes can be equally ’different’ or ’far’ from ID classes (e.g. because both ships and birds do not have
wheels) even though one is more related than the other. This makes relevance detection in the final step of
our pipeline incredibly hard, if not impossible.

While the example in Fig. 4.3 might be a simplified version of reality, the idea is legitimate [52]. Therefore,
to diminish the effects of a poor feature space as much as possible, we need a pre-trained network that is
trained on a wide variety of classes and able to generate high quality features. This makes CLIP a suitable
candidate, as it satisfies the criteria and outperforms its alternatives [54].

Is a pre-trained neural network, trained on a multitude of classes not counter-intuitive and against this thesis?
In other words, how can we detect OOD classes if our model has already been trained on so many classes?
Fortunately, this does not lead to any issues. The reason why, is because we are not using the pre-trained
neural network for classification, but for feature generation only. That means that we deploy CLIP as a fancy
’data-processor’ to obtain high-quality features h(xi; θ) and use a separate classification head g (like softmax
or GEM) to classify to which class h(xi; θ) belongs (ID or OOD). As a slightly strange but clear analogy,
suppose we have 2 printers symbolising our neural networks:

1. Low resolution, black-white printer → simple neural network, almost no pre-training
2. High resolution, multi-colour printer → CLIP neural network, heavy pre-training

Now suppose we have a human ’classifier’ (analogous to our scoring function g) who has only ever seen cars,
truck and bicycles, and has to determine which images printed by a printer are unknown classes (OOD) and
which are known (ID). Since the more advanced printer adds more features to its output (feature 1: colour,
feature 2: high resolution), it will be easier for the human classifier to distinguish unknown classes from
known classes.

Figure 4.4: Printer analogy with neural network: at test time we see two new classes, With a black & white printer
(non-pre-trained network), 2 distinct classes can look similar (or equally far in feature space).

Note here that we are not changing anything about the human’s inherent ability to detect ID vs OOD by
swapping printers: pre-training makes sure the network generates more diverse features, it is not teaching the
classifier anything. What does happen, is that a human’s performance will be better given more high quality
photos, simply because a higher quality photo contains more relevant information. In the next building block
of the pipeline (Section 4.3), the inherent ability of the classifier itself is treated; we teach an OOD scoring
function g which classes are ID by training it on the feature vectors of the ID classes. Prior to that we briefly
treat how these feature vectors from CLIP are reduced to a dimension that we can work with.
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4.2.2. Post-processing: Dimensionality Reduction of CLIP Vectors
The feature vectors obtained from CLIP contain 512 features, meaning that each image is represented as a
point in a 512-dimensional feature space, through h(xi; θ) ∈ R512. Such high-dimensional vectors are rich in
information but can be undesirable to work with in its current form, in our pipeline, for a variety of reasons:

1. Points in dimensions higher than 3D are hard, if not impossible, to visualise.
2. These vectors need to be fed to our scoring function g in the next block, which is known to be

significantly less accurate for high dimensions (see Fig. 3.9).
3. Distance measures between points can often struggle in high dimensions (see Section 4.5).

It is therefore useful to reduce the dimension d of h(xi; θ) such that further analysis will improve, without
losing too much information. Let f⇝φ denote a general function that reduces d of h(xi; θ) to an arbitrary
dimension n < d, then, a more complete depiction of the second module in our pipeline is given by:

Figure 4.5: Input of f⇝φ : feature vector in 512D. Output of f⇝φ : feature vector in a lower dimension.
For simplicity, we shall stick to the general notation h(xi; θ) for the reduced feature vectors as well, throughout this thesis.

Dimensionality reduction is a commonly used technique in mathematics, statistics, and machine learning
where a dimensionality reducer f⇝φ , governed by some built-in parameter φ, helps the visualisation and un-
derstanding of high-dimensional data by transforming its statistical and/or topological properties. Examples
of f⇝φ are Principal Component Analysis (PCA) [56], Linear Discriminant Analysis (LDA) [57], but also
feature extraction by the neural network is in itself a form of dimensionality reduction as we reduce an image
xi of e.g. 200x200 pixels (∈ R4×104) to h(xi; θ) ∈ R512.

Within contemporary machine learning, t-SNE (2008, [58]) and UMAP (2018, [59]) are especially popular
and the most widely used choices for f⇝φ [60]. Below we briefly compare both techniques, provide our
motivation for UMAP, and end with a short exposition of UMAP’s inner workings.

t-SNE vs UMAP
Both t-Distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and
Projection (UMAP) are non-linear reducers and essentially ’graph layout’ or ’graph drawing’ algorithms that
arrange high-dimensional data in a low-dimensional space. They follow two broad steps:

1. Construct graphs of local relationships between data points in the high and low-dimensional spaces.
2. Optimise the low-dimensional graph such that the structure of the original graph is preserved.

Figure 4.6: 3D points (left) are transformed to a 2D representation (right) through a graph, adapted from [61].
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In short, the techniques construct high-dimensional graph representations of the data and then optimise a
low-dimensional embedding of that graph to be as structurally similar as possible. In Fig. 4.6 we can see that
the optimisation process is essential, otherwise little to no structure will be preserved (third plot) and the
embedding will visually not make any sense. Before we delve into the specifics of the optimisation process
(for UMAP) we motivate our choice for UMAP by setting out the most important shortcomings of t-SNE
that are relevant for this thesis below:

1. t-SNE cannot work with high-dimensional data directly, PCA is often used as a pre-reducer before
feeding the reduced vectors to t-SNE for visualisation.

2. t-SNE can in practice only embed into 2 or 3 dimensions making it useful for visualisation, but
hard to use it as a general dimension reduction technique that can reduce a high-dimensional vector
to any n dimensions. This is especially important for our research where we want to reduce our CLIP
vectors to a variety of dimensions that can still be high (e.g. 10D) in order to test the performance of
various distance measures in multiple dimensions.

3. t-SNE does not preserve global data structure, this means that within clusters (local structure),
the distances between points are meaningful, but in-between clusters (global structure) they are not.
This implies that both similar and dissimilar clusters can be close to each other with t-SNE, making its
output unsuitable for clustering. This is by far the most important characteristic of t-SNE that makes
it undesirable for our work as we will need clustering in the further stages of the pipeline, and base
our hypotheses on the notion that related classes are closer in feature space while unrelated classes are
not. Not being able to preserve global structures also defeats the purpose of using CLIP: since CLIP
generates rich features that will distinguish classes in feature space, not having a good dimensionality
reducer f⇝φ will not do the CLIP vectors justice. All the above implies that using t-SNE will make it
very hard, if not impossible to determine relevant from irrelevant OOD classes using distance measures.

Furthermore, t-SNE is also slower and more computationally expensive than UMAP, but we are willing to
trade resources and time for better performance. UMAP however, is simply far superior for our purpose,
which is preserving the global structure of the data in feature space.

To showcase the preservation of local vs global structure we compare the outputs of PCA, t-SNE and UMAP.

Figure 4.7: 28x28 pixel images (∈ R784) of handwritten digits of the MNIST data-set (written in the Indian Kannada script),
reduced to 2D by PCA, t-SNE, and UMAP [62]. Each colour corresponds to a different class (which is in this case a

handwritten digit).

While t-SNE correctly maps the points of each class close to each other (purple points are close to purple
points, yellow points are close to yellow points etc.), the distance between clusters of these classes are not
meaningful; it is hard to tell which clusters are more, and which are less similar to each other. Unlike t-SNE,
UMAP preserves global structure much better and maps similar clusters close to each other and vice versa.
We will need this preservation of global structure because our classes of relevance (road vehicles) should be
close in feature space, while aircrafts and animals should be relatively farther.

Without even having treated the underlying formalisms of t-SNE, the list of its shortcomings and the output
in Fig. 4.7 clearly justify the use of UMAP. Therefore it suffices to solely focus on the treatment UMAP.
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General Exposition of UMAP
UMAP has a rigorous mathematical foundation based on algebraic topology and topological data analysis
which are thoroughly described in the work of McInnes, Healy, and Melville (2018, [59]), and beyond the
scope of this thesis. Therefore, we only treat the main ideas in a general fashion. Recall from Fig. 4.6 that
there are 2 main steps the algorithm goes through, here we treat these steps specific to UMAP:

1. Construct (probabilistic) graphs of the local relationships in the high-dimensional data.
2. Optimise the embedding of this graph through cross entropy (CE) into a low dimensional space in

order to preserves its structure.

Step 1: Construction of the graph.
To construct a graph we need a few elementary definitions from geometry and algebraic topology:

Definition 4.2.1 (k-simplex σk) A simplex σk is geometric object that is a generalisation of the notion of
a triangle or tetrahedron to arbitrary dimensions.

Figure 4.8: k-simplices with vertices V = [a, b, c, d], taken from [63].

Definition 4.2.2 (Simplicial complex K) A simplicial complex K in Rn is a collection of simplices σk. It
is a space in Rn such that

1. Every face of a simplex of K is in K.
2. The intersection of any two simplices of K is a face of each of them.

One of the main assumptions of UMAP is that data points are uniformly distributed on a manifold M 1

supported by a Riemannian metric tensor gp (to allow for distances and angles). This uniform distribution
rarely holds in practice but is allowed when the manifold has a Riemannian metric [59]. When the data
points lie in such a metric space (M, gp), we can construct a graph using the notion of distances to find
nearest neighbours. The authors of UMAP propose to do this by first forming Čech complexes, which are a
type of simplicial complex where one connects points by drawing ε-balls around each point and connecting
points whose radii intersect, and subsequently turning those intersecting points into collection of 0-simplices
and 1-simplices as they are computationally less expensive (as it is simply a graph of nodes and vertices):

Figure 4.9: Constructing a graph of data points through simplicial complexes, taken from [64]. At the end we end up with a
simplicial complex, also called a Vietoris-Rips complex.

Fig. 4.9 showcases how UMAP constructs Vietoris-Rips graphs in a visual manner, the main implication
that follows from the topological analysis above, is that in practice each data point has a fixed k number of

1A manifold M is a topological space where each point x ∈ M has a neighbourhood homeomorphic to Euclidean space.
A neighbourhood N of x ∈ M is a subset of M, that contains x and an open set U such that x ∈ U ⊂ N ⊂ M.
Within N one can move away from x to some extent in any direction without leaving M.
A homeomorphism is a continuous and bijective mapping between two topological spaces.
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neighbours for the construction of the graph [59]. To construct this graph, UMAP uses the kNNG (k-Nearest
Neighbour Graph) algorithm developed by Dong, Charikar, and Li [65] that can efficiently and smoothly ap-
proximate the kNN graphs of the data by using probabilistic similarity measures. UMAP uses kNNG to create
a probability distribution that represents ’similarities’ between neighbours and the notion of similarity used
by the authors is as follows: the ’similarity’ of data point xj to data point xi is the conditional probability
pj|i, that xi would pick xj as its neighbour.

In the high-dimensional space, UMAP models the similarity per point (locally) through the distribution:

pj|i = exp (− (d (xi,xj)− ρi) /σi) (see [59] for the derivation) (4.1)

Where d is the distance metric, σi is a local connectivity parameter to ensure smooth approximation of the
kNN graph, and ρi = d (xi, nearest_neighbour(xi)) is a local connectivity parameter set to the distance
from a point xi to its nearest neighbour. ρi is an important parameter as it ensures the local connectivity
of the manifold, i.e. for each data point, ρi is an offset that causes the distance metric to vary from point
to point. The result of varying distance metrics though, is that when gluing all similar points found above
together, it is possible that the weight of the graph between nodes 1 and 2 is not equal to the weight between
2 and 1. To resolve this, UMAP smoothes out those effects by symmetrising the high-dimensional probability
distribution:

pij =
(
pj|i + pi|j

)
− pj|ipi|j (4.2)

After computing the graph in the high-dimensional space, UMAP will model the similarity for points (yi,yj)
in the low-dimensional space, following the same notion as before but through a different family of functions:

qij =
(
1 + a

∥∥yi − yj∥∥2b)−1

(see [59] for the derivation) (4.3)

Where a and b are hyperparameters, based on a desired minimum distance between points in the low-
dimensional embedding space. This minimum distance controls how tightly points are allowed to be packed
together and is set by the parameter min_dist. If one is interested in clustering for instance, then min_dist
should be chosen small.

Step 2: Optimising the low-dimensional graph.
Now that graphs in both the high-dimensional and low-dimensions space are computed, UMAP needs to
make sure that the structure is preserved in the low-dimensional space as well. Therefore, it uses the cross
entropy as a measure to compute how much the probability distributions pij and qij diverge.

CE(pij , qij) =
∑
i ̸=j

[
pij log

(
pij
qij

)
+ (1− pij) log

(
1− pij
1− qij

)]
(4.4)

The higher the cross entropy, the more these graphs differ from each other. Therefore, the low-dimensional
representation is optimised by minimising the cross entropy, in this case through gradient descent (see Sec-
tion 2.4.3).

Below we list the most important UMAP parameters that can be tweaked when using the model in practice.
We further discuss them in Chapter 5 when treating our experimental setup as it will make more sense.

• n_neighbours: the amount of neighbours k, each data point can have. This parameter controls how
UMAP balances local versus global structure in the data.

• min_dist: the minimum distance between points in the low-dimensional representation.
• n_components: the dimensionality of the target dimension space we embed our low-dimensional

representation of the data in.
• metric: the distance metric d to compute distances between points.
• output_metric: the space UMAP will map the reduced data to, be it on a sphere, plane, or custom

metric space. This parameter choice largely depends on the input data (Chapter 5), but for the coming
sections one can assume we map to Euclidean space.

In the next section we show how this UMAP data will be loaded in the OOD detection module of our pipeline.
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4.3. OOD Detection Module
After generating the features with CLIP and reducing their dimensionality through f⇝φ = UMAP, we need
a function to perform OOD detection on them. The OOD detection module does precisely that and is
essentially a scoring function g that separates the features of the network into two batches: ID & OOD.
The OOD scoring function is trained on ID classes and learns to assign a high score for ID samples, such
that it will assign a low score to OOD samples at test time (or vice versa depending on the design choice).
The training of g shows that this layer of the pipeline does not know anything of the data beforehand, even
though the neural network is heavily pre-trained.

Figure 4.10: Input of this block: (reduced) feature vectors h(xi; θ). Output of this block: the same (reduced) feature vectors
h(xi; θ), but now separated into two batches: ID & OOD.

4.3.1. Motivation of OOD Scoring module
The motivation, use, and variants of an OOD scoring function in general were treated in Chapter 3, so it is
clear why our pipeline will need such a module. Out of all scoring functions, we selected the GEM function
GEM(f,x) even though it was not the ’best’ performer:

1. GEM is log-proportional to the distribution of our ID data (pin
X (x)), meaning that its behaviour and

rate of change of the data distribution are best captured by GEM, while the other functions are not
proportional at all.

2. GEM is mathematically sound as its mathematically proven guarantees of its performance under
various changes in the data. That is, its behaviour when varying the dimension of ID data, distance
between ID and OOD data, and amount of ID classes, has been mathematically proven, providing us
with a point of reference when running our own experiments.

3. GEM is almost the best performer, losing to Mahalanobis with only fractions of a percentage point
on average (Table 3.3).

The GEM score is based on the Mahalanobis distance which is a centroid-based distance that ’assumes’
Gaussianity. In practice, not all data follows a Gaussian distribution, so should or can one still use techniques
like these for non-Gaussian data? This will be treated in Section 4.5 where we study various distance
measures between point clouds/distributions. It should be noted that like any scoring function, GEM is not
perfect. On the contrary, GEM makes mistakes for both simple and difficult tasks. The performance of
scoring functions therefore leads to some challenges.

4.3.2. Challenges & Requirements
The authors of the GEM and EBM papers [42, 44], have tested multiple scoring functions on various OOD
data-sets to discover where the challenges lie. Those tests were performed with the following data-sets:

• ID data-set: CIFAR-10, which is a mix of 10 classes consisting of vehicles like cars & trucks, and
animals like cats & horses.

• OOD data-set 1: SVHN, which are images of house number plates.
• OOD data-set 2: Places365, which are images of scenes (natural landscapes, living rooms, cafeteria,

forests etc.)

We have already shown the average performance of the tests mentioned above in Table 3.3, so below in
Table 4.1 we present the two tests where the GEM performance has been both at its best and at its worst.
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Table 4.1: Performance of scoring functions trained on the CIFAR-10 data-sets, with SVHN and Places365 as the OOD
data-sets. Test results are courtesy of Liu et al. and Morteza and Li, details can be found in [42, 44]

OOD data-set Scoring Function FPR [%] ↓
Softmax score [Hendrycks and Gimpel, 2016] 48.49
ODIN [Liang et al., 2018] 33.55

SVHN Mahalanobis [Lee et al., 2018] 12.86
Energy score [Liu et al., 2020] 33.01
GEM [Morteza and Li, 2021] 13.42

Places365

Softmax score [Hendrycks and Gimpel, 2016] 59.48
ODIN [Liang et al., 2018] 57.40
Mahalanobis [Lee et al., 2018] 68.42
Energy score [Liu et al., 2020] 40.14
GEM [Morteza and Li, 2021] 68.03

One would think that a SOTA scoring function like GEM, trained on vehicles and animals, would be able
to easily tell that an image of natural scenery would be so different from its ID data-set that is must be an
OOD class. Unfortunately, the results say otherwise: with a False Positive Rate (FPR) of 68.03%, GEM
falsely assigns 68.03% of all scenery images as ID, e.g. think they are not that different from vehicles and
animals. From Table 4.1 it is also clear that the scoring functions perform differently depending on the OOD
data-set, making it even harder to select one as none of the OOD data-set used align with our use case (we
want to test on realistic OOD classes like vehicles, not scenery, number plates or white noise).

The main question that arises now is: given the relatively high FPR, how much of a bottleneck will the
scoring function present in our pipeline? Is it something we can work with, correct, and ultimately accept?
To find out, we need to set some expectations and requirements of this part of the pipeline. Let’s consider
the toy problem setting introduced in Section 3.3.2 again. We use the following classes to visualise the
output of this module, in order to easily define our expectations and requirements.

Figure 4.11: OODR contains the relevant OOD classes that we want to detect and is therefore the target set.

Given the fact that scoring functions make mistakes, we zoom in on our scoring module and add the following
sub-sets within the ID and OOD batches, that come out of the scoring function:

• OODfalse: OOD classes that are falsely labelled as ID.
• IDfalse: ID classes that are falsely labelled as OOD.

Figure 4.12: As an example we zoom in on the ID batch. Out of the classes presented, we expect cars, trucks, and horses to
be in the ID set and OOD classes in OODfalse, where a relevant OOD class has a purple dashed border.
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Below we present three possible scenarios that can occur, based on the performance of the scoring function.
In each scenario, the features of the classes of the toy problem are used as input and go through two steps:
I. OOD detection step, II. Relevance detection step (which is in the final part of the pipeline). The figures
below are flowcharts, where each step acts like a filter, arranging all classes intro the four output buckets:
IDR, IDI ,OODR,OODI . Through these flowchart we aim to showcase two things:

1. In which way can poor performance of OOD detection influence relevance detection?
2. When do the errors of OOD detection form too much of a bottleneck?

In the ideal scenario we assume that both OOD detection and relevance detection are perfect, this leads to
perfect results at the end.

Figure 4.13: Ideal case: no mistakes in OOD and relevance detection. Target classes (purple dashed border) are correctly
labelled.

In the worst case scenario, we assume that both OOD and relevance detection are poor. We want to find
out whether it would have mattered if relevance detection was accurate or not when the OOD step produces
bad results; can we still fix the mistakes in the OOD step? The answer is no. Mistakes made in a cascaded
structure like this are carried to the next step:

Figure 4.14

Fig. 4.14 showcases the irreversible mistake of the OOD detector; once a sample has been falsely classified
as OOD or ID, there is no return, making it an error one has to accept. But what happens to the relevance
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detection once we accept these errors? In the scenario above we see that the model makes absolutely no
sense when both OOD and relevance detection sequentially make mistakes: e.g. trucks are seen as OOD
(first mistake) and flagged as irrelevant (second mistake), horses as OOD (first mistake) and flagged as
relevant (second mistake).

It would much more acceptable if, whenever OOD mistakes are made, the samples are at least correctly
classified as relevant/irrelevant:

Figure 4.15

In the last scenario, at least all relevance detection is done without mistakes. This is important because
now, even when OOD mistakes are made, we might be able to still find our OODR samples in the yellow
and purple buckets through post-hoc techniques. With these scenarios, we have guidelines on how to assess
our pipeline’s performance in the experiments that will be conducted in Chapter 5.

4.3.3. GEM Score Calculation
The GEM scoring function models the feature vectors of the data through a Gaussian distribution. It assumes
that our batch of ID data (training data), consists of k classes, where each class is normally distributed, i.e.
given their corresponding label yi, the features h(x; θ) each class in the training data are modelled by:

h(x; θ) | yi ∼ N
(
ui, Σ̄

)
where ui ∈ Rm is the mean of each class yi and Σ̄ ∈ Rm×m is the covariance matrix. Since these are
Gaussians, to estimate each class distribution N

(
ui, Σ̄

)
, it suffices to estimate its parameters by computing

the empirical class mean and covariance given training samples {(x1, ȳ1) , (x2, ȳ2) , . . . , (xN , ȳN )}:

ûi =
1

Ni

∑
j:ȳj=yi

h (xj ; θ) , Σ̂ =
1

N

k∑
i=1

∑
j:ȳj=yi

(h (xj ; θ)− ûi) (h (xj ; θ)− ûi)T ,

Once the Gaussian mixtures of the training data (ID batch) is computed, at test time when observing a new
image xτ , the GEM score is computed as follows:

GEM(xτ ; θ) = log
k∑
j=1

exp (Mj(xτ ; θ)) , where Mj(xτ ; θ) = −1

2
(h(xτ ; θ)− ûj)⊤ Σ̂−1 (h(xτ ; θ)− ûj)

(4.5)
Mj is the Mahalanobis distance that is computed by comparing the feature vector h(xτ ; θ) of each new
sample to the k Gaussians of the ID data at every iteration j. If xτ belongs to one of the ID classes, Mj

will be small ⇒ small GEM score ⇒ ID, if not, then the GEM score will be high ⇒ OOD.
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4.4. Clustering & Sampling Distributions
This module will organise the still ’raw’ data of the previous steps and is fairly straightforward, yet essential.

4.4.1. Motivation of the Clustering module
After OOD detection has split our input data at test time into two groups, the features are still ’unsorted’
in the sense that all classes are mixed in both batches. We need them to be organised per class in order to
determine which classes are relevant and which are not. The idea is to organise the mixed h(xi; θ) into groups
per class, e.g. all features belonging to the class car should be grouped together {h(xcar

1 ; θ), . . . , h(xcar
N ; θ)}

the same goes for the horse class h(xhorse
1 ; θ), . . . , h(xhorse

N ; θ) and so on. This process is executed by the
clustering module in our pipeline:

Figure 4.16: Input of this block: feature vectors h(xi; θ), reduced by UMAP and separated by the previous module into ID
and OOD batches. Output of this block: groups/clusters Qj per class of h(xi; θ), where n denotes the amount of ID classes

detected, and m the amount of OOD classes.

At test time we do not know the labels of our input features/data, therefore, rather than ’h(xcar
i ; θ)’, the

clusters are denoted with numerical indices Q1 = {h(x1
1; θ), . . . , h(x

1
N ; θ)}. Fortunately, we work with rich

features from CLIP, whose structure in feature space is preserved quite well with UMAP, therefore the data
per batch is quite organised which benefits clustering. What the clustering algorithm fψ needs to do is
essentially label and group all data points in the UMAP feature space into separate clusters/distributions
Q1, . . . ,Qn. This internal process is depicted in Fig. 4.17.

Figure 4.17: UMAP feature space of test data (left), formed clusters of the UMAP data (right). [66]

4.4.2. Challenges & Requirements
As one can see in Fig. 4.17, UMAP does not necessarily produce clean spherical clusters, making algorithms
like k-means or Gaussian Mixture Models (GMM) sub-optimal choices for fψ since these are centroid-based
models with an assumption of largely spherical clusters. A more suitable alternative would be a density-based
algorithm like HDBSCAN which can, unlike k-means, discover clusters of arbitrary shape. Regardless of the
choice for fψ, the clusters are required to contain mostly samples of the same class, otherwise relevance
detection in the next section will be difficult: the comparison between Qcar to Qbus will not be fair if the car
cluster is comprised of truck data points for 20%, and the bus cluster of tiger data points for 18%. The
exact requirement for minimal cluster purity is not clear at this point, but we will set it at >90% for now
and evaluate this, and the choices for fψ in the experiments in Chapter 5.
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4.5. Relevance Detection
The clustering step in the previous step of the pipeline yields the final representation of our input image
files: data points, clustered per class, in feature space. In order to determine which classes are relevant and
which not, we can compare clusters at test time, to cluster of classes from which we have trained on and
therefore know that they are relevant. We propose to accomplish this through this module by leveraging the
statistical properties of the clusters such as shape, distribution and relative distances between each other.

4.5.1. Conceptual Overview of the Module
The main idea of this module is to use a distance function d(·, ·) to determine how ’far’ away two or more
clusters are from each other. We have seen in Fig. 4.17 that our classes of interest (road vehicles) are close
to each other in feature space, while other (irrelevant) classes are usually significantly further away. In order
to visualise this concept, we clarify some variables, parameters, and notation below:

Symbol Description
Qj Clusters at test time, whose specific class is unknown.
Pi Clusters at training time, whose specific class relevant, known, and trained on.
j Index of the test clusters, denoting the class. Since we do not know the test classes, j ∈ {1, . . . ,m}.
i Index of the test clusters, denoting the class. Since we do know the training classes, i ∈ {1 : 'car', . . . , k : 'truck'}.
m Total amount of test clusters.
k Total amount of train clusters.
q
(j)
t A single point in each test cluster, where t ∈ {1, . . . , N} denotes the index of each point q(j)t : Qj = {q(j)1 , . . . , q

(j)
N }.

p
(i)
s A single point in each train cluster, where s ∈ {1, . . . , N} denotes the index of each point p(i)s : Pi = {p(i)1 , . . . ,p

(i)
N }.

N Sample/cluster size, both training and testing clusters always contain the same N amount of points (see next sub-section).

The relevance detection module d(P,Q) is equivalent for both the ID and OOD data batches, so its internal
process is depicted in Fig. 4.18 for the OOD batch only, where we train on two relevant clusters (k = 2).

Figure 4.18: Input of this block: ID/OOD clusters Qi. Output of this block: Indices of the clusters, separated into 4 groups.
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In Fig. 4.18, two cases are portrayed,
• case 1: point clouds or ’distributions’ Qj ,Pi are compared.
• case 2: each single test point of q(j)t ∈ Qj is compared to a train cluster Pi individually.

When k > 1, we train on more than 1 relevant class Pi so multiple distances are calculated and averaged.

For case 1, the distances between a single test cluster Qi, and all training clusters {Pi, . . . ,Pk} are computed,
then averaged, and finally repeated for all m test clusters:

1

k

k∑
i=1

d(Qj ,Pi) → repeat for each test cluster Qj: j ∈ {1, . . . ,m} (4.6)

For case 2, the distances between a single test point q(j)t ∈ Qj against all training clusters {Pi, . . . ,Pk},
are computed and averaged as in case 1, and then repeated for all N points in all m test clusters:

1

k

k∑
i=1

d(q
(j)
t ,Pi) → repeat for all N points, in each test cluster Qj: j ∈ {1, . . . ,m}

(4.7)
The two cases above are the most elementary methods of calculating how ’far’ test data is from our training
data; take the average distance from 1 cluster or test point to the training clusters to determine if it is close
or far. But this raises the following concerns:

• How far/close is far/close enough to be (ir)relevant?
How does one determine a threshold?

• When k increases, the average distance can increase as well.
Let k = 1 with Q1 and P1 very close to each other. Now for k = 2, let the new training cluster P2

not be close to Q1 such that d(Q1,P2) > d(Q1,P1) ⇒ the average distance (Eq. (4.6)) increases.
Does that actually make Q1 less relevant now?
Can we use other variations on case 1 and 2, like the argmin d(Q1,Pi) to overcome this?

• What measure for d works best?
Based on what do we determine how ’far’ test data lies? Absolute distances? Statistical distances?
Do we select a parametric approach (based on e.g. {µ, σ2} of each cluster) or non-parametric?

We thoroughly treat the first two concerns in our experiments (Chapter 5) and discuss the last one below.

4.5.2. Overview of Candidate Distance Measures
The term ’distance’ does not fully incorporate what we will measure, as the relevance of classes should be
based on more than just absolute distances, like statistical properties for instance. The selection of d(·, ·)
will therefore be based on candidates from 3 categories of measures which we list and treat below:

Category of d Description
1. (Statistical) Distance Metrics Distances between point clouds Qj .Pi or points using metric functions.
2. f -divergences Modelling the clusters Qj .Pi as probability distributions and calculating their dissimilarity.
3. Anomaly Detection Models Training machine learning models on Pi and let them determine (ir)relevance.

1. (Statistical) Distance Metrics
Since our UMAP-reduced data lies in a (Riemannian) metric space (M, gp) and will be mapped to Euclidean
space, we can define a metric gp to calculate the how far test data is from training data. On top of that,
we can model all clusters Qj and Pi as statistical objects, or empirical distributions per class. Modelling
it in such a fashion allows for the use of statistical distance metrics that measure more than absolute distances.

Definition 4.5.1 (Metric Space (M,d)) A metric space is a pair (M,d), where M is a set and d is
a metric defined on M , d : M ×M → R≥0, if for any x, y, z ∈ M the following hold

1. d(x, y) ≥ 0,
2. d(x, y) = 0 ⇐⇒ x = y,
3. d(x, y) = d(y, x) (symmetry),
4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
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While a multitude of metrics exist, we select present three potential candidates of this category that are
widely used for applications like ours:

A Euclidean Distance

dL2(q
(j)
t ,p(i)s ) =

√√√√ H∑
h=1

(qh − ph)
2 (4.8)

q
(j)
t ,p

(i)
s = two points/feature vectors in H-dimensional Euclidean space belonging to clusters Qj ,Pi

qh, ph = Euclidean coordinates per point.

B Mahalanobis Distance
The Mahalanobis distance is a statistical distance and metric that can be used to measure how distant
a point is from the centre of a multivariate normal distribution Pi. It is a generalisation of the Euclidean
distance above, as it is still a distance between two points, but it takes correlation between multiple
variables/features into account.

dM (q
(j)
t ,Pi) =

√
(q

(j)
t − µi)⊤S

−1
i (q

(j)
t − µi) (4.9)

µi = the mean of a cluster/probability distribution Pi .
S−1
i = positive-definite covariance matrix of a cluster/sample of a probability distribution Pi.

The Euclidean distance above works fine in the cases that the dimensions of the space are equally
weighted and are independent of each other, but this is typically not the case in realistic data-sets.
Within feature space each dimension corresponds to a feature (or principal component of features
when dimensionality reduction is used), and those features are usually correlated resulting in misleading
results by dL2

. We visualise this through Fig. 4.19, which depicts two test points q(1)1 ∈ Q1, q
(2)
1 ∈ Q2

from different clusters in 2D, that are compared to the centre of a training cluster Pcar of car image
feature vectors. In the first case there is no correlation between the features, and in the second the
features are into spread out into a certain direction (principal component):

Figure 4.19: Two cases for the distribution of the training cluster Pcar, with µcar (red).
Left: features are uncorrelated. Right: Features are correlated in a certain direction.

In both cases the coordinates of q(1)1 , q
(2)
1 ,µcar are exactly the same, meaning that q(2)1 is farther away

from µcar than q(2)1 , but does that always imply that q(2)1 is also farther away from Pcar? The Euclidean
distance would tell us yes, and while this is true for the case where there is no particular correlation, it
is clearly not true for the second case above. The Mahalanobis distance takes the covariances of the
points of Pcar into account, which leads correctly labelling closest point in both cases. The Euclidean
distance is essentially a special case of the Mahalanobis distance where the variance of the variables
are equal, and covariances zero.
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C Wasserstein Distance
The Wasserstein distance is a statistical metric between two probability measures that arised from
the field of Optimal Transport. We present its definition below and then proceed to briefly treat its
derivation, properties, and relevance to our problem, within the setting of Optimal Transport.
We will make use of notions and theorems from measure theory/measure theoretic probability, therefore
we refer to [67] as support. In order to ease notation, for each measure or measurable space (X ,A, µ)
used, we shall not explicitly state the associated σ-algebra A.

Definition 4.5.2 (Wasserstein Distance) Let (X , d) be a Polish metric space and let p ∈ [1,∞)
and c(x, y) a cost function c : X × Y → [0,∞]. For any two Borel probability measures µ, ν on X ,
the Wasserstein distance of order p between µ and ν is defined by the formula

dWp(Qj ,Pi) = Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

c(x, y)p dπ(x, y)
) 1

p

(4.10)

Optimal transport is essentially an optimisation technique used to compare probability measures sup-
ported on a metric space, that has blossomed into a separate field finding applications in especially
statistical learning, but also optimisation, economics, and pure/applied mathematics [68, 69].
To develop some intuition of the technique, we present the original problem where it was born, studied
by Gaspard Monge [70]: mass transportation when moving a pile of sand to a hole with minimal
effort. The idea essentially is that one pays a cost for transporting from one measure to another.
The pile and hole are modelled by a probability measure µ, ν on spaces X and Y respectively, and let
c : X × Y → [0,∞] be a cost function where c(x, y) measures the cost (=distance) of transporting
one unit of mass µ(x) from x ∈ X to y ∈ Y . The total effort that should be optimised =
mass transported × distance, given by: µ(x)c(x, y)

Figure 4.20: Original problem mass transportation studied by Monge, taken from [71].
Both µ and ν can be seen as probability measures, where a cost c(x, y) corresponds to how different they are.

We should define what is meant by transporting one measure to another, i.e. which unit of mass µ(x)
is assigned or transported to which hole y ∈ Y . In its more general and measure theoretic probabilistic
form, this is defined through a coupling.

Definition 4.5.3 (Coupling) Let (X , µ) and (Y, ν) be two probability spaces. A coupling of µ and ν
is a measure π on X ×Y (with its tensor-product σ-algebra) such that π admits µ and ν as marginals
on X and Y respectively, i.e. π(A×Y) = µ(A) and π(X ×B) = ν(B) for all measurable sets A ⊆ X ,
B ⊆ Y . The set of all couplings of µ and ν is denoted by Π(µ, ν).

Definition 4.5.4 (Deterministic Coupling or Transport Map) A coupling π is said to be determin-
istic if there exists a measurable function T : X → Y such that π = (Id, T )# µ. Here (Id, T ) is the
map x 7→ (x, T (x)) for x ∈ X . Therefore, the function T is called the transport map if

ν(B) = µ
(
T−1(B)

)
∀ ν -measurable sets B.

The #-notation is widely used in optimal transport and denotes the following: T#µ(A) = µ
(
T−1(A)

)
.
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The term T#µ is often called the push-forward measure, since T ’pushes forward’ the ’mass’ of µ to
ν, i.e. T#µ = ν. Having defined the above, Monge’s problem in Fig. 4.20 now can be formalised to

What T s.t. T#µ = ν minimizes

∫
X
c(x, T (x)) dµ(x) ?

Definition 4.5.5 (Monge problem) Let (X , µ) and (Y, ν) be two Polish probability spaces, and
c(x, y) a cost function c : X × Y → [0,∞]. Monge’s problem is then following optimisation problem

(MP) := inf

{∫
X
c(x, T (x)) dµ(x) | T : X → Y and T#µ = ν

}
The Monge problem above is an example of optimal coupling or quite literally ’optimal transport’
where one assumes a deterministic coupling T . But such deterministic couplings do not always exist,
consider for instance µ equal to the Dirac measure and ν equal to any other measure:

µ = δx for some x ∈ X ⇒ T#µ(B) = µ
(
T−1(B)

)
= δT (x) 6= ν(B)

By Definition 4.5.4, the above implies that no transport map exists between µ and ν.
The reason why this nonexistence is particularly important for this thesis, is because our data cluster
per class is comprised of points (discrete). These clusters or point clouds will be modelled as discrete
(probability) measures through Dirac measures.

Figure 4.21: Two empirical distributions µ, ν where each point mass is modelled by the Dirac measure with arbitrary weight.

To find a more general form of the Monge problem that suits our needs, we need to find a relaxation
of the deterministic nature of transportation; i.e. move away from the notion that a source point
xi can only be assigned to another point or location y = T (xi). This is known as the Kantorovich
relaxation, which proposes that the mass µ(xi) at any point xi can be potentially distributed across
several locations. Rather than deterministic transport, Kantorovich considers a probabilistic transport
or coupling instead, which allows what is commonly known now as mass splitting from a source toward
several targets [72]. This general measure theoretic coupling π was given by Definition 4.5.3, using
that to transform the Monge’s problem leads to the following formalisation:

Definition 4.5.6 (Kantorovich problem) Let (X , µ) and (Y, ν) be two Polish probability spaces,
and c(x, y) a cost function c : X × Y → [0,∞]. Kantorovich’s problem is the following optimisation
problem

(KP) := inf
π∈Π(µ,ν)

{∫
X×Y

c(x, y) dπ(x, y) | π ∈ Π(µ, ν)

}
In order to further see how the Kantorovich problem links to our problem, suppose that X = Y, and
X is a metric space with metric d. A natural and intuitive choice for the cost function c would be
the distance measured by d. Doing this results in the pth-order Wasserstein distance presented by
Definition 4.5.2:

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)p dπ(x, y)
) 1

p

.
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Wp(µ, ν) is therefore more than a distance; it is essentially the optimal ’distance’ (or ’transport’)
between two points or distributions, since it minimises the Kantorovich problem. We now treat how
the Wasserstein distance can be used for our problem (the discrete case) shown in Fig. 4.21, with
added custom notation used for our point clouds Qj ,Pi.
Suppose M is the Riemannian manifold on which our data points lie where each cluster of N data
points is given by Qj = {q(j)1 , . . . , q

(j)
N } ∼ µj and Pi = {p(i)1 , . . . ,p

(i)
N } ∼ νi. All points are treated

equally per cluster and therefore have the same mass. The empirical measures are then given by:

µ̂j =
1

N

N∑
i=1

δqt
, ν̂i =

1

N

N∑
j=1

δps
.

In this case the Kantorovich problem reduces to

inf
π∈Π(µ,ν)

{
1

N

∑
s

∑
t

πstd (ps, qt) | π ∈ Π(µ, ν)

}
(4.11)

The coupling measures in Π(µ, ν) can for the discrete case be represented by a bistochastic N × N
matrix π = (πst). This essentially means that all πst are non-negative and sum to 1 across both the
rows s and columns t, since each entry of πst is a non-negative real number representing a probability:

Π(µ, ν) :=

{
π ∈ X × X | πst ⩾ 0,

∑
s

πst = 1; ∀s,
∑
t

πst = 1; ∀t

}

This can be compactly written into an expression we will use to numerically solve our problem, which
is to calculate the distance between two clusters Qj ,Pi:

dWp
(Qj ,Pi) = Wp(µ, ν) := min

π∈Π(µ,ν)

(
1

N

∑
s,t

πst ‖ps − qt‖p

) 1
p

(4.12)

Where we used the Euclidean distance for the metric d, since our UMAP data will be mapped to
Euclidean space (Section 4.2.2).
The issue with the optimisation problem in Eq. (4.12), is that it is now a linear programming problem
with complexity O

(
N3 ln(N)

)
arithmetic operarions ([68, 73]) meaning that solving it for large sample

sizes N will be hard and rendering it impractical or even pointless for many realistic applications. To
overcome this drawback, a few numerical techniques have been proposed in contemporary literature to
approximate Wp(µ, ν), the most seminal and widely used being Entropic Regularisation [74] by Cuturi.
The theory behind this is extensive and is therefore not treated here. Fortunately, the implementation
of this approximated Wp-distance is available through an open source Python package (see Chapter 5).

As a recap, in plain words; the discrete Wasserstein distance in Eq. (4.12) calculates the distance
between two clusters Qj ,Pi by solving an optimisation problem. This optimisation problem is about
minimising the total cost of ’transporting’ each point qjt ∈ Qj of one measure µ, to another point
pis ∈ Pi of another measure ν, through a transport plan πst ∈ Π(µ, ν) and a distance metric d.



4.5. Relevance Detection 48

2. f−Divergences
The f -divergences, denoted by Df (P,Q), are a statistical distance measure of how dissimilar two probability
distributions P,Q are commonly used today in information theory (known as entropy) and statistical learning
[74]. Rather than raw points used in the distance measures above, f -divergences expect probability distribu-
tions as input (values ∈ [0, 1]). In spite of being a distance measure, an f -divergence does not qualify as a
metric, as for instance some Df (·, ·) can be non-symmetric, the triangle inequality does not hold etc.

We start with a general their definition and basic properties, and finally introduce and derive our candidate
for Df in an intuitive fashion.

Definition 4.5.7 (f−Divergence) Let f : (0,∞) → R be a convex function with f(1) = 0. Let P
and Q be two probability measures on a measurable space (X , µ). If P � Q then the f -divergence is
defined as

Df (P‖Q) := EQ
[
f

(
dP

dQ

)]
where dP

dQ is a Radon-Nikodym derivative and f(0) := f(0+). More generally, suppose that
Q(dx) = q(x)µ(dx) and P (dx) = p(x)µ(dx) for some common dominating measure µ, then we have

Df (P‖Q) =

∫
X
f

(
p(x)

q(x)

)
q(x)dµ(x).

Remark 4.5.1 For the discrete case, with Q(x) and P (x) being the respective probability mass func-
tions (pmfs) of two discrete clusters Qj ,Pi, we can write

dWp
(Qj ,Pi) = Df (Q‖P ) =

∑
x∈X

P (x)f

(
Q(x)

P (x)

)
.

Proposition 4.5.1 (Basic Properties f−Divergences) The following hold for a general f -
divergence Df :

1. Df1+f2(P‖Q) = Df1(P‖Q) +Df2(P‖Q).
2. Df (P‖P ) = 0.
3. Df (P‖Q) = 0 for all P 6= Q ⇐⇒ f(x) = c(x− 1) for some c.

For any other f we have Df (P‖Q) = f(0) + f ′(∞) > 0 for P ⊥ Q.
4. If PX,Y = PXPY |X and QX,Y = QXPY |X then Df (PX,Y ‖QX,Y ) = Df (PX‖QX).
5. Let f1(x) = f(x) + c(x− 1), then Df1(P‖Q) = Df (P‖Q) ∀P,Q.

In particular, we can always assume that f ≥ 0 and (if f is differentiable at 1) that f ′(1) = 0.
Proof of this proposition can be found in [75].

A KL divergence
Numerous choices forf exist and are used in the field, for instance, setting f(x) = 1

2 |x− 1| is known
as the Total Variation Distance, and f(x) = (1 −

√
x)2 leads to the squared Hellinger Distance.

The specific selection of f depends one the use case and the requirements; the Hellinger distance
for example, requires third probability measure λ in addition to P and Q for computation (which we
do not have). As our candidate, we have selected f(x) = x log(x), known as the Kullback-Leibler
(KL) divergence and the most popular f -divergence as it is a very intuitive way of comparing two
distributions. In its discrete form, it is given by:

DKL(Q‖P ) =
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)
(4.13)

To see the intuition behind the KL divergence from a probabilistic perspective, suppose we want to
compare the two distributions P (x), Q(x) above. An intuitive way to start off would be through
the likelihood ratio given by LR = Q(x)/P (x) where a ratio smaller or greater than 1 indicates
dissimilarity. Suppose that all data-points are identically and independently distributed (i.i.d.), we can
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compute this likelihood ratio for the entire set and take the logarithm to ease computation:

LR =

n∏
i=0

Q (xi)

P (xi)
→ log(LR) =

n∑
i=0

log

(
Q (xi)

P (xi)

)
(4.14)

where a value of 0 for log(LR) would indicate perfect similarity since Q(x)/P (x) = 1. To calculate this
dissimilarity for a sample of N points, we average over N like this: = 1/N

∑N
i=0 log(Q (xi) /P (xi)).

As N increases, the expression of the average gets closer to the expectation of the actual dissimilarity
of P,Q:

lim
N→∞

1

N

N∑
i=0

log

(
Q(x)

P (x)

)
= E

{
log

(
Q(x)

P (x)

)}
=
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)
(4.15)

The above is exactly equal to the KL divergence shown in Eq. (4.13) and concludes its derivation.
Given its non-parametric nature, the KL divergence makes an interesting candidate for a distance
measure used to compare our train and test clusters.

3. Training machine learning models
As a last option, instead of using statistical metrics/divergences, one can also train machine learning models
(classifiers) to discover patterns in the data, in order to determine relevance. The PyOD package of Python
contains a great amount of anomaly detection models that can be easily trained and deployed [76]. Most of
them are one-class (binary) classifiers that are designed to only classify data into ’inlier’ or ’outlier’, based
on strange or anomalous patterns in the data. This will be used as a baseline to compare the previous two
categories to.

Unlike the statistical distance metrics and f -divergences, which are based on comparing two probability
measures, these models are entirely point-based. The idea is to train these models on points of of relevant
classes ({p(i)1 , . . . ,p

(i)
N } ∈ Pi ) so that they will be able to tell whether new points {q(j)1 , . . . , q

(j)
N } = Qj at

test time are inliers (relevant) or outliers (irrelevant).

Figure 4.22: A single data point q
(1)
1 presented at test time, after the model is trained on points from clusters P1, . . . ,P4. No

probability distributions are used here during both training and testing.

We have selected a few of the many models available, based on familiarity and popularity:

Anomaly Detection Model
1. Support Vector Machine (SVM)
2. Principal Component Analysis (PCA)
3. Isolation Forest (IF)
4. Isolation using Nearest Neighbour Ensemble (iNNE)
5. Feature Bagging (FB)

The full documentation of how each model works and is trained can be found on the PyOD website [76].
In order to sketch the idea of how the process in Fig. 4.22 works, we treat the general steps of one of the
models above, which is the PCA model for anomaly detection.
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Consider the PCA detection model for 3D UMAP data. While PCA is usually deployed to perform dimen-
sionality reduction, PyOD uses it to calculate the principal components of all training data points. Based
on these principal components, a hyperplane HPCA is drawn that is close to the training data. The model
assumes that outliers (irrelevant classes) will be further away from HPCA than inliers (relevant classes) will
be. Based on a built-in threshold λ, PCA calculates the distance for each point at test time and determines
which ones are inliers, and which ones are outliers.

Figure 4.23: Determining relevance through a PCA anomaly detection model, trained on points of k = 6 relevant classes:
black=points at test time before relevance detection, red=relevant class, blue=irrelevant class.

While the other models in Section 4.5.2 each have their own way of training/testing, they all perform a point-
based analysis, as opposed to the distance metrics and f -divergences that assume underlying distributions.

4.5.3. Motivation & Challenges
In this sub-section answer the research questions on the statistical properties (SRQ2) and dimensionality
(SRQ3) of the data, combined with the associated challenges for the candidates for d(Qj ,Pi).

1. Statistical Properties:
Both the Euclidean and Mahalanobis distance are parametric methods are they are based on {µ, σ2}
only. Such a centroid-based techniques assume the data to be Gaussian (elliptical point clouds/distributions).
Fig. 4.17 shows that our data clearly does not exhibit that behaviour. Can one still use these distances
then, especially since non-parametric techniques such as Wasserstein, KL-divergence, and ML models
are available. The answer is yes. The Euclidean/Mahalanobis are the natural distances for elliptical
distributions and therefore work optimally for Gaussian data, but ultimately they are still metrics and
can therefore calculate distances between non-Gaussian distributions as well. While the Wasserstein
distance and KL divergence enjoy several nice properties over parametric methods, including structure
preservation, existence in smooth and non-smooth settings, [77] invariance to invertible (linear) trans-
formations, it is worthwhile to use both, in order to see to what extent further statistical information
of distributions, e.g. higher moments, matter for relevance detection. Perhaps the centroid of each
distribution suffices, and to fully test this out, we shall not use the Mahalanobis distance of our test-
ing. We are curious in finding out how well the more simple parametric distance can perform. To still
research the role of cluster shape, we use the non-parametric methods.

2. Dimensionality:
When the dimensionality of the data increases, the volume of the high-dimensional space increases so
fast that the available data become sparse; points will concentrate towards the edges of your space
which will cause metrics, especially the Euclidean norm, to yield misleading results [78]. A common
issue with higher dimensionality within statistics is that the dimension can get close to, or even exceed
the amount of observations N . If we have 200 samples per class, we easily exceed that number when
using pure CLIP vectors ∈ R512. This is problematic because it is now impossible to find a model
that can describe the relationship between the predictor variables and the response variable and lead
to unstable solutions (see Ch.18 of [50]). We should therefore take this into account when reducing
our CLIP vectors through UMAP.



5
Experimental Setup & Results

Chapter goals
1. Presenting our hypotheses, data-set, and experimental setup - Section 5.1 to Section 5.4

These sections are essentially explanatory notes on what we aim to learn, and how the pipeline from
the previous chapter will be used and tested; it serves as preparation for the experiments that follow.

2. Conducting experiments to answer the remaining research questions - Section 5.5 to Section 5.7
Each of these sections is centred around a specific research question. SRQ5 is on how our model’s
performance can be improved by increasing prior information about the domain; it is the main exper-
iment where multiple tests will be conducted. The insights of this experiment led to two additional
research questions (SRQ6 & 7) about the effect of clustering, for which we did separate tests.

3. Evaluating & analysing the results - Section 5.8
In the final section, we evaluate and check whether the results are in line with our hypotheses, to what
extent the research questions have been answered, and where there is room for improvement.

5.1. Hypotheses
H1: Relevance detection can be done in a more robust way when using a cluster-based approach.

Every class, both relevant (e.g. bus), or irrelevant (e.g. dog), has its own natural spectrum to
which their instances belong; buses and dogs come in all shapes, sizes, colours, and models/species.
We hypothesise that using statistical distances between clusters or ’distributions’ better take atypical
points (strange buses and/or dogs) into account, making it a more robust relevance detector than
individual point-to-point distances.

H2: Statistical properties, such as cluster shape, play an important role in relevance detection.
Apart from absolute distance in feature space, we hypothesise that the actual shape of each cluster
matters as well. We hope to discover that certain classes that are related to each other have similar
cluster shapes as well. To capture this we will be using non-parametric methods like the Wasserstein
distance and the KL-divergence.

H3: Relevant OOD classes are better discovered when we have more prior domain information.
Given some user input, e.g. the vehicle domain is of interest and all other classes are not, we aim
to test whether relevance detection performance will rise when increasing the number of vehicles in
the training set. We hypothesise that increasing prior domain knowledge, for instance, training on 4
vehicle classes (car, bus, truck, van) rather than training on 1 class (car), will improve the detection
of relevant and irrelevant classes at test time.

H4: Our pipeline will perform better on low-dimensional data.
As stated before, when the dimensionality of the data increases, the volume of the high-dimensional
space increases so fast that the available data become sparse; points will concentrate towards the
edges of your space which will cause metrics to yield misleading results [78]. We hypothesise that
(ir)relevant distributions will be more challenging to detect in higher dimensions.

51
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5.2. Data-set
The DomainNet data-set [53] has been selected for our testing s it contains a wide variety of common
objects, ranging from animals, fruits, and nature landscapes, all the way to images of screwdrivers, vehicles,
and shoes. In total the DomainNet data-set contains 345 of such classes, over 6 domains (hence its name):
clipart, painting, drawing, and real photographs. Given our problem, we are in need of a realistic data-set
and therefore select the DomainNet-real portion for our testing. Within DomainNet-real, the 345 classes
each have hundreds of images with resolutions in the range of 200 × 200 to 600 × 600 pixels. Fig. 5.1
presents an overview of the complete data-set over the 6 domains, of which the real segment is of interest.
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airplane clock axe ball bicycle bird strawberry flower pizza butterfly

Figure 5.1: Overview of the DomainNet data-set where the second row from below is the real domain. Taken from [53].

We have manually searched this data-set for classes that align with our use case. Out of all 345 classes, 21
classes are vehicles, i.e. are of interest. For all following experiments, we have narrowed down our interest
from vehicles to road vehicles only, of which there are 11 classes (Fig. 5.2). By narrowing down our interest
to road vehicles only, we expect the problem to become more challenging and realistic: our model has to
learn that airplanes, in spite of being a vehicle, are not relevant anymore since they are not road vehicles.

All vehicle classes Road vehicles Bikes Aircrafts Watercrafts
count = 21 count = 11 count = 2 count = 3 count = 5

aircraft_carrier ambulance bicycle airplane aircraft_carrier
airplane bulldozer motorbike flying_saucer cruise_ship
ambulance bus helicopter sail_boat
bicycle car speedboat
bulldozer firetruck submarine
bus pickup_truck
car police_car
cruise_ship school_bus
firetruck tractor
flying_saucer train
helicopter truck
motorbike
pickup_truck
police_car
sail_boat
school_bus
speedboat
submarine
tractor
train
truck

Figure 5.2: Vehicle classes of the DomainNet data-set, where the green classes correspond with the classes of interest.
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The images of all 345 are loaded into the CLIP neural network to generate feature vectors. Although all
images come from the same data-set, each DomainNet image has its own distinct resolution, while CLIP
only accepts images of a fixed resolution of 224× 224 pixels. In order to ensure compatibility, all images are
cropped with trn.transform.crop of the PyTorch Python framework, to fix the resolution.

5.3. Design Adaptation
In order to fully test the potential and validity of the relevance detection module (Section 4.5), we wanted
to diminish, if not remove, any bottlenecks in the pipeline. As a consequence, it was decided to remove
the OOD detection module (Section 4.3) from the experimental setup. We would like to stress that the
OOD detection module is still a valid and important part of the pipeline, and should therefore still be a
part of future extensions of this research, or future implementations that will be used in practice. The
rationale behind its removal though, is that the GEM scoring function’s false positive rate (FPR) is quite
high (Section 3.2.2), resulting in many known images being falsely flagged as OOD, and vice versa. These
error margins were known to us from the start and we anticipated on these effects accordingly by setting out
various scenarios (Section 4.3.2). We wanted to ensure that, at least for our study on relevance detection
which is a novel application to the best of our knowledge, no unnecessary bottlenecks are present, in order
to prove whether our idea is a valid method. We have adapted and developed our detection module setup
in such a way now that it is independent of a scoring function and can be used separately. This is treated
in step 2 of the next section.

5.4. Main Setup
SRQ4: How can the performance of our solution pipeline be measured?

We treat the experimental setup with the same notation laid out in Section 4.5. The following sub-sections
build our experimental setup in three steps, for the 345 classes of the DomainNet data-set that we test on.

5.4.1. Step 1: Increasing prior domain knowledge through training
To perform relevance detection, one needs to establish what relevant means first; a starting point. After a
user provides such a starting punt, i.e. input on what kind of classes are relevant, these classes are selected
as training classes and are taken through the pipeline to obtain training clusters P1, . . . ,Pk. In our case, Pi
are all road vehicles (see Fig. 5.2).

We define the information on the k relevant classes specified by the user as domain knowledge, and in realistic
use cases, this information is known beforehand. We aim to test the impact of this prior domain knowledge
by using varying amounts of it for relevance detection. We will run our relevance detection module for 10
iterations, where we vary k from 1 to 10. Not increasing k to 11 ensures that in the last iteration there
will still be an unknown relevant class left on which we can test. We are interested in seeing how much the
performance of relevance detection increases after each iteration, that is if it increases at all.

Given the 11 road vehicles, Table 5.1 depicts one possible sequence of increasing the prior domain knowledge,
where in each iteration, more knowledge is provided to our model by training it on an extra class.

Table 5.1: One possible way of incrementally increasing training classes.

Iteration
1 ambulance
2 ambulance bulldozer
3 ambulance bulldozer bus
4 ambulance bulldozer bus car
5 ambulance bulldozer bus car firetruck
6 ambulance bulldozer bus car firetruck pickup_truck
7 ambulance bulldozer bus car firetruck pickup_truck police_car
8 ambulance bulldozer bus car firetruck pickup_truck police_car school_bus
9 ambulance bulldozer bus car firetruck pickup_truck police_car school_bus tractor
10 ambulance bulldozer bus car firetruck pickup_truck police_car school_bus tractor train
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Using the exact sequence in Table 5.1 only implies that the experiment can be done in just 10 iterations.
This is not true, since the order and combinations of the classes that are trained matter. To illustrate this,
consider two models are trained for 10 iterations and decide which model has the unfair advantage:

• Model A starts with ’car’ in iteration 1 and learns ’police_car’ in iteration 2.
• Model B starts with ’car’ in iteration 1 and learns ’truck’ in iteration 2.

Even after only two iterations, model B has the advantage since it has already seen two vehicles that are
considerably different, while model A has simply only been trained on ’car’ + another type of car. This
advantage helps model B generalise much better for new test samples as it has ’seen’ a larger variety of
relevant classes. We, therefore, need to treat more combinations and take their average to make this a fair
test. In iteration 1 alone, there are 10 combinations to pick the first class when we select each class only
once. In iteration 2 there are 90 combinations and this blows up for further iterations. The total amount of
combinations without duplicates that can be made for the scheme in Table 5.1 is equal to the number of
proper subsets. Given a set with k elements, the amount of proper subsets is given by 2k. This contains the
empty set and the power set as well, which will not be used. Removing these two sets will lead to a set of

2k − 2 = 2046 combinations for k = 11.

Running our relevance detection module 2046 times will be impractical and computationally infeasible. To
overcome this issue, we sample 10 combinations per iteration, reducing the number of runs from 2046 to 100.
Sampling 10 combinations for each iteration means we obtain 10 × 10 model outputs. Taking the average
per iteration leaves us with 10 average performance values, where each value indicates the performance at
k = 1, . . . , 10.

Fig. 5.3 displays the 10 average values (vertical axis) with the corresponding standard deviation, for iterations
1-10 (horizontal axis). This is an example plot of artificial data we manually generated. We expect that
increasing the number of classes will yield higher performance and that the performance will saturate after
a certain amount of prior domain knowledge.
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Figure 5.3

The experiments in later sections will show to what extent our expectations above align with reality.



5.4. Main Setup 55

5.4.2. Step 2: Calculating a relevance score
Recall from Section 4.5.2 that we use three categories of distance measures to determine relevance: two are
statistical distance metrics and one is ML anomaly detection models. The ML anomaly detection models
use a built-in point-based approach to determine what is relevant or not; it is executed automatically for us.
For statistical distances, we need to build the relevance detection ourselves, which we illustrate below using
a ’ranking’ approach.

Having established what ’relevance’ means in step 1, we rank the 345 classes into three groups from most
to least relevant:

1. IDR: et Known relevant classes that we have trained on: Pi
These classes are the prior domain knowledge specified by the user, road vehicles in our case.
These seen during training and testing. → varying from k = 1, . . . , 10 classes.

2. OODR: Unknown relevant classes that we have not trained on
These are unseen road vehicles that have not been trained on and are only seen during testing. This
group is the complement of the first group. → 11 − k, e.g. our model trains on k = 2 classes, then
the amount of OODR = 11-2=9 classes.

3. OODI : Unknown irrelevant classes that we have not trained on
These are anything but road vehicles (screwdrivers, airplanes, animals etc.) in our case and are only
seen during testing. → fixed at 345-11= 334 classes, meaning that in our experiments, we will always
encounter all 334 irrelevant classes.

Fig. 5.4 shows how we expect the clusters to be ordered if we were to rank the 345 clusters visually from
most to least relevant based on their distances as well; the more relevant a test cluster Qj , the smaller its
distance to the training clusters Pi. Note that in feature space, test clusters Qj can be on any side of the
training clusters (Fig. 4.17), but since we are ranking them, we sketch all clusters from left to right.

                         
                         

                        

                        

                        

Figure 5.4: As an example we present the one possible second iteration where we train on cars and trucks. Note that we test
on all 345 classes at every iteration, despite not being able to show all their clusters in this figure.

The first phase of relevance detection is to calculate for each cluster Q1, . . . ,Q345 at test time, the average
distances to all training clusters P1, . . . ,Pk previously shown in Fig. 4.18. This leads to 345 distances; one
average distance d̄ per test cluster. To convert each d̄ into a relevance score r, we define r = 1/d̄, so that a
large distance leads to a small relevance score and a large distance to a high relevance score. We proceed by
sorting these 345 scores from smallest to largest in a vector r = {r1, . . . , r345}, where the largest r implies
’the most relevant class’ and vice versa. Finally, we normalise all scores in r to obtain scores in [0, 1], where a
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score of 0 indicates ’completely irrelevant’ and 1 indicates ’completely relevant’. What is left, is to determine
a threshold λ within [0, 1] such that relevant clusters will be classified as relevant, and vice versa.

Figure 5.5: Based on the average distance d̄ per test cluster, the threshold λ determines relevance.

Fig. 5.5 portrays the workaround for removing the OOD detection module. Instead of having two separate
batches shown in Fig. 4.18, we take a more general approach by mixing all clusters in one batch of 345
classes. This eliminates the OOD detection module’s bottleneck and has no negative effects on relevance
detection, on the contrary, it improves the validation and testing of relevance detection.

5.4.3. Step 3: Threshold determination and measuring performance
Step 2 leaves us with a list of scores that do not mean anything without a threshold λ that separates them into
relevant and irrelevant, but how does one determine λ? When is a score high enough that the corresponding
class is relevant? Instead of manually attempting to pick a perfect λ, it is wiser to iteratively determine
a λ that will classify most of the relevant classes as ’relevant’, and most of the irrelevant classes as ’irrelevant’.

The most common evaluation metrics to determine such a threshold are known as the True Positive Rate
(TPR) and False Positive Rate (FPR). Let all relevant classes have a perfect score of 1, and all irrelevant
classes have a score of 0.0. The TPR then denotes how often a true relevant class is correctly classified as
’relevant’ (true positive). Conversely, the FPR denotes how often an irrelevant class is classified as ’relevant
(false positive). These metrics are expressed as a ratio (Eq. (5.1)); TPR is the number of true positives over
the number of positives P and the TPR is the number of false positives over the number of negatives N .

TPR =
TP

P
, FPR =

FP

N
(5.1)

Lower thresholds classify more classes as irrelevant while higher thresholds more classes as relevant. Our
goal now is to find a λ such that the TPR is maximised while minimising the FPR. This is commonly done
using the receiver operating characteristic (ROC) curve which plots the FPR against the TPR for various λ.
In Fig. 3.14 two ROC curves are drawn, where the blue dot indicates the optimal threshold of the blue curve.
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Figure 5.6: Example ROC curves, where the red dashed line indicates the ROC curve of a random classifier.

The optimal threshold is at a sweet spot where TPR is the highest relative to the FPR. The dot on the blue
curve in Fig. 5.6 is an optimum since tweaking λ to increase the TPR (moving to the orange dot on the
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right) leads to a significantly higher FPR (from 0.15 to 0.25), while only a moderate increase in FPR (from
0.9 to 1.0) and vice versa.

Now that we can determine an optimal threshold, how do we measure our model’s performance? The metric
that is linked to this is the Area Under the ROC Curve (AUC). A high AUC implies that a model is better
at predicting relevant classes as relevant, and irrelevant classes as irrelevant, than a model with a low AUC.
This is because, for larger areas, an optimal λ can be found with high TPR + low FPR. This is illustrated in
Fig. 5.6 where the blue curve scores significantly better with a higher AUC, than the orange curve. Ideally,
the ROC curve should rest in a region where TPR is high and FPR is 0, yielding a perfect AUC of 1.0.
An AUC of 0.5 means that the model cannot make a distinction between relevant and irrelevant, i.e. the
classification is completely random, meaning that our models should score higher than 0.5 to be meaningful
at all. We shall use the AUC to assess the performance of all detection models (statistical distance metrics,
f -divergences, and ML anomaly detection models) as it contains the information of both the TPR and FPR.

In step 1 of this setup, we explained that the order of training the model on prior information can cause
unfair advantages and that we should take the average performance of 10 combinations to obtain the plot
in Table 5.1. Since the AUC will be the metric of our choice in the experiments that will follow, we will
have to calculate an AUC score ten times per iteration and take its average. Fig. 5.7 depicts this process
per iteration, where the AUC of 10 ROC curves is calculated and then averaged. Each average is one point
in Fig. 5.3, repeating this for all 10 iterations results in the full graph.
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Figure 5.7: Ten example ROC curves of a single iteration shown in Table 5.1. Each ROC curve corresponds to one
combination per iteration. Imagine that the blue curve belongs to a model that is trained on ’car’ and ’truck’, and the orange
curve to a model that is trained on ’car’ and ’police_car’. The ’blue model’ generalises better, hence its higher AUC. Taking

the average of the AUC values of each curve results in an average AUC per iteration.

The description of the experimental setup is now complete, and it has been demonstrated how the conceptual
pipeline outlined in Chapter 4 can be put to the test in a real-world experiment using real data. The
experiments and results in the following sections are based on this setup.

5.5. Experiment 1: Increasing Prior Domain Knowledge
SRQ5: How does prior information about the domain and related classes to the OOD classes of interest,
help detection?

In our first experiment, we deploy our models in the exact process laid out in the main setup above. For
each model, we incrementally train from 1 to 10 relevant vehicles for both 3D and 10D UMAP data. By
doing so, we shall not only see the effect of increasing prior domain knowledge for a variety of models, but
also experience the potential effects of (high) dimensionality (which answers SRQ3).

We split this experiment in two parts, testing separately on the following methods:

1. Point-based methods (ML models)
2. Distribution-based methods (statistical distance metrics & f -divergence)

Our objective is to find out to what extent, knowledge of even a single class generalises well to other
classes, i.e. how well can our models perform relevance detection when only trained on 1 class? Does their
performance significantly increase, or even increase at all when we incrementally train on more classes?
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5.5.1. Point-based detection models
In Section 5.5.1, the results of all models are presented and plotted relative to AUC = 0.5 (red), which is
the score of a random classifier. They simply serve as a quick and high-level overview of all models. We
shall zoom in on the best performers next.
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Figure 5.8: All five models from left to right, top to bottom: SVM, PCA, IF, iNNE, FB

Through visual inspection, it is already clear that PCA outperforms all others, since it reaches the highest
AUC scores and exhibits the lowest standard deviation. While SVM and Isolation forest show high perfor-
mance as well, especially for the 10D data (orange curves), we found that PCA still tops them when directly
plotting them against PCA. The last two models (iNNE and Feature Bagging), however, do not do so well.
Since the goal of using point-based methods was to obtain a baseline model (which we now have), we shall
not investigate why some models perform less well and move on instead.

Zooming in on the best performer (PCA), for both 3D and 10D, leads to the following curves in Fig. 5.9.
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Figure 5.9: Zooming in on PCA.

The main insight obtained from Section 5.5.1, is that (most of) our point-based models generalise surprisingly
well. Even when only training on 1 relevant class, PCA achieves AUC scores in the range of 93−99%, which
are exceptionally good scores. This implies that irrelevant and relevant data points in feature space are far
apart to such an extent, that the PCA hyperplane (Fig. 4.23) can make an accurate distinction between
them. It is hard to draw any general conclusions regarding the dimensionality of the data as of now since
the models in Section 5.5.1 are each fundamentally different and therefore show contrasting behaviour, but
based on our tests so far, 3D data is the better choice for point-based methods.

Table 5.2: Best performing dimension per model, where ”same” indicates that 3D and 10D have similar performance.

Best dimension
OC-SVM 10D
PCA 3D
IF same
iNNE same
FB 3D

5.5.2. Distribution-based detection models
For the distribution-based models, we use a clustering algorithm as pointed out in Section 4.4, since the
UMAP output is comprised of points, rather than clusters Q1, . . . ,Q345. We selected K-means as the
clustering algorithm in place of a density-based model like DBSCAN, despite some of its drawbacks. We
discuss this in Section 5.7. Furthermore, we would like to point out that K in K-means was fixed at K = 34,
since our models perform well for this value. Why this is the case, and how K was determined shall be
treated in a separate study in Section 5.7 as well. For now note that all distribution-based models were
tested on clustered data, where relevance detection worked best when data was divided into 34 clusters,
rather than 345. Thus, numerous classes might be conveniently combined without negatively affecting
relevance detection.

Figure 5.10: Test data of 345 classes, clustered into 34 clusters by K-means before fed to the distribution-based models.
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In the following figures, we present and compare the results of the distribution-based methods using PCA as
a baseline for 3D and 10D data.
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Figure 5.11: Distribution-based vs point-based. Left: 3D, right: 10D.

The plots of Fig. 5.11 feature a variety of events, so to fully grasp the displayed model behaviour we study
the following:

1. Understanding what went well:
Euclidean & Wasserstein in 3D, Euclidean, Wasserstein & KL-divergence in 10D

2. Understanding what went wrong:
KL-divergence in 3D

To obtain a clearer picture, we zoom in on what went well in Fig. 5.12, by omitting the poorest performing
distribution-based model.
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Figure 5.12: Distribution-based vs point-based (zoom). Left: 3D, right: 10D.

In 3D, both Euclidean and Wasserstein outperform point-based models, especially when one trains on 1 class
only: PCA averages around 96% for 1 class, while Wasserstein and Euclidean average around 99.63% and
100% respectively. In 10D, the out-performance holds for Euclidean and Wasserstein as well. The main
insight obtained here is that distribution-based models can beat the point-based baseline models and can
especially add value when one does not have access to much prior information.

The perfect scores of the Euclidean distance raise concerns about its validity. Also, how can some AUC
scores be so high, while others are so low? Conversely, why is Wasserstein so poor in 10D while its works so
well in 3D? (the same holds vor KL-divergence, where the opposite is true). Are there any potential flaws
in our data, models, or methodology? After looking for these potential flaws and finding nothing, we have
reason to suspect that the way the distances are computed is what is causing this disparity in performance.
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Why else would the performance be so different for various measures, when the data and methodology are
exactly the same? We believe that for each of the three distance measures, the ratio between the distances
to relevant classes/ the distance to irrelevant classes might be different. In other words, for some measures,
irrelevant classes might be (much) farther away from the training clusters, than relevant classes:

d(Qirrelevant,P) � d(Qrelevant,P) (5.2)
To prove and further investigate this for various measures, we calculate the ratio between these distances for
each metric as follows.

Ratio =
d(Qirrelevant,P)
d(Qrelevant,P)

(5.3)

We repeat and plot this for each iteration to see if these ratios diverge when more prior information is added.
Fig. 5.13 depicts the values of these ratio in 3D (left) and 10D (right).
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Figure 5.13: The ratio between irrelevant classes and relevant classes in feature space, per model. Left: 3D, right: 10D.

The first and foremost observation we make is that the ratio for the Euclidean distance at a ratio between
4− 5, is considerably distinct from the others in 3D, i.e. irrelevant classes Qirrelevant are 4− 5× as far from
the training clusters P1, . . . ,Pk than relevant classes Qrrelevant when using the Euclidean distance measure.
This holds for both 3D and 10D data, and explains why the performance of the Euclidean metric is so high
and consistent in Fig. 5.12; it is relatively easier to distinguish relevant from irrelevant if irrelevant classes
lie much farther than relevant classes.

The second notable pattern we see is that the ratios for all distance measures do not (significantly) diverge
from their starting point at iteration 1 and remain almost constant over the iterations. Meaning that the
ratio d(Qirrelevant,P)

d(Qrelevant,P) remains roughly constant even when we add more training clusters P to calculate the aver-
age distance from. The main insight we obtained from this is that the training clusters of road vehicles (our
prior information) are located close to each other, meaning that adding more classes to our prior information
did not affect the average distance from one test cluster Qj to all training clusters Pi.

At last, we notice that the boost in performance of the KL-divergence in 10D can be explained by the right
plot above which shows that the ratios for the KL-divergence have gone up considerably. We would have
expected Wasserstein’s ratio in 3D to be high as well since it performs on par with the Euclidean distance,
meaning that there might be more to the performance disparity than the ratios alone.

Based on the results and corresponding intermediate evaluation so far, we believe that there can be other
factors that can influence the performance. We hypothesise that the clustering algorithm we used, K-means,
can affect the KL-divergence and Wasserstein distance since K-means is responsible for generating the points
per cluster (or per distribution). This leads to a new research question on what would happen if we removed
K-means and used the ground truth clusters instead. We treat this in the next experiment.
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5.6. Experiment 2: Ablation Study for Removing K-means
SRQ6: Does performance improve if we remove K-means, and use ground truth clusters instead?

While K-means clustering has no effect on point-based models, it plays a critical role in distribution-based
methods. This is because the clustering algorithm directly decides which points will be put into which
cluster/distribution. For instance, K-means groups together points of three different classes that can lead
to a new distribution with significantly different statistical properties than the three individual distributions.
Since the Eculidean distance is a centroid-based distance (it calculates straight distances between the means
of each cluster) it does not take cluster shape into account and therefore is not affected by K-means as
much as the Wasserstein distance and KL-divergence (which look at the distribution as a whole since they
are non-parametric techniques).

To see if K-means affects the distance measures we set up an ablation study where, instead of clustering, we
sample distributions directly from the ground truth classes. This means we manually create clusters of each
class without using K-means. This leads to 345 pure clusters/distributions which we will refer to as ’ground
truth’ clusters. In Fig. 5.14 we present the ground truth equivalent of Fig. 5.11, compared to PCA again.
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Figure 5.14: Distribution-based vs point-based, ground truth clusters. Left: 3D, right: 10D.

We shall compare the K-means version of each model side-by-side to its ground truth counterpart on the
next page. Before doing so we also visualise the development of the ratios, previously shown in Fig. 5.13,
for the ground truth clusters in Fig. 5.15; where we observe the same patterns as in the K-means case.
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Figure 5.15: The ratio between irrelevant classes and relevant classes in feature space, per model. Left: 3D, right: 10D.

To assess the impact of switching from K-means to ground truth clusters, we now compare the three distance
measures in Fig. 5.14 to their K-means counterpart displayed in Fig. 5.11. The plots on the left are in 3D,
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and the plots on the right are in 10D, as seen in the images below. To ease visual analysis, all blue curves
correspond to K-means whie all orange curves to ground truth clusters.
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Figure 5.16: Ablation study with Euclidean. Left: 3D, right: 10D.
The blue curves are equal, at a perfect score of 100%.
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Figure 5.17: Ablation study with KL-divergence. Left: 3D, right: 10D.
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Figure 5.18: Ablation study with Wasserstein. Left: 3D, right: 10D.

It is striking that for almost all distance measures, in both 3D and 10D, relevance detection performs better
on K-means clusters (mixed clusters with K=34) than on ground truth clusters (pure clusters). The per-
formance discrepancy is not only reflected in terms of sheer AUC but also in terms in terms of standard
deviation since the blue curves exhibit significantly less variance than the orange curves. The only case for
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which this does not hold is for KL-divergence, where both curves do not display great performance. We shall
investigate the anomalous case of KL-divergence in Section 5.8. For now, we would like to understand why
relevance detection underperforms on ground truth clusters.

We expected performance to be better using ground truth clusters since these are pure clusters per class.
Whenever we are using ground truth clusters, each of the 345 classes gets its own pure cluster. The result is
345 unique clusters in feature space, which is comparable to running K-means for K = 345, except for the
fact that K-means can mix classes into clusters and ground truths are pure. This leads to the second addi-
tional research question on what would happen if we were to increase K in K-means all the way to 345; what
value of K for our data-set optimises relevance detection? We hypothesise that if K is too great, it will result
in over-fragmented clusters, which could lead to misleading cluster distances. We test this in the next section.

Finally, we provide the best-performing dimensions for both the K-means and ground truth cases. In con-
trast to point-based models in Table 5.2 where 3D data was the better choice for relevance detection, for
distribution-based models, we have evidence to suggest that 10D data is the best option.

Table 5.3: Best performing dimension per model, where ”same” indicates that 3D and 10D have similar performance.
This table is based on the results of the previous sections where both the values of the AUC and standard deviation are taken

into account.

K-means Ground truth
Euclidean same same
Wasserstein 3D 10D
KL-divergence 10D 10D

5.7. Experiment 3: Varying K in K-means
SRQ7: What value of K for our data-set optimises relevance detection?

Recall that UMAP does not per se produce spherical clusters making centroid-based clustering algorithms a
sub-optimal candidate for clustering. A density-based clustering method like DBSCAN would from a technical
perspective be a wiser choice as it can capture non-linear patterns in the clusters. In spite of this, we still
selected K-means (a centroid-based algorithm). The reason for doing so is that we wanted to see what
happens in the case where clustering is not optimal. Do our methods fail in such a scenario? Are advanced
clustering algorithms essential for our distribution-based models? Furthermore, K-means is straightforward
to implement with great interoperability. We decided to move to more advanced models only when K-means
would cause too much of a bottleneck.

5.7.1. Determining the optimal K for clustering
For K-means clustering, it is necessary to provide the number of clusters (K) beforehand. In our case, we
knew prior to experiments that we would encounter 345 classes at test time, while in realistic applications
one does not have access to the information on the number of classes. How does one determine the optimal
K for clustering in that case? And why did we use K = 34 in our experiments when we knew that the total
amount of classes is 345? The answer lies in using various heuristics.

In machine learning and statistics, the Elbow method is a common and powerful heuristic to determine the
optimal K. Is it an iterative method which runs the K-means algorithm for a range of values for K, e.g. 5 to
40, and determines which K is optimal based on some loss. The elbow method is based on finding a value
in the range of K, from where diminishing returns are no longer worth the additional cost. This value lies
on the loss curve’s inflection point or ’elbow’. A frequently used and suitable loss function is the distortion
score, which is the mean sum of squared distances from a point xi to its corresponding cluster centre, µX
where X is a cluster.

distortion =
∑
i

( data point xi − centroid µX)
2
+ ( data point yi − centroid µY )

2
. . . (5.4)

The idea behind this is as follows, if a point xi actually belongs to a cluster X, it will be relatively close to
µX . Therefore, correctly clustered points lead to smaller distances (xi−µX)2, thus smaller distortion scores
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and vice versa. Fig. 5.19 depicts the distortion scores for varying K from 2 to 100, leading to an elbow at
K = 13. According to this method, increasing K will lead to diminishing improvements.
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Figure 5.19: Distortion scores with elbow at K=13.

Fig. 5.19 gives the impression that when ignoring computational costs, values above K = 13 will still be
better since the drop in distortion is not insignificant. Does this mean that when one has the resources, a
higher K will always be better? We verify the elbow score of 13 for our own our model’s performance by
running it for values for K that are both lower and higher than the elbow score in the next test.

5.7.2. Determining the optimal K for relevance detection
The following test is conducted to understand why (most of) our distribution-based models performed better
on K-means clustered data at K = 34, than on ground truth clustered data. We hypothesised a number of
clusters (K) that is too great, will result in over-fragmented clusters which could lead to misleading cluster
distances. To test this we ran Wasserstein, trained on only 1 class, on data clusters where K is varying from
K = 10 to K = 345, with increments of 5. We expect that the AUC of the model will indeed start to
deteriorate from a certain K onward. For reference, we have provided the AUC values for the K-means and
ground truth performances at iteration 1 (from Fig. 5.18) as dashed lines.
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Figure 5.20: Running a distribution-based model, the Wasserstein distance ’trained’ on 1 class in this case, for very high
values of K ranging from 10 to 345. Left: 3D, right: 10D.

As expected, the AUC score has dropped significantly at K = 345, in both 3D and 10D. We make two striking
observations from the graph; the first being that for low values of K (K ∈ [10, 50] in 3D and K ∈ [10, 35]
in 10D) the model not only performs at its best with low variance and high AUC. The second observation is
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that we have found a clear tipping point; from K = 50 onward, the performance drops drastically in terms of
AUC and standard deviation. The two major insights we gained from this test are that the optimal value for
K is not fixed but can be found in a range of values which leads to more degrees of freedom for choosing K.
And secondly, choosing a high value for K hampers relevance detection. Apparently, a few clusters provide
a good representation for relevancy detection.

5.8. Evaluation & Discussion
The contents of this section conclude our results chapter and are three-fold:

1. A performance analysis beyond the AUC score is performed, where we study which specific classes are
hard or easy to detect.

2. Through a visual analysis of the clusters in feature space, we further discuss and show why the Euclidean
distance performed better

3. At last, this section is concluded with a discussion of how well our results align with our hypotheses.

5.8.1. Going beyond the AUC score: which classes are detected the best/worst?
While our experimental setup did a suitable job in testing our conceptual pipeline on realistic data, we realise
that the AUC values alone do not paint a complete picture of the performance. The AUC covers the general
performance of the model but does not show how well each individual class is detected.

The reason for this concern is that in our use case of surveillance and security, the accurate detection of some
classes matters far more than of others. Furthermore, to properly assess and evaluate our model we need
to understand which classes are generally harder to detect in order to improve it. To do this, we perform a
class-specific analysis where we calculate the accuracy of each class.

accuracy per class [%] =
# correctly classified samples

# total samples (5.5)

First and foremost want to see whether the 11 classes of interest, road vehicles, are detected correctly. In the
following tables, we present the average accuracy per iteration for each road vehicle class, where the rows
correspond to iterations 1-10 (increase in prior knowledge). Our aim is to learn from errors, we therefore
only show the values for 3D K-means clustered data since most 10D data performed even better than 3D.

Table 5.4: Accuracy per road vehicle class - PCA 3D

ambulance bulldozer bus car firetruck pickup_truck police_car school_bus tractor train truck
1 0.9935 0.9798 0.9688 0.9420 0.9397 0.9900 0.995 1.0 0.9967 0.9652 0.9884
2 0.9968 0.9798 0.9830 0.9493 0.9468 0.9900 0.995 1.0 1.0000 0.9739 0.9913
3 0.9968 0.9798 0.9830 0.9493 0.9504 0.9900 0.995 1.0 1.0000 0.9797 0.9913
4 0.9968 0.9798 0.9830 0.9493 0.9539 0.9900 0.995 1.0 1.0000 0.9797 0.9913
5 0.9968 0.9798 0.9830 0.9493 0.9539 0.9933 0.995 1.0 1.0000 0.9826 0.9913
6 1.0000 0.9798 0.9886 0.9529 0.9610 0.9933 0.995 1.0 1.0000 0.9855 0.9942
7 1.0000 0.9798 0.9915 0.9529 0.9610 0.9933 0.995 1.0 1.0000 0.9855 0.9942
8 1.0000 0.9798 0.9915 0.9529 0.9610 0.9933 0.995 1.0 1.0000 0.9855 0.9942
9 1.0000 0.9798 0.9915 0.9529 0.9610 0.9933 0.995 1.0 1.0000 0.9855 0.9942
10 1.0000 0.9798 0.9915 0.9529 0.9610 0.9933 0.995 1.0 1.0000 0.9855 0.9942

Table 5.5: Accuracy per road vehicle class - Euclidean 3D K-means

ambulance bulldozer bus car firetruck pickup_truck police_car school_bus tractor train truck
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 5.6: Accuracy per road vehicle class - KL-divergence 3D K-means

ambulance bulldozer bus car firetruck pickup_truck police_car school_bus tractor train truck
1 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
2 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000
3 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
4 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
5 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
6 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
7 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
8 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
9 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
10 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Table 5.7: Accuracy per road vehicle class - Wasserstein 3D K-means

ambulance bulldozer bus car firetruck pickup_truck police_car school_bus tractor train truck
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

From the tables above it is clear that the models at least detect the classes of interest well. Table 5.6 proves
why such a class-specific is useful; in 3D the KL-divergence was by far the lowest-performing model with an
AUC oscillating around 0.7. From the KL-divergence table above, we learn that in spite of low(er) AUC, our
relevant classes are still correctly detected with high accuracy. When we average each column in Table 5.6
per road vehicle over 10 iterations, we obtain an accuracy of 85.78%.

Moving on, we would like to find out how well the other 345-11=334 classes compare to the vehicle classes
in terms of accuracy. Since it is impractical to create a table like the ones presented above for 345 classes,
we shall make use of heat maps. First, we transpose the accuracy table so that the classes are now on the
vertical axis, allowing for the long list of 345 classes. Next, rather than displaying a value in each cell, we
display colours. Each cell is coloured where a black cell corresponds to 0.00% accuracy and a beige-coloured
cell to 100%. Fig. 5.21 depicts a miniature example of what will follow; classes on the vertical axis and
increasing amounts of prior knowledge on the horizontal axis.
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Figure 5.21: An example of what the heat maps will look like. For the 345-long heat map, we shall omit numerical values.

Heat maps shall allow us to visually detect where the weak points of each model lie, as well as how each
model performs; the lighter the map, the better the performance. Fig. 5.22 depicts the four heat maps of
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the four models discussed earlier on 3D data again, now for all 345 classes. We have sorted the rows of each
heat map from highest to lowest average accuracy in order to observe visual patterns.
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Figure 5.22: From left to right on 3D data: KL-divergence, PCA, Wasserstein, and Euclidean.

It is immediately clear from the heat maps that the Euclidean distance has proven itself to be the best
performer, yet again. The KL-divergence had already shown less than optimal AUC scores in Fig. 5.17 for
3D, which is reflected in the heat map. We suspect that the drop in performance can be explained by the
possibility that data features have drastically different ’probability’ distributions for 3D and 10D data, the
differences in ratios shown in Fig. 5.13 supports this. We would like to emphasise the term ’probability’ here,
since out of all models we used, the KL-divergence is the only statistical distance that models directly models
point clouds as probabilities (by converting discrete data into probability mass functions). More research on
higher moments beyond the mean and variance, such as kurtosis should be carried out to provide clarity on
this. The other models perform well for the majority of classes, so we zoom in on their top 10 worst classes.
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Figure 5.23: Top 10 worst detected classes for PCA.
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Not only does PCA perform poorly for some classes, we see that the performance drops abruptly after we
train on even one additional class. This means that for those classes, PCA cannot generalise well. The main
implication that follows from this, is that the hyperplane used by PCA, cannot successfully separate relevant
from irrelevant when more training data is added. We suspect that the irrelevant classes shown in Fig. 5.23,
contain elements of road vehicles making them harder to classify as irrelevant. We now check for the other
models whether these classes are also harder to label as irrelevant.
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Figure 5.24: Top 10 worst detected classes for Euclidean.
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Figure 5.25: Top 10 worst detected classes for Wasserstein.

The one class that is at the bottom of all heat maps, with a 0% accuracy, is the class ’van’. Van is obviously
a road vehicle and therefore relevant. In spite of that, we are pleased to see this, as this is good news. Recall
from Fig. 5.2 that we manually searched and organised the classes of interest in the DomainNet data-set.
During this process, we completely missed the ’van’ class and did not include it in our list of 11 road vehicle
classes. This means that we hard-coded the ground truth value for van as ’irrelevant’. We are glad that
our model, even though we made a mistake on our end, has still classified (almost) all vans as ’relevant’.
The 0% accuracy in the heat maps resulted from our hard-coded label that essentially told the model is was
wrong every time it classified a van as relevant.

For all three distribution-based models, we see some overlap classes that seem to be hard to detect. We
hypothesise that this performance drop is caused by elements of relevant classes, that are present in images
of irrelevant classes. E.g. an image of a stop sign (irrelevant class) with cars in the background (element of
a relevant class). To test this, we take a few of these classes and images of those classes that have proven
to be especially hard to correctly classify. We have selected the classes bicycle, motorbike, and church. In
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the figures below, we present the top 4 images of these irrelevant classes that were misclassified the most
through all runs:

Figure 5.26: Motorbike images that were ’incorrectly’ classified as relevant.

The second image in Fig. 5.26 does not contain any other vehicles but is most likely to be misclassified as
’relevant’ since it is a police vehicle. Our training set of relevant classes contains police cars and ambulances
that share the bright colours and patterns shown on the motorbike.

What is most interesting is that we observe that three out of four motorbike images contain elements of
the road vehicle classes as well; the first, third, and fourth all contain cars or trucks, and all of these three
images are related to accidents. The main insight gained from this is that we can use our model to find
accidents in large data sets when setting vehicles of emergency services as relevant, and testing on irrelevant
vehicle classes. This is a very valuable finding since accidents can be very relevant to a safety and security
use case like ours.

Figure 5.27: Church images that were ’incorrectly’ classified as relevant.

We are pleased to discover the same phenomenon that we found for motorbikes, for the church class Fig. 5.27.
The images of the church class are mostly clean and do not contain any unrelated elements, which is why
we were surprised at first to see the church class at the bottom of the heat map. After loading the top
4 misclassified images, however, it is clear what went wrong. All images were related to accidents that
happened at churches, containing therefore vehicles of emergency services. The first image of the church
class is not even a photograph of a church, but a police car that is located in front of a church. This is again
a very intriguing finding since we have shown that even the most irrelevant of classes (churches, which are
less relevant than motorbikes), that are by themselves completely unrelated to vehicles and thus our safety
and security use case, can contain incredibly relevant events.

Figure 5.28: Bicycle images that were ’incorrectly’ classified as relevant.

For the bike class, the reasons for misclassification are similar to the previous cases. The first image of
Fig. 5.28 is of particular interest; as it is not a regular bike, but a rather large and peculiar vehicle that bears
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close resemblance to Batman’s Batcycle. We are glad that our model flagged this image as relevant even
though it belongs to an irrelevant class. The insight gained from this is that vehicle classes that are not
relevant, can become relevant when strange variations of adaptations of it arise (like a Batcycle, or strange
military vehicle that looks like a bike, but actually is not).

The main conclusion we draw from this error analysis is that whenever our model classifies images of irrelevant
classes as ’relevant’, we should be extra cautious and check those instances as they can contain relevant
events / relevant classes. Through this test we have shown that our model can even find relevance, within
irrelevance, making it one of the most valuable insights gained throughout this thesis, for practical use cases.

5.8.2. Why the Euclidean distance performs so well
The Euclidean distance has consistently outperformed advanced and non-parametric SOTA methods like the
Wasserstein distance and the KL-divergence. We have shown in Fig. 5.13 that its out-performance can be
explained by the discrepancy in ratios, where irrelevant classes lie significantly farther than relevant classes.
We extend this through a visual analysis by plotting a few training clusters of relevant vehicle classes (blue),
testing clusters of relevant vehicle classes (green), and multiple irrelevant classes in Fig. 5.29.

Please focus on the red ellipse drawn around the blue training classes; it is clear that the green relevant
vehicle classes at test time lie considerable closer to the blue training classes than the other irrelevant classes.

UMAP: n_neighbors=15, min_dist=0.1
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Figure 5.29: Purple ellipses: irrelevant test classes. Red ellipse: relevant training classes.
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We used default values for the UMAP parameters (previously discussed in Section 4.2.2) as these preserve
a good balance between local and global structure. Fig. 5.29 shows data that is reduced to 2D since that is
easier to interpret for this analysis.

From Fig. 5.29 it is clear that irrelevant classes lie so much further apart from relevant classes in feature
space, that computing straight distances between them should suffice. While this explains why Euclidean
performs well, it does not entirely explain why it outperforms non-parametric techniques. The non-parametric
distance measures (Wasserstein, and KL-divergence) also take statistical information like cluster shape,
relative weights of the tails of a distribution (kurtosis), and many other statistical properties into account,
apart from the mean and variance. From the plot in feature space, we see that it is more difficult to determine
similarity based on even cluster shape alone since visually similar classes do not necessarily have the same
cluster shape; both the Great Wall of China and the Mona Lisa have a similar shape but are not similar
classes. Vehicle classes do appear to have a very irregular shape, unlike any other classes, which is one reason
they still perform well. All in all, we conclude that a parametric straight distance, based on cluster centres
is enough for relevance detection in UMAP feature space.

5.8.3. Aligning results with hypotheses
In the previous sections, we have already answered all the research questions and treated our results with
respect to our hypotheses. Therefore, this sub-section serves as a brief overview and recap of how the results
align with the hypotheses stated at the start of this chapter.

H1: Relevance detection can be done in a more robust way when using a cluster-based approach.
Through extensive testing we have validated our first hypothesis and found that indeed a cluster-based
approach is more robust in terms of AUC and accuracy per class. Using statistical distances between
clusters or ’distributions’ better takes atypical points (strange buses and/or dogs) into account, and
are also more adept at separating classes in features space than for instance the hyperplane used by
PCA. Our results of relevance detection therefore fully align with this hypothesis.

H2: Statistical properties, such as cluster shape, play an important role in relevance detection.
The most unexpected result of this thesis was that apparently, one is better off using simple Euclidean
distances than advanced non-parametric ones. We are aware of the fact that UMAP plays a part in
this result, but that is also precisely why we expected cluster shape to matter; UMAP usually produces
very irregular and non-spherical and we had therefore anticipated that by including non-parametric
methods in our arsenal. Therefore, this hypothesis did not align with what we found in our research.

H3: Relevant OOD classes are better discovered when we have more prior domain information.
We have found that distributions-based methods could generalise very well to the unseen relevant
classes after having only been trained on one class. Increasing the amount of prior information did
not have a significant effect on both the AUC and accuracy scores. For point-based models, however,
it was worthwhile to train on more classes. Even though point-based models generalised well to
unseen relevant classes too, they could benefit from training on at least two to three classes, while
distribution-based methods only needed one. This is yet another reason why cluster-based techniques
are favourable, especially when prior information is not widely available. This result was unexpected
and therefore also not in line with our hypothesis.

H4: Our pipeline will perform better on low-dimensional data.
The dimensionality of the data did not have any drastic effects on most models. Only the KL-divergence
benefited greatly from higher dimensions while the rest of the models either increased or decreased
to a much lesser extent. It is hard to say whether this hypothesis also did not align with the results
since it depends on what one defines as high-dimensional. In our case, 10D is already high-dimensional
and we have discovered that the tested models work well on 10D data, making the hypothesis invalid.
But we do expect the performances of especially the Euclidean distance to decrease in very high
dimensions like 100-2000D (which are common output dimensions of neural network architectures
before dimensionality reduction) which would render this hypothesis valid.



6
Conclusions & Recommendations

In the open world, machine learning models can encounter a multitude of unknown or novel classes. In a
surveillance or safety use case described in Chapter 1, where potential threats of unknown vehicles have to
be detected, it is crucial that the model can distinguish which unknown classes it encounters are relevant to
our use case (unknown enemy vehicles) and which ones are not (harmless unknown birds). This motivated
us to research this topic and develop a novel mathematical approach to answer the following (main) research
question in this thesis on computer vision.

(How) Can relevant unknown classes be distinguished from irrelevant unknown classes?

Through this thesis, for the first time to the best of our knowledge, a method is developed that can assess the
relevance of unknown classes, by modelling their image features as clusters (or distributions) and comparing
them using statistical distance measures. Given images of classes that are defined as ’relevant’ by a user, we
have shown that this novel method can accurately determine the relevance of unknown classes at test time
for both low and high-dimensional data, and is therefore the answer to our main research question.

6.1. Conclusions
Given the mathematical nature of our methodology, we wanted to research how the statistical properties of
classes can be leveraged to distinguish the relevant from the irrelevant ones. We hypothesised that cluster
shape would play a major role and that non-parametric statistical distances should be able to capture this
best. Throughout our experiments in Chapter 5, we have deployed both parametric and non-parametric
approaches to compare statistical distributions of classes. To our surprise, the Euclidean distance, which is
a parametric distance, outperformed our non-parametric candidates (Wasserstein distance, KL-divergence,
and the point-based ML models) by a great deal in all tests. Through various tests that followed, we have
shown that classes are far enough apart in feature space to such an extent, that cluster shape indeed does
not have to matter for relevance detection. This has proven to be one of the most unexpected and major
insights of this thesis since one is better off using the elementary Euclidean distance than a state-of-the-art
non-parametric technique.

Through increasing the training set of prior knowledge we found that even after only training on a few
classes, most models performed well at around 97-99% AUC. With Euclidean scoring a perfect 100% when
training on 1 class only, and point-based models like PCA benefitting from training on two to three classes.
This implies that one does not need much prior information to perform accurate relevance detection, mak-
ing our method very suitable for cases where data on a specific group of interesting/relevant classes is scarce.

During the ablation study of our clustering algorithm of choice, K-means, we found that relevance detection
works less well on ground truth clusters, which seems counter-intuitive. After investigating this further we
discovered that for relevance detection, the user is better off by not choosing the number of clusters (K) equal
to the number of classes but much lower. In our case, a K between 10 and 50 led to the best performance.
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After running all tests on the general performance of the models, we conducted an error analysis for which
we computed the accuracy per class. Through this analysis, we could understand which classes are hard to
detect and why. The main conclusion we have drawn from this error analysis is that even when irrelevant
samples are incorrectly classified as relevant, there is something relevant about them. For instance, we found
that the Euclidean distance was often not entirely wrong whenever it was classifying images of churches as
relevant; images of churches that were found relevant by the model contained road vehicles. As a matter of
fact, all those images were related to accidents that happened at churches, containing therefore vehicles of
emergency services. We found the same to be true for relevant images of motorcycles; most were involved
in road accidents and there contained police cars and ambulances as well. This is a valuable finding as it
has revealed that our model could possibly used to find accidents in large data sets when setting vehicles of
emergency services as relevant, and testing on irrelevant vehicle classes. This is a very valuable finding since
accidents can be very relevant to a safety and security use case like ours.

6.2. Recommendations for Future Work

1. A separate, more extensive study on dimensionality
All tests were conducted using both 3D and 10D data. Although it was hard to draw very general
conclusions since this is model-dependent, throughout our testing we found that point-based methods
perform slightly better on 3D data, while distribution-based methods benefit from 10D data. Despite
the fact that both 3D and 10D have proved themselves to be suitable dimensions for relevance detection,
more research on the effect of dimensionality should be done. We recommend running a separate test
where the dimensionality is varied from 2D to 512D (CLIP output) for various models, in a similar
fashion we have varied K from 10 to 345. Such a study can hopefully lead to more general insights
into what dimensionality practitioners should use for relevance detection.

2. Perform relevance detection on ’extremely’ hard cases
We performed detection on high-resolution data of classes that were already visually close (thus chal-
lenging): we trained on road vehicles, and tested on aircrafts/ships which is already much harder than
what we have found in literature. One could try relevance detection on classes that are even closer
than that:

• Training on military road vehicles and testing on military aircrafts.
3. Choose relevant training classes that are not similar.

In our cases our training classes (road vehicles) were close to each other in feature space (see
Fig. 5.29), meaning that every iteration an extra training class was added, the overall average dis-
tance 1

k

∑k
i=1 d(Qj ,Pi) did not change much. This will be different when our relevant training classes

are not close to each other. As an example take the following case:

(a) Test on classes of the animal kingdom
One could select all animals with two feet as the relevant class, and all other animals (four feet)
as irrelevant. What makes this problem much harder is that even within the group of relevant
classes there is a considerable amount of variance; not all two-footed are alike and therefore
probably far in feature space (e.g. birds and chimpanzees, and kangaroos).

4. Adaptations to determining relevance
We used average distances from one test cluster to all training clusters 1

k

∑k
i=1 d(Qj ,Pi) which has

worked well so far. But for recommendation 3, where one uses training classes that are located far
apart, it would be highly useful to also consider alternatives to the average. Let the relevance of a
class now also be determined its nearest neighbouring cluster, or perhaps even the nearest neighbouring
point of another cluster. Average distances to training clusters that are far apart will lead to misleading
results.
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A.1. CLIP Neural Network Architecture
CLIP (Contrastive Language-Image Pre-Training) is a neural network released by OpenAI on January 5th
2021, that is trained a vast amount of data; 400,000,000 digital images and their corresponding captions to
be precise. What sets CLIP apart is that it is a multi-modal network for vision and text; unlike conventional
computer vision models, CLIP is not limited to assigning fixed labels to each image as it has also been
explicitly been trained on text data. This means that CLIP is able to ”predict the most relevant custom text
snippet, given an image.” (Radford et al., 2021), rather than a predefined or fixed label. As a result, one can
input any image into CLIP, and it will return the likeliest label, caption, or summary of that image. This is
a considerable feat as it makes CLIP a suitable candidate for zero-shot learning (predicting labels of classes
it has never seen before).

While CLIP has become a powerful bridge between computer vision and natural language processing, and
an extraordinary zero-shot classifier, it was not necessarily intended for our use case. But as it has gone
through extensive pre-training, we will be using it as a feature generator and therefore very briefly discuss
its architecture below.

Figure A.1: Visual overview of the operational dynamics of CLIP [79]. Violet: text processing, mint green: image processing.
Part 1 shows the training (left), while part 2 & 3 depicts the testing operations (right).

CLIP is comprised of two neural networks 1, denoted as fT and fI :
1. Text encoder fT : transforms text data to a vector in a mathematical feature space.
2. Image encoder fI : transforms image data to a vector in a mathematical feature space.

CLIP is pre-trained as follows:
Let (xI ,xT ) denote an (image, text) pair, with Ii = fI (xIi) and T i = fT (xTi

) the corresponding vector
representations (called embeddings) obtained by networks of the i-th data pair. CLIP then learns how close a
text embedding is to an image embedding by computing the cosine similarity with angle θ between the vectors.

It uses the following losses to train: the text-to-image loss L(I→T )
i and the image-to-text loss L(T→I)

i , which
are cross entropy losses of the cosine similarity:

L(I→T )
i = − log

exp (Sθ(Ii,T i))∑N
k=1 exp (Sθ(Ii,T k))

, L(T→I)
i = − log

exp (Sθ(T i, Ii))∑N
k=1 exp (Sθ(T i, Ik))

,

where Sθ(·, ·) denotes the cosine similarity, and N the sample size. Through a variant of gradient descent,
CLIP’s final objective is to minimise the average loss (see [54] for details):

1

N

N∑
i=1

(
L(I→T )
i + L(T→I)

i

)
/2

At test time it will predict a fitting caption for a new image, based on the highest cosine similarity of the
new image vector Ii and multiple text candidates: (Ii,T 1), (Ii,T 2), . . . , (Ii,TN ).

1The encoders used by CLIP to achieve the highest performance are transformer neural networks, which is beyond the scope
of this thesis. It is not necessary to understand their architecture, but we refer curious readers to the following: [80, 81].
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