Numerical Modeling of a Turbine Modeling of Non-Smooth Dynamics of lamellas Efficient solutions for ODEs with periodic boundary conditions

Amey Vasulkar
Under the Guidance of

Dr.ir. D.R. van der Heul

Delft University of Technology, The Netherlands

March 15, 2018

Background

- The turbine is called Oryon Watermill (OWM).
- Developed by Deep Water Energy BV, Netherlands.

Key features

- Modular build
- Operates under low pressure head conditions.
- 'Special' design of the rotor arm.

Numerical Model

- What are the expectations from the Numerical Model?

Numerical Model

- What are the expectations from the Numerical Model?

Performance Characteristic Curve

Co-efficient of Power v/s Tip Speed Ratio

Current Numerical Model

- Computationally intensive
- No agreement with experimental result.

- Spikes in torque time signal.

Solution to the spikes in torques

- Torque transfer mechanism- Water \rightarrow Lamella \rightarrow Shaft
- Fluid-Structure Interaction problem.

Governing equations for lamella motion

Newton's Second Law

Mathematically expressed as an ODE$\mathcal{M} \ddot{\mathbf{x}}(\mathrm{t})=\mathbf{h}(\mathrm{t})$

Governing equations for lamella motion

Newton's Second Law

Mathematically expressed as an ODE$\mathcal{M} \ddot{\mathbf{x}}(\mathrm{t})=\mathbf{h}(\mathrm{t})$ $+$
Algebraic Constraints
||

Governing equations for lamella motion

Newton's Second Law

Mathematically expressed as an ODE-
$\mathcal{M} \ddot{\mathbf{x}}(\mathrm{t})=\mathbf{h}(\mathrm{t})$

Algebraic Constraints
||
Differential Algebraic Equation

Governing equations for lamella motion

Differential Algebraic Equation
Non-smooth Dynamics
Position and velocity vectors are not smooth functions of time.

Numerical Solution

Numerical Solution

- Event Driven
- Separate the non-smooth motion.
- Integrate the smooth part until collision.
- Solve the impact problem at the discontinuity.
- Reset the ODE.

Numerical Solution

- Event Driven
- Separate the non-smooth motion.
- Integrate the smooth part until collision.
- Solve the impact problem at the discontinuity.
- Reset the ODE.
- Time Stepping
- Discretize the entire DAE with the inequalities.
- Less administrative effort
- Problems
- Small time step size.
- Poor accuracy as compared to the event-driven approach.
- Inability to model the partial elastic behavior correctly.

Event Driven Approach

Event Driven Approach

Constraints are formulated as contacts

- Colliding Contact

Change in velocity on collision and bodies move apart with different velocities.

- Resting Contact

Two bodies after collision are resting on each other.

Event Driven Approach

Constraints are formulated as contacts

- Colliding Contact

Change in velocity on collision and bodies move apart with different velocities.

- Resting Contact

Two bodies after collision are resting on each other.

- $\mathrm{v}_{\text {rel }}>0 \rightarrow$ the bodies are not contacting after t_{c}.
- $v_{\text {rel }}<0 \rightarrow$ The bodies are in colliding contact after t_{c}.
- $v_{\text {rel }}=0 \rightarrow$ The bodies are in resting contact after t_{c}.

Colliding and Resting Contact

- Colliding Contact

At the instant of collision-

- Calculate relative velocities.
- Add impulse $\mathrm{j}=-\mathrm{M}_{\mathrm{a}}(1+\epsilon) \mathrm{v}_{\mathrm{rel}}^{-}$
- Reset ODE.

Colliding and Resting Contact

- Colliding Contact

At the instant of collision-

- Calculate relative velocities.
- Add impulse $\mathrm{j}=-\mathrm{M}_{\mathrm{a}}(1+\epsilon) \mathrm{v}_{\text {rel }}^{-}$
- Reset ODE.
- Resting contact

Contact force equals the force acting on the lamella exerted by the fluid.

Summary of non-smooth dynamics for lamella motion

Summary of non-smooth dynamics for lamella motion

- ODE Formulation

Summary of non-smooth dynamics for lamella motion

- ODE Formulation
- Detection of time of collision

Summary of non-smooth dynamics for lamella motion

- ODE Formulation
- Detection of time of collision
- Detection of the type of contact
- Colliding Contact
- Resting Contact

Coupled system of nonlinear ODEs

Governing equation for lamella motion

$$
\begin{equation*}
\mathcal{M} \ddot{\mathbf{x}}(\mathrm{t})=\mathbf{h}(\mathrm{t})+\mathbf{w}(\mathrm{t}) ; \tag{1}
\end{equation*}
$$

Governing equation for fluid flow

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{u}}{\mathrm{dt}}+\mathbf{R}(\mathbf{u})=0 \tag{2}
\end{equation*}
$$

- RHS of ODE 1 from forces due to fluids.
- RHS of ODE 2 from lamella motion.
- Resulting system of nonlinear ODEs has a periodic solution.

Requirements for the numerical method

- The method should be faster than the direct time integration.
- The method should have low memory requirements.
- The method should be easy to implement with minimum modifications to the solver.

Methods for solving the coupled system

Standard Methods for nonlinear ODEs with periodic solutions-

- Shooting Method
- Finite Difference Method
- Collocation Method

Specific Methods for fast analysis of periodic flows-

- Multitime multigrid method
- Time Linearization method
- Time spectral (harmonic balance) method

Harmonic Balance Method

$$
\begin{equation*}
\frac{\mathrm{du}}{\mathrm{dt}}+\mathrm{R}=0 \tag{3}
\end{equation*}
$$

Fourier series expansion of $u(t)$ with n harmonics reads:

$$
\begin{equation*}
\mathrm{u}(\mathrm{t})=\sum_{\mathrm{j}=0}^{\mathrm{n}} \mathfrak{u}_{\mathrm{j}} \mathrm{e}^{\mathrm{ij} \omega \mathrm{t}} \tag{4}
\end{equation*}
$$

and the expansion for $R(t)$ reads:

$$
\begin{equation*}
\mathrm{R}(\mathrm{t})=\sum_{\mathrm{j}=0}^{\mathrm{n}} \Re_{\mathrm{j}} \mathrm{j}^{\mathrm{i} \mathrm{j} \omega \mathrm{t}} \tag{5}
\end{equation*}
$$

where $\mathfrak{u}_{\mathrm{j}}$ and $\mathfrak{R}_{\mathrm{j}}$ are the Fourier co-efficients.

Harmonic Balance Method

Inserting equations (4) and (5) in equation (3) we obtain,

$$
\begin{gather*}
\omega \sum_{j=0}^{n} \mathrm{iju}_{\mathrm{j}} \mathrm{e}^{\mathrm{ij} \omega \mathrm{t}}+\sum_{\mathrm{j}=0}^{\mathrm{n}} \mathfrak{R}_{\mathrm{j}} \mathrm{e}^{\mathrm{ij} \omega \mathrm{t}}=0 \\
\mathrm{n} \text { equations for sine }\left\{\begin{array}{c}
-1 \omega \mathfrak{u}_{\mathrm{c}_{1}}+\mathfrak{R}_{\mathrm{s}_{1}}=0 ; \\
-2 \omega \mathfrak{u}_{\mathrm{c}_{2}}+\mathfrak{R}_{\mathrm{s}_{2}}=0 ; \\
\vdots \\
-\mathrm{n} \omega \mathfrak{u}_{\mathrm{c}_{\mathrm{n}}}+\mathfrak{R}_{\mathrm{s}_{\mathrm{n}}}=0 ; \\
\mathfrak{R}_{0}=0
\end{array}\right. \tag{6}\\
\text { center- } \tag{7}\\
\text { n equations for cosine }\left\{\begin{array}{c}
1 \omega \mathfrak{u}_{\mathrm{s}_{1}}+\mathfrak{R}_{\mathrm{c}_{1}}=0 ; \\
2 \omega \mathfrak{u}_{\mathrm{s}_{2}}+\mathfrak{R}_{\mathrm{c}_{2}}=0 ; \\
\vdots \\
\mathrm{n} \omega \mathfrak{u}_{\mathrm{s}_{\mathrm{n}}}+\mathfrak{R}_{\mathrm{c}_{\mathrm{n}}}=0 ;
\end{array}\right. \tag{8}\\
\omega \mathcal{A} \mathfrak{u}+\mathfrak{R}=0 . \tag{9}
\end{gather*}
$$

Harmonic Balance Method

Frequency to time domain transformation-

$$
\mathfrak{u}=\mathcal{E} \hat{\mathbf{u}}(\mathrm{t})
$$

The operator \mathcal{E} is given by:

$$
\begin{aligned}
& \omega \mathcal{A E} \hat{\mathbf{u}}+\mathcal{E} \hat{\mathbf{R}}=0 .
\end{aligned}
$$

Multiplying from left, the inverse transform operator $\left(\mathcal{E}^{-1}\right)$, we have:

$$
\begin{equation*}
\omega\left(\mathcal{E}^{-1} \mathcal{A E}\right) \hat{\mathbf{u}}+\hat{\mathbf{R}}(\hat{\mathbf{u}})=0 \tag{11}
\end{equation*}
$$

Harmonic Balance Method

- The derivative term is converted to a source term with the left multiplication of the operator $\mathcal{E}^{-1} \mathcal{A} \mathcal{E}$
- $\omega\left(\mathcal{E}^{-1} \mathcal{A} \mathcal{E}\right) \hat{\mathbf{u}}+\hat{\mathbf{R}}(\hat{\mathbf{u}})=0$ can be solved as coupled stationary problems.

$$
\mathcal{E}^{-1} \mathcal{A} \mathcal{E}=\frac{2}{2 \mathrm{n}+1}\left[\begin{array}{ccccccc}
0 & B_{1} & B_{2} & B_{3} & \cdots & \cdots & B_{2 n} \\
-B_{1} & 0 & B_{1} & B_{2} & B_{3} & & B_{2 n-1} \\
-B_{2} & -B_{1} & 0 & B_{1} & B_{2} & & \vdots \\
-B_{3} & -B_{2} & -B_{1} & 0 & B_{1} & & \vdots \\
\vdots & & & & \ddots & & B_{2} \\
\vdots & & & & & \ddots & B_{1} \\
-B_{2 n} & \cdots & \cdots & -B_{3} & -B_{2} & B_{1} & 0
\end{array}\right] ;
$$

$$
B_{i}=\sum_{k=1}^{n} k \sin \left(k \omega j t_{1}\right) ; \quad j=\{1, \ldots, 2 n\} .
$$

Harmonic Balance Method

Pseudo time marching method:

$$
\begin{gather*}
\frac{\mathrm{d} \hat{\mathbf{u}}}{\mathrm{~d} \tau}+\omega \mathcal{B} \hat{\mathbf{u}}+\hat{\mathbf{R}}(\hat{\mathbf{u}})=0 \\
\text { where } \quad \mathcal{B}=\mathcal{E}^{-1} \mathcal{A} \mathcal{E} \tag{12}\\
\frac{\hat{\mathbf{u}}^{\mathrm{k}+1}-\hat{\mathbf{u}}^{\mathrm{k}}}{\Delta \tau}=-\left[\omega \mathcal{B} \hat{\mathbf{u}}+\hat{\mathbf{R}}\left(\hat{\mathbf{u}}^{\mathrm{k}+1}\right)\right] \tag{13}
\end{gather*}
$$

$\hat{\mathbf{R}}\left(\hat{\mathbf{u}}^{\mathrm{k}+1}\right)$ is linearized using a Taylor Series expansion:

$$
\begin{equation*}
\hat{\mathbf{R}}\left(\hat{\mathbf{u}}^{\mathrm{k}+1}\right)=\hat{\mathbf{R}}\left(\hat{\mathbf{u}}^{\mathrm{k}}\right)+\mathcal{J}_{\mathrm{R}} \Delta \hat{\mathbf{u}}+\mathcal{O}\left(\Delta \hat{\mathbf{u}}^{2}\right), \tag{14}
\end{equation*}
$$

where \mathcal{J}_{R} is the Jacobian matrix of the residual vector in block diagonal form.

Harmonic Balance Method

Explicit $\omega \mathcal{B u}$

$$
\begin{equation*}
\left[\frac{\mathrm{V} \mathcal{I}}{\Delta \tau}+\mathcal{J}_{\mathrm{R}}\right] \Delta \hat{\mathbf{u}}=-\hat{\mathbf{R}}^{\mathrm{k}}-\omega \mathcal{B} \hat{\mathbf{u}}^{\mathrm{k}} \tag{15}
\end{equation*}
$$

$$
\left[\begin{array}{cccc}
\mathrm{E}_{1} & 0 & \ldots & 0 \\
0 & \mathrm{E}_{2} & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \mathrm{E}_{2 \mathrm{n}+1}
\end{array}\right] ; \quad \mathrm{E}_{\mathrm{i}}=\frac{\mathrm{V}}{\Delta \tau_{\mathrm{i}}}+\mathcal{J}_{\mathrm{ts}_{\mathrm{i}, \mathrm{i}}}
$$

- Solve independently for each of the $2 \mathrm{n}+1$ stationary solutions
- Only the $k^{\text {th }}$ snapshot of the Jacobian has to be stored. No extra memory.
- Can be easily parallelized.
- Restricts the size of the Courant-Friedrich-Lewy (CFL) number and thus, time step size.

Harmonic Balance Method

Implicit $\omega \mathcal{B} \hat{\mathbf{u}}$

$$
\begin{equation*}
\left[\frac{\mathrm{V} \mathcal{I}}{\Delta \tau}+\mathcal{J}_{\mathrm{R}}+\omega \mathcal{B}\right] \Delta \hat{\mathbf{u}}=-\hat{\mathbf{R}}^{\mathrm{k}}-\omega \mathcal{B} \hat{\mathbf{u}}^{\mathrm{k}} \tag{16}
\end{equation*}
$$

$\left[\begin{array}{ccccc}\mathrm{E}_{1} & \mathrm{H}_{1,2} & \mathrm{H}_{1,3} & \cdots & \mathrm{H}_{1,2 n+1} \\ \mathrm{H}_{2,1} & \mathrm{E}_{2} & & \cdots & \vdots \\ \vdots & & \ddots & & \vdots \\ \mathrm{H}_{2 n+1,1} & \cdots & \ldots & \mathrm{E}_{2 n} & \mathrm{H}_{2, n, 2 n+1} \\ \mathrm{E}_{2 n+1}\end{array}\right] ; \quad \mathrm{E}_{\mathrm{i}}=\frac{\mathrm{V}}{\Delta \tau_{\mathrm{i}}}+\mathcal{J}_{\mathrm{ts}_{\mathrm{i}, \mathrm{i}} ; \quad \mathrm{H}_{\mathrm{i}, \mathrm{j}}=\mathrm{V} \omega \mathcal{B}_{\mathrm{i}, \mathrm{j}} .}$

- Memory requirements and CPU time are more than the explicit approach.
- No restriction on CFL number and thus, on time step size.
- Significant modification in the solver.

Summary

- To solve the problem of unphysical spikes equations from the field of non-smooth dynamics to be used.
- The event-driven approach with the consideration of colliding and resting contacts is most appropriate.
- Complex problem of modeling lamella motion was reduced to simple ODE integration but with appropriate conditions.
- Coupled system of nonlinear ODEs with periodic solutions.
- The harmonic balance method is most suited for the current problem.

Research Questions

- How to apply the harmonic balance method to the coupled fluid-structure problem?
- Which of the two treatments-explicit or implicit, is the most appropriate?

Appendix

Methods Applied to a system of linear ODEs
Consider the a system of linear ODEs

$$
\dot{\mathbf{x}}(\mathrm{t})=\mathcal{Q} \mathbf{x}+\mathbf{f}(\mathrm{t}) ; \quad \mathbf{x}(0)=\mathbf{x}(\mathrm{T}) ; \quad \mathbf{x}=\left[\begin{array}{ll}
0 & 1 \tag{17}
\end{array}\right]^{\top} ;
$$

where $\mathcal{Q}=\left[\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right]$ and $\mathbf{f}(\mathrm{t})=\left[\begin{array}{c}\sin (\omega \mathrm{t}) \\ \cos (\omega \mathrm{t})\end{array}\right]$

Appendix

Methods Applied to a system of linear ODEs

Consider the a system of linear ODEs

$$
\dot{\mathbf{x}}(\mathrm{t})=\mathcal{Q} \mathbf{x}+\mathbf{f}(\mathrm{t}) ; \quad \mathbf{x}(0)=\mathbf{x}(\mathrm{T}) ; \quad \mathbf{x}=\left[\begin{array}{ll}
0 & 1 \tag{17}
\end{array}\right]^{\top} ;
$$

where $\mathcal{Q}=\left[\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right]$ and $\mathbf{f}(\mathrm{t})=\left[\begin{array}{c}\sin (\omega \mathrm{t}) \\ \cos (\omega \mathrm{t})\end{array}\right]$
The true solution of the above system is computed to be-

$$
\left[\begin{array}{l}
x_{1}(\mathrm{t}) \tag{18}\\
\mathrm{x}_{2}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{c}
-\sin (\omega \mathrm{t}) \\
\cos (\omega \mathrm{t})+\frac{1}{\omega}(\sin (\omega \mathrm{t}))
\end{array}\right]
$$

Harmonic balance solution

$$
\begin{equation*}
\dot{\mathbf{x}}(\mathrm{t})=\mathcal{Q} \mathbf{x}+\mathbf{f}(\mathrm{t}) ; \tag{19}
\end{equation*}
$$

Applying harmonic balance method, gives:

$$
\omega\left(\mathcal{E}^{-1} \mathcal{A} \mathcal{E}\right) \hat{\mathcal{X}}+\hat{\mathcal{R}}=0
$$

where, for n harmonics we have

$$
\mathcal{E}^{-1} \mathcal{A} \mathcal{E} \in \mathbb{R}^{2 n+1 \times 2 n+1} ; \quad \hat{\mathcal{X}} \in \mathbb{R}^{2 n+1 \times 2} ; \quad \hat{\mathcal{R}}^{2 n+1 \times 2}
$$

with

$$
\hat{\mathcal{R}}=-\hat{\mathcal{X}} \mathcal{Q}^{\top}-\mathcal{F}
$$

The final system looks like:

$$
\omega\left(\mathcal{E}^{-1} \mathcal{A E}\right) \hat{\mathcal{X}}-\hat{\mathcal{X}} \mathcal{Q}^{\top}=\mathcal{F}
$$

The above system is a Sylvester equation.

Plots

Solution of $d y_{2} / d t=\omega y_{1}+\cos (\omega t)$ with $\omega=4$.

Solution of $d y_{1} / d t=-\omega y_{2}+\sin (\omega t)$ with $\omega=4$.

Another formulation

Sylvester problem can be represented as a linear equation in this case.

$$
\begin{align*}
& \quad \omega\left(\mathcal{E}^{-1} \mathcal{A E}\right) \hat{\mathcal{X}}-\hat{\mathcal{X}} \mathcal{Q}^{\top}=\mathcal{F} \Rightarrow \mathcal{Z} \hat{\mathbf{x}}=\mathbf{F} \tag{20}\\
& \text { where } \mathcal{Z}=\omega\left(\mathcal{E}^{-1} \mathcal{A E}\right)-(\mathcal{I} \otimes \mathcal{Q})
\end{align*}
$$

Observation
Comparing with $\mathcal{Z}=\mathcal{M}-\mathcal{N}$ splitting.
Properties of \mathcal{Z} determine the convergence of the iterative process.

Van der Pol's equation

The Van der Pol's equation in reduced form:

$$
\left[\begin{array}{l}
\mathrm{y}_{1} \tag{21}\\
\mathrm{y}_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
\mathrm{y}_{2} \\
\mu\left(1-\mathrm{y}_{1}^{2}\right) \mathrm{y}_{2}-\mathrm{y}_{1}
\end{array}\right]=:-\mathbf{R}
$$

Performing the harmonic balance transformation, we have:

$$
\begin{array}{ll}
& \omega \mathcal{B} \hat{\mathbf{Y}}+\hat{\mathbf{R}}(\hat{\mathbf{Y}})=0 ; \\
\text { where } \quad & \hat{\mathbf{Y}} \in \mathbb{R}^{2 *(2 n+1) \times 1 ;} \quad \hat{\mathbf{R}} \in \mathbb{R}^{2 *(2 n+1) \times 1} ; \\
& \mathcal{B} \in \mathbb{R}^{2 *((2 n+1) \times(2 n+1))} \tag{22}
\end{array}
$$

Van der Pol's equation

Pseudo time stepping-

$$
\begin{equation*}
\frac{\mathrm{d} \hat{\mathbf{Y}}}{\mathrm{~d} \tau}+\omega \mathcal{B} \hat{\mathbf{Y}}+\hat{\mathbf{R}}=0 . \tag{23}
\end{equation*}
$$

Explicit

$$
\begin{equation*}
\left[\frac{\mathrm{V} \mathcal{I}}{\Delta \tau}+\mathcal{J}_{\mathrm{ts}}\right] \Delta \hat{\mathbf{Y}}=-\hat{\mathbf{R}}^{\mathrm{k}}-\omega \mathcal{B} \hat{\mathbf{Y}}^{\mathrm{k}} \tag{24}
\end{equation*}
$$

Implicit

$$
\begin{equation*}
\left[\frac{\mathrm{V} \mathcal{I}}{\Delta \tau}+\mathcal{J}_{\mathrm{ts}}+\mathcal{B}\right] \Delta \hat{\mathbf{Y}}=-\hat{\mathbf{R}}^{\mathrm{k}}-\omega \mathcal{B} \hat{\mathbf{Y}}^{\mathrm{k}} \tag{25}
\end{equation*}
$$

Plots

Though the Roads been rocky, it sure feels good to me
-Bob Marley

