Sipos et al. (2016), Int. J. Solids Struct.

Modelling Wrinkling Behaviour of Large Floating Thin Offshore Structures An application of Isogeometric Structural Analysis for Post-Buckling Analyses H.M. (Hugo) Verhelst 22-07-2019

To obtain the degree of Master of Science in Applied Mathematics

TUDelft

Outline

Research Goal

Methods

Basics of Isogeometric Analysis Kirchhoff-Love shell theory Arc-Length methods

Results

Conclusions & Recommendations

Research Goal

Research question:

"How can *wrinkling formation* of large floating thin structures be numerically modelled with *Isogeometric Analysis*?"

Research goal:

"Develop a *geometrically nonlinear* shell model based on *Kirchhoff-Love* shell theory and *Isogeometric Analysis* for *post-buckling analysis*."

Methods

Basics of Isogeometric Analysis

Basics of Isogeometric Analysis Philosophy

Seamless integration between Computer Aided Design (CAD) and Analysis.

(Parametric) Computer Aided Design

Model Domain

Numerical Analysis

Hsu et al. (2015), Comput. Mech.

6

Basics of Isogeometric Analysis Mathematical Concepts (1)

B-spline curve

BB2 submarine, MARIN

8

Basics of Isogeometric Analysis Mathematical Concepts (2)

Graduation Presentation Applied Mathematics - Hugo Verhelst

Methods

(Geometrically Nonlinear) Kirchhoff-Love Shell Formulation

Isogeometric Shell Model Kirchhoff-Love Shell Model

- 1. Straight lines normal to the mid-surface remain normal to the mid-surface after deformation
- 2. Straight lines normal to the mid-surface remain straight after deformation
- 3. The thickness of the shell does not change during deformation

Valid for low thickness vs. geometry dimensions

Kirchhoff-Love Shell Coordinate System

Any point \boldsymbol{x} on the (un)deformed shell can be represented by:

 $x(\theta) = c(\theta_1, \theta_2) + \theta_3 \hat{n}$ (θ_1, θ_2) $c(\theta_1, \theta_2)$ $c(\theta_1, \theta_2)$ $c(\theta_1, \theta_2)$

22/07/2019 Graduation Presentation Applied Mathematics - Hugo Verhelst

Kirchhoff-Love Shell

Nonlinearities

ρ

Geometric Nonlinearity

Methods

Extended Arc-Length Method

Extended Arc-Length Method

Buckling and Post-Buckling

22/07/2019 Graduation Presentation Marine Technology - Hugo Verhelst

Extended Arc-Length Method Ordinary Routine

22/07/2019 Graduation Presentation Marine Technology - Hugo Verhelst

Post-Buckling Analysis Present Algorithm

- 1. Follow equilibrium path
- 2. If unstable branch found then
 - a. Compute *singular* point and corresponding buckling mode
 - b. Apply deformation to solution
 - c. Return to 1.

Extended Arc-Length Method Path-Following

22/07/2019 Graduation Presentation Marine Technology - Hugo Verhelst 19

Extended Arc-Length Method Path-Following

Load Control

Displacement Control

Arc-Length Control

22/07/2019 Graduation Presentation Marine Technology - Hugo Verhelst 20

Extended Arc-Length Method

Bifurcation Point Approach

- **Bisection algorithm** 1.
 - Robust а.

a.

b.

- b. Slowly converging (i.e. approaching)
- Extended arc-length method, additional 2. constraint equations:

$$K_T \psi = \mathbf{0}$$

$$l(\psi) = ||\psi|| - 1 = 0$$
a. Less robust
b. Fast convergence
Until $|\min_i D_i| < \text{tolerance}$
$$\Delta l_1 = \Delta l_0/2$$

Extended Arc-Length Method Branch Switching

Bifurcation point found: $(\lambda_b, \boldsymbol{u}_b)$

Branch-switching by:

$$\boldsymbol{u} = \boldsymbol{u}_{\boldsymbol{b}} + \tau \boldsymbol{\psi}$$
$$\boldsymbol{\lambda} = \boldsymbol{\lambda}_{\boldsymbol{b}}$$

Buckling mode shape $oldsymbol{\psi}$ known from extended method

Tuning magnitude $\tau;$ generally between 10^{-3} and 10^{-4}

Results

Stretched Thin Sheet

Stretched Thin Sheet Model

22/07/2019 Graduation Presentation Applied Mathematics - Hugo Verhelst

4

e

Stretched Thin Sheet

Symmetric solution plotted for reference

26

22/07/2019 Graduation Presentation Applied Mathematics - Hugo Verhelst

Stretched Thin Sheet Results

27

Conclusions & Recommendations

Conclusions

Research question: "How can *wrinkling formation* of large floating thin structures be numerically modelled with *Isogeometric Analysis*?"

Model perspective

- Isogeometric Kirchhoff-Love shell model applicable to wrinkling of thin sheets.
- Present arc-length method provides post-buckling modelling technique without *a priori* user input
- Fine mesh needed for wrinkling prediction in stretched sheet

Recommendations

Research question: "How can *wrinkling formation* of floating thin structures be numerically modelled with *Isogeometric Analysis*?"

Model perspective

- Adaptive mesh refinement
- Straight edges of the stretched thin sheet
- Model applicability
 - Multi-patch coupling for more complex domains; Periodic basis functions for circular domains Element Coupling Composite and rubber material models

Questions?

