
An accurate and robust finite volume method for

the advection diffusion equation

Paulien van Slingerland

December 14, 2006

Delft University of Technology WL | Delft Hydraulics

ii

Contents

1 Introduction 1

2 Physical and mathematical waterquality model 3

2.1 Physical model . 3

2.1.1 Transport . 3

2.1.2 Water quality processes 4

2.2 Mathematical model . 5

2.3 Conclusion . 5

3 Finite volume method 7

3.1 Finite volume method for scalar conservation laws 7

3.1.1 Convergence, stability, and related topics 10

3.2 Finite volume method for the one-dimensional advection equation 12

3.2.1 First order schemes . 13

3.2.2 Higher order schemes . 15

3.3 Finite volume method for the water quality model 16

3.4 Flux correcting transport algorithm 18

3.5 Nonlinearity . 20

3.6 Conclusion . 21

4 Solution methods for linear systems 23

4.1 Direct methods . 23

4.1.1 Triangular matrices . 23

4.1.2 General square matrices 24

4.2 Iterative Methods . 25

4.2.1 Linear fixed point iteration 26

4.2.2 Krylov methods . 27

4.3 Conclusion . 32

5 Preconditioning 33

5.1 Basic preconditioning . 33

5.2 Preconditioners based on matrix splitting 34

5.3 Preconditioners based on an incomplete LU factorisation 34

5.3.1 Incomplete LU threshold 35

5.3.2 Incomplete LU . 36

5.4 Conclusion . 39

iv CONTENTS

6 Reordering 41

6.1 Symmetric permutation . 41
6.2 Renumbering the adjacency graph 42

6.2.1 Level-set orderings . 43
6.2.2 Independent set orderings 44
6.2.3 Multicolor orderings . 45

6.3 Conclusion . 45

7 Storage of sparse matrices 47

7.1 Coordinate format . 47
7.2 Compressed sparse row format 48
7.3 Conclusion . 49

8 Conclusion and further investigation 51

8.1 An accurate and robust scheme 51
8.2 Convergence of GMRES . 51

A Current schemes 53

Chapter 1

Introduction

At present, plans are being made for the construction of Liquefied Natural Gas
pipes in the sea bed off the coast of Hong Kong. To this end, dredging is nec-
essary which causes plumes of silt in the water. The silt particles float in the
water for a relatively long period of time, until, eventually, they settle on the
sea bed. Unfortunately, both phenomena are in general harmful to coral reefs
and Chinese white dolphins, two protected species that live in the sea near to
Hong Kong. So, before the plans can be carried out, it is necessary to determine
how much of the ocean may be affected by those plumes.

Water is indispensable for many organisms, especially for humans. People use it
for drinking, fishing, bathing, irrigating, shipping, and so on. Accordingly, it is
very important to maintain water quality. The quality of water is determined by
the concentrations of the substances it contains, such as oxygen, salts, silt and
bacteria. From the example above it is clear that it could easily be diminished.
The question is: Could this be foreseen?

Fortunately, software is already available for this purpose. Delft3D-WAQ, a
simulation program that has been developed by WL | Delft Hydraulics, is a
useful tool in forecasting water quality. In particular, it is able to predict the
size of silt plumes caused by dredging (see Figure 1.1). Basically, the software
approximates the solution of the advection diffusion equation by means of the
finite volume method. Since it is often necessary to predict one or two years
ahead, large time steps are prefered in order to have limited computing time.

However, there are two aspects that need improvement. First of all, the current
schemes are either expensive explicit higher order schemes or inaccurate implicit
first order schemes. Moreover, the convergence speed of the present solver for
linear systems is unsatisfactory for diffusion dominated problems.

In this literature study, answers to the following questions will be sought:

I. What are the possibilities for an accurate finite volume scheme for the
advection diffusion equation on an unstructured three-dimensional grid that
has a high upper bound for the time step?

II. How can the convergence speed of the current linear solver be increased for

2 Introduction

systems resulting from diffusion dominated problems?

In other words: Can the damage done to dolphins and coral reefs be estimated
better and faster?

This report consists of seven chapters. First of all, a problem definition is given
in Chapter 2. A physical water quality description is translated into a mathe-
matical model that is based on the advection diffusion equation. The solution to
this model can be approximated by means of the finite volume method, which is
introduced in Chapter 3. Implicit variants of this method require the solution of
many large linear systems. In order to solve these systems efficiently, iterative
solvers are considered in Chapter 4. Useful tools in improving the performance
of iterative schemes are preconditioning (Chapter 5) and reordering of the ma-
trix (Chapter 6). Chapter 7 discusses storage schemes for sparse matrices that
can save both memory and time.

Figure 1.1: WAQ’s forecast of the silt plumes

Chapter 2

Physical and mathematical

waterquality model

In this chapter, both a physical and a mathematical water quality model are
discussed.

2.1 Physical model

The quality of water is determined by the concentrations of the substances it
contains, such as oxygen, algae, salts, bacteria, viruses, toxic heavy metals,
pesticides, and silt. These concentrations can be affected in two ways. Firstly,
particles can be transported through the water in several ways. Moreover, water
quality processes play an important role. Both phenomena will be discussed
briefly below.

2.1.1 Transport

A substance can be transported by advection, diffusion, and by an own move-
ment that is independent of the preceding types of transport.

Advection

Advection is transport of a substance due to the motion of the fluid. The flow
carries the particles in the downstream direction.

Diffusion

Roughly speaking, diffusion is a mixing process. A distinction can be made
between molecular diffusion and turbulent diffusion. Molecular diffusion is the
spontaneous spreading of matter due to the random movement of molecules. It
only applies to substances that are liquid, gaseous, or dissolved. A schematic
visualisation is given by Figure 2.1. Turbulent diffusion is mixing due to tur-
bulent flow. A practical example of turbulent water flow and an illustration of
the blending process is shown in Figure 2.2.

4 Physical and mathematical waterquality model

Figure 2.1: Molecular diffusion

t

t
t

t
t
t

t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Figure 2.2: Turbulent diffusion

Own movement

Own movement is any movement that is not caused by advection or diffusion.
This kind of movement could be forced by gravity, the substance itself, or the
wind. Gravitational movement arises when there is a difference between the
density of the substance and that of the water. Silt, for example, is heavier
than water. Therefore, it will generally have an extra downward motion. Active
movement only applies to organisms that can ‘swim’ in some sense. Examples
are shrimps, fish, and certain algae that can propel themselves through the
water. Floating movement is the motion that a floating substance obtains from
the wind. As a result, its concentration is generally higher on the downwind
water surface side of the area.

2.1.2 Water quality processes

Apart from transport, water quality processes can have a great effect on the
concentration of a substance. Examples are photosynthesis, mineralisation, sed-
imentation, nitrification, and the mortality of bacteria. These processes will not
be discussed in detail in this report, since all processes can be modeled by one
nonlinear inhomogeneous term in the mathematical model, as will become clear
in the next section.

2.2 Mathematical model 5

2.2 Mathematical model

The mathematical water quality model, corresponding to the physical descrip-
tion above, is a special case of a conservation law.

Model 2.1 (Conservation law). Let c(x, t) be a conserved quantity with flux
function f(x, t) and source term p(x, t). The behavior of c can be modeled
according to a conservation law :

∂c
∂t

(x, t) + ∇ · f (c(x, t)) = p(x, t)

c(x, 0) =
◦
c (x)

c|x∈∂D1
= c̆(x, t)

(∇c · n)|x∈∂D2
= 0

(2.1)

Here, t ∈ [0, T] ⊂ [0,∞) and x ∈ D ⊂ R
m.

◦
c (x) is the initial condition. The

boundary of D is partitioned according to ∂D = ∂D1 ∪ ∂D2. n is the outward
normal unit vector of D. On ∂D1 a Dirichlet boundary condition and on ∂D2 a
Neumann boundary condition is imposed1. �

Model 2.2 (Water quality model). Consider a fluid with velocity profile û(x, t)
and diffusion coefficient d(x, t). Suppose that the fluid contains a substance with
concentration c(x, t) and velocity due to own movement ũ(x, t). Let p(x, t)
represent water quality processes. p may also depend on c or the concentration
of other substances. The water quality model follows from Model 2.1 by using
the following flux function:

f(c) = (û + ũ
︸ ︷︷ ︸

=:u

)c− d∇c
�

2.3 Conclusion

The quality of water is determined bij the concentrations of the substances that
it contains. These can be affected by transport and water quality processes.
The corresponding mathematical model is the advection diffusion equation.

1Off course, there are other types of boundary conditions, but they will not be considered
in this report.

6 Physical and mathematical waterquality model

Chapter 3

Finite volume method

In Chapter 2, a mathematical water quality model was formulated. In general,
it is impossible to solve such a model analytically. However, a numerical ap-
proximation can be obtained by means of the finite volume method, which is
discussed in this chapter.

3.1 Finite volume method for scalar conserva-

tion laws

A conservation law can be integrated to obtain an integral form, which forms
the basis of the finite volume method.

Proposition 3.1 (Integral form). Consider Model 2.1. Let V ⊂ D be a control
volume. Then,

d

dt

∫

V

c(x, t) dx +

∫

∂V

f(c(x, t)) · n dx =

∫

V

p(x, t) dx (3.1)

Proof. Integrate ∂c
∂t

+ ∇ · f(c) = p(x, t) over V and apply the Gauss theorem.
�

Basically, the finite volume method subdivides the space domain into grid cells
and approximates the integral form for each cell. In order to do this, the notion
of numerical flux needs to be introduced. The grid is chosen to be cell-centered.

Definition 3.2 (Cell centered grid). A cell centered grid of a spatial domain
D ⊂ R

d consists of set of control volumes V = {Vi ⊂ D : i = 1, ..., I} and a set
of storage locations X = {xi ∈ D : i = 1, ..., I} such that D = ∪I

i=1Vi and xi is
at the center of mass of Vi. Notation: G = (V,X). �

Remark 3.3 (Grid in WAQ). WAQ often receives the velocity profile from Delft-
3DFLOW, another simulation program. FLOW can only handle two types
of structured grids, which are schematically displayed in Figure 3.1. Both
types use a staggered grid in the horizontal direction. A z-grid is composed
of columns with rectangular time independent volumes (more precisely: ortho-
topes), whereby the number of volumes per column may vary. A σ-grid is
composed of columns with a fixed number of time dependent cells, whose edges

8 Finite volume method

are not necessarily perpendicular.

WAQ’s grid results from aggregating adjacent cells of the mesh used by FLOW.
From the example in Figure 3.2 becomes clear that this generally leads to an
unstructured grid. Some schemes in WAQ require some structure though. �

Figure 3.1: Structured grid types of FLOW

z-grid σ-grid

Definition 3.4 (Numerical flux function). Consider a conservation law (Model
2.1) and a cell centered grid G = (V,X) for D. Define Sij = ∂Vi ∩ ∂Vj . A
numerical flux function is a (locally Lipschitz continuous) function φij : R

2 → R

that has following two properties:

1. Consistency:

φij(u, u) =
1

|Sij |

∫

Sij

f(u) · n dx

2. Conservation:

φij(u, v) = −φji(v, u)

See Figure 3.3 for an illustration. �

Now, the finite volume method can be formulated.

Method 3.5 (Finite Volume Method (FVM)). A finite volume approximation
for Model 2.1 can be obtained by applying the following steps:

1. Choose a time discretisation t0, t1, ..., tN ∈ [0, T] such that

0 = t0 < t1 < ... < tN

Furthermore, choose a cell-centered grid

Gn = ({V n
1 , ..., V

n
I }, {xn

1 , ...,x
n
I })

for the time dependent space domain D at each time tn (n = 1, ..., N).

2. Additionally, introduce the following cell averages:

cni =
1

|V n
i |

∫

V n
i

c(x, tn) dx

pn
i =

1

|V n
i |

∫

V n
i

p(x, tn) dx

3.1 Finite volume method for scalar conservation laws 9

Figure 3.2: An example of a grid in WAQ (bottom), resulting from gathering
grid cells of the grid used by FLOW (top)

10 Finite volume method

Figure 3.3: Schematic illustration of numerical flux

V n
i

Sn
i

- n

V n
j

-φn
ij

If K grid cells are adjacent to the boundary ∂D1, then adjacent dummy
volumes V̆ n

k (k = 1, ...,K) are introduced adjacent to ∂D1 with average
value

c̆
n

k =

∫

∂D∩∂V̆ n
k

c̆(x, tn) dx

3. Let An
i = {j : V n

j adjacent to V n
i } contain the indices of the neighboring

grid cells of V n
i . Furthermore, let Sn

ij = ∂V n
i ∩ ∂V n

j denote the common
boundary of neighbors V n

i and V n
j . Introduce analogue quantities for the

virtual cells: Ăn
i = {k : V̆ n

k adjacent to V n
i } and S̆n

ik = ∂V n
i ∩ ∂ ∩ V n

k .

Approximate (3.1) for a grid cell V n
i according to1:

g(cni) :=
|V n

i |cni − |V n−1
i |cn−1

i

tn − tn−1
− θan

i − (1 − θ)an−1
i = 0 (3.2)

with

an
i = |V n

i |pn
i −

∑

j∈An
i

|Sn
ij |φij(c

n
i , c

n
j) −

∑

k∈Ăn
i

|S̆n
ik|φ̆ik(cni , c̆

n

k) (3.3)

φij and φ̆ik are numerical flux functions (see Definition 3.4). θ ∈ [0, 1] is
a parameter. Note that the method is fully explicit if θ = 0, and fully
implicit if θ = 1.

4. Solve the resulting systems to obtain cni (i = 1, ..., I; n = 1, ..., N).

5. Approximate the solution of Model 2.1 according to c(xi, tn) ≈ cni . �

More detailed information on the finite volume method can be found in [1], [7,
Chapter 4], and [9, Chapter 3].

3.1.1 Convergence, stability, and related topics

In order to determine the quality of a finite volume scheme, several properties
have to be introduced.

First of all, the method should yield the exact solution for infinitely small grid
cells and time steps. In that case, the method is convergent.

1There are other approximations possible, but they will not be considered in this report.

3.1 Finite volume method for scalar conservation laws 11

Definition 3.6 (Global truncation error). The global truncation error of the
FVM (Method 3.5) at time tn is defined as:

en
i = c(xi, tn) − cni �

Definition 3.7 (Local truncation error). The local truncation error of the FVM
(Method 3.5) at time tn is defined as:

ẽn
i = g(c(xi, tn))

Here, g is as in (3.2). �

Definition 3.8 (Convergence). Consider the FVM (Method 3.5). Let the spa-
tial mesh sizes and the time steps be decreasing functions of a parameter h. The
FVM (Method 3.5) converges at time tn with respect to some norm ‖.‖ if

lim
h↓0

‖en‖ = 0 tn,x1, ...,xI fixed

Here, en is the vector containing the global truncation errors. �

Intuitively, convergence can only occur if the local truncation error is small
enough. This condition is called consistency.

Definition 3.9 (Consistency). Consider the FVM (Method 3.5). Let the spatial
mesh sizes and the time steps be decreasing functions of a parameter h. The
FVM (Method 3.5) is consistent at time tn with respect to some norm ‖.‖ if

lim
h↓0

‖ẽn‖ = 0 tn,x1, ...,xI fixed

Here, ẽn is the vector containing the local truncation errors. �

Secondly, a small perturbation in the initial condition should not lead to a
completely different solution. This is what stability signifies.

Definition 3.10 (Absolute stability). The FVM (Method 3.5) is called abso-
lutely stable, if there exists constants k, τ > 0 (τ may depend on the spatial
mesh size) such that, if

tn − tn−1 ≤ τ for all n = 1, ..., N

then, for any perturbation q0 of the initial condition c0, resulting in a pertur-
bation qn in cn:

‖qn‖ ≤ k‖q0‖ for all n = 1, ..., N �

Additionally, negative concentrations are unphysical. Therefore, the scheme
should be positive.

Definition 3.11 (Positivity). The FVM (Method 3.5) is positive if

cni ≥ 0 for all i = 1, .., I, n = 1, ..., N �

Theorem 3.12 (Positivity preserving). If Method 3.5 yields solutions cn =
{cni } so that ∃A,B ∈ R

I×I such that:

12 Finite volume method

1. A is an M-matrix

2. B has nonnnegative entries

3. ∀n = 1, ..., N − 1:

Acn+1 = Bcn

Then, the scheme is positivity preserving.
Proof. See [4, p. 533] �

Finally, the method should not generate spurious wiggles. In the one-dimensional
case this is ensured by monotonicity preserving schemes.

Definition 3.13 (Monotonicity preserving). In the one-dimensional case, the
FVM (Method 3.5) is monotonicity preserving if

cni ≥ cni+1 ∀i = 1, ..., I ⇒ cn+1
i ≥ cn+1

i+1 ∀i = 1, ..., I �

The following property extends the concept of monotonicity preserving schemes
to the multi-dimensional case.

Definition 3.14 (Local Extremum Diminishing (LED)). The FVM (Method
3.5) is local extremum diminishing if local maxima are non-increasing and local
minima are nondecreasing. �

It seems reasonable that the numerical flux φn
ij , that is directed from grid cell V n

i

to V n
j , should increase, if the concentration cni in volume V n

i increases. At the
same time, the flux should decrease, if cnj increases. This leads to the following
LED criterion.

Definition 3.15 (Monotone numerical flux). A (partial differentiable) numer-
ical flux function φij is monotone if

1. ∂
∂u
φij(u, v) ≥ 0

2. ∂
∂v
φij(u, v) ≤ 0 �

Proposition 3.16. Consider the FVM (Method 3.5) for pn
i = 0 (i = 1, ..., I, n =

0, ..., N). The scheme is LED if the applied numerical flux functions are mono-
tone.
Proof. See [1, p.12]. �

3.2 Finite volume method for the one-dimensional

advection equation

In this section, several examples of numerical flux functions for the one-dimensional
advection equation are discussed.

Model 3.17 (Advection equation (1D)). The one-dimensional advection equa-
tion follows from Model 2.1 for m = 1, p = 0 and flux function:

f(c(x, t)) = u(x, t)c(x, t) �

3.2 Finite volume method for the one-dimensional advection

equation 13

Definition 3.18 (Order of accuracy). Consider the one-dimensional variant
(m = 1) of Method 3.5 with constant time step ∆t and constant cell width ∆x.
The method is said to be s1 order accurate in time and s2 order accurate in
space with respect to a norm ‖.‖ if:

‖en‖ = O(∆ts1) +O(∆xs2)

Here, en is the vector containing the global truncation errors. �

3.2.1 First order schemes

The following two schemes are both first order in space.

Method 3.19 (Central scheme). The central scheme for Model 3.17 follows
from Method 3.5 by using the following numerical flux:

φij(c
n
i , c

n
j) = u

n

ij · nn
ij

cni + cnj
2

Here, u
n

ij denotes the value of u on the boundary of cells Vi and Vj . �

Method 3.20 (First order upwind scheme). The first order upwind scheme for
Model 3.17 follows from Method 3.5 by using the following numerical flux:

φij(c
n
i , c

n
j) = max{un

ij · nn
ij , 0}cni + min{un

ij · nn
ij , 0}cnj

Here, u
n

ij denotes the value of u on the boundary of cells Vi and Vj . �

A disadvantage of the first order upwind schme is that it introduces numerical
diffusion, as becomes clear from the proposition below.

Proposition 3.21 (Modified equation for the first order upwind scheme). Con-
sider Model 3.17 for contant u > 0 on a time independent space domain. Apply
the FVM with first order upwind fluxes (Method 3.20), constant grid cell width
∆x, and constant time step ∆t:

cn+1
i − cni

∆t
+ θu

cn+1
i − cn+1

i−1

∆x
+ (1 − θ)u

cni − cni−1

∆x
= 0

Let η(x, t) be a function such that η(xi, tn) = cni (for all i = 1, ..., I, for all
n = 1, ..., N). Then for all i = 1, ..., I and for all n = 1, ..., N :

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) ≈ u∆x

2

(

1 − (1 − 2θ)
u∆t

∆x

)

︸ ︷︷ ︸

Numerical diffusion coefficient

∂2η

∂x2
(xi, tn)

Proof. Because η(xi, tn) = cni ,

η(xi, tn+1) − η(xi, tn)

∆t

+θu
η(xi, tn+1) − η(xi−1, tn+1)

∆x

+(1 − θ)u
η(xi, tn) − η(xi−1, tn)

∆x
= 0

14 Finite volume method

Using a Taylor expansion around tn results in (higher order terms that will be
neglected later are colored):

∂η

∂t
(xi, tn) +

∆t

2

∂2η

∂t2
(xi, tn) +

∆t2

6

∂3η

∂t3
(xi, τ1)

+θu

(
η(xi, tn) + ∆t∂η

∂t
(xi, tn) + ∆t2

2
∂2η
∂t2

(xi, tn) + ∆t3

6
∂3η
∂t3

(xi, τ2)

∆x

−η(xi−1, tn) + ∆t∂η
∂t

(xi−1, tn) + ∆t2

2
∂2η
∂t2

(xi−1, tn) + ∆t3

6
∂3η
∂t3

(xi−1, τ3)

∆x

)

+(1 − θ)u
η(xi, tn) − η(xi−1, tn)

∆x
= 0

for certain τ1, τ2, τ3 ∈ [tn, tn+1]. Applying a Taylor expansion around xi yields:

∂η

∂t
(xi, tn) +

∆t

2

∂2η

∂t2
(xi, tn) +

∆t2

6

∂3η

∂t3
(xi, τ1)

+θu

(
∂η

∂x
(xi, tn) − ∆x

2

∂2η

∂x2
(xi, tn) +

∆x2

6

∂3η

∂x3
(ξ1, tn)

+∆t
∂

∂x

∂η

∂t
(xi, tn) − ∆t∆x

2

∂2

∂x2

∂η

∂t
(ξ2, tn)

+
∆t3

6∆x

∂3η

∂t3
(xi, τ2) −

∆t3

6∆x

∂3η

∂t3
(ξ3, τ3)

)

+(1 − θ)u

(
∂η

∂x
(xi, tn) − ∆x

2

∂2η

∂x2
(xi, tn) +

∆x2

6

∂3η

∂x3
(ξ4, tn)

)

= 0

for certain ξ1, ξ2, ξ3, ξ4 ∈ [xi−1, xi]. Rewriting gives:

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) =

u∆x

2

∂2η

∂x2
(xi, tn)

−∆t

2

∂2η

∂t2
(xi, tn) − θu∆t

∂

∂x

∂η

∂t
(xi, tn)

−∆t2

6

∂3η

∂t3
(xi, τ1)

−θu
(

∆x2

6

∂3η

∂x3
(ξ1, tn) − ∆t∆x

2

∂2

∂x2

∂η

∂t
(ξ2, tn)

+
∆t3

6∆x

∂3η

∂t3
(xi, τ2) −

∆t3

6∆x

∂3η

∂t3
(ξ3, τ3)

)

−(1 − θ)u
∆x2

6

∂3η

∂x3
(ξ4, tn)

Note that:

∂η

∂t
(xi, tn) = −u∂η

∂x
(xi, tn) +O(∆t) +O(∆x)

∂2η

∂t2
(xi, tn) = u2 ∂

2η

∂x2
(xi, tn) +O(∆t) +O(∆x)

3.2 Finite volume method for the one-dimensional advection

equation 15

Substitution yields:

∂η

∂t
(xi, tn) + u

∂η

∂x
(xi, tn) =

u∆x

2

∂2η

∂x2
(xi, tn)

−u
2∆t

2

∂2η

∂x2
(xi, tn) + θu2∆t

∂2η

∂x2
(xi, tn)

+O
(
∆t2

)
+O

(
∆x2

)
+O(∆x∆t)

Rewriting and neglecting second order terms ends the proof. �

Ideally, the numerical diffusion coefficient is zero. On the one hand, it should
be positive in order to have stability. On the other hand, it should be as small
as possible to avoid too much smearing of the solution. Now, there are two
interesting cases.

1. If θ ∈ [12 , 1], the numerical diffusion coefficient of this scheme is positive
for all u,∆x,∆t > 0. This means that the scheme is stable for any time
step!

2. If θ = 0, the numerical diffsuion coefficient is positive provided that

u∆t

∆x
≤ 1

This is also known as the CFL condition. Note that u∆t
∆x

= 1 implies zero
numerical diffusion.

3.2.2 Higher order schemes

The following schemes are higher order accurate in space.

Method 3.22 (Second order upwind scheme). The second order upwind scheme
for Model 3.17 follows from Method 3.5 by using the following numerical flux:

φij(c
n
i , c

n
j) = max{un

ij · nn
ij , 0}

3cni − 1cni−1

2
+ min{un

ij · nn
ij , 0}

3cnj − cnj+1

2

Here, u
n

ij denotes the value of u on the boundary of cells Vi and Vj . Vi−1 is the
volume next to Vi, opposite to Vj . Analogously, Vj+1 is the volume next to Vj ,
opposite to Vi. �

Method 3.23 (Third order upwind scheme). The third order upwind scheme
for Model 3.17 follows from Method 3.5 by using the following numerical flux:

φij(c
n
i , c

n
j) = max{un

ij · nn
ij , 0}

10cni − 5cni−1 + cni−2

6

+min{un

ij · nn
ij , 0}

10cnj − 5cnj+1 + cnj+2

6

Here, u
n

ij denotes the value of u on the boundary of cells Vi and Vj . Vi−1 is the
volume next to Vi, opposite to Vj . Analogously, Vj+1 is the volume next to Vj ,
opposite to Vi. �

16 Finite volume method

Intuititively, the higher order upwind schemes would not perform well on un-
structured grids. The reason is that there are more than two grid points involved
that are generally not in a straight line. A higher order scheme that does not
have this disadvantage is Lax-Wendroff.

Method 3.24 (Explicit Lax-Wendroff scheme). The explicit Lax-Wendroff
scheme for Model 3.17 follows from Method 3.5 by using θ = 0 and the fol-
lowing numerical flux:

φij(c
n
i , c

n
j) = u

n

ij · nn
ij

cni + cnj
2

− (tn − tn−1)

(
u

n

ij · nn
ij

)2

2

cnj − cni
|xn

j − xn
i |

Here, u
n

ij denotes the value of u on the boundary of cells Vi and Vj . �

Method 3.25 (Implicit Lax-Wendroff scheme). The implicit Lax-Wendroff
scheme for Model 3.17 follows from Method 3.5 by using θ = 0 and the fol-
lowing numerical flux:

φij(c
n
i , c

n
j) = u

n

ij · nn
ij

cni + cnj
2

+ (tn − tn−1)

(
u

n

ij · nn
ij

)2

2

cnj − cni
|xn

j − xn
i |

Here, u
n

ij denotes the value of u on the boundary of cells Vi and Vj . �

3.3 Finite volume method for the water quality

model

Proposition 3.26 (Numerical flux for the water quality model). Consider the
FVM (Method 3.5) for Model 2.2. So, the numerical flux should approximate:

fn
ij :=

1

|Sn
ij |

∫

Sn
ij

(

u(x, tn)c(x, tn) − d(x, tn)∇c(x, tn)
)

· n dx (3.4)

Define the following boundary averages:

c
n

ij =
1

|Sn
ij |

∫

Sn
ij

c(x, tn) dx

u
n

ij =
1

|Sn
ij |

∫

Sn
ij

u(x, tn) dx

Furthermore, introduce the corresponding deviations:

c̃nij(x) = c(x, tn) − c
n

ij

ũn
ij(x) = u(x, tn) − u

n

ij

Then, (3.4) is equivalent to:

fn
ij = c

n

iju
n

ij · nn
ij −

1

|Sn
ij |

∫

Sn
ij

(

d(x, tn)∇c(x, tn) − c̃nijũ
n
ij(x)

)

· n dx (3.5)

3.3 Finite volume method for the water quality model 17

Proof. The advection term can be rewritten according to:
∫

Sn
ij

c(x, tn)u(x, tn) · n dx =

∫

Sn
ij

c
n

iju
n

ij · n dx +

∫

Sn
ij

c̃nijũ
n
ij(x) · n dx

+

∫

Sn
ij

c
n

ijũ
n
ij(x) · n dx +

∫

Sn
ij

c̃nij(x)u
n

ij(x) · n dx

Since the average deviation of the average is zero, this reduces to:
∫

Sn
ij

c(x, tn)u(x, tn) · n dx =

∫

Sn
ij

c
n

iju
n

ij · n dx +

∫

Sn
ij

c̃nijũ
n
ij(x) · n dx

= |Sn
ij |c

n

iju
n

ij · nn
ij +

∫

Sn
ij

c̃nijũ
n
ij(x) · n dx

Substitution in (3.4) completes the proof. �

Assumption 3.27. The term 1
|Sn

ij
|

∫

Sn
ij

c̃nijũ
n
ij(x) · n dx in (3.5) represents the

effect of turbulence on a sub-grid scale. It is assumed that this term can be
modeled as a diffusion term, i.e. ∃D̃ : D × [0, T] → R

m×m such that (3.5) is
equivalent to:

φn
ij ≈ fn

ij = c
n

iju
n

ij · nn
ij −

1

|Sn
ij |

∫

Sn
ij

(

D̃(x, tn)∇c(x, tn)
)

· n dx (3.6)

�

Remark 3.28 (Magnitude of D̃). The order of the magnitude of the elements of
D̃ strongly depends on the dimension of the problem:

Dimension Order of magnitude of extra diffusion
1 1000m 2 s−1

2 10m 2 s−1

3 1m 2 s−1

Normally, the original diffusion coefficient d lies between 0m 2 s−1 and 1m 2 s−1.
Hence, diffusion dominated problems mainly result from one- and two-dimensional
problems. �

Method 3.29 (FVM for the water quality model). The FVM for the water
quality model (Model 2.2) follows from Method 3.5 by using the following nu-
merical flux:

φij(c
n
i , c

n
j) = ψn

ij − dn
ij

cnj − cni
|xn

j − xn
i |

(3.7)

dn
ij represents the total amount of diffusion form V n

i to V n
j . ψn

ij is a numeri-
cal flux function for the one-dimensional advection equation (see Section 3.2).

The numerical flux φ̆ik for the boundary cells can be chosen analogously (and
possibly different from φij). �

An overview of the current schemes of WAQ can be found in Appendix A.

18 Finite volume method

3.4 Flux correcting transport algorithm

Barth mentions in [1, p. 19] that there are no linear higher order methods that
are monotonicity preserving. Thus, a linear method either is relatively inaccu-
rate or generates spurious wiggles. The flux correcting transport algorithm at-
tempts to combine the monotonicity preserving property of a first order scheme
with the accuracy of a higher order scheme by means of a nonlinear limiter.

Method 3.30 (Flux Correcting Transport (FCT)). Consider a first order mono-

tone numerical flux function φ̂ij and a higher order numerical flux function φ̃ij .
The flux correcting transport method follows from Method 3.5 by using the
following numerical flux function:

φij(c
n
i , c

n
j) = φ̂ij(c

n
i , c

n
j) + lnij

(
φ̃ij(c

n
i , c

n
j) − φ̂ij(c

n
i , c

n
j)

︸ ︷︷ ︸

=:αn
ij

)

αn
ij can be interpreted as a correction term, which is limited by lnij . �

Note that choosing lnij = 0 corresponds to applying the first order method. On
the other hand, setting lnij = 1 is equivalent to using the higher order method.
More sensible choices are described below.

Remark 3.31. Since αn
ij often corrects the numerical diffusion of the first order

flux, it is sometimes referred to as anti-diffusion. As a result, for the water
quality model, it could be wiser to include the diffusion term in the correction
term, so, to use:

φij(c
n
i , c

n
j) = ψ̂ij(c

n
i , c

n
j) + lnij

(
ψ̃ij(c

n
i , c

n
j) − ψ̂ij(c

n
i , c

n
j) − dn

ij

cnj − cni
|xn

j − xn
i |

︸ ︷︷ ︸

=:αn
ij

)

instead of:

φij(c
n
i , c

n
j) = ψ̂ij(c

n
i , c

n
j) − dn

ij

cnj − cni
|xn

j − xn
i |

+ lnij
(
ψ̃ij(c

n
i , c

n
j) − ψ̂ij(c

n
i , c

n
j)

︸ ︷︷ ︸

=:αn
ij

)

Here, ψ̂ij is a monotone first order flux that corresponds to the advection term

and ψ̂ij is a higher order advection flux. (See Method 3.29 for other notational
aspects.) Depending on the limiter, the strategy above can lead to a more
lenient limiter and, as a result, to a scheme that is more accurate. �

The limiter that is used by WAQ is a generalised version of the one-dimensional
limiter that was proposed by Boris & Book [2]. This limiter has been extended
to the multi-dimensional case on a structured grid by Zalesak [13]. Below, it
is further generalised for an unstructured grid. The limiter allows as much
correction as possible, provided that is generates no new local extrema.

Method 3.32 (FCT a la Boris & Book). This method results from Method
3.30 by using the following limiter:

1. Compute ĉ
n

i by means of Method 3.5 using φij = φ̂ij .

3.4 Flux correcting transport algorithm 19

2. Set αn
ij = 0 if2:

αn
ij(ĉ

n

i − ĉ
n

j) > 0 and αn
ij(ĉ

n

j − ĉ
n

j+1) > 0

or

αn
ij(ĉi − ĉ

n

j) > 0 and αn
ij(ĉ

n

i−1 − ĉ
n

i) > 0

Vi−1 is the volume next to Vi, opposite to Vj . Analogously, Vj+1 is the
volume next to Vj , opposite to Vi.

3. Construct an upper and a lower bound for cni by using one of the following
two options:

i. cmax
i = maxj∈Ai∪{i}{ĉ

n

j }
cmin
i = minj∈Ai∪{i}{ĉ

n

j }

ii. cmax
i = maxj∈Ai∪{i}

{

max{cn−1
j , ĉ

n

j }
}

cmin
i = minj∈Ai∪{i}

{

min{cn−1
j , ĉ

n

j }
}

4. The mass increase in cell Vi without the limiter reads:

λ+
i =

∑

j∈Ai

(tn − tn−1)|Sij |max{0,−αn
ij}

The allowed mass increase is, however:

µ+
i = |Vi|

(

cmax
i − ĉ

n

i

)

Thus, the allowed fraction of mass increase is denoted by:

ν+
i =

{

min{1, µ+

i

λ+

i

} λ+
i > 0

0 λ+
i = 0

Introduce analogue quantities for mass decrease:

λ−i =
∑

j∈Ai

(tn − tn−1)|Sij |max{0, αn
ij}

µ−
i = |Vi|

(

ĉ
n

i − cmin
i

)

ν−i =

{

min{1, µ−

i

λ−

i

} λ−i > 0

0 λ−i = 0

5. The limiter now reads:

lnij =

{
min{ν+

j , ν
−
i } αn

ij ≥ 0

min{ν+
i , ν

−
j } αn

ij < 0 �

2This part is tricky in case of an unstructured grid. Nonetheless, storage of the neighbors
of the neighbors is already implemented in WAQ. Moreover, in practice, the effect is minimal
according to Zalesak [13, p. 342].

20 Finite volume method

Another limiting strategy is based on smoothness. In smooth regions, the limiter
is close to 1. In other regions, the limiter increases or decreases the slope.

Method 3.33. Let h : R → R. This method results from Method 3.30 by using
the following limiter lnij :

βn
ij =

{
ci−ci−1

cj−ci
if u

n

ij · nn
ij ≥ 0

cj+1−cj

cj−ci
if u

n

ij · nn
ij < 0

lnij = h
(
βn

ij

)

Vi−1 is the volume next to Vi, opposite to Vj . Analogously, Vj+1 is the volume
next to Vj , opposite to Vi. �

Example 3.34. The following choices for h lead to well-known examples of
Method 3.33:

h method
h(β) = 0 first order upwind
h(β) = 1 Lax-Wendroff
h(β) = β Beam-Warming
h(β) = 1

2 (1 + β) Fromm
h(β) = minmod(β, 1) minmod
h(β) = max{0,min{1, 2β},min{2, β}} superbee

h(β) = max{0,min{ 1+β
2 , 2, 2β}} MC

h(β) = β+|β|
1+|β| van Leer

in which the minmod function is defined as:

minmod(a, b) =

a |a| < |b|, ab > 0
b |b| ≤ |a|, ab > 0
0 ab ≤ 0

�

More detailed information on the limiters above can be found in [10, Chapter 6].
Since they were originally designed for one-dimensional problems, it is not clear
that they will also perform well for unstructured three-dimensional meshes.

3.5 Nonlinearity

In the implicit case, Method 3.5 generally leads to a coupled nonlinear system
of equations. First of all, because p is a nonlinear term, which may depend
nonlinearly on the concentrations of other substances. Furthermore, applying a
limiter (Method 3.30) introduces another nonlinear term, which may be nondif-
ferentiable. How is such a system to be dealt with in the implicit case?

Option one is to make use of a nonlinear solver (for more information, see, for
instance, [3, Chapter 10]). There are two disadvantages of this strategy. First of
all, the method is expensive, because a linear system has to be solved each iter-
ation. Moreover, the Jacobian, which is ordinarily needed for nonlinear solvers,

3.6 Conclusion 21

is not defined if the function is nondifferentiable. An approximation of the Jaco-
bian is hard to obtain on an unstructured grid. All together, using a nonlinear
solver seems unattractive and will not be investigated any further in this report.

An alternative strategy is to approximate all implicit nonlinear terms explicitly,
as described in the following method.

Method 3.35. This method consists of the following steps, involving linear
systems only:

1. Compute ĉ
n

i by applying Method 3.5 with a first order monotone numerical

flux function φ̂ij , using p̂
n

i ≈ pn−1
i .

2. Compute c̃
n

i by applying Method 3.5 with a higher order numerical flux
function φ̃ij using p̃

n

i ≈ pn−1
i .

3. Define:

φ̂n
ij = φ̂ij(ĉ

n

i , ĉ
n

j)

φ̃n
ij = φ̃ij(c̃

n

i , c̃
n

j)

and approximate the limiter lnij explicitly by means of φ̂n
ij , φ̃

n
ij , ĉ

n

i , and

possibly c̃
n

i . Then, the limited flux reads:

φij(c
n
i , c

n
j) = φ̂n

ij + lnij(φ̃
n
ij − φ̂n

ij)

4. Solve cni by applying Method 3.5 with numerical flux φij(c
n
i , c

n
j) using

pn
i ≈ pn−1

i . �

3.6 Conclusion

The solution to the water quality model can be approximated by the finite
volume method. Because the grid is generally unstructured, the flux through
a cell edge is approximated by a one-dimensional numerical flux function in
the normal direction. Normally, a central difference approach is applied to the
diffusion term. The time integration method is the θ-scheme. The nature of
the total method is determined by the selected numerical flux function for the
advection term and the applied value of θ. An implicit flux correcting transport
scheme, in which nonlinear terms are approximated explicitly, might yield a
good combination of speed and accuracy.

22 Finite volume method

Chapter 4

Solution methods for linear

systems

In Chapter 3, the finite volume method was discussed to solve Model 2.2. Since
it is often needed to predict water quality several years ahead, large time steps
are desirable. Therefore, implicit methods are preferable to explicit schemes, as
the latter do not allow arbitrary time steps without becoming unstable. Implicit
methods require the solution of many large sparse1 linear systems. To obtain
these solutions, efficient solvers are discussed in this chapter.

4.1 Direct methods

A direct method computes a theoretically exact solution using a finite number
of operations. A useful measure for the amount of work is the number of floating
point operations (flops).

Example 4.1. Consider a full matrix A ∈ R
n×n and a vector x ∈ R

n. Then the
matrix vector product Ax needs 2n2 flops. �

4.1.1 Triangular matrices

Triangular systems are easily solved by means of backward or forward substitu-
tion.

Method 4.2 (Forward substitution). Let L ∈ R
n×n be a lower triangular

matrix. Forward substitution solves the linear system Lx = b by means of the
following algorithm:

1. for i = 1, ..., n:
2. xi = bi
3. for j = 1, ..., i− 1:
4. xi = xi − lijxj

5. end
6. end

1A matrix is sparse if it contains ‘many’ zero elements

24 Solution methods for linear systems

For a full matrix, the computational costs amount to n2 flops. In case the matrix
has at most q nonzero off-diagonal elements per row, approximately 2qn flops
are needed. �

Method 4.3 (Backward substitution). Let U ∈ R
n×n be an upper triangular

matrix. Backward substitution solves the linear system Ux = b by means of the
following algorithm:

1. for i = n, ..., 1:
2. xi = bi
3. for j = i+ 1, ..., n:
4. xi = xi − uijxj

5. end
6. xi = xi

uii

7. end

For a full matrix, the computational costs amount to n2 flops. In case the matrix
has at most q nonzero off-diagonal elements per row, approximately 2qn flops
are needed. �

4.1.2 General square matrices

A general square system can be solved by means of Gaussian elimination. This
method reduces a linear system to two triangular systems, which can be solved
by backward or forward substitution. The triangular systems are obtained by
constructing an LU factorisation of the matrix.

Definition 4.4 (LU factorisation). An LU factorisation of a matrix A consists
of a unit lower triangular matrix L and an upper triangular matrix U such that:

A = LU �

Method 4.5 (LU factorisation). The following algorithm generates an LU fac-
torisation for a matrix A ∈ R

n×n, provided that the pivots, ukk, are nonzero.

1. for i = 1, ..., n:
2. w = ai∗

3. for k = 1, ..., i− 1:
4. wk = wk

ukk

5. w = w − wkuk∗

6. end
7. lij = wj for j = 1, ..., i− 1
8. uij = wj for j = i, ..., n
9. end

ai∗ denotes row i of A. For a full matrix, the computational costs of the fac-
torisation amount to 2

3n
3 flops. �

More detailed information about LU factorizations can be found in [8, Section
3.2].

Method 4.6 (Gaussian elimination). Gaussian elimination solves an n × n
linear system Ax = b in three steps:

4.2 Iterative Methods 25

1. Construct an LU factorisation of A. This can by done by means of Method
4.5.

2. Solve y from Ly = b by means of forward substitution (Method 4.2)

3. Solve x from Ux = y by applying backward substitution (Method 4.3) �

A disadvantage of Gaussian elimination for sparse matrices is that L and U are
generally less sparse than A. This effect is called fill-in.

Definition 4.7 (Fill-in). The fill-in of a matrix consists of those entries which
change from an initial zero to a nonzero value during the execution of an algo-
rithm. �

Theorem 4.8. Consider a matrix A with lower bandwidth ql and upper band-
width qu. Let A = LU be an LU factorisation. Then, L has lower bandwidth
ql and U has upper bandwidth qu. Moreover, if n ≫ ql, qu, the costs of the LU
factorisation are approximately 2nqlqu flops.
Proof. See [8, Theorem 4.3.1 and p. 153]. �

4.2 Iterative Methods

An alternative for Gaussian elimination is provided by iterative methods. These
methods iteratively improve an initial solution estimation.

Method 4.9 (Iterative method: general form). Consider an n×n linear system
Ax = b. An iterative method consists of the following steps:

1. Choose an initial guess of the solution, x0 ∈ R
n.

2. Set k = 1. Choose an improved approximation of the solution, xk, and
set k = k + 1, until a certain termination criterion is met.

3. Approximate the solution of Ax = b according to x ≈ xk. �

Definition 4.10 (Convergent iterative method). Method 4.9 is convergent if

‖xk − x‖ → 0 �

Remark 4.11 (A good termination criterion). A good termination criterion has
the following properties:

1. It is scaling invariant. This means that the number of iterations for αAx =
αb is independent of α ∈ R.

2. The number of iterations should not be independent of the initial estima-
tion x0; a better initial guess should lead to a smaller number of iterations.

3. It provides an upper bound for the relative error
‖x−xk‖2

‖x‖2
.

An example of a good termination criterion, satisfying the properties above, is
‖b−Axk‖2

‖b‖2
≤ ǫ �

26 Solution methods for linear systems

4.2.1 Linear fixed point iteration

Linear fixed point iteration determines the estimates of the solution by means
of a matrix splitting of A.

Definition 4.12 (Matrix splitting). A matrix splitting of a matrix A consists
of matrices M and N such that

A = M −N �

Method 4.13 (Linear fixed point iteration). Linear fixed point iteration follows
from Method 4.9 by updating xk according to a matrix splitting A = M −N ,
with M nonsingular. The following strategies are equivalent:

Mxk = Nxk−1 + b (4.1)

xk = M−1Nxk−1 +M−1b (4.2)

xk = xk−1 +M−1(b −Axk−1) (4.3)

�

Example 4.14. Consider a matrix A. Define a diagonal matrix D, a strictly
lower triangular matrix L, and a strictly upper triangular matrix U , such that
A = L + D + U . Moreover, let ω ∈ R be a constant. The following matrix
splittings A = M −N lead to well-known methods:

M N Method
D −L− U Gauss-Jacobi (GJ)

D + L −U Gauss-Seidel (GS)
D + U −L Backward Gauss-Seidel
D + ωL (ω − 1)L− U Successive Over-Relaxation (SOR)

�

Theorem 4.15 (Convergence of linear fixed point iteration). Method 4.13 con-
verges for any starting vector x0, if

max{|λ| : λ eigenvalue of M−1N} < 1

Proof. See [8, Theorem 10.1.1]. �

Method 4.16. Method 4.13 can be applied twice, to obtain a new iterative
scheme:

1. Perform Method 4.13 with a matrix splitting A = M1 −N1 to obtain x∗
k:

M1x
∗
k = N1xk−1 + b

2. Apply Method 4.13 once more using another matrix splitting A = M2−N2

to acquire xk:

M2xk = N2x
∗
k + b �

4.2 Iterative Methods 27

Proposition 4.17. Method 4.16 is equivalent to Method 4.13 for the matrix
splitting A = M − (M −A), with

M = M1 (M1 +N2)
−1
M2

Proof. Since (4.1) and (4.3) are equivalent, Method 4.18 can be rewritten to
obtain:

x∗
k := xk−1 +M−1

1

(
b −Axk−1

)

xk = x∗
k +M−1

2 (b −Ax∗
k)

⇒

xk = xk−1 +M−1
1

(
b −Axk−1

)

+M−1
2

(

b −A
(
xk−1 +M−1

1 (b −Axk−1)
))

= xk−1 +M−1
1

(
b −Axk−1

)

+M−1
2

(
b −Axk−1 −AM−1

1 (b −Axk−1)
)

= xk−1 +
(
M−1

1 +M−1
2 (I −AM−1

1)
) (

b −Axk−1

)

= xk−1 +
(

M−1
1 +M−1

2

(
I − (M2 −N2)M

−1
1

)) (
b −Axk−1

)

= xk−1 +
(

I +M−1
2

(
M1 − (M2 −N2)

))

M−1
1

(
b −Axk−1

)

= xk−1 +M−1
2 (M1 +N2)M

−1
1

(
b −Axk−1

)

= xk−1 +
(
M1(M1 +N2)

−1M2
︸ ︷︷ ︸

=:M

)−1 (
b −Axk−1

)

Applying the equivalence of (4.1) and (4.3) once more completes the proof. �

An example of Method 4.16 is Symmetric Gauss-Seidel.

Method 4.18 (Symmetric Gauss-Seidel). Symmetric Gauss-Seidel follows from
method 4.16 by applying one step of Gauss-Seidel (M1 = D + L, N1 = −U),
followed by one step of Backward Gauss-Seidel (M2 = D + U , N2 = −L). �

4.2.2 Krylov methods

A large category of iterative schemes is formed by the Krylov methods. These
are based on a so-called Krylov space, which is defined below.

Definition 4.19 (Krylov space). Let A ∈ R
n×n and r ∈ R

n. A Krylov space
is of the form:

Kk(A, r) = span
{
r, Ar, ..., Ak−1r

}

�

The link between Krylov methods and linear fixed point iteration becomes clear
from the following proposition.

Proposition 4.20. Let xk result from linear fixed point iteration (Method 4.13):

xk = xk−1 +M−1 (b −Axk−1)
︸ ︷︷ ︸

rk−1

28 Solution methods for linear systems

Then,

xk ∈ x0 +Kk(M−1A,M−1r0)
︸ ︷︷ ︸

=:Kk

for all k ≥ 1

Proof. First of all, note that the statement is true for k = 1:

x1 = x0 +M−1r0 ∈ x0 +K1

Now, suppose that xk ∈ x0 +Kk (k ≥ 1). The residual rk can be expressed in
r0, according to:

rk = b −Axk

= b −A(xk−1 +M−1rk−1)

= rk−1 −AM−1rk−1

= (I −AM−1)rk−1

= (I −AM−1)kr0

So,

xk+1 = xk +M−1rk = xk
︸︷︷︸

∈x
0
+Kk

+M−1(I −AM−1)kr0
︸ ︷︷ ︸

∈Kk+1

∈ x0 +Kk+1

�

Method 4.21 (Krylov method). A Krylov method follows from Method 4.9 by
choosing xk such that:

1. xk ∈ x0 +Kk(A, r0)

2. rk = b −Axk ⊥ Lk

Here, Lk is a k-dimensional subspace of R
n. �

The nature of a Krylov method is mainly determined by two aspects. Of course,
the choice of Lk plays an important role. Additionally, there are several ways
to construct a basis for Kk(A, r0). Three choices are listed below, including the
methods resulting from them.

1. Arnoldi provides an orthonormal basis V = {v1, ...,vk} for Kk(A,v1)
(variants: Arnoldi-Modified Gram-Schmidt and Householder Arnoldi)

• Lk = Kk(A, r0): Full Orthogonalization Method (FOM) (variants:
Restarted FOM (FOM(k), Incomplete Orthogonalisation Method (IOM),
Direct IOM (DIOM))

• Lk = AKk(A, r0): General Minimal RESidual (GMRES) (variants:
Restarted GMRES (GMRES(k)), Quasi-GMRES (QGMRES), Di-
rect QGMRES (DQGMRES))

2. Lanczos is like Arnoldi, but only applicable to symmetric matrices (vari-
ant: Direct Lanczos (D-Lanczos))

• Lk = Kk(A, r0): Conjugate Gradient (GG) (for positive definite ma-
trices) (variant: CG-Three-term recurrence variant (for positive def-
inite matrices))

4.2 Iterative Methods 29

• Lk = AKk(A, r0): Conjugate Residual (CR) (for positive definite
hermitian matrices)

3. Lanczos Biothogonalisation (BiLanczos) computes a basis V = {v1, ...,vk}
for Kk(A,v1) and a basis W = {w1, ...,wk} for Kk(AT ,w1), such that
vi ⊥ wj for all i, j = 1, ..., k

• Lk = Kk(AT , r0): BiConjugate Gradient (BCG) (variants: Con-
jugate Gradient Squared (CGS), Biconjugate Gradient Stabilized
(BICGSTAB)) and Quasi Minimal Residual (QMR) (variant: Trans-
pose Free QMR (TFQMR)

In the next sections, Arnoldi and GMRES will be considered in more detail.
For more information about other Krylov methods, see [11, Chapter 6 and 7].

Arnoldi

The Arnoldi method constructs an orthonormal basis for a Krylov space with
the help of Gram-Schmidt.

Method 4.22 (Arnoldi). The Arnoldi method constructs an orthonormal basis
{v1, ...,vk} for the Krylov space Kk(A, r) by means of the following algorithm:

1. v1 = 1
‖r‖2

r

2. for j = 1, .., k:

3. for i = 1, ..., j: hij =
(
Avj

)T
vi

4. vj+1 = vj+1 −
∑j

i=1 hijvi

5. hj+1,j = ‖vj+1‖2

6. if hj+1,j = 0: stop
7. vj+1 = 1

hj+1,j
vj+1

8. end �

The following variant of the algorithm above uses Modified Gram-Schmidt in-
stead of Gram-Schmidt.

Method 4.23 (Arnoldi-Modified Gram-Schmidt). The Arnoldi-Modified Gram-
Schmidt method constructs an orthonormal basis {v1, ...,vk} for the Krylov
space Kk(A, r) by means of the following algorithm.

1. v1 = 1
‖r‖2

r

2. for j = 1, .., k:
3. vj+1 = Avj

4. for i = 1, ..., j:
5. hij = vT

j+1vi

6. vj+1 = vj+1 − hijvi

7. end
8. hj+1,j = ‖vj+1‖2

9. if hj+1,j = 0: stop
10. vj+1 = 1

hj+1,j
vj+1

11. end �

In theory, the results of both algorithms are the same. In practice, Arnoldi-
Modified Gram-Schmidt is less sensitive to round-off errors. Another variant is
Householder Arnoldi [11, p. 149], which is even more reliable, but also more
expensive.

30 Solution methods for linear systems

General minimal residual method

The general minimal residual method [12] is a Krylov method that uses Lk =
AKk(A, r0). As its name already indicates, it is based on minimizing the resid-
ual rk = b −Axk. Each step, xk is chosen such that:

xk = x0 + arg min
z∈Kk(A,r

0
)
‖b −A (x0 + z) ‖2

= x0 + arg min
z∈Kk(A,r

0
)
‖r0 −Az‖2

Since this involves a minimization problem that is not trivial to solve, it will be
rewritten.

Proposition 4.24. Let vj (for j=1,...,k+1) and hij (for i = 1, ..., k and j =

1, ..., k + 1) result from applying (a variant of) Arnoldi to Kk(A, r0). Define
Vk ∈ R

n×k and Hk ∈ R
k+1×k (also known as the Hessenberg matrix) such that:

Vk =
[

v1 . . . vk

]
(4.4)

Hk =

h11 . . . h1k

h21 . . . h2k

. . .
...

hk+1,k

(4.5)

Define y
k

as the solution of the following linear least squares problem:

y
k

= arg min
y∈Rk

∥
∥ ‖r0‖2e1 −Hky

∥
∥

2
(4.6)

Then

arg min
z∈Kk(A,r

0
)
‖r0 −Az‖2 = Vkyk

Proof. See [11, Section 6.5.1]. �

In order to determine y
k

in (4.6) efficiently, Hk will be transformed by what are
called Givens rotations in order to achieve the following structure:

H
(i)
k =

h
(i)
11 h

(i)
1k

. . .
...

h
(i)
i+1,i+1

...

h
(i)
i+2,i+1

. . .
...

. . . h
(i)
kk

h
(i)
k+1,k

Note that in particular H
(k)
k will have a favorable structure.

Proposition 4.25. Let Hk and r0 be as in Proposition 4.24. Define:

H
(0)
k = Hk (4.7)

4.2 Iterative Methods 31

Let Ii be the i × i identity matrix. Introduce Givens rotations Ωi ∈ R
k+1×k+1

(i = 1, ..., k) according to:

Ωi =

Ii−1

ci si

−si ci
Ik−i

(4.8)

ci =
hi+1,i

√
(

h
(i−1)
i,i

)2

+ h2
i+1,i

(4.9)

si =
h

(i−1)
i,i

√
(

h
(i−1)
i,i

)2

+ h2
i+1,i

(4.10)

Apply the Givens rotations to Hk and ‖r0‖2e1 to obtain:

H
(i)
k = Ωi...Ω1Hk (4.11)

g(i) = Ωi...Ω1‖r0‖2e1 (4.12)

Then, the following two statements hold:

1. The solution of the linear least square problem (4.6) satisfies:

Ĥ
(k)
k y

k
= ĝ(k)

in which Ĥ
(k)
k and ĝ(k) result from H

(k)
k and g(k) by deleting their last

rows. Note that Ĥ
(k)
k is an upper triangular matrix, so the system is

easily solved by means of backward substitution (Method 4.3).

2. The 2-norm of the residual, ‖b−Axk‖2, is given by the last element of g(k).
This result is convenient for the implementation of a stopping criterion.

Proof. See [11, Proposition 6.9] �

Putting it all together:

Method 4.26 (General Minimal RESidual method (GMRES)). The general
minimal residual method follows from Method 4.9 by using the following strategy
to obtain xk:

1. Compute Hk and Vk by applying (a variant of) Arnoldi to Kk(A, r0) and
using equations (4.4) and (4.5).

2. Determine H
(k)
k and g(k) using equations (4.7)-(4.12).

3. Calculate y
k

by means of the first statement of Proposition 4.25.

4. xk = x0 + Vkyk
.

Note that y
k

and xk only need to be computed after the termination criterion
has been reached. �

32 Solution methods for linear systems

Theorem 4.27 (Convergence of GMRES). Consider a diagonalizable matrix A
with eigenvalues λ1, ..., λn and corresponding eigenvectors v1, ...,vn. So, V =
[v1 . . .vn] is an invertible matrix. Then, the relative error in step k of GMRES
(Method 4.26) satisfies:

‖b −Axk‖2

‖b −Ax0‖2
≤ ‖V ‖2‖V −1‖2 min

p∈Pk,p(0)=1
max

i{1,...,n}
|p(λi)|

If, moreover, all eigenvalues are contained in an ellipse E ⊂ C, excluding the
origin and having center c ∈ C, focal distance d ∈ C, and semi major axis a ∈ C

(see Figure 4.1 for an example), then, the relative error satisfies:

‖b −Axk‖2

‖b −Ax0‖2
≤ ‖V ‖2‖V −1‖2

∣
∣
∣
∣
∣

pk

(
a
d

)

pk

(
c
d

)

∣
∣
∣
∣
∣

≈ ‖V ‖2‖V −1‖2

∣
∣
∣
∣
∣

a+
√
a2 − d2

c+
√
c2 − d2

∣
∣
∣
∣
∣

k

Here, pk : C → C is the complex Chebychev polynomial, which can be defined
recursively according to:

p1(z) = 1

p2(z) = z

pk(z) = 2zpk(z) − pk−1(z) (k ≥ 2)

Proof. See [11, Proposition 6.15, Corollary 6.1, and (6.100)] �

Figure 4.1: Example of an ellipse for c, d, a ∈ R

4.3 Conclusion

If an implicit FVM is used to solve the water quality model, many large sparse
linear systems need to be solved. For such systems, iterative methods are more
suitable than direct methods. At present, GMRES is implemented in WAQ.
This Krylov method converges faster as the eigenvalues are more clustered.

Chapter 5

Preconditioning

In practice, iterative methods often have an unsatisfactory convergence speed.
A popular way to deal with this problem is enhancing the spectrum by means
of preconditioning, which is discussed in this chapter.

5.1 Basic preconditioning

Preconditioning transforms a linear system into an equivalent system that can
be handled better by an iterative method.

Method 5.1 (Preconditioning: general form). Consider an n×n linear system
Ax = b. Preconditioning consists of the following steps:

1. Choose invertible matrices Pl, Pr ∈ R
n×n, the preconditioners.

2. Solve y from:

P−1
l AP−1

r y = P−1
l b

3. Determine x according to:

x = P−1
r y �

Remark 5.2. If Pr = I, one speaks of left preconditioning . Similarly, choosing
Pl = I results in right preconditioning . Usually, the termination criterion of
an iterative method is based on the residual norm ‖rk‖ = ‖b − Axk‖. Pre-
conditioning translates the residual norm to ‖P−1

l rk‖. For this reason, right
preconditioning is often preferred. �

Remark 5.3 (Recycling). In general, it is more costly to compute a precondi-
tioner than to solve the preconditioned system. Therefore, it might be efficient
to recycle the preconditioner, i.e. using the same preconditioner in multiple time
steps. If the matrix does not vary much in time, the preconditioner hopefully
remains effective. �

Good preconditioners at least guarantee that:

1. Pl and Pr can be determined inexpensively;

34 Preconditioning

2. the spectrum1 of P−1
l AP−1

r is favorable with respect to convergence2;

3. P−1
l v and P−1

r v can be computed at low cost (v ∈ R
n).

What are suitable preconditioners? This will be treated in the following sections.

5.2 Preconditioners based on matrix splitting

Matrix splitting gives rise to a class of preconditioners that are relatively simple
to construct.

Method 5.4 (Preconditioners based on matrix splitting). There are two ways
to derive preconditioners from a matrix splitting A = M −N :

1. Pl = M
Pr = I

2. Pl = I
Pr = M

The construction costs are 0 flops! �

Example 5.5 (Symmetric GS preconditioner). An example of the preconditioner
above is the symmetric GS preconditioner, which is currently used in WAQ
to speed up GMRES (schemes 15 and 16). Remembering Method 4.18 and
Proposition 4.17 results in:

M = M1 (M1 +N2)
−1
M2 = (D + L)D−1(D + U) �

The symmetric GS preconditioner seems to be inadequate for diffusion domi-
nated problems. This is illustrated in Figure 5.1, in which the relative residual
b−Axk

‖b‖2
is plotted for each iteration k for a two-dimensional problem. The blue

line corresponds to the actual diffusion dominated case in which the diffusion
coefficient has been increased by 10m 2 s (see Remark 3.28). The red line is
the result of neglecting this amount of extra diffusion. Indeed, the current
preconditioning seems unsuitable for diffusion dominated problems.

5.3 Preconditioners based on an incomplete LU

factorisation

As mentioned before, LU factorisations are inefficient for sparse matrices (due to
fill-in), which is why iterative methods are essential in the first place. However,
approximate factorisations often result in powerful preconditioners.

Definition 5.6 (Incomplete LU factorisation). An incomplete LU factorisation
of a matrix A consists of a unit lower triangular matrix L̃, an upper triangular
matrix Ũ , and a matrix R such that:

A = L̃Ũ −R �

1set of eigenvalues
2Remember Theorem 4.27 and 4.15

5.3 Preconditioners based on an incomplete LU factorisation 35

Figure 5.1: The effect of diffusion dominance on the convergence of GMRES

0 5 10 15 20 25 30 35 40 45 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k (# iterations)

r/
||b

||

dispersion=10: 46 it
dispersion=0: 12 it

Method 5.7 (Preconditioners based on an incomplete LU factorisation). There
are three ways to derive preconditioners from an incomplete LU factorisation:

1. Pl = L̃Ũ
Pr = I

2. Pl = I
Pr = L̃Ũ

3. Pl = L̃
Pr = Ũ �

In the sections hereafter, several algorithms to compute an incomplete LU fac-
torisation will be discussed.

5.3.1 Incomplete LU threshold

The incomplete LU threshold method provides a basic strategy to compute an
incomplete LU factorisation. The algorithm results from adding two dropping
rules to the algorithm that computes an ordinary LU factorisation (see Method
4.5). A dropping rule sets an element equal to zero if it satisfies certain criteria.
To put it more bluntly: If you don’t want to compute it, discard it.

36 Preconditioning

Method 5.8 (Incomplete LU Threshold (ILUT)). The incomplete LU threshold
algorithm computes an incomplete LU factorisation A = L̃Ũ − R by means of
the following algorithm, provided that the pivots, ũkk, are nonzero:

1. for i = 1, ..., n:
2. w := ai∗

3. for k = 1, ..., i− 1:
4. wk = wk

ũkk

5. Apply a dropping rule to wk

6. w := w − wkũk∗

7. end
8. Apply a dropping rule to w
9. l̃ij = wj for j = 1, ..., i− 1
10. ũij = wj for j = i, ..., n
11. end �

An application of Method 5.8 is ILUT(p,τ), which drops elements that are small
in some sense. Moreover, it limits the number of elements per row.

Method 5.9 (ILUT(p,τ)). ILUT(p,τ) follows from Method 5.8 by using the
following dropping rules:

Line 5 is replaced by:

if wk < τ‖ai∗‖2: wk = 0

Line 8 is replaced by:

for k = 1, ..., n:
if wk < τ‖ai∗‖2: wk = 0

end
Drop all elements in w, except wi, the p largest elements in {w1, ..., wi−1},
and the p largest elements in {wi+1, ..., wn}.

If A contains at most q nonzero elements per row, the costs of this factorisation
amount to approximately

n
(

p
(
2(p+ 1) + 1

)

︸ ︷︷ ︸

row update

+ 2q
︸︷︷︸

‖ai∗‖2

)

flops. �

5.3.2 Incomplete LU

Incomplete LU preconditioners form a subcategory of ILUT preconditioners.
Their dropping rules are based on a zero pattern.

Method 5.10 (Incomplete LU (ILU): general form). Let

Z ⊂ {(i, j) ∈ [1, ..., n] × [1, ..., n] : i 6= j}
be a zero pattern. The general Incomplete LU algorithm follows from Method
5.8 by letting both dropping rules set wk equal to zero if (i, k) /∈ Z. In other
words:

Line 5 is replaced by:

5.3 Preconditioners based on an incomplete LU factorisation 37

if (i, k) ∈ Z: wk = 0

Line 8 is replaced by:

for k = 1, ..., n:
if (i, k) ∈ Z: wk = 0

end

Note that R follows from:

rij =

{
aij (i, j) ∈ Z
0 (i, j) /∈ Z �

An application of Method 5.10 is ILU(0).

Method 5.11 (ILU(0)). ILU(0) follows from Method 5.10 by taking Z equal
to the zero pattern of A. �

In practice, ILU(0) can have insufficient accuracy, resulting in inefficiency and
unreliability. ILU(0) has no fill-in. ILU(p), the generalisation of ILU(0), at-
tempts to improve ILU(0) by allowing some fill-in. The method drops elements
that have a level of fill (see Method 5.12 below for a definition) larger than p.

Method 5.12 (ILU(p)). Let fij denote the level of fill. Initially, this quantity
is defined as follows:

fij =

{
0 aij 6= 0 or i = j
∞ aij = 0

ILU(p) follows from Method 5.10 by using the zero pattern:

Z = {(i, j) ∈ [1, ..., n] × [1, ..., n] : fij > p}

Right before the end of the k-loop (so before line 7 in Method 5.8), fij is updated
according to:

fij =

{
min{fij , fik + fkj + 1} wj 6= 0
fij wj = 0

j = 1, ..., n

If L̃ has at most q̃l nonzero off-diagonal elements per row and Ũ has at most
q̃u nonzero off-diagonal elements per row, then the costs of the factorization
amount to approximately

nq̃l
(
(2q̃u + 1)
︸ ︷︷ ︸

row update

+ (q̃l + q̃u + 1)2
︸ ︷︷ ︸

level of fill update

)

flops. �

ILU(p) might be a good alternative for the current preconditioner. This idea is

based on Figure 5.2, in which the relative residual
b−Axk

‖b‖2
has been plotted for

each iteration k for a two-dimensional diffusion dominated problem. The black
line, which corresponds to the case without preconditioning, shows that precon-
ditioning is indispensable. The blue line, which is the result of the symmetric
Gauss-Seidel preconditioner, demonstrates that the current preconditioner is in-
sufficient for this type of problems. The red line, which coincides with ILU(3)

38 Preconditioning

Figure 5.2: The effect of preconditioning on the convergence of GMRES

0 20 40 60 80 100 120 140
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k (# iterations)

r/
||b

||

no prec.: 136 it.
SGS: 46 it.
ILU(3): 13 it.

preconditioning, illustrates that ILU(p) performs rather well for the diffusion
dominates problems.

Nonetheless, according to Saad [11, p. 280], there ”are a number of drawbacks
to the above algorithm. First, the amount of fill-in and computational work for
obtaining the ILU(p) factorization is not predictable for p > 0. Second, the cost
of updating the levels can be quite high. Most importantly, the level of fill for
indefinite matrices may not be a good indicator of the size of the elements that
are being dropped. Thus, the algorithm may drop large elements and result in
an inaccurate incomplete factorisation”.

So far, the elements that were dropped were simply discarded. Modified ILU
uses a different approach. It adds dropped elements to the diagonal of Ũ .

Method 5.13 (Modified ILU (MILU)). Modified ILU follows from Method
5.10, by inserting the following diagonal update of Ũ right after line 10 in
Method 5.8:

ũii := ũii +
∑n

m=1 rim �

MILU guarantees that A and L̃Ũ have the same row sums. Its results are
especially good for matrices resulting from the discretisation of a PDE that has
a more or less constant solution.

5.4 Conclusion 39

5.4 Conclusion

The convergence speed of an iterative method depends on the spectrum of the
matrix. Preconditioning transforms a linear system into an equivalent system
that has better spectral properties. At present, WAQ uses symmetric Gauss-
Seidel preconditioning, which is costless to construct. Unfortunately, for dif-
fusion dominated problems, this preconditioner is inadequate. An alternative
preconditioning, such as ILU(p), could lead to a much smaller number of itera-
tions. However, its construction comes with a price.

40 Preconditioning

Chapter 6

Reordering

In Chapter 5, preconditioning was introduced to speed up the convergence of
an iterative method. The construction of a good preconditioner is generally
expensive. An important tool in facing this problem, which is especially useful
for matrices arising from discretisation on an unstructured grid, is reordering of
the matrix elements in advance. This is treated in this chapter.

In this chapter, level-set ordering, independent set ordering, and multi-color
ordering are discussed. Other orderings can be found in [5, Chapter 8] and [6,
Chapter 5].

6.1 Symmetric permutation

Reordering is actually is special case of preconditioning, in which the precondi-
tioners are permutation matrices. A permutation matrix is the identity matrix
with its rows or columns permuted.

Definition 6.1 (Interchange matrix). An interchange matrix is the identity
matrix with two of its rows interchanged. �

Definition 6.2 (Permutation matrix). A permutation matrix P ∈ R
n×n is a

product of (at most n) interchange matrices. �

Proposition 6.3. If P is a permutation matrix, then

P−1 = PT

Proof. See [11, p. 73] �

Method 6.4 (Symmetric permutation). A symmetric permutation follows from
Method 5.1 by using

Pl = PT

Pr = P �

42 Reordering

Example 6.5. Consider a system

a11 0 a13 0
0 a22 a23 a24

a31 a32 a33 0
0 a42 0 a44

︸ ︷︷ ︸

A

x = b

Choose the following permutation matrix:

P =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Then

PTAP =

a11 a13 0 0
a31 a33 a32 0
0 a23 a22 a24

0 0 a42 a44

Note that an (I)LU-factorisation of this matrix would have zero fill-in. �

6.2 Renumbering the adjacency graph

A symmetric permutation of a matrix is equivalent to renumbering the vertices
of its adjacency graph [11, p.75].

Definition 6.6 (Graph). A graph G consists of a set of vertices V = {v1, ..., vn}
and a set of edges E ⊂ V × V . Notation: G = (V,E). �

Definition 6.7 (Adjacency graph). The adjacency graph of a matrix A ∈ R
n×n

is a graph G = (V,E) such that:

• The vertices represent the unknowns: v1, ..., vn ∈ V .

• The edges represent the nonzero elements of the matrix: (vi, vj) ∈ E, if
aij 6= 0 and i 6= j. �

Example 6.8 (Adjacency graph). The adjacency graph

1• // •2

��

// •3

4• •5

OO

corresponds to the matrix structure

∗ ∗
∗ ∗ ∗

∗
∗

∗ ∗

�

6.2 Renumbering the adjacency graph 43

6.2.1 Level-set orderings

Level-set orderings are based on traversing the graph by level sets.

Definition 6.9 (Adjacent). Two vertices in a graph are adjacent if they have
a common edge. In other words: If G = (V,E) is a graph, then v, w ∈ V are
adjacent, if (v, w) ∈ E or (w, v) ∈ E. �

Definition 6.10 (Level set). A level set of a graph G = (V,E) is a recursively
defined subset of V . The initial level set L1 can be any subset of V . Each
next level-set Lk (k ≥ 2) contains the unmarked neighbors of the vertices of the
previous level set:

Lk = {v ∈ V \ (L1 ∪ ... ∪ Lk−1) : ∃w ∈ L1 ∪ ... ∪ Lk−1 adjacent to v} �

Method 6.11 (Level set ordering). Consider a graph G = (V,E). A basic level
set ordering can be constructed by applying the following steps:

1. Choose an initial level set L1 = {vm1
, ..., vM1

} ⊂ V . Mark all vertices
v ∈ L1.

2. While unmarked vertices are available: Determine the next level set Lk =
{vmk

, ..., vMk
} by traversing Lk−1 in a certain way. Mark all vertices

v ∈ Lk.

3. Order the vertices in the following manner:

vm1
, ..., vM1

, vm2
, ..., vM2

, ... �

Level set orderings differ from one another in initial level set, way of traversing,
and way of numbering. The Cuthill-McKee ordering, for example, is based on
the degrees of the vertices.

Definition 6.12 (Degree). The degree of a vertex of a graph is the number of
edges incident to it. Loops1 are counted twice. �

Method 6.13 (Cuthill-McKee (CMK) ordering). The Cuthill-McKee ordering
follows from Method 6.11 by using the following strategies:

• The initial level set consists of a single node: L1 = {vm1
}.

• The elements of a level set are traversed from the nodes of lowest degree
to those of highest degree.

• Nodes are numbered in the same order as they are traversed. �

CMK ordering normally leads to a smaller bandwidth.

Example 6.14 (CMK ordering). Consider the following adjacency graph with
initial level set {1}:

•

�� ��

•

•

��

// •1 //oo •

OO

•
1Note that loops do not occur in adjacency graphs

44 Reordering

Applying CMK ordering yields:

5•

�� ��

•4

3•

��

// •1 //oo •2

OO

6•

�

6.2.2 Independent set orderings

An independent set ordering isolates unknowns that are independent of one
another. This results in a matrix of the form:

[
D E
F C

]

in which D is a diagonal matrix. This structure is especially useful for parallel
computing.

Definition 6.15 (Independent set). An independent set of a graph G = (V,E)
is a set S ⊂ V such that no two vertices are adjacent. More precisely, ∀v ∈ S:

(v, w) ∈ E or (w, v) ∈ E ⇒ w /∈ S �

Method 6.16 (Independent Set Ordering (ISO)). An independent set ordering
for a graph G = (V,E) can be obtained by means of the following algorithm:

1. Initially, put S = ∅.

2. While unmarked vertices are available: Choose2 an unmarked vertex v and
add it to S. Mark v and all vertices adjacent to v.

3. Number the vertices that belong to the independent set S first. Then, number
the other vertices. �

Example 6.17 (ISO). Consider the following adjacency graph:

•

�� ��

•

•

��

// • //oo •

OO

•

An example of an ISO ordering is:

2Choose for instance the vertex of lowest degree. Heuristically, this yields a large indepen-
dent set.

6.3 Conclusion 45

1•

����

•3

5•

��

// •4 //oo •6

OO

2•
�

6.2.3 Multicolor orderings

Graph coloring is the process of coloring (labeling) vertices such that adjacent
vertices do not have the same color. Moreover, this should be done with the
least possible amount of colors.

A multicolor ordering is a color by color ordering after graph coloring has been
executed. If k colors are used, k independent sets are obtained. This yields a
k × k block matrix with diagonal matrices on the diagonal: Lovely for parallel
computing.

In practice, the smallest possible number of colors to color the graph can rarely
be easily determined. Therefore, this criterion is relaxed to obtain the following
greedy algorithm.

Method 6.18 (Multicolor Ordering). A multicolor ordering for a graph G =
(V,E) can be obtained by means of the following greedy algorithm:

1. Let Si (i = 1, ..., n) contain the vertices with color i. Initially, none of the
vertices is colored, so put Si = ∅ (i = 1, ..., n).

2. While unmarked nodes are available:

i. Choose an unmarked vertex v ∈ V .

ii. Determine the ’smallest’ color that none of its neighbors has:

i = min{i ∈ {1, ..., n}|∀w ∈ V adjacent to v : w /∈ Si }

iii. Color v with color i: Si = Si ∪ {v}
iv. Mark v.

3. First number the vertices of S1, then the nodes in S2, and so on. �

6.3 Conclusion

The costs and the quality of a preconditioner partly depend on the structure of
the original matrix. Therefore, it can be a good strategy to reorder the matrix
elements in advance. This can be executed by renumbering the corresponding
adjacency graph.

46 Reordering

Chapter 7

Storage of sparse matrices

Since sparse matrices contain a large number of zero elements, an efficient way of
storing them can save memory as well as computing time. Two popular storing
formats are the coordinate format and the compressed sparse row format, which
are both discussed in this chapter. Other formats can be found in [5, Chapter
2].

7.1 Coordinate format

The most basic format is the coordinate format1, which only stores the nonzero
elements and their row and column index.

Definition 7.1 (Coordinate format). The coordinate format of a matrix A ∈
R

m×n with k nonzero elements consists of three vectors. e ∈ R
k contains the

nonzero elements of A, r ∈ N
k contains their row indices, and c ∈ N

k contains
their column indices. The vectors can be filled in any order. If they are filled
by row, the vectors are constructed according to:

1. k = 0
2. for i = 1, ...,m:
3. for j = 1, ..., n:
4. if aij 6= 0:
5. k = k + 1
6. ek = aij

7. rk = i
8. ck = j
9. end
10. end
11. end �

Example 7.2 (Coordinate format). Consider the matrix

A =

1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 0 12

(7.1)

1This format is used by MATLAB

48 Storage of sparse matrices

The corresponding coordinate format reads:

e = [1 2 3 4 5 6 7 8 9 10 11 12]T

r = [1 1 2 2 2 3 3 3 3 4 4 5]T

c = [1 4 1 2 4 1 3 4 5 3 4 5]T

�

7.2 Compressed sparse row format

One of the most popular formats is the compressed sparse row format, which is
comparable to the coordinate format. The difference is that the row indices are
stored more efficiently.

Definition 7.3 (Compressed Sparse Row format (CSR)). The compressed sparse
row format of a matrix A ∈ R

m×n with k nonzero elements consists of three
vectors. e ∈ R

k contains the nonzero elements of A, c ∈ N
k contains their

column indices, and r ∈ N
m+1 contains the pointers to the beginning of each

row in the vectors e and c. The vectors are filled by row, so according to:

1. k = 0
2. for i = 1, ...,m:
3. for j = 1, ..., n:
4. if aij 6= 0:
5. k = k + 1
6. ek = aij

7. ck = j
8. if the row pointer is not already set for row i: ri = k
9. end
10. end
11. if the row pointer is not already set for row i: ri = k
12. end
13. rm+1 = k + 1 �

Example 7.4 (CSR format). The CSR format for (7.1) reads:

e = [1 2 3 4 5 6 7 8 9 10 11 12]T

r = [1 3 6 10 12 13]T

c = [1 4 1 2 4 1 3 4 5 3 4 5]T

�

Method 7.5 (CSR-vector product). A matrix stored in CSR format can be
multiplied by a vector x as follows:

1. for i = 1 : n
2. k1 = ri
3. k2 = ri+1 − 1

4. (e(k1 : k2))
T

x(c(k1 : k2))
5. end �

7.3 Conclusion 49

Remark 7.6 (Current format in WAQ). The current storage format in WAQ is
comparable to the CSR format. The difference is that the diagonal elements
are stored separately in a vector d. Furthermore, the row pointers point to the
end of each row, instead of the beginning.

Some numerical schemes of WAQ treat the horizontal and the vertical direction
separately. In that case, the format is slightly different. In the current imple-
mentation, for each grid cell Vi, there is exactly one coefficient ti that represents
the relation to grid cell right above it, and exactly one coefficient bi that repre-
sents the relation to the grid cell below it. These two coefficients, that may be
zero, are stored in e in front of the (other) nonzero elements of the row.

For example, consider a matrix that corresponds to a three-dimensional 2×2×2
rectangular grid:

d1 h12 h13 t1
h21 d2 h23 h24 t2
h31 h32 d3 h34 h35 t3

h42 h43 d4 h45 h46 t4
b5 h53 h54 d5 h56 h57

b6 h64 h65 d6 h67 h68

b7 h75 h76 d7 h78

b8 h86 h87 d8

This matrix would be stored as follows:

d = [d1 d2 d8]T

e = [0 t1 h12 h13 0 t2 h21 h23 h24 . . . b8 0 h86 h87]T

c = [0 5 2 3 0 6 1 3 4 . . . 4 0 6 7]T

r = [5 9 . . . 42]T

�

7.3 Conclusion

Since sparse matrices contain a large number of zero elements, an efficient way
of storing them can save both memory and computing time. The main idea is to
store only the nonzero elements. Additionally, information about their location
in the original matrix is stored in some efficient manner. The current storage
format is comparable to the compressed sparse row format.

50 Storage of sparse matrices

Chapter 8

Conclusion and further

investigation

There are several strategies that may tackle the two problems that were formu-
lated in the introduction. These need to be further investigated.

8.1 An accurate and robust scheme

The current numerical schemes of WAQ are either expensive explicit higher or-
der schemes or inaccurate implicit first order schemes. Therefore, an answer to
the following question has been sought:

What are the possibilities for an accurate finite volume scheme for the advection
diffusion equation on an unstructured three-dimensional grid that has a high up-
per bound for the time step?

An implicit flux correcting transport scheme, in which nonlinear terms are ap-
proximated explicitly, might yield a good combination of speed and accuracy.
A detailed description of this scheme can be found in Method 3.35.

The following aspects need to be further investigated:

1. Which limiter and numerical fluxes could best be combined?

2. Does the corresponding stability criterion induce a sufficiently high up-
perbound for the time step?

3. Does FCT perform well for large time steps (the amount of admissable
anti-diffusion might be inversely proportional to the time step)?

8.2 Convergence of GMRES

Another problem is the unsatisfactory convergence speed of the present solver
resulting from linear systems for diffusion dominated problems. Therefore, an
answer to the following question has been sought:

52 Conclusion and further investigation

How can the convergence speed of the current solver for linear systems be en-
hanced for diffusion dominated problems?

First of all, a different solver could be implemented. Currently, GMRES (see
Method 4.26) is used for solving linear systems. It is possible that an alternative
solver (see Section 4.2.2) performs better for diffusion dominated problems.

Moreover, the preconditioning could be changed. At present, the solver is
equipped with symmetric Gauss-Seidel preconditioning (see Example 5.5). Choos-
ing a different preconditioner (see Chapter 5) could lead to a smaller number of
iterations.

Finally, reordering (see Chapter 6) of the matrix elements could be applied be-
fore preconditioning. At the moment, this technique is not being used. However,
it might result in cheaper and/or better preconditioners, especially in the case
of an unstructured grid.

The following aspects need to be further investigated:

1. Is there a linear solver that performs better than GMRES for diffusion
dominated problems?

2. Which combination of reordening and preconditioning is optimal?

3. Is it efficient to reuse a preconditioner, that is relatively expensive to
construct, during multiple time steps?

Appendix A

Current schemes

At present, fifteen different finite volume schemes (see Method 3.29) can be used
in WAQ. These are described briefly below.

Scheme 1 is an explicit (θ = 0) first order upwind scheme (so ψij is as in
Method 3.20).

Scheme 2 is like scheme 1, except that it uses the predictor corrector method
for time integration:

1. Compute c
n+ 1

2

i (for i = 1, ..., I) according to:

|V n+ 1
2

i |cn+ 1
2

i − |V n
i |cni

1
2 (tn+1 − tn)

= an
i

2. Compute cn+1
i (for i = 1, ..., I) according to:

|V n+1
i |cn+1

i − |V n
i |cni

tn+1 − tn
= a

n+ 1
2

i

Scheme 3 is an explicit Lax-Wendroff scheme (so ψij is as in Method 3.24).

Scheme 4 is an Alternation Direction Implicit (ADI) method. It can only be
applied in two dimensions on a structured grid:

This method calculates two successive timesteps in two different ways,
using a semi-implicit scheme. In one time step the derivatives in the y-
direction are evaluated explicitly instead of implicitly. In the other time
step the derivatives in the x-direction are evaluated explicitly instead of
implicitly. More precisely:

1. Let an
i be as in (3.3) and write an

i = an
i,x + an

i,y, where an
i,x involves

fluxes in the x-direction only and an
i,y involves fluxes in the y-direction

only.

54 Current schemes

2. Compute cn+1
i according to:

|V n+1
i |cn+1

i − |V n
i |cni

tn+1 − tn
= (1 − θ)

(
an

i,x + an
i,y

)
+ θ

(
an+1

i,x + an
i,y

)

3. Compute cn+2
i according to:

|V n+2
i |cn+2

i − |V n+1
i |cn+1

i

tn+2 − tn+1
= (1 − θ)

(
an+1

i,x + an+1
i,y

)
+ θ

(
an+1

i,x + an+2
i,y

)

This scheme uses θ = 1
2 . Explicit fluxes are as in (3.7) with ψij a higher

order upwind scheme (see Method 3.22 and 3.23). Implicit fluxes are also
as in (3.7), with ψij a central flux (see Method 3.19). Since only one
direction at the time is implicit, this results in a tridiagonal matrix, which
is relatively easy to solve with a direct method.

Scheme 5 is an explicit (θ = 0) FCT method a la Boris & Book (see Method
3.32 and Remark 3.31) which corrects the first order upwind scheme (so

φ̂ij is as in Method 3.20) with the help of Lax-Wendroff (so φ̃ij is as in
Method 3.24).

Scheme 10 is an implicit (θ = 1) first order upwind scheme (see Method 3.20).

Scheme 11 treats the horizontal and vertical direction seperately. In the hor-
izontal direction, an explicit first order upwind scheme (scheme 1) is ap-
plied. In the vertical direction, a semi-implicit (θ = 1

2) central scheme (so
ψij is as in Method 3.19) is used. The resulting tridiagonal linear systems
are solved by means of a direct method.

Scheme 12 is like scheme 11, except that it uses an explicit FCT scheme
(scheme 5) in the horizontal direction.

Scheme 13 is like Scheme 11, except that it uses a first order upwind scheme
(so ψij is as in Method 3.20) in the vertical direction.

Scheme 14 is like scheme 12, except that it uses a first order upwind scheme
(so ψij is as in Method 3.20) in the vertical direction.

Scheme 15 is like scheme 10, except that, in the horizontal direction, the lin-
ear systems are solved by means of GMRES (see Method 4.26) with a
symmetric GS preconditioner (see Example 5.5). In the vertical direction,
a direct method is used.

Scheme 16 is like Scheme 15, except that it uses a central scheme (so ψij is
as in Method 3.19) in the vertical direction.

Scheme 19 treats the horizontal and vertical direction seperately. In the hor-
izontal direction, an ADI method (scheme 4) is used. In the vertical
direction, an implicit (θ = 1) central (see Method 3.19) scheme is used.1

Scheme 20 is like scheme 19, except that it uses a first order upwind scheme
(so ψij is as in Method 3.20) in the vertical direction.

1Since the scheme is not positive, oscillations may occur. Therefor, an iterative procedure
based on local diffusion and a non-linear smoothing operator (Forrester filter) are applied.

Bibliography

[1] T. Barth and M. Ohlberger. Finite volume methods: Foundation and
analysis. In Encyclopedia of Computational Mechanics. John Wiley & Sons,
2004.

[2] J. P. Boris and D. L. Book. Flux corrected transport. 1. shasta, a fluid
transport algorithm that works. Journal of Computational Physics, 11:38–
69, 1973.

[3] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, Pacific
Grove, 2001.

[4] Kuzmin D and S. Turek. Flux correction tools for finite elements. Journal
of Computational Physics, 175:525–558, 2002.

[5] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matri-
ces. Clarendon Press, Oxford, 1986.

[6] A. George and J.W. Liu. Computer Solution of Large Sparse Positive Def-
inite Systems. Prentice Hall, Inc., New Jersey, 1981.

[7] E. Godlewski. Numerical Approximation of Hyperbolic Systems of Conser-
vation Laws. Springer, New York, 1996.

[8] G.H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins
University Press, Baltimore and London, third edition, 1996.

[9] D. Kröner. Numerical Schemes for Conservation Laws. John Wiley & Sons
Ltd, West Sussex and B.G. Teubner, Stuttgart, 1997.

[10] R.J. LeVeque. Finitie Volume Methods for Hyperbolic Problems. Cambridge
University Press, New York, 2002.

[11] Y. Saad. Iterative methods for sparse linear systems. This is a revised
version of the book published in 1996 by PWS Publishing, Boston. It can be
downloaded from http://www-users.cs.umn.edu/˜saad/books.html, 2000.

[12] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 7:856–869, 1986.

[13] S.T. Zalesak. Fully multidimensional flux-corrected transport algorithms
for fluids. Journal of Computational Physics, 31:335–362, 1979.

Index

adjacency graph, 42
adjacent, 43
advection, 3
Arnoldi, 29
Arnoldi-Modified Gram-Schmidt, 29

backward Gauss-Seidel, 26
backward substitution, 24
Beam-Warming, 20

cell centered grid, 7
central scheme, 13
CFL condition, 15
Chebychev polynomial, 32
compressed sparse row format (CSR),

48
conservation law, 5
consistency of the FVM, 11
convergence of

FVM, 11
GMRES, 32
iterative method, 25
linear fixed point iteration, 26

coordinate format, 47
Cuthill-McKee (CMK) ordering, 43

degree, 43
diffusion, 3
Dirichlet boundary condition, 5

explicit FVM, 10

finite volume method (FVM), 8
flops, 23
forward substitution, 23
Fromm, 20
FVM, 8

Gauss-Jacobi, 26
Gauss-Seidel, 26
Gaussian elimination, 24

general minimal residual method (GM-
RES), 31

Givens rotations, 30
global truncation error, 11
GMRES, 31
graph, 42

Hessenberg matrix, 30

ILU, 36
ILU(0), 37
ILU(p), 37
ILUT, 36
ILUT(p,τ), 36
implicit FVM, 10
incomplete LU factorisation, 34
independent set, 44
independent set ordering (ISO), 44
interchange matrix, 41
iterative method, 25

Krylov method, 28
Krylov space, 27

Lax-Wendroff, 20
expliciet, 16
impliciet, 16

left preconditioning, 33
level set, 43
level set ordering, 43
linear fixed point iteration, 26
local extremum diminishing (LED), 12
local truncation error, 11
LU factorisation, 24

matrix splitting, 26
MC, 20
minmod, 20
Modified ILU, 38
molecular diffusion, 3
monotone numerical flux function, 12
monotonicity preserving FVM, 12

INDEX 57

multicolor ordering, 45

Neumann boundary condition, 5
numerical flux function, 8

order of accuracy, 13

permutation matrix, 41
positive FVM, 11
preconditioning, 33

right preconditioning, 33

sigma grid, 7
stability (absolute) of the FVM, 11
successive over-relaxation (SOR), 26
superbee, 20
symmetric Gauss-Seidel, 27

turbulent diffusion, 3

upwind
first order, 13, 20
second order, 15
third order, 15

van Leer, 20

z-grid, 7

