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Using Isogeometric Fluid Structure Interaction

Modelling Large Floating Membrane Structures
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Introduction - Characteristics
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1-10 km

Flexible and continuous

Light-weight



Introduction - Goal
“Develop and implement a Fluid-Structure Interaction framework 
using Isogeometric Analysis for application for offshore membrane 

structures, with emphasis on structural failure modes.”

6



Literature Review - VLFSs
Very Large Floating Structures (VLFSs)
Work by Kashiwagi et al. in the early 2000s using modal 

expansions and potential flow. The structure is governed by 
linear Euler-Bernoulli beam theory.

 Further works include time-domain methods and FEM-BEM
coupling in the frequency domain. 

 However, in all cases; limited wave heights and linear 
structural behaviour are used.
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Literature Review – Wrinkling/Folding
Occurs when a thin membrane supported by a substrate is 

under in-plane compressive loading.
 State-of-the-art:

 Mathematical model based on uniform, inextensible membrane on 
linear substrate

 Experimental results
 Limited numerical studies
 All unidirectional load cases
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Literature Review – Wrinkling/Folding
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Literature Review - FSI

Weakly Coupled FSI
Characteristics:
• Large structural stiffness
•

Applications:
• Aero/Hydro-elasticity
Coupling:
• One-way Partitioned, Analytical

Strongly Coupled FSI
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Characteristics:
• Flexible structures
•

Coupling:
• Iterative Partitioned or Monolithic



Literature Review - FSI
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Literature Review - IGA
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Literature Review - IGA
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State-of-the-art:
 Reissner-Mindlin and Kirchhoff-Love shells 

implemented. Including plasticity, instability, vibrations, 
assemblies etc. including different material models

 Several fluid descriptions included
 Strongly and Weakly coupled FSI applications, mostly 

with real flow.
 eXtended IGA (XIGA), Spectral Stochastic IGA (SSIGA) 

developed
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Numerical Methods



Beam Model
Key Features:
 Pinned, Clamped, Rolled supports
 (Following) Force, Moment, (Following) Pressure loads
 Isogeometric basis
 Forward/Backward Euler, Trapezium, Newmark, Bathe, RK/ERK/ESDIRK time 

integration methods
 Curvilinear geometry based on (NUR)B-splines
 Verified all of the above using manufactured solutions in space and time, 

analytical solutions, benchmarks for curvilinear system (Cazzani et al.) and 
theoretical results on vibrations.

 Initial vertical deflection can be added
Work in progress:
o Nonlinear beam on foundation to observe wrinkling
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Python



Shell Model
Shell model available in G+smo library (C++)
Additional features developed:
 Mass matrix debugged
 Time integration for linear and nonlinear shell
 Application of  (non-following) pressures
To be developed:
o (Following pressure)
oValidation time integration
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G+smo
(C++)



Flow Model
Available fluid models:
Navier-Stokes 

 SUPG/PSPG or k- -solver
 Steady/Unsteady
 Developed by University of West Bohemia (Pilsen, CZ)

 Ideal Flow solver:
 Steady by nature
 However, pressures computed based on unsteady Bernoulli equation
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Flow Model – Ideal Flow
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Fluid-Structure Interaction
 Mesh deformation based on  

Linear Elasticity (solids)
 Pressure and Displacement 

transfer function developed for 
ideal flow

 Coupling method independent 
of mesh matching

o ALE Formulation for Ideal Flow 
and NS Flow to be developed
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Parametric Fluid Domain

Parametric Shell Domain
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Results and Discussions



Beam Model – Spatial Convergence

21

5.00E-02 5.00E-01
1.00E-17
1.00E-16
1.00E-15
1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

Mesh size

Linear Beam

P=2 P=3 P=4

5.00E-02 5.00E-01
1.00E-17
1.00E-16
1.00E-15
1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

Mesh size

Nonlinear Y

P1=2,p2=2
P1=2,p2=3
P1=2,p2=4

5.00E-02 5.00E-01
1.00E-17
1.00E-16
1.00E-15
1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

Mesh size

Nonlinear X

L2
 n

or
m

 o
f e

rr
or

2nd order
2nd order

2nd order

4th order 4th order
4th order

Constant

Constant

2nd to M. Precision
2nd to M. Precision

Const on M. Precision



Beam Model - Temporal Convergence
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Fluid Model – Ideal Flow
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Fluid Model – Ideal Flow
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FSI
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Application: Wrinkling and Folding



Beam Model
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Remember…

Compressive Force
Elastic/Liquid foundation



Beam Model
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Initial shapes



Beam Model
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Try-out 1:
• Knot vector [0,0.5,1.0]
• Beam under increasing compressive load



Beam Model
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S=1e4, EI=1e0 S=1e2, EI=1e0

S=1e0, EI=1e0 S=0e0, EI=1e0



Beam Model
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Try-out 1:
• Knot vector [0,0.5,1.0]
• Beam under increasing compressive 

load
Observations:
• ‘Shocky’ shortening
• Always one extremum
Lessons learned:
• Knot vector too course
• Hence, energy state not possible?!

shortening

lo
ad



Beam Model
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Try-out 2:
• Knot vector [0,1/8,…,7/8,1.0]
• Beam under increasing compressive load



Beam Model
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S=1e4, EI=1e0 S=1e2, EI=1e0

S=1e0, EI=1e0 S=0e0, EI=1e0



Beam Model
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Try-out 2:
• Knot vector [0,1/8,…,7/8,1.0]
• Beam under increasing 

compressive load
Observations:
• ‘Shocky’ shortening disappeared
• No ‘trivial mode’ for S=0?
Open question:
• What happens if first mode is 

sin(x)?
• Force steps too big?



Beam Model
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Try-out 3:
• Knot vector [0,1/8,…,7/8,1.0]
• Beam under increasing compressive load (smaller step)
• Sin(x) initially



Beam Model
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S=1e4, EI=1e0 S=1e2, EI=1e0

S=1e0, EI=1e0 not finished S=0e0, EI=1e0



Beam Model

37

Try-out 3:
• Knot vector [0,1/8,…,7/8,1.0]
• Beam under increasing compressive 

load (smaller step)
• Sin(x) initially
Observations:
• ‘Shocky’ shortening disappeared
• No ‘trivial mode’ for S=0?
• Same modes visible, despite sin(x) 

initially
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Conclusions and Recommendations



Conclusions – Beam Model
Beam model developed and verified
• Space and time discretisations verified using manufactured 

solutions
• Time integration schemes can be assessed further
• More features
Beam model application to wrinkling:
• ‘Fine’ knot vector
• Initial deformation can be chosen arbitrarily? (hypothesis)
• However, without spring term, no ‘trivial mode’…
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Conclusions – Shell Model
Shell model developed
• Validated for simple, linear cases
• Working on validation for time integration (Euler methods)
• Working on non-linear, force incremental code
FSI with potential flow
• Weak partitioned scheme works
• Next step: strong coupling
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Way Forward and Open Questions
• Suggestions for wrinkling problems in Python?
• Should the wrinkling in G+smo be quasi-static or dynamic?
• Couple fluid and structure in G+smo? Or make complicated 

foundation? Can also make foundation with other solid?
• Pressures following?
• Focus on instabilities? Requires assembly of geometric 

stiffness matrix.

When is the next meeting?
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