

Consortium

Modelling Large Floating Membrane Structures

Using Isogeometric Fluid Structure Interaction

- 1. Introduction
- 2. Literature Review
- 3. Numerical Models
 - a. Beam Model
 - b. Shell Model
 - c. Fluid Models
 - d. Fluid-Structure Interaction
- 4. Results and Discussion
- 5. Application: Wrinkling and Folding
- 6. Conclusions & Recommendations

Outline

Introduction - Characteristics

TUDelft

Ø ≈1-10 km

Flexible and continuous

Light-weight

(

Introduction - Goal

"Develop and implement a Fluid-Structure Interaction framework using Isogeometric Analysis for application for offshore membrane structures, with emphasis on structural failure modes."

Literature Review - VLFSs

Very Large Floating Structures (VLFSs)

ŤUDelft

- Work by Kashiwagi et al. in the early 2000s using modal expansions and potential flow. The structure is governed by linear Euler-Bernoulli beam theory.
- Further works include time-domain methods and FEM-BEM coupling in the frequency domain.
- However, in all cases; limited wave heights and linear structural behaviour are used.

Literature Review – Wrinkling/Folding

- Occurs when a thin membrane supported by a substrate is under in-plane compressive loading.
- State-of-the-art:

řUDelft

- Mathematical model based on uniform, inextensible membrane on linear substrate
- Experimental results
- Limited numerical studies
- All unidirectional load cases

Literature Review – Wrinkling/Folding

Compressive Force Elastic/Liquid foundation Tensional force No Foundation

Sources: Pocivavsek et al. (2008), Cerda et al. (2002)

TUDelft

Literature Review - FS

Weakly Coupled FSI

Characteristics:

- Large structural stiffness
- $\rho_{\text{structure}} \gg \rho_{\text{fluid}}$ Applications:
- Aero/Hydro-elasticity *Coupling:*
- One-way Partitioned, Analytical

Strongly Coupled FSI

Characteristics:

- Flexible structures
- $\rho_{\text{structure}} \approx \rho_{\text{fluid}}$ Coupling:
- Iterative Partitioned or Monolithic

Literature Review - FSI

Cardiovascular Biology

Parachute/Sail design

Maritime/Aeronautical Engineering

Literature Review - IGA

Literature Review - IGA

State-of-the-art:

řUDelft

- Reissner-Mindlin and Kirchhoff-Love shells implemented. Including plasticity, instability, vibrations, assemblies etc. including different material models
- Several fluid descriptions included
- Strongly and Weakly coupled FSI applications, mostly with real flow.
- eXtended IGA (XIGA), Spectral Stochastic IGA (SSIGA) developed

Numerical Methods

Key Features:

- ✓ Pinned, Clamped, Rolled supports
- ✓ (Following) Force, Moment, (Following) Pressure loads
- ✓ Isogeometric basis
- ✓ Forward/Backward Euler, Trapezium, Newmark, Bathe, RK/ERK/ESDIRK time integration methods
- ✓ Curvilinear geometry based on (NUR)B-splines
- ✓ Verified all of the above using manufactured solutions in space and time, analytical solutions, benchmarks for curvilinear system (Cazzani et al.) and theoretical results on vibrations.
- \checkmark Initial vertical deflection can be added

Work in progress:

• Nonlinear beam on foundation to observe wrinkling

Beam Model

- Shell model available in G+smo library (C++)
- Additional features developed:
- ✓ Mass matrix debugged
- \checkmark Time integration for linear and nonlinear shell
- ✓ Application of (non-following) pressures
- To be developed:
- (Following pressure)
- Validation time integration

Shell Model

ŤUDelft

Available fluid models:

- Navier-Stokes
 - SUPG/PSPG or k-ω-solver
 - Steady/Unsteady
 - Developed by University of West Bohemia (Pilsen, CZ)
- Ideal Flow solver:
 - Steady by nature
 - However, pressures computed based on unsteady Bernoulli equation

Flow Model

ARRANTE

Flow Model – Ideal Flow

TUDelft

Fluid-Structure Interaction

Mesh deformation based on
Linear Elasticity (solids)

TUDelft

- Pressure and Displacement transfer function developed for ideal flow
- Coupling method independent of mesh matching
- ALE Formulation for Ideal Flow and NS Flow to be developed

Results and Discussions

Beam Model – Spatial Convergence

-2 norm of error

TUDelft

Beam Model - Temporal Convergence

Nonlinear X

Nonlinear Y

ŤUDelft

22

Fluid Model – Ideal Flow

TUDelft

Fluid Model – Ideal Flow

Application: Wrinkling and Folding

Beam Model

Remember...

Compressive Force Elastic/Liquid foundation

Initial shapes

ŤUDelft

Try-out 1:

ŤUDelft

- Knot vector [0,0.5,1.0]
- Beam under increasing compressive load

Try-out 1: EI = 1.00e+00; EA = 1.00e+10 1e8 = 0.00e + 00S • Knot vector [0,0.5,1.0] = 1.00e + 002.5 = 1.00e + 02 Beam under increasing compressive S = 1.00e + 04load 2.0 **Observations: p**ao 1.5 'Shocky' shortening Always one extremum 1.0 Lessons learned: 0.5 Knot vector too course • Hence, energy state not possible?! 0.0 -0.2 0.1 0.3 0.0 0.4

TUDelft

shortening

31

Try-out 2:

ŤUDelft

- Knot vector [0,1/8,...,7/8,1.0]
- Beam under increasing compressive load

TUDelft Try-out 2:

- Knot vector [0,1/8,...,7/8,1.0]
- Beam under increasing compressive load

Observations:

- 'Shocky' shortening disappeared
- No 'trivial mode' for S=0?

Open question:

- What happens if first mode is sin(x)?
- Force steps too big?

Try-out 3:

TUDelft

- Knot vector [0,1/8,...,7/8,1.0]
- Beam under increasing compressive load (smaller step)
- Sin(x) initially

S=1e0, EI=1e0 not finished

Try-out 3:

ŤUDelft

- Knot vector [0,1/8,...,7/8,1.0]
- Beam under increasing compressive load (smaller step)
- Sin(x) initially

Observations:

- 'Shocky' shortening disappeared
- No 'trivial mode' for S=0?
- Same modes visible, despite sin(x) initially

Conclusions and Recommendations

Conclusions – Beam Model

Beam model developed and verified

- Space and time discretisations verified using manufactured solutions
- Time integration schemes can be assessed further
- More features

řUDelft

Beam model application to wrinkling:

- 'Fine' knot vector
- Initial deformation can be chosen arbitrarily? (hypothesis)
- However, without spring term, no 'trivial mode'...

Conclusions – Shell Model

Shell model developed

ŤUDelft

- Validated for simple, linear cases
- Working on validation for time integration (Euler methods)
- Working on non-linear, force incremental code FSI with potential flow
- Weak partitioned scheme works
- Next step: strong coupling

Way Forward and Open Questions

- Suggestions for wrinkling problems in Python?
- Should the wrinkling in G+smo be quasi-static or dynamic?
- Couple fluid and structure in G+smo? Or make complicated foundation? Can also make foundation with other solid?
- Pressures following?

ťUDelft

• Focus on instabilities? Requires assembly of geometric stiffness matrix.

$$[\mathbf{k}_{\sigma}] = \int_{-1}^{1} \int_{-1}^{1} [\mathbf{G}_{I}]^{T} [\mathbf{J}]^{-T} \begin{bmatrix} N_{x} & N_{xy} \\ N_{xy} & N_{y} \end{bmatrix} [\mathbf{J}]^{-1} [\mathbf{G}_{I}] J d\xi d\eta$$

When is the next meeting?