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1 | Introduction

The attention for climate change has increased over the past decenium. As a consequence, worldwide
political debate more and more changes towards renewable energies, letting the fossil fuels behind. The
Paris agreement [2] - rati�ed by 180 states and signed by 197 states - states that the increase in global
average temperature should be below 2◦C above pre-industrial levels and persuading e�orts to limit
the increase to 1.5◦C above pre-industrial levels. As a result, the submitted of the contribution of the
European Union to the agreement states that the Greenhouse Gas (GHG) emissions should be cutted by
40% in 2030 and with long-term goal 80-95% before 2050, all compared to the year 1990 [3].

This work is a contribution to the development of an o�shore solar energy platform. Before going into
details on the speci�c goals and the outline of the thesis, which are given in section 1.3 and section 1.4,
respectively, an introduction to o�shore energy solutions is given in section 1.1. Although this thesis
is not a motivation for o�shore solar energy, the following section illustrates a quick and dirty line of
reasoning for o�shore solar energy as an alternative to o�shore wind and wave energy.

1.1 O�shore Solar Energy: A Motivation
In the run for cleaner energies, Western European countries such as Germany, Denmark and the

Netherlands massively increased their o�shore wind-energy production up 88% of the total installed ca-
pacity in 2016 (14,384 MW) o�shore. These wind turbines are all located in shallow waters with depths
around 20m [4, 5]. For water increasing water depths (> 50m1 ), �oating wind turbines form an al-
ternatieve for large support structures of bottom-founded turbines. However, �oating turbines are less
developed compared to the bottom-founded wind turbines and future work needs to be done on mooring
system design and testing [6].

An alternative to �oating wind turbines is wave energy. The principle of wave energy basically is to
extract the energy that is contained in a sea wave and transform it to electrical energy. Compared to
wind energy, wave energy has the advantage that the energy production is constant over time as waves
are usually more constant than wind speeds. Most wave energy converters discussed in literature operate
in shallow waters [7, 8] but the potential in deep waters (i.e. along the Scandinavian coast [9] or the
Brazilian coast [10]) allows for wave farms in the order of hundreds of megawatts up to tenths of gigawatts.
Kalogeri et al.[11] investigates a combined wind and wave energy farm which is optimised for a constant
energy output from these two variable energy resources. This work is a great example for multi-space
utilisation of o�shore space which improves constant power output. Furthermore, Kalogeri et al. shows
that along the coast of North-Western Europe, the potential for wind and/or wave energy is the highest
(see �gure 1.1) and that mainly the wave energy potential decreases for waters where the fetch length is
low (i.e. the Medditeranean area). For further details to their study, the reader is directed to their work
[11]

Another o�shore energy resource, which is also used onshore, is solar energy. Like wave energy and

1Gao et al.[6] mention that it is not very clear at which depth �oating turbines are more cost-e�ective than bottom-
founded wind turbines.
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Introduction Chapter 1.

(a) Wind energy

(b) Wave energy

Figure 1.1: Spatial distribution of mean wind and wave energy potential (W/m2) along the European
coast. Adopted from [11]
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Chapter 1. Introduction

Figure 1.2: Bathymetry of the European seas. Constructed from [15].

contrary to o�shore wind energy, o�shore solar energy is principally depth-independent as the structure
does not change. This makes both applicability in deep water or combined with bottom-founded wind
turbines possible. Furthermore, �oating PV have the advantage that the panels are cooled by the sea
water, achieving good e�ciencies of the panels [12, 13]. However, the motions and possible deformation of
the o�shore solar platform require �exible solar panels or hinged modules and advanced tracking systems.
Furthermore, the salinity of the harsh ocean environment might also be an issue and needs to be further
investigated [14].

Figure 1.2 presents the bathymetry, i.e. the sea water depths over Europe, based on the bathymetry
database EMODnet2 [15]. The �gures from Meerkötter et al. [16] (see �gure 1.3) provide insights in
cloud cover and the �ndings from Miglietta et al.[17] show that solar radiation is mainly latitude but also
on longitude. Based on data of bathymetry, solar radiation, cloudcover and the wind and wave data of
Kalogeri et al.[11] amongst others, potential areas for utilisation of o�shore solar energy converters can
be identi�ed in a similar way. It is clearly seen that the North-Western part of the Mediterranean sea
has a low wind and wave energy potential, but that the solar energy potential at sea might be relatively
high. One drawback in this region, however, is that the bathymetry is relatively high and hence mooring
concepts for �oating solar platforms can be rather complex.

*!* TO DO: [? ]

2http://www.emodnet-bathymetry.eu/
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Introduction Chapter 1.

Figure 1.3: Average cloud cover over Europe in the month July between 1991 and 2001. Adopted from
Meerkötter et al.[16], which can be consulted for similar �gures for other months.

1.2 Platform Characteristics
Platforms for o�shore solar energy generation are intended to carry PV panels, either implemented in

the �oater or installed on top, and the required electronic infrastructure to transfer the generated power
from the PV system to the grid or a fuel production unit near the platform. Furthermore, the platform
has to resist oceanic loads while maintaining its position. Hence, environmental in-plane loads due to
wind, waves and current need to be transferred from the surface area of the platform to the mooring
point. Additionally, out-plane loads due to waves need to be resisted by platform deformations without
permanent damage.

Without giving full detailed speci�cations for the platform, the working characteristics of the platform
that are adopted including their motivation are listed below:

Circular & Large scale To generate a future-proof framework for analysis of such structures, it is as-
sumed that the structure that is considered is very large, i.e. surface area is of order O

(
km2

)
).

The platforms considered by Kashiwagi[18] amongst others, are of similar size and are referred to
as Very Large Floating Structures (VLFSs).
With this assumption, it is reasonable that current and wind speeds are non-uniform and have dif-
ferent direction over the whole platform. Furthermore, it is assumed that the in-plane characteristic
length of the platform is larger than the wave lengths exciting the platform. The geometry of the
platform is considered to be circular, but analyses can be performed for other geometries without
loss of generality.

Continuum As concept designs are not yet available, it is assumed that the platform is a continuum.
In other words, the platform does not consist of modules, but rather can be seen as a continuous
structure without hinges. This assumption is made since hinge forces are expected to be large 3.

3Waals presented hinge loads of the concept of the H2020 project SPACE@SEA in March 2018 at MARIN's �The Floating
Future Seminar�. For their platform with interconnected triangles of sides with dimension 100m, hinge loads of 20,000t

4



Chapter 1. Introduction

Low Payload: Lightweight Structure The main task of the platform is to carry the PV modules.
Hence the payload of the platform is several kilograms per square metre (mg/m2). Hence, the
payload of the platform is characterised to be low compared to other o�shore structures. This
allows for relatively light-weight structure to carry the panels.

Flexible The lightweight structure should be able to resist large wave heights. If the structure is sti�,
its thickness-dimension is rather large in comparison to its payload. This is contradictory to the
lightweight structure. Furthermore, the size of the structure causes large internal bending moments,
as large wave heights need to be resisted without introducing pitch motions. Alternatively, the
structure can be made �exible. In this way, the structure deforms with the waves and is considered
to be wetted even in large wave heights. Consequently, the bending sti�ness of the structure is very
low, and the structure behaves as a membrane.

1.3 Thesis Goal
Parts of this section are to be updated according to the final work.

In this work, the �rst steps towards a structural model incorporating �uid-structure interaction of the
platform in oceanic conditions are made. To this extend, the Isogeometric Finite Element Method, often
referred to as Isogeometric Analysis, is utilised. Emphasis will be on the structural model, rather than
the �uid model. The latter will be adopted from XXX. The goal of this thesis is:

Develop and implement a 2D Fluid-Structure Interaction framework using Isogeometric Analy-
sis for application for o�shore membrane structures, with emphasis on the structural response.

As full modelling of the �oating membrane structure is a big step, all computational aspects for the
development of the FSI model for o�shore solar membranes are developed and combined in a case study
(to be defined. Probably flutter). The main di�erence between the case study and the o�shore
�oating membrane is that the case study does not contain an interface between water and air, whereas
the o�shore membrane does. In ??, this will be discussed into more detail.

Moreover, in order to achieve the goal of this thesis a number of sub goals are de�ned. They are
described in the following:

1. Identify governing equations for both �uid and structure and motivate assumptions. To facilitate
a background for the reader and to clarify limits of certain models, the governing equations for
the �uid and structural behaviour will be derived. Furthermore, simpli�cations on these equations
based on the applications and the computational costs will be motivated.

2. Motivate a coupling strategy for the Fluid-Structure Interaction coupling to be included in the model.
Based on application of a Fluid-Structure Interaction model, di�erent modelling strategies can be
adopted. These include monolithic/partitioned system solving and mesh deformation strategies.

3. Discuss the use of Isogeometric Analysis and apply it in the model problem. Isogeometric Analysis
is a method that is similar to the Finite Element Method to solve Partial Di�erential Equations
(PDEs). This method, its applications and its (dis)advantages compared to the FEM are of impor-
tance to the justi�cation of the �nal model.

4. Verify and validate (parts of) the model using benchmark cases and discuss improvements of (parts
of) the model. Modelling of the phenomena of �uid structure is a challenge on it self. However,
validation and veri�cation of intermediate model steps/components is the core of justi�cation of
the �nal model results.

5. Give recommendations for modelling of membrane-like structures in the ocean environment, taking
into account extreme cases as well as fatigue life predictions. The �nal goal of this study is to work

were measured in waves with Hs = 15.5m. [19]
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Introduction Chapter 1.

towards a model for the response of a membrane-like o�shore structure. Hence, the last but not
the least deliverable of this study should be recommendations for further steps in the development
of the model.

1.4 Outline
to be updated

The report is structured as follows:

Literature review The literature review is in chapter 2

Methods The methods of the modelling process are covered in 4�??.

Model problem The model problem that is solved using the methods is described in ??

Results and Discussion The results and discussion of the modelled problem are described in section 5.3

Conclusions and Recommendations Lastly, conclusions and recommendations are given in ??�??

Appendices

Additions:

- Proofs about coercivity, well-posedness etc. (see book Scientific Computing)
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2 | Literature Review

In this chapter, a literature review is presented for topics relating to the present research. Firstly, a brief
literature review on past research on Very Large Floating Structures (VLFSs) is presented to identify
the state-of-the-art of previously used analysis methods for such structures. Secondly, the phenomena
of wrinkling and folding of membranes on substrates or �uid-beds is investigated. The mechanism of
wrinkling and folding is presented and state-of-the-art experimental results as well as analysis methods
are investigated. Thereafter, two sections will go into more detail on numerical analysis. Firstly, the
state-of-the-art of Isogeometric Analysis is presented, covering works from 2005 up to 2019. This section
discusses the general philosophy behind IGA, but also topics like meshing techniques and a comparison
between IGA and Finite Element Analaysis (FEA). The basics of IGA including examples are discussed in
chapter 4. In the last section of this literature review (section 2.4), the topic of Fluid-Structure Interaction
(FSI) is covered. This section shows the wide range of applications of di�erent FSI frameworks and their
similarities to the present study.

2.1 Previous Work on the Response of Very Large Floating Struc-
tures (VLFSs)

Very Large Floating Structures (VLFSs) have been studied in the early 2000s by Kashiwagi for inves-
tigation of near-shore �oating airport in Japan. Kashiwagi [20] summarizes research on VLFSs which has
been done just before 2000. This also includes Kashiwagi [21], where modal-expansion is used and where
the pressure integral is calculated using a Galerkin approach with B-splines. Furthermore Kashiwagi [22]
modelled an airplane landing on a membrane-like structure on the ocean surface with the modal-expansion
method. In all research performed by Kashiwagi, however, thin plate structural vibration equations are
used and hence the presence of non-linear structural e�ects is neglected.

Thereafter, [23] developed an analytical model for the response of VLFSs in waves. In this PhD
thesis, an extensive summary of existing VLFS projects is given. Additionally, one can consult [24] for
a more recent review of di�erent concepts of VLFSs. Furthermore, Andrianov gives an overview of the
assumptions that are made in the analysis of VLFSs. They are:

• VLFSs are modelled as thin, elastic (isotropic/orthotropic) plates with free edges,

• Potential �ow is used as �uid model,

• The amplitude of the incident wave and the motions of the VLFS are small. Furthermore, the
motions of the VLFS are considered in vertical direction only,

• There is no gap between the VLFS and the water surface, i.e. air entrapment e�ects are not
considered,

• Bathymetry e�ects are not considered, i.e. the sea bottom is assumed to be �at.

Using these assumptions, an analytical model for the hydroelasticity of VLFSs was developed and applied
for di�erent shapes of the VLFS. Recommendations following from this study include modelling of the

7



Literature Review Chapter 2.

structure in large waves, modelling the structure with a non-�at hull and modelling of the response for
di�erent mooring solutions. The response of the VLFS for non-constant bathymetry was studied by [25]

Wang and Tay [26] developed a Finite Element - Boundary Element (FE-BE) method for the structural
and hydrodynamical model. An uncoupled approach was used where the plate de�ection is computed
using a modal expansion and thereafter applied on the domain of the �uid. Thereafter, the �uid potential
is calculated and pressures were applied on the plate to calculate its de�ection. Recommendations by
the authors follow from limitations of the model, and include non-linear analysis of the response of the
VLFS due to non-linear wave impact and analysis using a Navier-Stokes �uid model.

Wei et al.[27] investigate the hydroelastic response of a VLFS in inhomogeneous waves using a time-
domain approach, contrary to the approach by [26] for instance. Their conclusion is that the response in
irregular waves signi�cantly di�ers from the response in homogeneous waves and even severe homogeneous
waves cannot be used for design of VLFSs. Their recommendations are therefore to investigate the
response with non-free boundary conditions, mooring systems and non-linear wave �elds.

In [28, 29] VLFSs with a hinge connection are considered. In both case, a hydroelastic model assuming
small elastic deformations of the plate is used. The analytical model from Khabakhpasheva and Korobkin
is used to study di�erent boundary conditions and di�erent conditions of the hinge between the plates.
They also modelled the plates being moored with a spring. Riyansyah et al. focus on optimal design of
the location and torsional sti�ness of the hinge, regarding motions of the platform. Both models show
the wide applicability of hydroelastic, simpli�ed, models on VLFSs.

Lastly, [30] gives an analysis of the hydroelastic response statistics of a VLFS due to the stochas-
tic character of wave and wind loads. They use modal (wet modes) superposition for the response of
the platform. The stochastic response is obtained using a spectral approach and using linear transfer
functions.

2.2 Wrinkling
When a membrane is in (uni/bi)-axial compression the phenomenon of wrinkling can occur. In the

ocean engineering and o�shore literature, research to wrinkling is hardly performed as the structures
are usually designed far from the buckling instabilities 1. However, an extensive amount of research has
been performed on wrinkling of elastic/elastoplastic �lms which are buckling, wrinkling and folding on
a surface of liquid. This section brie�y summarises the literature regarding wrinkling experiments and
observations not necessarily from engineering studies.

2.2.1 Governing Mechanism
In the paper by Li et al.[33], a review of the state-of-the-art in the year 2012 is given. This review

contains some cases which will be discussed later in this section. Generally speaking, the authors conclude
that wrinkling patterns are highly depending on the geometrical con�guration of the system. By this
means, the paper reviews experiments and numerical models on di�erent scales (approx. from O

(
10−6m

)
up toO

(
10−1m

)
). Furthermore, the de�nitions of wrinkling, folding and creasing are given by the authors

(see ??):

Wrinkling is chaotic or periodic surface de�ections of a originally �at surface.

Folding is a buckling induced surface structure with localised deep surface valleys. They are often
observed during the post buckling evolution of surface wrinkles of nearly inextensible thin �lms on
spring foundation.

Creasing occurs with thin �lms that are soft (and hence extensible) and the shape is characterised by
self-contact of the instability. Contrary to folding, creasing is not a post-buckling phenomena and

1For references about buckling in general or in marine structures the works of Brush et al. and Hughes et al.[31, 32].
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Chapter 2. Literature Review

hence bypasses the wrinkling state. Furthermore, creasing is highly sensitive to surface defects and
perturbation whereas folds are relatively stable.

Hence, wrinkling and folding are two succeding mechanisms that occur when a membrane on a sub-
strate is compressed. As mentioned in the review paper by Li et al.[33], but also by Rivetti, Rivetti and
Neukirch, Diamant and Witten, Jambon-Puillet et al.[34, 35, 36, 37], the wrinkle-to-fold transition is gov-
erned by an energy balance between the potential energy of the membrane de�ecting into the substrate
and the potential bending energy.

In [38] and [39] the physics of wrinkling of thin sheets are discussed and scaling laws for the wave
length and amplitude of wrinkles were derived.

λ ∼
(
B

K

)1/4

A ∼
(

∆

W

)1/2

λ (2.1)

Where B is the bending sti�ness of the sheet, K is the foundation sti�ness and ∆/W is an imposed
compressive strain. As seen in these scaling laws, the bending sti�ness penalises short wave lengths and
the foundation sti�ness penalises long wavelengths.

2.2.2 Experimental Findings
Experimental �ndings regarding an inextensible membrane subject to a compression, resting on a

substrate, were reported by Cerda et al., Cerda and Mahadevan, Pocivavsek et al.[40, 38, 39]. In [38],
a distinction between compression and tension wrinkles is made using examples of people's skin. An
example of a tensional wrinkle is depicted in �gure 2.1 and as described by Cerda and Mahadevan they
are formed because of lateral contractions in the material due to constraints at boundaries combined with
pre-stress of the membrane. Tensional wrinkles are found on one's knee or elbow, typically [38]. Com-
pression wrinkles, on the contrary, are formed on skin which is resting on a soft substrate (e.g. fat) and
compressed such that the skin locally penetrates the substrate, leading to folds. Additionally, Pocivavsek
et al.[39] elaborates the wrinkle-to-fold transition on di�erent scales (see ??). Here, the wave lengths are
in the centimetre to micrometre range. Again, Pocivavsek et al. assume an inextensible sheet. From their
scaling analysis, the �ndings are that the wrinkled state and the folded state of a membrane di�er only in
a higher order term from the enforcement of the inextensibility. Lastly, experiments were performed with
a thin �lm inbetween two �uids with di�erent densities and a �lm with a mass by Jambon-Puillet et al.[37].

2.2.3 Analytical and Numerical Mathematical Models
Besides the experiments that were performed by Cerda and Mahadevan and Pocivavsek et al., math-

ematical models for thin membranes resting on �uids (i.e. an elastic foundation) have been developed.
Similar to the energy scalings used by Cerda and Mahadevan and [39], these models are derived by
using di�erent expressions for the potential energy in the membrane (due to bending) and in the foun-
dation. Audoly used two expressions of a nonlinear foundation (referred to as a �oating foundation and
a nonlinear Winkler foundation) to derive general formulations for the amplitude of the localised buck-
ling phenomena and compared the results to the experiments by Pocivavsek et al.. Additionally, [36]
provides an analytical solution for the wrinkle to fold transition. Later on, this was improved by [34]
who generalised the solution of Diamant and Witten to a continuous family of solutions which yield a
non-symmetric shape of the fold. Later on Rivetti and Neukirch[35] compute equilibrium and stability
of the solutions and also secondary bifurcation points. In the work of Diamant and Witten, Rivetti and
Rivetti, the following di�erential equation was solved:

∂4θ

∂s4
+

3

2

(
∂θ

∂s

)2
∂2θ

∂s2
+ P

∂2θ

∂s2
+ sin(θ) = 0 (2.2)

A numerical study of an elastoplastic �lm on a soft substrate was performed by Cao et al.[43]. In this
study, the substrate was modelled as an elastic `foam' and the �lm was modelled as a membrane with a
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Figure 2.1: Wrinkling due to tension of a mem-
brane because the clamped boundaries on the left
and on the right prevent lateral contraction of the
membrane. Image is courtesy of [41].

Figure 2.2: Wrinkle-to-fold transition from exper-
imental data. The top �gure gives de�nitions of A0

and A1 and the bottom �gure presentes the evalua-
tion of A0 (squares) and A1 (circles) for increasing
non-dimensional compression distance d. It can be
seen that for increasing d, A1 decreases and A0 in-
creases, hence a fold forms. Image is courtesy of
[39].

certain yield strength. When the applied displacement on the boundaries of the �lm was above a certain
critical value, wrinkles occured. Additionally, an increase of the displacements resulted in localised creas-
ing. According to the authors, creasing occured due to plastic deformation of the substrate. However,
this is contradictory to the de�nitions given by Li et al.[33]. Cao et al. found that for an elastic model,
thus a model without plasticity, no creasing appeared and they acknowledge that creasing can also be
explained by inextensibility of elastic �lms.

Vella et al.[44] investigates the e�ect of wrinking of a ball which is pressurised internally. This analy-
sis, which is based on a spherical description of a thin membrane. Consequently, the limits of very weakly
pressurised shells as well as stongly pressurised shells. Their �ndings are that for low internal pressures a
�xed number of wrinkles is observed (referred to as polygonal structures) whereas for large pressures the
number of wrinkles increases. Additionally the authors found that the internal pressure a�ects the critical
indentation depth for localised wrinkles. Ta�etani and Vella[45] continued the study on pressurised shells
by elaborating further on the number of wrinkles as well as the e�ects of large indentation depths.

In the paper of Ning et al.[46], the e�ects of a �lm on a foundation for di�erent sti�ness ratios and
inhomogeneous materials has been investigated. The authors used a FEM package to model post-buckling
behaviour of the beam starting with a buckled beam with in�nitesmal amplitude. The conclusions from
the study were that the ratio between the bending sti�ness and the foundation sti�ness have a great
impact on the evolution of the wrinkles as well as the �nal morphology.

Lastly, some studies have been performed in the �elds of elastocapillary instabilities [47, 48], delamina-
tion of �oating elastic sheets [49] and wrinkling of sandwich columns using the core as `elastic foundation'
[50]. These works are presented here for further reference on the topic of wrinkling and folding, but their
relevance to this work is small.
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2.3 Isogeometric Analysis
2.3.1 Origins of Isogeometric Analysis

Isogeometric Analysis was proposed by Hughes et al. [51] in 2005. In this paper, the authors men-
tion the link with and inspiration by Computer Aided Design (CAD), more speci�cally with B-splines
and Non-Uniform Rational B-splines (NURBS). As motivated in the paper, using NURBS for analysis
purposes circumvents the need for meshing of the geometry generated by CAD. Furthermore, NURBS
allow the use of h, p and hp-re�nements and additionally the use of k-re�nement which increases the
continuity of the basis functions systematically, lately discussed in more detail by [52]. Later on, the
book [53] by Cottrell et al. was published which covers a wide variety of applications of Isogeometric
Analysis, additionally to those mentioned in [51]. Furthermore, the book covers the basics of Isogeomet-
ric Analysis in great detail. In 2015, Nguyen et al.[54] published a paper which gives a general overview
of the state-of-the-art in that time. This paper covers applications, alternative discretisations and notes
on computational aspects. These topics will be discussed in subsequent subsections. The basics of Isoge-
ometric Analysis are futher covered in chapter 4.

2.3.2 Isogeometric Analysis for Structural Mechanics
Isogeometric Analysis for structural mechanics has been developed over the past years. The Kirchho�-

Love Shell, the Reissner-Mindlin Shell, solid, cable and beam elements have been developed in the past.
The Kirchho�-Love shell formulation is of special interest in this study, as the Kirchho� assumption is
also made here. The literature on an isogeometric Reissner-Mindlin shell formulation is brie�y given for
the sake completeness.

Kiendl et al. published several papers on the Kirchho�-Love formulation in the Isogeometric Analysis
framework [55, 56, 57]. In [55], the formulation was developed for thin shell structures with large de-
formations and neglegible through-thickness deformations induced by shear e�ects(Kirchho� hypothesis,
see ??). Later on, the �Bending Strip Method� was developed in [56] to couple multiple NURBS patches.
Lastly, [57] extends the Kirchho�-Love shell formulation for hyper-elastic materials, such as rubber-like
materials and biological tissues. Applications of di�erent material models on biological tissues are also
given in [58] and [59] gives an application of a contact model using the Kirchho�-Love shell formulation.

Benson et al. [60] derive a Reissner-Mindlin shell element. The derived elements were tested on one
linear elastic case (pinched cylinder) and four non-linear elasto-plastic cases, including buckling of a
cylinder and square tube. The element is implemented as user-de�ned element in LS-DYNA and the
implementation shows e�ective use of quadratic and quartic shells. Furthermore, Beirão da Veiga et al.
[61] presents an isogeometric method for the Reissner-Mindlin shell formulation which is locking-free, i.e.
over-sti� solutions in the thin plate limit ([62]). Furthermore, they show for general boundary conditions
that the method is uniformly stable and that it satis�es optimal convergence estimates. The derivations
are formally mathematical.

In [63] an isogeometric cable element is presented. This cable element is developed for cables under
self-weight or uniformly distributed loads. In the paper, the element is validated for di�erent cable net
con�gurations. For slack cables where the sag e�ect is signi�cant, the equilibrium state of the cable
should be de�ned since the behaviour of the structure is sensitive. In order to cope with this problem, a
penalty technique has been used to calculate the equilibrium con�guration of the cable.

Raknes et al. [64] derive a cable element from 3D continuum mechanics equations. In their formula-
tion, bendings sti�ness is included, under the Kirchho� hypothesis. Besides providing some interesting
validation cases, such as the bow and arrow problem to couple cables and beams, or the opening um-
brella to couple a truss and a Kirchho�-plate, they conclude that the bending term in the cable element
formulation works as a stabilising factor in the computations. This is especially the case when modelling
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beams under compression. Additionally, [63] developed an isogeometric cable element under self weight
and elaborated on sagging cable nets using a penalty technique to calculate the equilibrium con�guration.

Lee and Park [65] and Luu et al. [66] derive Timoshenko beam models with an isogeometric approach.
In the former paper, it is concluded that the beam model is very e�cient and robust with k re�nements.
Furthermore, they found that higher order elements do not show shear-locking e�ect and the mode shapes
are represented compared to FEA results. In the latter paper by Luu et al. [66], the focus is on the free-
form vibration of curved beams. They conclude that rotary inertia and shear are important for thick,
elliptic rings and that the use of NURBS allows for e�cient modelling of arbitrarily curved beams.

[67, 68] present the work of Cazzani et al. on curved beams with IGA. Basically, this is an extension
of the `regular' IGA beam elements. Besides the formulations and implementation of the curved beam
elements, both papers provide validation cases for similar structures. In the conclusion of the paper [68],
the authors stress that the use of `regular' IGA beam elements works for relatively small curved beams.
When the initial curvature is present, however, the need for their constitutive model for curved beams
needs to be adopted. The benchmarks de�ned by [67, 68] are used for veri�cation later in this report.
(see section 5.3.4).

The works of Weeger et al., Kolman et al., Luu et al., Qin et al.[69, 70, 66, 71] focus on structural
vibrations. Applications of IGA for structural vibrations is bene�cial for panels with curved sti�eners
(see [71]), curved geometries such as rings (see [66]), but also because the method outperforms the Finite
Element Method (FEM) in eigenfrequency and mode shape calculation, as discussed in the following
subsection.

2.3.3 Comparison to Finite Element Analysis
As mentioned in section 2.3.1 Isogeometric Analysis originates from the idea of a seamless integration

between CAD and Finite Element Analysis (FEA). The fundamental di�erence between Isogeometric
Analysis and FEA, however, is that basis functions have a compact support (element-wise) in case of
FEA, whereas they have a global (patch-wise) support in Isogeometric Analysis. A domain can be sub-
devided into multiple patches and per patch, there are usually multiple non-zero basis functions. More
detail will be given in chapter 4.

Regarding the performance of FEA and Isogeometric Analysis, few comparing studies have been
performed in the past. Furthermore, most (dis)advantages of Isogeometric Analysis compared to FEA
are shown by means of application or hypothesis, rather than by formal mathematical proofs.

Regarding performance of Isogeometric Analysis compared to FEA, some publications in literature
are recalled here. First of all, [72] compared p-method �nite elements with a NURBS-based approach
and concluded that for structural dynamics, the whole frequency spectrum converges with p whereas in
FEA the errors in the higher-order modes even diverge with p. In [73] and [74] two applications com-
paring Isogeometric Analysis with FEA were given. In the present studies, stunning accuracy and fast
computing times were observed for Isogeometric Analysis compared to FEA.

Regarding structural vibrations, Weeger et al. studied non-linear vibrations of an Euler-Bernoulli
beam in the IGA and FEA framework. The conclusions were that IGA outperforms FEA since IGA does
not show so-called optical branches (see ??) and that the number of degrees of freedom to reach a certain
accuracy is lower. Furthermore, it was found that k-re�nement were more bene�cial than conventional
p-re�nement procedures for numerical results. Additionally, [70] performed an analysis of free vibrations
of simple-shaped elastic samples using solid elements and also found that the number of degrees of free-
dom that is needed for IGA and FEM for similar accuracy is signi�cantly smaller for IGA, and that the
number of Gauss-evaluations for assembly of the system is also smaller, although IGA has less-sparse
systems. [71] considered sti�ned panels with curved sti�ners and compared IGA to FEA. Besides the
advantage that IGA can exactly describe curved sti�eners, it was found that IGA outperformed FEA on
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Figure 2.3: [75]

accuracy for a smaller amount of degrees of freedom compared to FEA.

2.3.4 Meshing Techniques
B-splines and NURBS are de�ned by a set of knots in a knot vector. A disadvantage of those is

that they are generally not able to represent topologies that contains holes. Furthermore, as they are
de�ned by a tensor product of knot vectors, local re�nements are ine�cient, as shown in �gure 2.3 [75].
A solution to this is the use of T-splines, which are introduced in [76]. As discussed by Bazilevs et al.[75],
T-splines allow for watertight merging of patches and e�cient local mesh re�nement. The e�ciency of
adaptive mesh re�nement with T-splines compared to ordinary B-splines is discussed in [77], although
improvements in the algorithm were still needed.

Application of T-splines has been done for Reissner-Mindlin shells [78], where an algorithm has been
developed to calculate surface normals on a T-mesh. Furthermore, [79] utilises T-splines for analysis of a
bioprosthetic heart valve. Furthermore, Kostas et al. [80] present results from IGA-BEM optimisation of
ship hulls with respect to their resistance. Here T-splines are used to describe the geometry of the vessel.

2.3.5 Computational Aspects
Principally, Isogeometric Analysis is based on variational forms, similarly to FEA 2. The integrals in

the variational form are usually computed using quadrature rules (e.g. GauÿQuadrature) per element. In
case of NURBS and B-splines, such quadrature rules are far from e�cient, due to the fact that NURBS
and B-splines pose some degree of smoothness across element boundaries, as illustrated in [82]. Hence, a
computationally very expensive step in Isogeometric Analysis is integration of the variational form and
hence assembly of the system. As this thesis will not further look into optimal quadrature for Isogeomet-
ric Analysis, the reader is adviced to read the papers [82] and [83]. In this work, Gauÿquadrature is used
for integration.

Collier et al. discusses the computational costs that are associated with k-re�nements (i.e. re�nement
of the continuity) for direct solvers [84] and for iterative solvers [85]. Garcia et al. [86] provides the `re-
�ned IGA' (rIGA) method which uses separators in the domain (lines of reduced continuity) that make
the resulting linear system more suitable to solve for direct solvers.

2.3.6 Recent Developments (2015-2018) and Future Directions
What is going on?

2See [81] amongst others for an overview of the Finite Element Method.
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What is left?

Something about Quadrature?

2.4 Fluid Structure Interaction (FSI)
Fluid-structure interaction, often abbreviated as FSI, is the study of the interaction between a �uid

(liquid or gas) and a structure. Theoretically, every structure has a �nite sti�ness such that every �uid
that applies a pressure on this structure makes the structure deform. Hence, one can state that FSI is
always present. Obviously, there are di�erent examples of cases where the FSI e�ect is more relevant
than others. Some examples are illustrated in �gure 2.4. Throughout this section, references are made
to applications of hydro-/aeroelasticity and FSI to illustrate the broad application as well as di�erent
methods that are utilised.

In literature, FSI cases are often referred to as hydro- or aeroelastic cases. Hydro-/Aeroelasticity is
often an analytical study of FSI cases where the loads are often applied as a function of the structural
displacements. Examples include a dropping wedge, widely known from [87, 88], and later extended to a
�exible wedge by [89] amongst others; slamming of a wave on a plate [90]; or studies on vibrations in the
frequency domain, e.g. hydroelasticity of a sloshing �uid in a tank with deforming side walls [91]. In all
such cases, hydrodynamic added mass and damping in�uence the structural dynamic behaviour. Often,
structures are considered elastic and �uid models are simpli�ed rather than using full Navier-Stokes �uid
descriptions.

On the contrary, references to FSI contain hydro-/aeroelastic cases and cases with more complex
�uid/structure models and with strong coupling between these two. Strong or weak coupling in Fluid
Structure Interaction is often de�ned as `how much the �uid and structure are in�uenced by eachother'.
In case of strongly coupled FSI, the change of the velocity and pressure �elds in the �uid are signi�cantly
in�uenced by the structural deformations and vice versa. In this thesis, emphasis will be on the strongly
coupled FSI models incorporating large structural deformations.

2.4.1 Monolithic vs. Partitioned FSI
As de�ned above, FSI is about coupling between �uid and structural models or solvers. The coupling

between these models can be done in two ways; monolithically and partitioned (or segregated). In the
former case, the �uid and structure governing equations are solved together. In the latter case, separate
�uid and structure solvers are utilised and coupled using a data exchange.

Partitioned FSI solvers have the advantage that they utilise existing �uid and structure solver and
hence the features included in these solvers (e.g. turbulence, plasticity) are available for FSI calculations.
Futhermore, these separate solvers are usually optimised for their purpose and hence `the best of both
worlds' is taken. A disadvantage of partitioned solvers is that the stronger the FSI coupling, the more
iterations between the solvers are needed to get a su�ciently accurate solution [94]. Furthermore, the
partitioned approach allows for using di�erent time steps for the structural and �uid models. Several
time integration schemes for �uid and structural models in case of a partitioned coupling are discussed
in [95].

Contrary to partitioned FSI solvers, monolithic solvers are usually newly developed and do not utilise
existing solvers for �uid and structure. The advantage of these solvers is that they can be computation-
ally e�cient for strongly coupled problems as no subiterations are needed compared to the partitioned
approach, since �uid and structure are assembled in the same matrix system. This also guarantees con-
vergence of the system. A downside of solving with one system is that the time step for the structure
and the �uid is the same, although this is usually not needed. [96]
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(a) Application in biomedical engineering : Fluid-
Structure Interaction model of a bioprosthetic heart
valve. In this model, the structure (the valve) is
fully submerged in the �uid. Using this FSI model,
which has been developed by [79], the design of
bioprosthetic heart valves can be optimised for life-
time.

(b) Application for sails, parachutes, and other thin

membranes: Fluid-Structure Interaction of a clus-
ter of parachutes for spacecraft landing [92]. This
type of Fluid-Structure interaction combines light-
weight structures (e.g. parachutes or sails) with
turbulent �ows (e.g. air), which is an example of
strongly coupled �uid-structure interaction.

(c) Application in aerospace engineering :
Aeroelasticity/Fluid-Structure interaction of
an airplane (magni�ed structural deformations).
As seen in this picture, the deformation of the
wings of an airplane in �ight are relatively large.
(Self-excited) Oscillation of the wings due to
turbulent air is called wing �utter and is a long
studied subject in aerospace engineering. ?

(d) Application in maritime engineering : Fluid-
Structure Interaction model of a composite pro-
peller (GreenProp project †). By designing the
composite structure of propeller blades, advances in
the e�ciency and cavitation inception of the pro-
peller are obtained. The deformation of the pro-
peller blade in the wake �eld of a ship is an example
of FSI for maritime purposes. [93]‡ .

Figure 2.4: Di�erent application where Fluid-Structure Interaction is relevant.
?: Image from German Aerospace Center (DLR) https://www.dlr.de/ae/en/desktopdefault.aspx/tabid-9410/
†: See: https://www.tudelft.nl/3me/afdelingen/maritime-and-transport-technology/research/

ship-and-offshore-structures/research/greenprop/
‡: Picture from Solico, partner in the GreenProp project (https://www.solico.nl/projects/

greenprop-composite-propeller)
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2.4.2 Grid matching
Besides coupling of the interaction of the �uid and the structure, matching of both grids is a main

challenge in FSI. This challenge is present when di�erent mesh sizes are used for the �uid and structure
models. Hence, it mainly occurs for partitioned FSI algorithms. Usually, the mesh size of the �uid model
is smaller than that of the structural model, which implies that pressures have to be combined on a
coarser structure mesh and that displacements have to be interpolated on a �ner �uid mesh. In [97],
some mesh coupling procedures are evaluated regarding accuracy and computational costs. The most
e�cient methods discussed in this paper are Thin Plate Splines (TPS), Multi-quadric biharmonic splines
(MQ) and Radial Basis Functions (RBF).

In [98], a NURBS-based coupling of the �uid and structure model is developed. Here, Isogeometric
Analysis is applied for the structure and a so-called `NURBS-Enhanced Finite Element Method' is used
for the �ow simulations. In this way, they achieved a direct transfer of the necessary coupling variables
over the interface, as the NURBS shape can be identical despite the number of points.

2.4.3 Mesh Deformation
In FSI problems, one usually separates a number of domains based on being a �uid or a structure.

Hence, a minimum of two domains is present in FSI calculations, extended to more if there are multiple
�uids or structures. Since �uid and structure are solved on their own domain, they are de�ned on separate
grids. The deformation of the structure, however, implies the �uid domain to deform. Hence, the mesh
on which the �uid is solved is changing. On the one hand, one can �x the �uid mesh and let the structure
move through the mesh, to which is referred as the immersed boundary method. On the other hand, the
�uid mesh can be attached to the structure mesh and hence deforms which the structure.

The immersed boundary method has the advantage that the �uid mesh can be kept cartesian and
structured and �xed over time. This implies that there is no need for and Arbitrary Lagrangian Eulerian
(ALE) �uid and structure description, in which the velocity of the mesh is incorporated in the Navier-
Stokes equation (see for instance [75] amongst others). On the other hand, the interface between the
structure and the �uid is moving through the �uid domain. This implies the need for an algorithm for
determination of the location of this interface, as developed by [99] amongst others.

When the �uid and structure domains are coupled and connected, mesh motions are present for both
domains. This implies the use of the ALE formulations for structure and �uid. This formulation for the
�uid takes into account convection of the �uid through the mesh due to mesh motion. In general, there
are two types of mesh motion techniques for unstructured grids; grid-connectivity and point-by-point
schemes [100].
In the former method, grid connectivity information together with a spring analogy of the mesh lines is
used to calculate the position of each individual node, making this technique computationally expensive.
For large deformations, linear elasticity solvers can be used for mesh deformation [101, 102], so that the
domain is considered as a (curved) plate or a solid where the boundary displacements are applied. [102]
investigated the use of di�erent material models and di�erent material parameters. It was concluded in
their paper that the Saint-Venant Kirchho� model is su�cient to acquire promising results for non-trivial
geometries and that future work should focus on non-homogeneous distribution of material parameters
and their in�uence on the mesh.
In the latter method, the points in the meshed are moved according to their coordinate in the unde-
formed case and it requires solving a system as large as the number of boundary nodes. Calculation of
the deformed mesh can then for instance be done using radial basis function interpolation as described
by [100]. In this paper, it is concluded that the radial basis function mesh deformation algorithm is an
e�cient and accurate method compared to the grid-connectivity scheme.

In general metrics for meshes were investigated by Lipton et al.[103] for isogeometric analysis specif-
ically. However, the performance of mesh deformation techniques is out of the scope of this study and
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hence the work of Lipton et al. is for further reading.
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3 | Governing Equations and Mathemat-

ical Preliminaries

3.1 Structural Model
In this chapter the foundations of the structural model are laid. The goal of this chapter is to provide

a motivation for and an explanation of the structural models that are used in this study. Hereby, the
�rst section mentions the assumptions of the structural model and takes this as a starting point for
the derivation of the stress-strain relationship. In the second section, the principles are applied on a 1D
element to derive a beam element. In this section, the relation with a catenary element for which bending
sti�ness is by de�nition neglected, is also covered.

3.1.1 Kirchho� Hypothesis
In the forthcoming derivations, the Kirchho� Hypothesis is a fundamental hypothesis for the defor-

mation of the beam or shell. The theory makes the following three assumptions for the displacement �eld
[104, sec. 6.2.1]:

1. Straight lines perpendicular to the mid-surface (i.e. transverse normals) before deformation, remain
straight after deformation.

2. The transverse normals do not experience elongation (i.e. they are inextensible)

3. The transverse normals rotate such that they remain perpendicular to the mid-surface after defor-
mation. Hence, no shear of a material element is present.

Based on these assumptions, the coordinates of an arbitrary point X in the undeformed con�guration
can be expressed into the formulation of the coordinates in the deformed con�guration x = X+u. Firstly,
based on the third assumption, we note that the in-plane transverse shears must be zero. Hence, the in-
plane displacements are the sum of the in-plane displacements of the mid-plane u0, v0 and the contribution
of the out-of-plane rotations of the mid-plane times the distance to the mid-plane z ∂w0

∂x , z
∂w0

∂y . [62, p.97]
Hence,

u(x, y, z) = u0(x, y)− z ∂w0

∂x
,

v(x, y, z) = v0(x, y)− z ∂w0

∂y
.

Furthermore, based on the �rst two assumptions, the term ∂w
∂z must be equal to zero. In other words,

the elongation of the normals is zero. Lastly, for the vertical de�ection, the displacements due to the
rotation of the mid-plane (assumed to be moderate, i.e. 10−15◦) can be neglected. Hence, the mid-plane
displacement is the only e�ect that causes the vertical de�ection of a point:

w(x, y, z) = w0(x, y).
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Figure 3.1: Typical deformations of a rectangular element, adopted from [105]

In tensor notation, let us denote the displacement vector by u. Then,

uα = u0
α − x3

∂u0
3

∂xα
, α = 1, 2

u3 = u0
3

3.1.2 Strain-displacement relationship
In the book of Sadd [105] the derivation of simple linear strain is clearly derived from the typical

deformations of a rectangular element (see �gure 3.1).

In a more general sense, the Green strain tensor can be used to describe the strains due to deformations
of a medium. This tensor is denoted by:

EG =
1

2

[
(∇u) +∇uT + (∇u) · ∇uT

]
(3.1)

Here, the nabla operator ∇ consists of the derivatives with respect to the initial con�guration. Further-
more, the vector u contains the displacements. In index notation, this tensor is denoted by:

EGij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

+

3∑
k=1

∂uk
∂xi

∂uk
∂xj

]
(3.2)

Here, the �rst two derivatives contribute to the linear strains and the last term is the non-linear strain
contribution. With the assumption that strains in normal directions and in-plane shear e�ects are small,
the Von Kármán strains can be derived (see section A.1). Here, the strains related to the z-direction are
zero and the strain tensor hence is determined by the strains in and curvature of the plate:

E =

[
E11 E12

E21 E22

]
=

[
ε11 ε12

ε21 ε22

]
+ x0

3

[
κ11 κ12

κ21 κ22

]

3.1.3 Stress-Strain relationship
For the relationship between stresses and strains, the generalised Hooke's law is used. This law relates

strains to stresses using the following formulation (in index notation):

σij =
E

1 + ν
Eij +

νE

(1 + ν)(1− 2ν)

3∑
k=1

Ekkδij (3.3)
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Where ν is Poisson's ratio, E is Young's modulus and δij is the Kronecker delta function. In Voight
notation, this becomes:

σ11

σ22

σ33

σ12

σ13

σ23

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν




E11

E22

E33

E12

E13

E23

 (3.4)

However, from the Von Kármán strains, we know that E13 = E23 = E33 = 0. Hence, Hooke's law
simpli�es to: σ11

σ22

σ12

 =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

E11

E22

E12

 (3.5)

Or, under plane stress assumptions:σ11

σ22

σ12

 =
E

(1− ν2)

1 ν 0
ν 1 0
0 0 1− ν

E11

E22

E12

 (3.6)

In tensor notation, this will be denoted as:

σ = DE

3.1.4 The principle of Virtual Work
The principle of virtual work is extensively covered in the book Reddy [62, ch. 2]. The method

is mostly suitable for problems where force and moment equilibrium are not easily used to obtain the
governing equations in a volume element. Furthermore, the principle of virtual work involves boundary
conditions and can be used to obtain weak forms for FEA or IGA.

The main concept in the principle of virtual work is to apply virtual displacements on a body and
equate the total energy to zero. For structural dynamics, this means that the sum of the internal workand
the external work needs to be equal to zero, i.e.

Π = δWI + δWE = 0 (3.7)

Where Π is the total energy in the system. Furthermore, δWI is the internal work and δWE is the
external work, respectively given by:

δWI =

∫
Ω∗
σ : δE dΩ∗ (3.8)

δWE = −
(∫

Ω∗
f · δu dΩ∗ +

∫
∂Ωσ

T · δu dΓ

)
(3.9)

Here, the volumetric domain is denoted by Ω∗ with boundary ∂Ω∗ = ∂Ω∗σ ∪ ∂Ω∗u. Here, ∂Ω∗σ is the
boundary where traction is applied and ∂Ω∗u is the boundary where displacements are applied. The
latter implies that no virtual displacements are present and hence that it is not present in the virtual
work formulation.

Furthermore, for dynamical systems, Hamilton's principle can be used, which states [62]:

Of all possible paths that a material particle could travel from its position at time t1 to its
position at time t2, its actual path will be one for which the integral∫ t2

t1

K −W dt (3.10)
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is an extremum.

Here, W is the potential energy in the system, given by the sum of the internal and external work, and
K is the kinetic energy of the system, given by:

K =

∫
Ω∗
ρ
∂u

∂t
· ∂u
∂t

dΩ∗ (3.11)

For further derivations under the Kirchho� hypothesis, it is convenient to introduce the in-plane forces
and bending moments N and M . These are de�ned by the zeroth and �rst moment of the stress over
the plate thickness. Hence,

N =

∫ h
2

−h2
DE dz =

∫ h
2

−h2
Dε dz = Dhε

M =

∫ h
2

−h2
x3DE dz =

∫ h
2

−h2
x2

3Dκ dz =
Dh3

12

This yields (in Voigt notation):

N11

N22

N12

 =
Eh

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

ε11

ε22

ε12


M11

M22

M12

 =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1− ν

κ11

κ22

κ12


Hence, the virtual work statement from equation (3.9) becomes:

δWI =

∫
Ω∗

D(ε+ x3κ) : δ(ε+ x3κ) dΩ∗

=

∫
Ω

N : δε+M : δκ dΩ

Where Ω denotes the xy-plane.

3.1.5 Euler-Bernoulli Beam Equation

In section A.2 several formulations for the Euler-Bernoulli beam including their weak forms are derived.
Firstly, the full non-linear formulation of the Euler-Bernoulli beam using the previously derived strain-
displacement and stress-strain models is (see equation (A.6)):

−EA
(
∂2u0

∂x2
+
∂w0

∂x

∂2w0

∂x2

)
= ρAü0 + t

−EA ∂

∂x

[(
∂u0

∂x
+

1

2

(
∂w0

∂x

)2
)
∂w0

∂x

]
+ EI

∂4w0

∂x4
= ρAẅ0 + p

(see equation (A.6))
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With corresponding weak form:

Find u0 ∈ H1(Ω), w0 ∈ H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

EA
dψ
dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)

+ ψρAü0 dx− EA
[
ψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)]x2

x1

=

∫ x2

x1

ψt dx

∫ x2

x1

ϕρAẅ0 + EA
dϕ
dx

[
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]

+ EI
d2ϕ

dx2

d2w0

dx2
dx+

+

[
−EA

{
ϕ
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)}

+ EI

{
ϕ
d3w0

dx3
− dϕ

dx
d2w0

dx2

}]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)
(See equation (A.11))

Neglecting horizontal displacements, the result from equation (A.7) is obtained. Here, only one
equation is left. Basically, this equation uses non-linear strains, resulting from vertical de�ections only.

− EA3

2

∂2w0

∂x2

(
∂w0

∂x

)2

+ EI
∂4w0

∂x4
= ρAẅ0 + p. (see equation (A.7))

The corresponding weak form is:

Find w0 ∈ Σ(Ω) = H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

−ϕρAẅ0 +
1

2
EA

dϕ
dx

(
dw0

dx

)3

+ EI
d2ϕ

dx2

d2w0

dx2
dx+

+

[
EIϕ

d3w0

dx3
− EI dϕ

dx
d2w0

dx2
− 1

2
EAϕ

(
dw0

dx

)3
]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)

(See equation (A.10))

Finally, neglecting membrane forces, the well-known linear Euler-Bernoulli beam equation is obtained
(see equation (A.8)):

EI
∂4w0

∂x4
= ρAẅ0 + p (see equation (A.8))

With corresponding weak form:

Find w0 ∈ Σ(Ω) = H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

−ϕρAẅ0 + EI
d2ϕ

dx2

d2w0

dx2
dx+

[
EIϕ

d3w0

dx3
− EI dϕ

dx
d2w0

dx2

]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)

(See equation (A.9))

3.2 Fluid Model
As the �oating solar membrane is located at sea, a �uid model should be coupled to the structural

model. In this chapter, three �uid models are discussed, namely i) Ideal Flow; ii) Eulerian Flow; iii)
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Stokes Flow; and iv) the Navier-Stokes equations. All models will be solved in a monolythical sense (see
section 2.4), which means that the �uid formulations will be written in weak forms for IGA implemen-
tation. This chapter provides a brief background in all �uid models and gives their corresponding weak
forms.

3.2.1 Navier-Stokes Equations
The Navier-Stokes equations are derived from the principle of mass conservation and the principle

of conservation of momentum. Both laws are fundamental laws in continuum mechanics and hold for
continua in general. This means that the equations for the beams and the plate derived in section 3.1 can
also be derived via these equations. The main di�erence between solids and �uids from this perspective
lies in the stress tensor, denoted by σ.

The mass conservation law states that the amount of mass in a certain material volume V (t) is
constant over time. In integral form, this is denoted by:

d
dt

∫
V (t)

ρ(x, t) dV = 0

When following the steps in [106], i.e. application of Gauÿ' rule and partial integration, the following
di�erential form of the principle of mass conservation is obtained:

∂ρ

∂t
(x, t) +∇ · (ρ(x, t)u(x, t)) = 0,

To which is also referred as the continuity equation. Note that up to this point, no assumptions for the
continuum `being a �uid' are not made.

For constant density �ows, where ρ is constant over the �ow �eld, and for incompressible �ows, where
the density of particles does not change but where di�erent particles might have di�erent densities, the
continuity equation reduces to the following:

∇ · u = 0. (3.12)

Similar to the principle of mass conservation, the principle of conservation of momentum can also be
de�ned in integral form over a material volume V (t). Hence, using Newton's second law, the following
holds [106]:

d
dt

∫
V (t)

ρ(x, t)u(x, t) dV =

∫
V (t)

ρ(x, t)g dV +

∫
A(t)

f(n,x, t) dA

Where g and f are external forces working in the body V (t) or at the boundary surface A(t), respectively.
Furthermore, the normal of the boundary is denoted by n. Again, using the steps from [106], including
partial integration, the following di�erential form of the momentum equation is derived:

∂

∂t
(ρu) + u · ∇u = ρg +∇ · σ,

To which is referred to as the Cauchy momentum equation. Note that up to now, no assumptions about
the �uid have been made hence this equation is valid for all continua. To obtain the Navier-Stokes
momentum equation, the stress tensor is substituted. This is de�ned as:

σ = −Ip+ τ

Where the �rst term represents hydrostatic pressure and the last term represents the deviatoric stress
tensor. For incompressible �uids, the deviatoric stress tensor further simpli�es to:

τ = 2µ
(
∇u+ (∇u)T

)
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Where µ is the dynamic viscosity. Using this formulation, the momentum equation �nally reduces to the
Navier-Stokes momentum equation:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ ρg + µ∇2u, (3.13)

For constant density ρ.

3.2.1.1 Weak Form

The weak form of the Navier-Stokes equations will be derived by multiplying the momentum equa-
tion (see equation (3.13)) with a test function ϕ ∈ R(3×1) since the momentum equations are three-
dimensional. Furthermore, the continuity equation (see equation (3.12)) is multiplied by the scalar test
function q. Both equations are integrated over the domain Ω, resulting in the system:

∫
Ω

ρϕ · ∂u
∂t

+ ρϕ · (u · ∇)u dΩ =

∫
Ω

−ϕ · ∇p+ ρϕ · g +ϕ∇2u dΩ,∫
Ω

q∇ · u dΩ = 0.

The main interest now lies in the momentum equation. Namely, working out these expressions will show
that the requirement on the function space is that it must contain �rst order derivatives. Hence, further
simpli�cation of the weak form of the continuity equation is not needed. Considering the momentum
equation, using partial integration on the pressure statement (�rst term, right-hand side) and the viscous
term (third term, right-hand side) gives:∫

Ω

ρϕ · ∂u
∂t

+ ρϕ · (u · ∇)u dΩ =

∫
Ω

−∇ · (pϕ) + p∇ · ϕ+ µ (∇ · (ϕ · ∇u))−∇ϕ : ∇u dΩ,

=

∫
Ω

p∇ ·ϕ− µ∇ϕ : ∇u dΩ +

∫
∂Ω

−pϕ · n+ µϕ · (∇u · n) dΓ.

Hence, the weak form becomes:

Find (u, p) ∈ Σ(Ω) = (H1(Ω), L2(Ω)) s.t.

∫
Ω

ρϕ · ∂u
∂t

+ ρϕ · (u · ∇)u dΩ =

∫
Ω

p∇ ·ϕ− µ∇ϕ : ∇u dΩ +

∫
∂Ω

−pϕ · n+ µϕ · (∇u · n) dΓ,∫
Ω

q∇ · u dΩ = 0,

∀(ϕ, q) ∈ Σ(Ω).
(3.14)

In the literature, this weak formulation usually is the basis for �ow models, see for instance papers
[98],[107],[108],[109]

3.2.1.2 Isogeometric Discretisation

If this subsection will be relevant in further versions of the thesis, it will maybe be moved

to another section in the report.

The isogeometric discretisation of the weak form of the Navier-Stokes equation (see equation (3.14)) is
done similar to a �nite element discretisation. Let q = qi and let ϕ = ϕi. Furthermore, let

p ≈
m∑
j=1

βjqj , and u ≈
n∑
j=1

αj �ϕj .
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Where � de�nes element-wise multiplication, i.e. aj � bj = ajbj∀j. With a little abuse of notation, but
for the sake of brievety, this will be abbreviated by ajbj . Then, the discretised weak form becomes:

n∑
j=1

∫
Ω

ρϕi ·
∂ (αjϕj)

∂t
dΩ +

n∑
j=1

∫
Ω

ρϕi · (u · ∇)αjϕj dΩ =

m∑
j=1

∫
Ω

βjqj∇ ·ϕi dΩ−
n∑
j=1

∫
Ω

µ∇ϕi : αj∇ϕj dΩ+

−
m∑
j=1

∫
∂Ω

βjqjϕi · n dΩ+

+

n∑
j=1

∫
∂Ω

µϕi · (αj∇ϕj · n) dΓ, ∀i = 1, . . . , n,

n∑
j=1

∫
Ω

qi∇ · (αjϕj) dΩ = 0, ∀i = 1, . . . ,m,

(3.15)
Here, the velocity �eld u is kept in the second term on the left-hand side because this term involves a
non-linearity. From the discretised form in equation (3.15), the following matrices can be derived:

Mij =

∫
Ω

ρϕi ·ϕj dΩ,

Cij(u) =

∫
Ω

ρϕi · (u · ∇)ϕj dΩ,

Sij =

∫
Ω

µ∇ϕi : ∇ϕj dΩ,

Lij =

∫
Ω

qi∇ϕj dΩ,

Such that the discretised weak form from equation (3.15) simpli�es to the following:

[Mu̇+ C(u) + S]α− LTβ = 0

Lα = 0
(3.16)

Here, it is assumed that the boundary conditions are included in the system matrices. Furthermore, the
ordering of the matrices and coe�cient vector α is chosen such that the dimensionality is right. For
instance, one can choose to assemble the matrices such that

α =



α1
1
...
α1
n

α2
1
...
α2
n


and M =

[
M1 0

0 M2

]
such that M1

ij =

∫
Ω

ρϕ1
iϕ

1
j dΩ etc. for the other matrices

Where α1
j is the �rst coe�cient of the jth basis function in the �rst dimension ϕ1

j , and α2
j is the �rst

coe�cient of the jth basis function in the second dimension ϕ2
j .

3.2.2 Eulerian and Stokes Flow
Eulerian �ow is in fact a simpli�cation of the Navier-Stokes equations. The so-called Euler equations

describe inviscid �uid �ow. Hence, these equations are not valid in boundary layers or for low Reynolds
numbers, as viscous e�ects dominate inertial e�ects in these cases. The Euler equations can easily be
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derived from the Navier-Stokes equations by non-dimensionalisation using the Reynolds number 1. This
implies:

∂

∂t
(ρu) + u · ∇u = −∇p+ ρg,

∇ · u = 0.
(3.17)

Stokes �ow is another simpli�cation of the Navier-Stokes equations. Contrary to Eulerian �ow, Stokes
�ow is applicable for low Reynolds numbers and hence describes viscid, laminar �ow. The corresponding
equations are:

−∇p+ ρg + µ∇2u = 0,

∇ · u = 0.
(3.18)

3.2.3 Ideal Flow
Ideal �ow is a �ow description which assumes that the velocity �eld of the �ow is derived from the

velocity potential φ and that the �ow is incompressible (see [111, 112] for reference). The former implies
that the velocity �eld is equal to the gradient of the potential, i.e.

u = ∇φ (3.19)

And hence that the �ow is irrotational by one fundamental law of vector calculus [113],

∇× u = ∇×∇φ = 0. (3.20)

Furthermore, the incompressibility condition implies that the continuity equation simpli�es to (assuming
constant pressure):

∇2φ = 0.

Which is the governing equation for ideal �ow. Once the velocity potential is known, the velocity �eld can
be calculated from equation (3.19) which makes the model relatively simple. However, the downside of
the potential �ow assumption is that the irrotationaly of the �ow shows that this theory is only applicable
where vortices are not developed, away from boundaries and low Mach-number �ows.

Using the (unsteady) Bernoulli equation [106]2, the pressures in the �ow can be calculated. The
(unsteady) Bernoulli equation is valid for constant-viscosity, irrotational, unsteady, constant-density �ow.
Furthermore, the equation is constant over an arbitrary streamline S in the �ow. The unsteady Bernoulli
equation reads:

∂φ

∂t
+

1

2
|∇φ|2 + gz +

p0

ρ
= constant along S. (3.21)

Here, p0 is an ambient pressure (e.g. atmospheric) and ρ is the density. Furthermore, the term gz
incorporates the hydrostatic pressure in the system. The use of this equation together with equation (3.20)
makes time-dependent problems possible to solve.

1An important note that should be made here is that the Euler equations were the predecessors of the Navier-Stokes
equations and hence they were not derived from them [110]. So, the `arrow of time' points in the wrong direction in this
derivation. However, for the sake of simplicity and brievety, the derivation is performed in this order.

2The �rst version of the Bernoulli equation was published in 1738 by Daniel Bernoulli. However, the unsteady Bernoulli
equation is extended by Euler in the 1750s. [114]
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3.2.3.1 Weak Form

The weak form for ideal �ow is in principle similar to the weak form of the Poisson equation; as
equation (3.20) is a Poisson equation. This implies that the weak form of equation (3.20) is:

Find φ ∈ Σ(Ω) = H1(Ω), s.t.

−
∫

Ω

∇ϕ · ∇φ dΩ +

∫
∂Ω

ϕ∇φ · n dΓ = 0

∀ϕ ∈ Σ

(3.22)

The unsteady Bernoulli equation (see equation (3.21)) can be used to apply pressure on a coupled
structure in order to obtain its deformations.

3.2.3.2 Isogeometric Discretisation

If this subsection will be relevant in further versions of the thesis, it will maybe be moved

to another section in the report.

The isogeometric discretisation for the ideal �ow problem is rather straightforward, as the weak form is
rather straightforward. Let ϕ = ϕi and approximate φ by a linear combination of basis functions, i.e.

φ ≈
n∑
j=1

αjϕj .

Then, the weak form becomes:

−
n∑
j=1

∫
Ω

αj∇ϕi∇ϕj dΩ +

n∑
j=1

∫
∂Ω

αjϕi∇ϕj · n dΓ = 0,

Which can be written as a linear system:

Aα = 0,

Where,

Aij =

∫
Ω

αj∇ϕi∇ϕj dΩ,

And where the boundary conditions are assembled in A in the right way. The boundary conditions for
ideal �ow are either a prescribed potential at the boundary (Dirichlet boundary condition) or a prescribed
velocity (Neumann boundary condition).

3.2.4 Example: Flow around a Cylinder
This example shows the application of the isogeometric potential �ow model on the �ow around a

sphere. For the ideal �ow computation, the domain depicted in �gure 3.2 is used. The domain is a
quarter annulus �tted around the cylinder. Since the �ow is irrotational and incompressible, it su�ces
to compute only the �ow in a quarter annulus, using symmetry conditions. The total potential Φ is
decomposed of a perturbation potential φ and an undisturbed �ow �eld which in this case corresponds to
uniform �ow with velocity U∞ in horizontal direction, i.e. Φ = φ + U∞x. The boundary value problem
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that is solved for φ on the domain is:

∆ϕ = 0

s.t. φ = 0 at ∂Ω4

∇φ · n = U∞ at ∂Ω1

∇φ · n = 0 at ∂Ω2

φ =
U∞R2

1x

R2
2

at ∂Ω3

The in�ow boundary condition results from an a-symmetry statement of the �ow around the cylinder,
subject to the vertical axis. The second boundary condition follows from the fact that the velocity of the
�ow should be zero to the normal of the cylinder and hence,

∇Φ · n =

[∂Φ
∂x
∂Φ
∂y

]
=

[
U∞ + ∂φ

∂x
∂φ
∂y

]
=⇒ ∇φ · n = −U∞nx

The third boundary condition follows from symmetry of streamlines over the horizontal axis, hence the
velocity `through' the axis is zero. The last boundary condition follows from the fact that the total
potential is prescribed at the boundary and hence,

Φ =
U∞(R2

1 +R2
2)x

R2
2

=⇒ φ = Φ− U∞x =
U∞R2

1x

R2
2

Which is a Dirichlet boundary condition for φ. The analytical solution of this problem can be derived
from [106, p.294] and reads:

U∞R2
1x

x2 + y2

The results for the computation are depicted in �gure 3.3 and the convergence of the L2 error for several
mesh re�nements is depicted in �gure 3.4. Results are obtained using G+smo[115]3

3.3 Mathematical Preliminaries

3The Geometry + Simulation module is an open-source C++ library �that brings together mathematical tools for geometric
design and numerical simulation. (..) It implements the relatively new paradigm of isogeometric analysis, which suggests
the use of a uni�ed framework in the design and analysis pipeline�. More information can be found on https://github.

com/gismo/gismo/wiki.

28

https://github.com/gismo/gismo/wiki
https://github.com/gismo/gismo/wiki


Chapter 3. Governing Equations and Mathematical Preliminaries

Figure 3.2: Domain for ideal �ow around a sphere. The radius of the sphere is 1 and the outer radius
of the domain is 5.
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(a)

(b)

Figure 3.3: (Figure continues on next page)

30



Chapter 3. Governing Equations and Mathematical Preliminaries

(c)

Figure 3.3: Results for the ideal �ow computation around a sphere. On top is the perturbation potential
φ, in the middle is the magnitude of the velocity including stream lines and at the bottom is the pressure
according to equation (3.21).
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Figure 3.4: L2-norm of potential �ow around a cylinder for di�erent orders of basis functions (p = 2 . . . 5)
subject and re�nement levels with respect to the initial mesh.
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This section covers the basics of Isogeometric Analysis. That is, section 4.1 gives an overview of Iso-
geometric Analysis. This section starts with de�ning B-splines and NURBS. Thereafter, the analysis
framework for solving di�erential equations, which is similar to Finite Element Analysis (FEA) is dis-
cussed. In order to illustrate the simple concepts of Isogeometric Analysis, ?? treats discretisation of the
Poisson equation with B-spline of various orders and with various knot vectors.

4.1 Overview
Isogeometric Analysis is a type of analysis that was �rstly introduced by Hughes et al. and that is

most familiar to Finite Element Analysis (FEA) compared to the Finite Di�erence Method or the Finite
Volume Method. The reader is refered to section 2.3.3 for a literature review on the di�erences between
IGA and FEA. The main motivation for the use of Isogeometric Analysis was the integration of CAD and
Finite Element Analysis, since CAD uses B-splines or NURBS for geometry de�nition and Isogeometric
Analysis uses them for calculation. The main di�erence with respect to FEA is that the basis functions,
i.e. the splines, that are used for analysis have a support that is not restricted to elements. In this way,
literature often refers to patches instead of elements, whereby multiple basis functions can work on one
patch. A more detailed explanation of patches and elements can be found in [53, Ch. 3.5].

The driving philosophy of IGA is, as mentioned in the previous paragraph, based on seamless inte-
gration between CAD and FEA. As will be shown in the remainder of this chapter, geometries can be
constructed using a series of control points (i.e. a control net) and NURBS, B-spline or similar basis
functions. As will be clear from equation (4.4), the mathematical formulations for surfaces and volumes
(but also for lines), can be represented by parametric coordinates. Hence, the idea behind IGA is to use
the parametric basis (usually denoted by knot vectors with knots ξ, η, ζ) from the geometry description (in
any dimension) for analysis of physical Partial Di�erential Equations (PDEs) working on the geometry.
The geometry descriptions in equation (4.4) can then be seen as so-called geometrical mappings and the
�eld of di�erential geometry (see chapter B) can be used to do numerical analyses of the PDEs on the
parametric domain and compute the solution on the domain using the mappings from equation (4.4)

4.1.1 B-splines and NURBS
By the time of the introduction of IGA, in 2005, the basis functions were B-splines or NURBS. Later

on, T-splines and other splines that were developed in the CAD community (e.g. [76]) were also used as
basis for IGA ([75]).

B-splines are curves that are de�ned by so-called knot vectors that are described by knot vec-
tors. A knot vector is a non-decreasing sequence of coordinates in the parameter space. Thus, Ξ =
{ξ1, ξ2, . . . , ξn+p+1} where ξi ≥ ξj for i > j and ξk ∈ R for all k. Here, n is the number of basis functions
and p is the degree of the basis functions that construct the B-spline.

Construction of B-splines is done recursively. Let Ni,p denote the ith basis function of order p. The
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0

1 N0,0

0 1 2
0

1 N1,0

(a) Zeroth order basis functions with knot vector
Ξ = {0, 1, 2}

0 1 2
0

1 N0,1

N1,1

N2,1

(b) First order basis functions with knot vector
Ξ = {0, 0, 1, 2, 2}

0

1 N0,2

N1,2

N2,2

N3,2

(c) Second order basis functions with knot vector
Ξ = {0, 0, 0, 1, 2, 2, 2}

Figure 4.1: Examples of basis functions of di�erent order and the same unique knots. As the order
increases, the end knots are repeated p + 1 times. Furthermore, these examples also illustrate that the
number of basis functions increases as the order increases.

0th order basis function in general coordinate ξ is de�ned by:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 elsewhere

Now, the higher-degree basis functions (p ≥ 1) are constructed with the Cox-De Boor recursion formula
[116, 117]:

Ni,p =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξ − ξi+1

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

For repeated indices, so in case ξi = ξi+1, then the basis function is de�ned to be zero everywhere.
Additionally, the Cox-De Boor formula needs an assumption for the case that 0

0 , which is assumed to be
equal to zero for the construction of the basis function. Hence, one can see that all basis functions are
zero between two identical indices.

The derivatives of the basis function Ni are determined in the following way:

d
dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

And obtaining higher-order derivatives iteratively by taking the derivative of this expression:

dk

dξk
Ni,p(ξ) =

p

ξi+p − ξi

(
dk−1

dξk−1
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dξk−1
Ni+1,p−1(ξ)

)
As an extension for B-splines, Non-Uniform Rational B-splines are constructed by adding a weight

for each basis function. Then, the weighting function W (ξ) is de�ned by:

W =

n∑
i=1

Ni,p(ξ)wi (4.1)

Where wi is the weight for spline Ni,p of order p. Then, the ith NURBS of order p is de�ned by:

Rpi =
Ni,p(ξ)wi
W (ξ)

(4.2)
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By introducing a weight per basis function, one is able to represent each geometry accurately.

In order to generate spline curves in 2D or 3D, the basis functions Ni based on one or more knot
vectors Ξ,H can be utilised. De�ne a curve l in 2D and let Si be control points in the 2D plane. Then,
the curve is constructed by:

C(ξ) =

n∑
i=1

Rpi (ξ)Bi (4.3)

Where Rpi can also be a B-spline if all weights are equal. Furthermore, Bi contains the coordinates
of a control point in 2 or 3 dimensions. Furthermore, for the generation of surfaces, or volumes, the
parametric domain ξ ∈ R1 is extended to (ξ, η) ∈ R2 or (ξ, η, ζ) ∈ R3. The formulations for surfaces and
solids are then:

S(ξ, η) =

n∑
i=1

m∑
j=1

Rpi (ξ)P
q
j (η)Bi,j

V (ξ, η, ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Rpi (ξ)P
q
j (η)T rk (ζ)Bi,j,k

(4.4)

Where Rpi , P
q
j and T rk are NURBS of orders p, q and r. Furthermore, with preservation of the exact

geometry, it is possible to insert a control point of a curve (or surface or volumes) for re�nement purposes.
This is called knot insertion. The principle of knot insertion is based on rede�ning the control points
such that one is added but that the geometry remains the same. Let B̄ be the vector of new control
points and let B̄ be the old control points and let the new knot ξ̄ be added between ξk and ξk+1. Then,
the new control points are determined by:

B̄i = αiBi + (1− αi)Bi−1

With

αi =


1, 1 ≤ i ≤ k − 1

ξ̄ − ξi
ξi+p − ξi

, k − p+ 1 ≤ i ≤ k

0, k + 1 ≤ i ≤ n+ p+ 2

Lastly, order elevation of B-splines is performed by increasing the multiplicity of each knot without
adding new knot values. In this way, the original basis functions are increased by order. When knot
insertion is followed by order elevation, the equivalence of a p-re�nement in FEA is constructed. In this
way, the basis of the basis functions does not increase, but their order does. When order elevation is
followed by knot insertion the so-called k re�nement is constructed, in which continuity of basis function
on internal knots can be increased.

4.1.2 Isogeometric Analysis
As mentioned before, Isogeometric Analysis is similar to Finite Element Analysis. Basically, Isogeo-

metric Analysis utilises spline basis functions that have a global support. Hence, discretisation according
to the Isogeometric Analysis framework is done in a similar way compared to FEA. Firstly, given a PDE
(or a system of PDEs), the weak form is determined by multiplying the PDE by a test function and
integrating it over the domain. Partial integration is applied to incorporate boundary conditions. Up to
this point, there is no di�erence with classical FEA. Secondly, when the weak form is known, the solution
is approximated by a �nite number of the product of a basis function and a weight. Here, in terms of the
basis functions, di�erences come into play.
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0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

(a) Basis with knot vector Ξ = {0, 0, 0, 1, 1, 1}
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(c) Basis with knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1}
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(d) B-spline

Figure 4.3: Principle of knot insertion. On top, a B-spline of order 2 with three basis functions for
the knot vector Ξ = {0, 0, 0, 1, 1, 1} is presented. On the bottom, a B-spline of order 2 with four basis
functions and modi�ed knot vector Ξ = {0, 0, 0, 0.5, 1, 1, 1} is presented. Knot insertion moves the control
point such that the B-spline remains the same.
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Figure 4.4: NURBS (weights {1, 1/
√

2, 1}) curve versus B-spline. On the left, the basis functions of the
B-spline curve are dotted and the basis functions of the NURBS are coloured. On the right, the B-spline
is dotted and the NURBS curve is coloured. With these weights, the NURBS exactly represents a quarter
of a circle. [118]
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Figure 4.5: Surface generated with the control points as shown in the �gure and with knot vectors
Ξ = {0, 0, 0, 0.5, 1, 1, 1} (horizontal, see �gure 4.3c) and H = {0, 0, 0, 1, 1, 1} (vertical, see �gure 4.3a).
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Given a weak form, denote by the following combination of a bi-linear operator a(·, ·) and an inner
product (·, ·),

a(u, ϕ) = (ϕ, f)

Where ϕ is the basis function, u is the solution and f is the forcing term of the PDE. Using the Galerkin
approximation

u =

∞∑
j=1

αjϕj ≈
n∑
j=1

αjϕj ,

And substituting ϕ = ϕi, the weak form changes to (given linearity of a(·, ·)):
n∑
j=1

αja(ϕj , ϕi) = (ϕi, f),∀i

In case of classical FEA, the integrals in a(·, ·) and in the inner product can be simpli�ed to band matrices,
since the basis functions have a local support. When B-splines or NURBS are used as basis functions,
this simpli�cation cannot be made. Hence, the system to be solved cannot be simpli�ed further and
domain integrals have to be calculated for all combinations of basis functions ϕi, ϕj .

In sequel, an example of Isogeometric Analysis is given for the linear Euler beam equation. Here,
the discretisation procedure using B-splines is brie�y explained, but it can be found in more detail in
section 5.1.

4.2 An Example: Clamped-Clamped Linear Euler Beam
Let us consider a linear Euler-Bernoulli beam with length 1, which is clamped at both ends and which

is subject to a uniform pressure load q = −1N/m. As we have seen in section 3.1.5, equation (A.8), the
governing equation for a linear beam is (see section 5.1 for boundary conditions):

EI
∂4w

∂x4
= q

w(0) =
dw
dx

(0) = w(1) =
dw
dx

(1) = 0

The weak form is, using equation (A.9):

Find w ∈ Σ(Ω) =

{
w ∈ H2(Ω)|w(0) =

dw
dx

(0) = w(1) =
dw
dx

(1) = 0

}
, Ω = (0, 1) ∈ R1 s.t.

∫ 1

0

EI
d2ϕ

dx2

d2w

dx2
dx =

∫ 1

0

ϕq dx

∀ϕ ∈ Σ(Ω)
(See equation (A.9))

Here, the boundary terms drop out because the clamped boundary conditions are essential boundary
conditions. The spatial discretisation, which is also treated in section 5.1, is done by the Galerkin
method. Here, it is assumed that the solution w can be approximated by the following:

u(x) =

∞∑
j=1

cjNj(x) ≈
n∑
j=1

cjNj(x)
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With cj , j = 1, . . . , n unknown constants. Substituting this into the obtained weak formulation gives a
linear system (see section 5.1 for the details):

Kc = f ,

Where,

Kij =

∫ 1

0

EI
d2ϕi
dx2

d2ϕj
dx2

dx,

fi =

∫ 1

0

ϕip dx,

c =
[
c1 c2 . . . cn

]T
.

Using this linear system, the coe�cients c can be calculated and an approximation of the solution un
can be constructed using the Galerkin method. In �gure 4.6 and �gure 4.7, the basis functions and their
decomposition to the solution of the problem, respectively, are presented. As seen in these �gures, the
second order basis functions clearly deviate from the analytical solution and since the analytical solution
is a fourth order polynomial, the basis functions of fourth order always represent the exact solution.
Another observation that can be made is that the basis functions are indeed global, which is a property
of the IGA framework. Since they have this global support, the basis functions that overlap with others
do not have the property that they represent the solution on nodes, as we know from basic Finite Element
Methods.
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Figure 4.6: Basis functions of ordder p 2 (left), 3 (mid) and 4 (right) for knot vectors Ξ =
{0.0, 1.0} (top), Ξ = {0.0, 0.5, 1.0} (mid top), Ξ = {0.0, 0.25, 0.5, 0.75, 1.0} (mid bottom) and Ξ =
{0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0} (bottom). note: unique the �rst and last knots are
repeated p+ 1 times.
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Figure 4.7: Analytical solution (sea green), numerical solution (cyan) and decomposition of the so-
lution (black) for basis function of order p 2 (left), 3 (mid) and 4 (right) for knot vectors Ξ =
{0.0, 1.0} (top), Ξ = {0.0, 0.5, 1.0} (mid top), Ξ = {0.0, 0.25, 0.5, 0.75, 1.0} (mid bottom) and Ξ =
{0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0} (bottom).
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els

In this chapter, the spatial and temporal discretisation of Euler-Bernoulli beams are discussed. Using
di�erent benchmark cases, the beam model is veri�ed and theoretical orders of convergence in both space
and time are evaluated. Furthermore, a curvilinear beam model is presented and veri�ed as well. The
governing equations for this model are slightly di�erent and require basic Di�erential Geometry. The
latter is given for the reader in chapter B. Throughout the whole chapter, references to section 3.1 and
chapter 4 are made.

5.1 Spatial Discretisation
5.1.1 Linear Euler-Bernoulli Beam

Equation (A.9) presents the weak formulation for the linear Euler-Bernoulli beam formulation. Deriva-
tion of the isogeometric model for this equation is similar to the derivation of a FEMmodel and an example
was given in section 4.2. For this equation, the solution is approximated by a �nite number of weighted
basis functions, i.e.

w0(x, t) =

∞∑
j=1

cj(t)ϕj(x) ≈
n∑
j=1

cj(t)ϕj(x)

Here, cj(t) represents the weight of the basis function ϕj(x). Furthermore, the basis functions ϕj(x)
are from a function space Σ(Ω), x ∈ Ω. Substituting this approximation in the weak form, letting
ϕ = ϕi ∀i = 1, . . . , n and omitting the notations (t) and (x) gives:

n∑
j=1

{∫ x2

x1

−c̈jϕiρAϕj + EIcj
d2ϕi
dx2

d2ϕj
dx2

dx+ cj

[
EIϕi

d3ϕj
dx3

− EI dϕi
dx

d2ϕj
dx2

]x2

x1

}

=

∫ x2

x1

ϕip dx ∀i = 1, . . . , n (5.1)

Here, the coordinates x1 and x2 can be chosen arbitrarily and without loss of generality they are chosen
here as x1 = 0 and x2 = 1. This means that the considered beam has length 1. The boundary term in
the formulation above is

cj

EIϕi d3ϕj
dx3︸ ︷︷ ︸

BC I.1

−EI dϕi
dx

d2ϕj
dx2︸ ︷︷ ︸

BC I.2


x2

x1

, (5.2)

and is decomposed of two terms, which are referenced by BC I.1 and BCI.2, respectively. The choice
of the space for the basis functions is depending on the physical boundary conditions of the beam. For
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Table 5.1: Physical beam boundary conditions and the implementation of the quantities Displacement,
Rotation, Moment and Force. For each boundary condition, combinations of {Displacement, Rotation}
and {Force, Moment} are prescribed. The notation 6= 0 denotes an inhomogeneous term.

Boundary Condition Prescribed Unknown

Clamped Displacement, Rotation Force, Moment
Pinned Displacement, Moment Rotation, Force
Rolled, Vertically Rotation, Force Displacement, Moment
Free end Force, Moment Displacement, Rotation
Force + clamped Force ( 6= 0), Rotation Displacement, Moment
Force + free Force (6= 0), Moment Displacement, Rotation
Moment + pinned Displacement, Moment ( 6= 0) Rotation, Force
Moment + free Force, Moment (6= 0) Displacement, Rotation

implementation of the boundary conditions, prescribed displacements, rotations, forces and moments can
be applied on a beam end xi, i = 1, 2:

Prescribed displacement If a displacement is prescribed on the beam end, BC I.1 is relevant. As seen
in this term, the boundary condition is essential and hence it should be incorporated by a restriction
on the basis function space Σ. For example, a homogeneous boundary displacement, i.e. w(xi) = 0,
the basis should be homogeneous and hence ϕk(xi) should be zero for all k.

Prescribed rotation For a prescribed rotation on the beam end, BC I.2 is relevant. In this term, the

derivative of the basis function, d
2ϕj
dx2 , shows that a prescribed rotation on the beam end xi is likewise

an essential boundary condition. Similar to a prescribed displacement, this boundary condition is
incorporated by adding a restriction to the function space Σ.

Prescribed force If a vertical force is prescribed on the boundary point xi, BC I.1 is relevant because

cjEI
d
3ϕj
dx3 denotes the shear force in the beam. Hence, prescribing this force on beam end xi requires

this natural boundary contribution to be shifted to the right-hand side in the system resulting from
the Galerkin discretisation.

Prescribed moment Similarly to the prescribed vertical force, a prescribed moment resulting from

cjEI
d
2ϕj
dx2 in BCI.2 is also a natural boundary condition and hence it can be included by moving

the speci�c term to the right-hand-side of the assembled linear system resulting from the Galerkin
discretisation.

Based on these four prescribed mathematical boundary conditions, sets of physical boundary condi-
tions can be de�ned for the beam equations. These are listed in table 5.1. Note that in any case, a
quantity of both {Force,Displacement} and {Moment,Rotation} is prescribed. This is because only in
these cases, both contributions in the boundary term vanish.

For di�erent combinations of boundary conditions, analytical solutions are available for the linear
Euler-Bernoulli beam. For the choice of the basis functions, the boundary conditions are of great im-
portance. Namely, the basis functions ϕj that are used for the approximation of the solution have to
fullful the same boundary conditions as imposed on the problem. Hence, referring back to equation (A.9),
the function space in which the solution w0 and the test function ϕi are `living in' must be respeci�ed
according to the boundary conditions. For example, suppose we have a beam with clamped at x = 0 and
free at x = L, then w0, ϕ ∈ Σ(Ω) =

{
w ∈ H1(Ω) : w(0) = dw

dx (0) = 0
}
.

Finally, for a beam model with certain boundary conditions, the discretised linear beam equation
from equation (5.1) can be evaluated for all ϕj ∈ Σ(Ω), j = 1, ..., n. This results in the following system
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of equations:

−Mc̈+ Kc = f , (5.3)

Where,

Mij =

∫ 1

0

ρAϕiϕj dx,

Kij =

∫ 1

0

EI
d2ϕi
dx2

d2ϕj
dx2

dx,

fi =

∫ 1

0

ϕip dx,

c̈ =
[
c̈1 c̈2 . . . c̈n

]T
,

c =
[
c1 c2 . . . cn

]T
.

5.1.2 Curvilinear Beam
The result that has been derived in the previous sections is valid for straight beams, i.e. beams with

an ini�nite radius of curvature. To calculate the displacements of a beam with �nite radius of curvature,
extra terms are added to the equation and the formulation has to be solved in a curvilinear coordinate
system. The former will be discussed in this section using the works of Lim et al.[119] and Qatu[120],
whereas the latter is discussed in chapter B.

Let t denote the thickness of the beam and R(s) the radius of curvature depending on a curvelinear
coordinate s. For a thin curved beam, i.e. a beam where R� t, the normal strain ε1 and the curvature
change κ1 are given by:

ε∗1 =
du
ds

+
w

R

κ∗1 = −d
2w

ds2
+

1

R

du
ds

The total strain of the beam is decomposed by these two components:

ε1 =
1

1 zR
(ε∗1 + zκ∗1)

Note that these strains are linear. Analoguously to the derivation of the equations, the internal strain
energy is calculated by integrating the stress σ1 times the change in strain δε1 over the beam length L
and thickness t. The superscript ∗ is ommitted in the sequel.

∫ t
2

− t2

∫ L

0

E (ε1δε1 + zκ1δκ1) dx dz =

∫ L

0

EAε1
dδu
ds

+ EAε1
δw

R
− EIκ1

d2w

ds2
+
EI

R
κ1

dδu
ds

dx

Applying partial integration and yields the terms with δu or δw, anologuous to the derivation of the
straight beam equations. Applying Hamilton's principle with the kinetic energy and external work from
chapter A gives the following equations, neglecting rotary inertia:

ρAü− EAdε1

ds
− EI

R

dκ1

ds
= q

ρAẅ +
EA

R
ε1 − EI

d2κ1

ds2
= p

(5.4)
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The weak formulation of this system can be calculated in a similar way compared to the linear beam,
except there will be extra terms related to the radius of curvature involved.

Find (u,w) ∈
(
H1(Ω), H2(Ω)

)
,Ω ∈ R1 such that:

∫
Ω

EA

(
dψ
ds

du
ds

+
dψ
ds

w

R

)
+
EI

R

(
−dψ
ds

d2w

ds2
+

1

R

dψ
ds

du
ds

)
dΩ−

−
[
EA

(
ψ
du
ds

+
ψ

R
w

)
+
EI

R

(
−ψd

2w

ds2

)
+

1

R
ψ
du
ds

]x1

x0

=

∫
Ω

ψq dΩ∫
Ω

EA

R

(
φ
du
ds

+ φ
w

R

)
− EI

(
−d

2φ

ds2

d2w

ds2
+

1

R

d2φ

ds2
u

)
dΩ+

+

[
−EIφ

(
d3w

ds3
+

1

R

d2u

ds2

)
+ EI

dφ
ds

(
−d

2w

ds2
+

1

R

du
ds

)]x1

x0

=

∫
Ω

φp dΩ

∀(ψ, φ) ∈
(
H1(Ω), H2(Ω)

)

(5.5)

This weak form can again be used with the Galerkin approximation, and letting φ = φi and ψ = ψi to
obtain:

m∑
j=1

aj

∫
Ω

EA
dψi
ds

dψj
ds

+
EI

R2

dψi
ds

dψj
ds

dΩ +

n∑
j=1

cj

∫
Ω

EA
dψi
ds

φj
R
− EI

R

dψi
ds

d2φj
ds2

dΩ−

−

 n∑
j=1

cj

(
EAψi

dψj
ds

+
EI

R2
ψi

dψj
ds

)
+

n∑
j=1

cj

(
EAψi

φj
R
− EI

R
ψi

d2φj
ds2

)x1

x0

=

m∑
j=1

cj

∫
Ω

ψiq dΩ

n∑
j=1

aj

∫
Ω

EA

R
φi
dψj
ds
− EI

R

d2φi
ds2

ψj dΩ +

n∑
j=1

cj

∫
Ω

EA

R2
φiφj + EI

d2φi
ds2

d2φj
ds2

dΩ+

+

 n∑
j=1

aj
EI

R

(
−φi

d2ψj
ds2

+
dφi
ds

dψj
ds

)
+

n∑
j=1

cjEI

(
φi
d3φj
ds3

− dφi
ds

d2φj
ds2

)x1

x0

(5.6)

In all the weak formulations, the derivatives are with respect to the curve coordinate s. Since the basis
functions and hence the solutions are depending on the coordinate ξ which is generally not coinciding
with s, the operators have to be transformed to derivatives with respect to ξ. Basically, this is done using
the results from the �eld of di�erential geometry. However, on a one-dimensional domain, the chainrule
is su�cient to derive these derivatives (see for instance the work of Almstedt and Safari Hesari[121] and
chapter B). Namely,

∂N

∂x
=

dN
dξ

dxi
dx

=
1

J

dN
dξ

∂2N

∂x2
= − 1

J3

dJ
dξ

dN
dξ

+
1

J2

d2N

dξ2

(5.7)

And the di�erential dΩ = J dΩ̂ where Ω̂ is the reference domain where ξ ∈ Ω̂. Hence, the integrals
are also mapped. Using these derivatives in the weak form after using the Galerkin approximation in
equation (5.6) allows to solve a system of equation for the curvilinear case.

5.1.3 Euler-Bernoulli Beam with Geometric Non-Linearities
In section A.2.1, more speci�cally in equation (A.11), the weak form for the non-linear Euler Bernoulli

beam was derived. Firstly, analoguous to the Linear beam and to FEA, the Galerkin method is applied
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to the system of equations. Hence, the solutions are approximated by a �nite number of weighted basis
functions. Note that the horizontal and vertical displacements of the midplane, u0 and w0, respectively,
are both unknowns and approximated with di�erent basis fucntions.

u0(x, t) =

∞∑
j=1

aj(t)ψj(x) ≈
n∑
j=1

aj(t)ψj w0(x, t) =

∞∑
j=1

cj(t)ϕj(x) ≈
m∑
j=1

cj(t)ϕj(x)

Again, aj and cj represent the weights of the basis functions ψj and ϕj , respectively. Substitution of
these approximations in the weak form in equation (A.11) yields:

n∑
j=1

{∫ x2

x1

ajEA
dψi
dx

dψj
dx

}
dx+

∫ x2

x1

EA

2

dψi
dx

 m∑
j=1

cj
dϕj
dx

2

dx−
n∑
j=1

∫ x2

x1

äjρAψiψj dx

−EA
[
ψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)]x2

x1

=

∫ x2

x1

ψif dx

∫ x2

x1

EA
dϕi
dx

 m∑
j=1

cj
dϕj
dx

 n∑
j=1

aj
dψj
dx

 dx+

∫ x2

x1

EA

2

dϕi
dx

 m∑
j=1

cj
dϕj
dx

3

dx+

+

m∑
j=1

cj

{∫ x2

x1

EI
d2ϕi
dx2

d2ϕj
dx2

dx

}
−

n∑
j=1

∫ x2

x1

äjρAϕiϕj dx+

−EA{ϕdw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)}

+

n∑
j=1

cj

{
EIϕi

d3ϕj
dx3

− EI dϕi
dx

d2ϕj
dx2

}x2

x1

=

∫ x2

x1

ϕip dx

(5.8)

The Galerkin approximation is not substituted in all boundary terms because of their non-linear
character and hence for the sake of brievety of notation. Treatment of the non-linear terms and hence
also the corresponding boundary conditions is discussed in the next subsection. Furthermore, as the
horizontal de�ection of the mid-plane, u0 is introduced in the non-linear Euler-Bernoulli beam, extra
requirements on the boundary conditions are necessary. Based on the boundary terms of both equations,−EAψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)

︸ ︷︷ ︸
BC.III


x2

x1

(5.9)

−EA
{
ϕ
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)}

︸ ︷︷ ︸
BC.II

+

n∑
j=1

cj

EIϕi d
3ϕj
dx3︸ ︷︷ ︸

BC I.1

−EI dϕi
dx

d2ϕj
dx2︸ ︷︷ ︸

BC I.2



x2

x1

(5.10)

Based on the additional boundary conditions denoted by BC.II and BC.III, additional implementations
are de�ned:

Prescribed horizontal displacement When a horizontal displacement is prescribed, BC.III is rele-
vant. In this case, the horizontal displacement imposes an essential boundary condition on the
basis functions ψ. Similarly to previously mentioned essential boundary conditions, this boundary
condition poses a restriction on the function space for basis function ψ only.

Prescribed horizontal force The horizontal force is de�ned by EA
(
du0

dx + 1
2

(
dw0

dx

)2)
. Hence, a pre-

scribed horinzontal force in�uences boundary integrals BC.II and BC.III. In both cases, the condi-
tion yields a natural boundary condition. However, for BC.II, the implementation of the boundary
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condition as a natural boundary condition requires non-linear treatment of the extra dw0

dx term.
Alternatively, the term can be assembled in the left-hand-side matrix by using the Galerkin ap-
proximation on the extra dw0

dx -term, making the treatment of the BC linear. This yields in the
system matrix an extra term:

−EA
{
ϕi

dϕj
dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)}

Prescribed vertical displacement A prescribed vertical displacement was discussed for BC.I. How-
ever, BC.II requires additional treatment of the vertical displacement. Namely, this boundary
condition contains the basis function ϕ and hence it is an essential boundary condition. Hence, the
restriction of the function space of ϕ holds also for BC.II.

Prescribed rotation For a prescribed rotation, the �rst derivative of ϕ, which is included in dw0

dx acts
as a natural boundary condition in BC.II.

As for the linear beam, the boundary conditions determine the function space of the basis functions
ψ and ϕ. If these functions are chosen according to the boundary conditions, a system of equations can
be speci�ed. For the non-linear Euler-Bernoulli beam, the following system is obtained:

−
[
MA 0
0 MB

]
α̈+

[
KA 0
0 KB

]
α+

[
SA(α)
SB(α)

]
=

[
FA
FB

]
. (5.11)

Where,

MA,ij =

∫ 1

0

ρAψiψj dx,

MB,ij =

∫ 1

0

ρAϕiϕj dx,

KA,ij =

∫ 1

0

EA
dψi
dx

dψj
dx

dx,

KB,ij =

∫ 1

0

EI
d2ϕi
dx2

d2ϕj
dx2

dx,

SA,i(α) =

∫ 1

0

EA

2

dψi
dx

 m∑
j=1

cj
dϕj
dx

2

dx,

SB,i(α) =

∫ 1

0

EA
dϕi
dx

 m∑
j=1

cj
dϕj
dx

 n∑
j=1

aj
dψj
dx

 dx+

∫ x2

x1

EA

2

dϕi
dx

 m∑
j=1

cj
dϕj
dx

3

dx,

FA,i =

∫ 1

0

ψif dx,

FB,i =

∫ 1

0

ϕip dx,

Please note that in this system the vector S depends on the solution and is hence the only non-linear
term. Futhermore, by leaving out one of the sums in both SA and SB vectors, a modi�ed non-linear
matrix S∗can be created and the system to be solved reads:

−
[
MA 0
0 MB

]
α̈+

[
KA 0
0 KB

]
α+

[
0 S∗AB(α)

S∗BA(α) S∗B(α)

]
α =

[
FA
FB

]
. (5.12)
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Where,

SAB,ij(α) =

∫ 1

0

EA

2

dψi
dx

dϕj
dx

 m∑
j=1

cj
dϕj
dx

 dx,

SBA,ij(α) =

∫ 1

0

EA
dϕi
dx

dψj
dx

 m∑
j=1

cj
dϕj
dx

 dx = 2SBA,ji,

SB,ij(α) =

∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

 m∑
j=1

cj
dϕj
dx

2

dx,

Alternatively, one can merge SBA and SB in a new SB matrix by considering the coe�cients cj as un-
knowns instead of the aj coe�cients.

5.1.4 Initial Beam Deformations
From text books in structural analysis and buckling, it is well-known that initial deformations of

beams or columns cause additional bending moments in the beam. section A.3 presents the governing
equation and weak form when a straight beam is initially deformed by a function w∗(x). Using the
weak form from equation (A.14), additional (non-)linear sti�ness matrices, denoted with superscript ∗
are found using the Galerkin approximation:

−
[
MA 0
0 MB

]
α̈+

[
KA + K∗A K∗AB
K∗AB KB + K∗B

]
α+

[
SA(α) + S∗A(α)
SB(α) + S∗B(α)

]
=

[
FA
FB

]
.

Where,

K∗A,ij = 0

K∗AB,ij =

∫ 1

0

EA
dψi
dx

dϕj
dx

dw∗

dx
dx,

K∗BA,ij =

∫ 1

0

EA
dϕi
dx

dψj
dx

dw∗

dx
dx,

K∗B,ij =

∫ 1

0

EA
dϕi
dx

dϕj
dx

(
dw∗

dx

)2

dx,

S∗A,i(α) = 0

S∗B,i(α) =

∫ 1

0

3

2
EA

dϕi
dx

dw∗

dx

 m∑
j=1

cj
dϕj
dx

2

dx.

5.1.5 Hydrostatic Pressure
When hydrostatic pressure is added to the beam, the term ρfgbw0 is added to the second equation of

the system equation (5.11) as a vertically distributed shear load which is depending on the de�ection of
the beam. Here, b is the width of the beam, ρf the density of the �uid and g the graviational acceleration.
The corresponding contribution to the global sti�ness matrix is:

KHPB,ij =

∫ 1

0

ρfgbϕiϕj dx,

47



Isogeometric Euler-Bernoulli Beam Models Chapter 5.

Furthermore, if an initial beam de�ection is present, this de�ection also contributes to hydrostatic loading
and hence a contribution to the forcing vector results in

FHPB,ij =

∫ 1

0

ρfgbϕiw
∗ dx,

5.1.6 Euler-Bernoulli Beam with Loading Non-Linearities
5.1.6.1 Following Pressure

In case of a following pressure p(x) acting on the beam, most of the spatial discretisation from above
is similar. However, the F vectors of the (non-)linear systems change according to this following pressure.
Recall the de�nition of the normal vector from equation (A.12):

n =
1√(

1 + du0

dx

)2
+
(
dw0

dx

)2
[
−dw0

dx

1 + du0

dx

]
. (see equation (A.12))

As the normal vector depends on the solution in the numerator, the forcing vectors can partially be added
to the blocks of S∗ as follows:

S∗AB,ij(α) =

∫ 1

0

EA

2

dψi
dx

dϕj
dx

 m∑
j=1

cj
dϕj
dx

 dx+

∫ 1

0

p(x)ψi
dϕj
dx√(

1 +
∑n
j=1 aj

dψj
dx

)2

+
(∑n

j=1 cj
dϕj
dx

)2
dx,

S∗BA,ij(α) =

∫ 1

0

EA
dϕi
dx

dψj
dx

 m∑
j=1

cj
dϕj
dx

 dx−
∫ 1

0

p(x)ϕi
dψj
dx√(

1 +
∑n
j=1 aj

dψj
dx

)2

+
(∑n

j=1 cj
dϕj
dx

)2
dx,

S∗B,ij(α) =

∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

 m∑
j=1

cj
dϕj
dx

2

dx,

And the forcing vectors are modi�ed accordingly,

FA,i = 0,

FB,i =

∫ 1

0

p(x)ϕi√(
1 +

∑n
j=1 aj

dψj
dx

)2

+
(∑n

j=1 cj
dϕj
dx

)2
dx.

As can be noticed, the normalisation of the normal vector introduces a non-linearity in the forcing of the
beam, which has to be resolved with the Picard Iterations or Newton's method as well.

5.1.6.2 Following Force

Implementation of a following force, i.e. a force that preserves its orientation after de�ection of the
beam, is a combination of the implementation of vertical and horizontal forces projected on the beam
using the normal vector. Suppose that a force F is applied on the end point of the beam in normal
direction. Then, the boundary condition for the �rst equation of the non-linear system in equation (5.8)
results from the normal force Fnx whilst the boundary condition for the second equation of the non-linear
system results from the horizontal force Fnx and the vertical force Fny. Similar to the following pressure,
the following force adds non-linearities to the system because the forces are projected on the beam based
on the normal vector from the previous iteration.
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5.1.7 Nonlinear Solution Strategies
As the system of equations is non-linear, a solution strategy for solving the non-linear system needs

to be included. In this section, two strategies are covered, namely the Picard Iterations and the Newton-
Raphson method.

Firstly, the Picard Iteration method, as the name suggests, is an iterative method where the non-
linear system is converted to a linear system where the solution in iteration k− 1 is used to evaluate the
non-linear term in iteration k [122]. In case of the system in equation (5.11), there are multiple ways
to include the Picard Iteration method. One way to do this is to include the coe�cients ck−1

j in the
matrices S∗AB , S

∗
BA and S∗B and evaluate the sum using the (known) basis functions ϕj . In this way, the

submatrices of S∗ are linearised around αk−1 and αk can be evaluated from equation (5.12) as if this was
a linear equation.

Alternatively, the Newton-Raphson method (or simply Newton's method) can be used 1. Suppose the
non-linear system

G(v) = 0

is to be solved. Then, applying a linearisation yields:

G(vk + ∆v) = G(vk) + JG(vk)∆v + R(vk)

Where vk is an already known state of the non-linear system, R(vk) is the residual due to the Taylor
approximation, ∆v is the increment of the solution and JG is the Jacobian matrix of the stystem. By
solving the right-hand-side of this line to zero, the increment ∆v from the present state can be found.
By following algorithm 1, a solution to the non-linear problem can be found iteratively. Alternatives to

Algorithm 1 Newton-Raphson method for solving non-linear system G(v) = 0

1: Initialise solution vector v0

2: De�ne maximum number of iterations kmax and tolerance TOL
3: Initialise iteration counter k and residual ε
4: while ε <TOL and k < kmax do
5: Compute G(vk) and JG(vk)
6: Solve JG(vk)∆vk+1 = −G(vk) for increment ∆vk+1

7: Update solution vk+1 = vk + ∆vk+1

8: Compute residual ε = G(vk+1).
9: end while

the Newton-Raphson method, such as the Quasi-Newton method or Broyden's method can be used. The
former method approximates the inverse of the Jacobian matrix based on this matrix in the previous
iterations and the latter method approximates the inverse of the Jacobian matrix and hence does not
even need an expression for the Jacobian matrix [124, 123]. However, in this study, the Newton-Raphson
method is used and hence an approximation of the Jacobian of the non-linear system is required. The
Jacobian matrix is de�ned as follows [104]:

JG =
∂R

∂α
=

[
∂R1

∂a
∂R1

∂c
∂R2

∂a
∂R2

∂c

]
Where R = D(α)α− F and Ri is the residual for equation i. Matrix K in this case is the sum of both
sti�ness matrices in equation (5.12) and F is the right-hand-side vector. In section A.4, all Jacobian
submatrices for the system of equation of the non-linear Euler-Bernoulli beam, including the ones for the

1The books of Wriggers[123] or de Borst et al.[124] can be used as reference for this widely-known method in non-linear
�nite elements
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initial deformation, are given. The Jacobian submatrices for the straight beam are directly derived using
[104] and are used in the work of [69], amongst others. The contributions due to initial de�ections are
derived using the same methodology.

5.1.8 Numerical Integration
In the present analysis, the basis functions are chosen to be B-splines (i.e. NURBS with weights 1).

This means that no analytical quadrature rules are available. One could for instance use the quadrature
rules described in [82, 83]. Although not optimal according to Hughes et al.[82] Gauss quadrature rules
are used to evaluate the integrals for matrix assembly. More speci�cally, Gauss-Lobatto quadrature,
which includes end points of the interval, is used. This integration rule is exact for polynomial functions
with degree 2n− 3, n = p+ 1 for spline degree p and has the advantage over Gauss integration since the
end-points of the piece-wise polynomials overlap with other intervals, but have to be calculated only once
[125, 126]. Generally, Gauss and Gauss-Lobatto integration given weights wi and quadrature points xi
is given by (given that the order is su�ciently high that integration is exact):∫ 1

−1

f(x) dx =
∑
j=1nqp

wjf(xj) (5.13)

Or, for an interval [0, 1] which is typical for normalised knot vectors,∫ 1

0

f(x) dx =
1

2

∑
j=1nqp

wjf

(
xj + 1

2

)
(5.14)

The weights and quadrature point of Gauss and Gauss-Lobatto rules can be found in many textbooks,
including the extensive work by Abramowitz et al.[127].

5.2 Temporal Discretisation
So far the matrix equations for both linear and non-linear Euler-Bernoulli beam formulations have

been derived. In both formulations (see equation (5.3) and equation (5.11)) the temporal derivatives of
the weights of the approximation of the solution, äj and c̈j , are still present. Time integration schemes
are used to advance the calculations through time. In this section, di�erent classes of time integration
schemes are discussed. These methods are all based on solving

ẏ = f(y, t) (5.15)

Where y is a time-dependent variable, ẏ is its time dervative and f(y, t) is a system that depends on the
previous time step and on time. As this equation only contains �rst order temporal derivatives, a system
with second order temporal derivatives should be rewritten into the following form [128]:[

ẋ
ẍ

]
=

[
0 I

−M−1K −M−1C

] [
x
ẋ

]
+

[
0

M−1F (t)

]
(5.16)

Here, the matrices M, B and C and the vectors F and x satisfy the following general form for a dynamic
system:

M ẍ+ Cẋ+Kx = F (t) (5.17)

Note that the system here assumes the sti�ness matrix to be linear. In the derivations of the methods,
this assumption is made. Later on, in section 5.2.5, it is described how a non-linear sti�ness matrix can
be incorporated in the time integration method. This has similarities with the discussion in section 5.1.7.

Additionally, the Newmark method and its improvement, Bathe's method are derived. Those methods
can be derived from the system presented in equation (5.16), but their derivation is usually based on
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approximations of displacements, velocities and accelerations which are substituted in equation (5.17).
Based on the method, these displacements, velocities and accelerations are updated each time step or
substep.

Various analyses of temporal discretisation methods, i.e. time integration methods, have been pre-
sented in literature in the past years. This chapter is a summary from various time integration methods
from literature and the selected methods will be used for the beam model. Summaries of time integration
methods for (non-)linear structural dynamics are given by Xie[129], Dokainish and Subbaraj[130, 131] and
Bathe and Baig[132]. Textbooks on this topic are written by Butcher[133] and Vuik et al.[128] amongst
others. All these works are used in the following sections.

5.2.1 Implicit and Explicit Euler Methods
The implicit and Explicit Euler methods are simple methods for time integration and have been

derived by Leonard Euler in 1768 [134]. Basically, the time derivative the initial value problem from
equation (5.15) is approximated by a forward or backward di�erence step. This yields the Explicit and
Implicit Euler methods, respectively. The corresponding eqautions read [133]:

yt+∆t − yt
∆t

= f(yt, t) Explicit Euler Method, (5.18)

yt+∆t − yt
∆t

= f(yt+∆t, t+ ∆t) Implicit Euler Method. (5.19)

Using the matrix system as derived in equation (5.16), this can be written as:

[
x
ẋ

]t+∆t

= ∆t

[ 0 I
−M−1K −M−1C

] [
x
ẋ

]t
+

[
0

M−1F (t)

]
︸ ︷︷ ︸

A

− [xẋ
]t

Explicit Euler

(5.20)(
I−∆t

[
0 I

−M−1K −M−1C

])[
x
ẋ

]t+∆t

= ∆t

[
0

M−1F (t+ ∆t)

]
−
[
x
ẋ

]t
Implicit Euler

(5.21)

As can be see in these formulations, the names of the Euler methods are derived from the way the
methods advance over time; for the Explicit method, the solution on time t + ∆t is determined by the
solution on t only, whereas the Implicit method is based on solving a system of equations for t + ∆t.
From analyses such as those given in [134, 133, 128] amongst others, it can be shown that the Implicit
and Explicit Euler methods are of order 1, i.e. that the error of these methods reduces one order if the
time step reduces one order. Furthermore, the Implicit Euler method is unconditionally stable whereas
the Explicit Euler method requires

λh ∈ REx. Euler =

{
z ∈ C

∣∣∣∣ |z + 1| < 1

}
The stability region of the method, REx. Euler, is a unit circle with center −1 in the complex plane. The
eigenvalues λ of the system are the eigenvalues of the system matrix denoted by A in equation (5.20).
Note that the eigenvalues are depending on δt and on the mesh size or knot vector spacing h via the mass,
sti�ness and damping matrices, M, K and C. If the damping matrix C is a zero-matrix, the eigenvalues
of the system are purely imaginary and hence the Explicit Euler method is unstable for all h.

A linear combination of the Euler methods is the so-called Trapezoidal method. Basically, the method
is derived from the system

yt+∆t − yt
∆t

= θf(yt, t) + (1− θ)f(yt+∆t, t+ ∆t) (5.22)
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Hence,(
I− (1− θ)∆t

[
0 I

−M−1K −M−1C

])[
x
ẋ

]t+∆t

= θ∆t

([
0 I

−M−1K −M−1C

] [
x
ẋ

]t
+

[
0

M−1F (t)

])
−
[
x
ẋ

]t
Implicit Euler

(5.23)

For θ = 1
2 , the method is called the Trapezoidal method method, which is unconditionally stable and of

second order [128].

5.2.2 Runge-Kutta Methods
The family of Runge-Kutta methods contains time integration schemes that are combinations of

Explicit and Implicit Euler method steps devided over di�erent stages, which are then combined to �nd
an approximation of the solution at time step t + ∆t. From [134], an s-stage Explicit Runge Kutta
Method (ERK) is de�ned by:

k1 = f(yt, t),

k2 = f(yt + ∆ta21k1, t+ c2∆t),

k3 = f(yt + ∆t(a3,1k1 + a32k2), t+ c3∆t),

...

ks = f(yt + ∆t(as,1k1 + · · ·+ as,s−1ks−1), t+ cs∆t),

yt+∆t = yt + ∆t (b1k1 + · · ·+ bsks) ,

(5.24)

Where the coe�cients aij , bi and cj can be presented in a so-called Butcher Tableau [135]:

c1 a11

c2 a21 a22

c3 a31 a32 a32

...
...

...
. . .

cs as1 as,2 . . . as,s−1 as,s
b1 b2 . . . bs−1 bs

(5.25)

The most `famous' Runge-Kutta method, which is the Runge-Kutta 4 (RK4) method, is de�ned by
the following Butcher Tableau [136]:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

(5.26)

Analysis, such as that presented in [128], show that the Runge-Kutta 4 method is of order 4 in time and
is stable if and only if:

λh ∈ RRK4 =

{
z ∈ C

∣∣∣∣ ∣∣∣∣1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4

∣∣∣∣ < 1

}
In this work, the well-known fourth order Runge-Kutta method (RK4) will be used. However, vari-

ations on the general Runge-Kutta methods are as follows. As an extension to the equations in equa-
tion (5.24), the `diagonal' coe�cients aii can be added. If at least one of these coe�cients is added
to the method, the method contains at least one implicit solution step, making it a Diagonal Implicit
Runge Kutta Method (DIRK). If, furthermore, all these diagonal elements are equal, the DIRK methods
simplify to the Singly DIRK (SDIRK) methods [134]. Lastly, if the �rst stage of the method is explicit
and all the other steps are implicit with the same diagonal coe�cients, so-called Explicit �rst stage,
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SDIRK (ESDIRK) schemes are obtained [95]. The ESDIRK schemes that are used by van Zuijlen are
unconditionally stable. ERK schemes are Explicit Runge Kutta schemes, that contain the previously
presented RK4 method. [137] presents the stability region of these methods. Butcher tableaus for the
ESDIRK and the ERK scheme families are:

ESDIRK:

c1 0 0 0 0
c2 a21 a22 0 0
c3 a31 a32 a33 0
c4 a41 a42 a43 a44

b1 b2 b3 b4

ERK:

c1 0 0 0 0
c2 a21 0 0 0
c3 a31 a32 0 0
c4 a41 a42 a43 0

b1 b2 b3 b4

(5.27)

5.2.3 The Newmark and Wilson-θ Methods
The Newmark method was �rst published in 1959 by Newmark[138]. The method is widely known

in the �eld of structural dynamics. Derivation of the method is not necessarily based on the form as
written in equation (5.15) but rather on the system in equation (5.17). Namely, the method relies on the
de�nition of the displacement and velocity on time step t+ ∆t in terms of the acceleration on this time
instance. Let yt, ẏt and ÿt be the displacement, velocity and accelerations at time step t. Then,

yt+∆t = yt + ∆t2
(

1

2
− α

)
ÿt + ∆t2αÿt+∆t

ẏt+∆t = ẏt + ∆t (1− δ) ÿt + ∆tδÿt+∆t

(5.28)

Substitution of these expression in the equation of motion yields:

(
M + ∆tδC + ∆t2αK

)
ÿt+∆t = F (t+ ∆t)− C (yt + ∆t(1− δ)üt)−K

(
yt + ∆tẏt + ∆t2

(
1

2
− α

)
ÿt

)
,

(5.29)

Which can be solved for ÿt+∆t. For δ ≥ 1
2 and α ≥ (δ+ 1

2 )
2

4 , the method is unconditionally stable and for
δ = 1

2 the mathod has second-order accuracy. More variations of the tuning parameters are given in [131].

The Wilson-θ method is a variation on the Newmark method and was �rst presented in 1973 by
Wilson et al.[139]. The method is a variation of the Newmark method since it computes the acceleration
on time step t+ ∆t using the following interpolation:

ÿt+∆t =

(
1− 1

θ

)
ÿt +

1

θ
ÿt+θ∆t. (5.30)

In the case where θ = 1, the method simpli�es to the original Newmark method. In case of θ > 1,
the method works as an interpolation between the solutions on time step t and on t + θ∆t. The latter
is calculated using the Newmark method with time step θ∆t. As mentioned in [139], the method is
unconditionally stable for θ ≥ 1.37. Increasing θ yields an increase in numerical dissipation and accuracy
is lost. Furthermore, the method has the tendency to overshoot the exact solition in the �rst steps of a
transient analysis and hence the method is not suitable for impact loads [131]. Basically, this method
can be seen as an extension of Newmark's method, as it contains an extra tuning parameter θ.

Another implicit method that can be used is the Houbolt method. In this method, accelerations and
velocities are purely described by displacements at the present time step, and the previous two time
steps. The method is unconditionally stable, but algorithmic damping is introduced and contrary to the
Newmark and Wilson-θ methods, this cannot be tuned [131]. Additionally, the method needs a starting
procedure because it uses the solution at more than one previous time step. Based on these two drawbacks
of the method, it is not included in this study.
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5.2.4 The Bathe Method
A relatively new method in the �eld of time integration methods for structural dynamics is Bathe's

metod, which was introduced in 2005 by Bathe and Baig[132]. In later papers (see [140, 141, 142, 143]),
Bathe investigated the method with co-authors. The motivation behind the Bathe method is that for
non-linear dynamic systems, methods such as the Trapezoidal method or the Wilson-θ method lose their
property of being unconditionally stable. This is especially the case when long time responses and very
large deformations are considered [132]. The method proposed by Bathe and Baig is a single step, double
sub-step method. In the �rst substep a Newmark method is used with time step γ∆t2. In the second step,
an Euler 3-point backward rule is adopted. Hence, the method is speci�ed by the following equations
[143]:

Step 1: (Newmark Method)

yt+γ∆t = yt + γ∆tẏt + γ2∆t2
[(

1

2
− α

)
ÿt + αÿt+γ∆t

]
,

ẏt+γ∆t = ẏt + γ∆t [(1− δ) ÿt + δÿt+γ∆t] .

(5.31)

Then, solve

Mÿt+γ∆t + Cẏt+γ∆t + Kẏt+γ∆t = F (t+ γ∆t), (5.32)

To obtain ÿt+γ∆t and substitute this in equation (5.31) to obtain yt+γ∆t and ẏt+γ∆t.

Step 2: (Euler 3-point backward rule)
With yt+γ∆t, ẏt+γ∆t and ÿt+γ∆t, compute

yt+∆t = c1yt + c2yt+γ∆t + c3yt+∆t,

ẏt+∆t = c1ẏt + c2ẏt+γ∆t + c3ẏt+∆t,
(5.33)

Where,

c1 =
1− γ
γ∆t

c2 =
−1

(1− γ)γ∆t
c3 =

2− γ
(1− γ)∆t

.

Then, solve

Mÿt+∆t + Cẏt+∆t + Kẏt+∆t = F (t+ ∆t), (5.34)

To obtain ÿt+∆t and substitute this in equation (5.33) to obtain yt+∆t and ẏt+∆t.

The Bathe method is of second order, since both the Newmark method and the Euler 3-point backward
rule are of second order. Furthermore, the method is unconditionally stable, even in case of non-linear
equations with large time steps. The latter is a clear advantage compared to the trapezoidal method [140].

In [142], the Bathe method is investigated for linear analyses. In this paper, the method was inves-
tigated for γ > 1. As found in the paper, this choice of γ implies large amplitude decays. Furthermore,
they investigated the use of α = 1, δ = 3/4 and γ = 0.5 for the �rst time step, in order to prevent an
overshoot in the acceleration of one degree of freedom in their test case. However, they recommend to
not use these coe�cients in the complete simulation, as the method becomes �rst order accurate and
loses its unconditional stability.

2Note: in [132, 140, 141, 142] the trapezoidal method is used as a �rst step. Basically, this is the Newmark method for
α = 1

4
and δ = 1

2
. Furthermore, in [140, 141, 142], γ = 1

2
is adopted.
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5.2.5 Temporal Discretisation of Non-Linear Equations of Motion
In the discussion of the various temporal discretisation methods in the previous subsections, the

sti�ness matrix K was assumed to be constant. As discussed in section 5.1.3, the discretisation of the
non-linear Euler-Bernoulli beam equations, however, requires iterative solution procedures. Since explicit
time integration methods use only previous solutions in the solution procedure, the system matrix only
depends on the previous solution and hence no iterative solution procedure is required for these methods.
For the implicit methods, however, a non-linear system of equations needs to be solved and hence iterative
methods are required here.

[131], amongst others, discusses treatment of a non-linear system for use of the time integration
methods. The method that is discussed uses for the equation of motion:

M ¨xt+∆t + C ˙xt+∆t + D(xt+∆t) = F (t+ ∆t)

Since the sti�ness matrix can be linearised in time, it can be written as:

D(xt+∆t) ≈ D(xt) + JD(xt)δx

Where δx = xt+∆t − x. Substituting this in the non-linear equation of motion gives:

M ¨xt+∆t + C ˙xt+∆t + JD(xt)δx = F (t+ ∆t)−D(xt+∆t)

This can iteratively be solved using

M ¨xit+∆t + C ˙xit+∆t + JD(xt+∆t)∆x = F (t+ ∆t)−D(xi−1
t+∆t)

And δxit+∆t = δxi−1
t+∆t + ∆xi.

Alternatively, Picard iterations can be used for each time step. Using this solution strategy, iterations
are also performed per time step and if the solution on time t converged, the temporal solution procedure
is continued to the next time step.

5.3 Benchmarks
5.3.1 Spatial Convergence

For veri�cation of the implemented beam model, a pinned-pinned beam subject to a uniform load of
1 N/m is modelled using the linear and nonlinear beam models. The bending sti�ness is chosen to be
unity, i.e. EI = 1. Furthermore, axial sti�ness has been set to a unitary value for the nonlinear beam as
well, i.e. EA = 1. For the linear beam, analytical solutions are available and for the nonlinear model, the
method of manufactured solution is used. Here, the analytical solution for the linear beam is utilised as
vertical displacements, while horizontal displacements are set to zero. Thus, for the pinned-pinned case:

um(x) = 0

wm(x) =
qx

24EI

(
L3 − 2Lx2 + x3

)
Substituting these manufactured solutions in the system of equations for the nonlinear beam gives the
forcings that need to be applied to simulate the manufactured solutions. For the pinned-pinned case:

f(x) =
EAq2(4x3 − 6Lx2 + L3)x(x− L)

48EI2

g(x) =
(xEA(L− x)(L− 2x)2(L2 + 2Lx− 2x2)2q2 + 768EI3)q

768EI3
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Consequently, the convergence of the Isogeometric linear and nonlinear beam models with respect to the
analytical and manufactured can be calculated to verify the computation as well as the code. The results
for the convergence analysis are depicted in �gure 5.1, where the error ε is plotted for di�erent step sizes
h. The error is de�ned by (unless stated otherwise):

ε =

√∫
Ω

(unum − uan)2

Where unum and uan are the numerical and analytical/manufactured solutions, respectively. For the
nonlinear beam, the errors for the solution in horizontal and vertical direction are separated. Furthermore,
the order of the B-splines is di�erent for the bases of the solution in these directions. The order of the B-
splines that represent the vertical solution is varied between 2 and 4 keeping the horzontal basis of second
order. Furthermore, for the verical solution, the order is varied between 1 and 2, keeping the vertical
basis 4th order. Both variations are because the requirements of the spaces of the basis functions. For
the horizontal displacement errors, the following observations are made:

• For both the linear and the non-linear beam, second-order convergence is observed for second-order
B-spline basis functions. Generally, however, a third-order convergence is expected from theoretical
results for IGA. Furthermore, `wiggles' are observed for �ner meshes for both beam models.

• For both beam models, fourth-order convergence is observed for third-order basis funtions, which
is in line with theoretical results in IGA. Furthermore, no wiggles are present for �ner meshes.

• Lastly, errors of order O
(
10−15

)
are observed for fourth-order basis functions. These errors are

assumed to be determined by machine precision and hence it can be concluded that they represent
the analytical/manufactured solution exactly. This is in line with the fact that the analytical and
manufactures solutions are fourth-order polynomial functions and hence can be represented exactly
by fourth-order piecewise polynomial basis functions.

• A �rst-order basis in the horizontal direction of the nonlinear beam gives a constant error which is
orders higher than machine precision whereas second order basis functions give machine precision
errors. Hence, it can be concluded that the solution in the horizontal direction is of second order
to keep the displacements zero.
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(b) Nonlinear beam, horizontal de�ection
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(c) Nonlinear beam, vertical de�ection

Figure 5.1: Spatial convergence of linear beam (top left), and the horizontal and vertical de�ections for
the nonlinear beam (top right, bottom) for di�erent orders of the knot vector of the knot vectors for the
vertical de�ection (Ξ2, p2) and the horizontal de�ection (Ξ1, p1). h is the step size in the knot vectors,
i.e. unique knot values are Ξi = {0, h, 2h, . . . , 1}. Furthermore, EI = 1 Nm2, EA = 1 N , q = 1 N/m,
L = 1m.
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Table 5.2: Order of time integration methods, according to [133, 95]

Method Order

Implicit/Explicit Euler 1
Bathe, Newmark, Trapezium 2
ERK 3, ESDIRK 3 3
ERK 4, ESDIRK 4, Runge-Kutta 4 4

5.3.2 Temporal Convergence
For veri�cation of the dynamic beam models, the method of manufactured solutions is used for both

the linear and the nonlinear model. The reason for using a manufactured solution for the linear model
instead of a analytical solution for a vibrating string is that the sine-shaped analytical solution needs
to be represented by more B-spline basis functions compared to a polynomial solution. Consequently,
this means that the error that is made by constructing an initial condition is orders higher than machine
precision and hence it will easily dominate the time discretisation error. Hence, to validate the time
integration method, it is more convenient to use a manufactured solution that is polynomial, such that
the spatial discretisation error (and hence the error of the initial condition) is of the order of the machine
precision. The manufactured solution for the beam models is given by (solution u(x) only for non-linear
beam):

u(x) = 0

w(x) =
x

24

(
1− 2x2 + x3

)
cos(ωπt)

Which shows that for t = 0 the manufactured solution (thus the initial condition) is equal to a pinned-
pinned beam with a unitary distributed load. Substituting this in the (non)linear system of equations
gives the following right-hand sides:

Linear beam:

f(x) = − 1

24

[
ρAxπ2ω2(x− 1)(x2 − x− 1)− 24EI)

]
cos(ωπt)

Nonlinear beam:

f(x) = − EA

48EI2
cos(ωπt)2(4x3 − 6x2 + 1)x(x− 1)

g(x) = −
1
2x(x2 − x− 1/2)2EA

(
x− 1

2

)2
(x− 1) cos2(ωπt)

24EI3

+

(
ρAπ2ω2x4 − 2ρAπ2ω2x3 + ρAπ2ω2x− 24EI

)
cos(ωπt)

24EI

From literature, orders of convergence for various time integration methods can be found, which are
summarised in table 5.2. Using these orders of convergence, the discretisation errors for both space and
time can be made of same order by the fact that:

O (ε) = O
(
∆ξp+1

)
+O (∆tq) , (5.35)

Where ∆t is the time step, ∆ξ is the knot spacing, p is the order of the B-splines or NURBS and q is the
expected order of the time integration method. To make the total error of the method purely depending
on the mesh size, the time step can be scaled according to:

∆t = (∆ξ)
p+1
q (5.36)
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Alternatively, ∆ξ can be chosen su�ciently large so that the discretisation error is smaller than the
temporal discretisation error in the considered domain for ∆t. The results for the linear and non-linear
dynamic beams are given in �gure 5.2. The following is observed:

• All time integration methods converge in the expected orders from table 5.2 for the linear beam.

• For the non-linear beam, some exceptions are observed for the theoretic oders of convergence.
Namely,

1. In �gure 5.2b, i.e. the convergence plot for the error of the horizontal displacements, the
Implicit Euler method converges second order for large time steps, makes a peak around
∆t ∼ O

(
5 · 10−4

)
and converges after this peak with its expected order of convergence, i.e.

�rst order.

2. Also in �gure 5.2b, the Bathe method shows the same behaviour but the peak depth is less
and occurs around ∆t ∼ O

(
2 · 10−3

)
after which it converges with �rst order, while second

order was expected.

• The explicit character of the Explicit Euler method, the Runge-Kutta 4 method, the ERK 3 method
and the Wilson-θ method can be seen in case of the linear beam. For the nonlinear beam, the time
step is chosen su�ciently small such that the eigenvalues of the system are located within the
stability region for all methods and for the range of considered time steps.
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Figure 5.2: Convergence plots with the L2-error ε against the time step ∆t for di�erent time integration
methods. The linear beam (top) is considered in free vibration with EI = 1 Nm2, ρA = 1 kg/m and
t = 1 s. For the non-linear beam, EI = 1Nm2, EA = 1N , ρA = 103 kg/m and t = 2 s and the frequency
parameter for the manufactured solution is ω = 4. For the linear and non-linear models, the unique knot
vector is Ξ = {0, 0.5, 1} and the orders of the basis functions are 4 for the vertical de�ection and 2 for
the horizontal de�ection solutions.
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5.3.3 Spectral Properties
One of the advantages of IGA over ordinary �nite elements that was published �rst by Cottrell

et al.[144] in 2006 is its superior accuracy in the prediction of eigenfrequencies and mode shapes. Later
Weeger et al.[69] published similar results for linear and non-linear beams in 2013. Where �nite element
methods show so-called optical branches in the frequency spectrum when n/N > 0.5, i.e. for upper-half
part of the discrete eigenfrequency spectrum, IGA does not show these branches. This leads to a more
accurate representation of the eigenvalues. In this section, an eigenvalue spectrum similar to that of
Cottrell et al. and Weeger et al. will be built for comparison purposes for the linear beam only.

Basically, the eigenfrequency calculations follows naturally from the dynamic beam model, as it is
de�ned by the eigenvalues of the following system:

(−ω2M +K)Ψ = λΨ

Here, ω is a vector containing the �rst n eigenvalues of the discrete system and Ψ is a matrix containing
n eigenvectors of the system. In IGA, these eigenvectors can be transformed to mode shapes using the
basis functions. Both matrices M and K are in Rn×n.

In �gure 5.3a, the ratio ωh/ω − 1 is plotted on the vertical axis, where ωh,i are numerically obtained
eigenfrequencies and ωi are the analytical eigenfrequencies which are (iπ)2 for a pinned-pinned beam.
On the horizontal axis, the eigenfrequency number i over the number of degrees of freedom n is plotted.
Although the resolution is rather low, i.e. n is small, the same height of the curves is obtained as in
[144, 69]. According to this paper, it should indeed not depend on the number of discrete frequencies.
For illustration purposes, the �rst �ve mode shapes of the pinned-pinned beam are presented in �gure 5.3b.

Furthermore, another result published in [144] is the convergence of the �rst three eigenfrequencies
with respect to the grid size, i.e. the knot vector re�nements. Figure 5.4 presents the convergence of the
�rst three eigenfrequencies for di�erent orders of B-splines. Analoguous to the observations in [144] the
frequencies indeed converge in order 2(p− 1) for a pinned-pinned beam.
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Figure 5.4: Convergence of the �rst three eigenfrequencies ω1, ω2, ω3 for mesh size or knot span h.
The error ε is an L2 error between the numerical eigenfrequency ωi and the analytical eigenfrequency
ω = (iπ)2. Orders of the knot vectors range from 2 to 4.
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Table 5.3: De�ection (down, left) [m] of the tip of the quarter circular (radius 1) arch subject to a
moment M = −1 Nm, or a vertical/horizontal force F = −1 N on the end point. The cross-section is
considered rectangular with a height of 0.01 m a width of 0.2 m and a Young's modulus of 1 GPa. The
basis functions are B-splines with a (unique) knot vector Ξ = {0, 0.5, 1} and an order of 4.

Numerical Numerical with analytical Jacobian Analytical
Case Vertical Horizontal Vertical Horizontal Vertical Horizontal

Moment 0.0591 0.0335 0.0598 0.0343 0.0600 0.0342
Vertical Force 0.0458 0.0291 0.0469 0.0301 0.0471 0.0300
Horizontal Force 0.0291 0.0206 0.0301 0.0213 0.0300 0.0214
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Figure 5.5: Deformed shape of the quarter circular arch (radius 1) subject to a moment M = −1Nm,
or a vertical/horizontal force F = −1 N on the end point. The cross-section is considered rectangular
with a height of 0.01 m a width of 0.2 m and a Young's modulus of 1 GPa. The basis functions are
B-splines with a (unique) knot vector Ξ = {0, 0.5, 1} and an order of 4.

5.3.4 Curvilinear Models
The curvilinear beam model, which was described in section 5.3.4, has been veri�ed with the data

from Cazzani et al.[67, 68] and Almstedt and Safari Hesari[121]. In all models, the curvilinear operators
have been calculated numerically, despite they could be calculated analytically for the speci�c cases. The
results are presented in �gure 5.5 and table 5.3. The following can be observed:

• Generally, the results match well with the analytical solution for this knot vector and order.

• When evaluating the Jacobian numerically, the error is larger. Since the Jacobian is decomposed
by basis functions (see section 5.3.4), a constant Jacobian (which is the case for this geometry) is
approximated by B-splines which are generally non-constant. This implies that errors are made
when evaluating the Jacobian. Increasing the order or increasing the number of knots and control
points increases the number of basis functions, allowing for a more accurate description of a constant
Jacobian with a zero-derivative.

Furthermore, �gure 5.6 depicts convergence results for the three load cases of the quarter circluar
arch. In this case, the curvilinear operators are calculated analytically to be sure that the error arises
from discretisation only. If the operators are calculated numerically, functions that are constant over the
geometry (such as the radius of curvature) are approximated by higher order B-splines and hence not
constant. It can be observed that in all three cases, the observed order of convergence is 2p for B-splines
with order p.
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Figure 5.6: Convergence plots for a quarter circular arch with radius 1 with B-splines of orders 2 up to 4
and knot vectors Ξ = {0, 1/k, . . . , (k−1)/k, 1}, k = 2 . . . 8. The arch is subject to a momentM = −1Nm,
or a vertical/horizontal force F = −1 N on the end point. The cross-section is considered rectangular
with a height of 0.01m a width of 0.2m and a Young's modulus of 1GPa
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5.3.5 E�ects of Following Force and Following Pressure
The last case study that is performed for the beam model speci�cally is regarding the e�ects of

the following force and the following pressure. For both situations, no manufactured solutions can be
constructed, since the force and pressure are the only unknowns for the system and can hence not be
speci�ed based on two equations. In �gures 5.7 and 5.8, the results of the nonlinear beam given a following
force or pressure acting on the beam are given. As seen in these �gures, a following pressure causes the
beam to be more evenly curved and the following force causes shortening of the beam, because the force
has a nonzero horizontal projection.
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A | Structural Derivations

A.1 Von Kármán Strains

If the strains of a material volume in normal directions are small, i.e.

∂u

∂x
,
∂v

∂y
,
∂w

∂z
∼ O (ε) ,

And if furthermore the in-plane shear e�ects are also small, i.e.

∂u

∂y
,
∂v

∂x
∼ O (ε) ,

Then all terms with O
(
ε2
)
vanish from the formulations. Furthermore, for moderate rotations, the

following terms have a non-negligible contribution compared to O (ε):

(
∂w

∂x

)2

,

(
∂w

∂x

)2

,

(
∂w

∂x

∂w

∂y

)
.
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These order have the following consequences for the Green strain tensor:

ε11 =
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2
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2
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)
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2
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Plugging in the expressions for u, v, w and performing some mathematical operations yields the Von
Kármán strains:
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(A.1)
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Note that the derivatives of u0 and v0 with respect to z are zero as these are the in-plane mid-plane
displacements. Furthermore, the boxed terms are the non-linear strain contributions. Now, the Green
strain tensor EG can be simpli�ed to the Von Kármán strain tensor EK (in the latter E). Thus, let the
strain and curvature tensors (ε and κ, respectively) be de�ned by:

εαβ =
∂u0

α

∂xβ
+
∂u0

β

∂xα
+
∂u0

α

∂xβ

∂u0
β

∂xα
=

1

2

(
∇u+ (∇u)T + (∇u)(∇u)T

)
with uT = [u0

1, u
0
2]

καβ =
∂2u0

3

∂xα∂xβ
= ∇(∇u0

3)

Here, u0
i (x

0) denotes the deformation of the mid-plane. Furthermore, the gradient operators only work

on the xy-plane, i.e. ∇(·) =
[
∂·
∂x ,

∂·
∂x

]T
. Then,

EK = ε+ x0
3κ

Or, [
E11 E12

E21 E22

]
=

[
ε11 ε12

ε21 ε22

]
+ x0

3

[
κ11 κ12

κ21 κ22

]

A.2 Derivation of the Euler-Bernoulli Beam Equations
For the derivation of the Euler-Bernoulli beam equation, only the xz-plane is considered and hence

all derivatives with respect to y are equal to zero. This implies that the Von Kármán strains from
equation (A.1) simplify to:

ε11 =
∂u0

∂x
− z ∂

2w0

∂x2
+

1

2

(
∂w0

∂x

)2

Furthermore, the virtual strains become:

δε11 =
∂δu0

∂x
− z ∂

2δw0

∂x2
+
∂w0

∂x

∂δw0

∂x

From this expression, we see that the internal virtual work of the beam becomes:

δWI =

∫
Ω

σ : δε dΩ,

=

∫
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σ11δε11 dΩ,

=

∫
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σ11

(
∂δu0

∂x
− z ∂

2δw0

∂x2
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dΩ,

=

∫ L
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∫ b
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−M11

∂2δw0

∂x2
+N11

∂w0

∂x

∂δw0

∂x
dxdy. (A.2)

Here, N11 and M11 are de�ned as the zeroth and �rst moment of the stress over the height of the pro�le,
i.e.

N11 =

∫ h
2

−h2
σ11 dz,

M11 =

∫ h
2

−h2
zσ11 dz.
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In fact, they represent the axial force and the bending moment at any point in the xy-plane. In order
to derive the governing PDEs for the Euler-Bernoulli beam with small deformations, the integral form of
the internal work needs to be written as a product of δu0 and δw0. Hence, using partial integration on
equation (A.2) results in:

(. . . ) =
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Where the last equality holds because N11 and M11 are assumed to be not depending on the y-direction.
Likewise, δu0 and δw0 do not depend on the y-direction. Now, the virtual work of the external forces
can be determined. Suppose the beam is subject to a transversal pressure on the top (pt(x)) and on the
bottom (pb(x)) and a longitudinal traction force on the top (tt(x)) and on the bottom (tb(x)), as well.
Furthermore, a hydrostatic foundation is applied on the beam, denoted by −ρgw. Then, the virtual work
of these loads becomes:

δWE = −b
∫ L

0

ptδw

(
x, y,

h

2

)
+ pbδw
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]L
0
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Lastly, in order to get the dynamic equation of the Euler beam, the kinetic energy should also be involved.
This reads,

δK = b

∫ L

0

ρ (u̇δu̇+ ẇδẇ) dx

In order to obtain the equations of motion, Hamilton's principle from equation (3.10) is used. It is
assumed that the virtual displacements are equal on time instances t1 and t2. Firstly, the integral of the
kinetic energy δK over time becomes:∫ t2

t1

δK dt = b
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∫ h
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∫ L
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= b
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u̇δu+ ẇδw − h3

12

∂ẇ0
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δw0

]L
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}
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In the last equality, A = bh and I = bh3/12 and in the fore-last equality the initial and �nal conditions
of the virtual displacements are set to zero. Now, Hamilton's principle becomes:∫ t2

t1

δK − (δWE + δWI) dt =

∫ t2

t1

{∫ L

0

−ρ
[
Aü0δu0 − I
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]
+ b

∂N11

∂x
δu0 + b

∂2M11

∂x2
δw0

+ b
∂N11

∂x

∂w0

∂x
δw0 + bN11

∂2w0

∂x2
δw0 + b

(
pt + pb −

h

2

∂tt
∂x

+
h

2

∂tb
∂x

)
δw0

+ b (tt + tb) δu0 − bρgw0δw0 dx

+ ρ

[
I
∂ẅ0
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}
dt

= 0

From this principle, the equations of motion follow by collecting the terms multiplied by δu0 and δw0

separately from the domain integral.

b
∂N11

∂x
− ρAü0 + b(tt + tb) = 0

b
∂2M11
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∂N11

∂x
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∂x
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∂x2
= −ρI ∂

2ẅ0
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(A.3)
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Or, combining derivatives:

b
∂N11

∂x
− ρAü0 + b(tt + tb) = 0

b
∂2M11

∂x2
+ b
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(A.4)

Furthermore, N11 and M11 are de�ned by:
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As a result, the equations of motion become:
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Or, again, when combining derivatives:
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(
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(A.5)

Neglecting the rotary inertia term ρI ∂
2ẅ0

∂x2 and hydrostatic pressure bρgw0, letting p = b(pt + pb) and
t = b(tt + tb), this simpli�es to:

−EA
(
∂2u0

∂x2
+
∂w0

∂x

∂2w0

∂x2

)
+ ρAü0 = t

−EA ∂
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[(
∂u0
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+
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∂x
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)
∂w0
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]
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∂4w0

∂x4
+ ρAẅ0 = p

(A.6)

This is a result which can also be derived from the derivations by Reddy[104]. It represents the be-
haviour of the non-linear Euler-Bernoulli beam including membrane deformations, i.e. stretching. When
horizontal deformations are neglected, the following result is obtained:

− EA3

2

∂2w0

∂x2

(
∂w0

∂x

)2

+ EI
∂4w0

∂x4
+ ρAẅ0 = p. (A.7)

From all of the above and in particular equation (A.6), it is clear that neglecting membrane stresses, and
hydrostatic pressure the �rst equation vanishes and that the second equation simpli�es to the ordinary
di�erential equation

EI
∂4w0

∂x4
+ ρAẅ0 = p (A.8)
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Which is known from many elementary textbooks (Hibbeler [150] amongst others) as the Euler-Bernoulli
beam equation.

A.2.1 Weak forms
To derive the �nite element method for the Euler-Bernoulli beam, the weak form resulting from the

governing equations in equations (A.6) to (A.8) should be derived. When deriving the governing equations
using the virtual work principle, one could also use the integral form of the energy balance as weak form,
while incorporating the boundary conditions using partial integration. Especially when the governing
equation cannot be found easily using Hamilton's principle, this method is favourable. In case of the
present equations, the weak form will however be derived based on the PDEs.

Firstly, starting at the most simple PDE, namely equation (A.8), the weak form is obtained by
multiplication of the equation with a test function ϕ for the vertical de�ection of the mid-plane w0 and
application of partial integration twice on the remaining terms, the following is obtained:

Find w0 ∈ Σ(Ω) = H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

−ϕρAẅ0 + EI
d2ϕ

dx2

d2w0

dx2
dx+

[
EIϕ

d3w0

dx3
− EI dϕ

dx
d2w0

dx2

]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)

(A.9)

Secondly, equation (A.7) contains the extra non-linear term proportional to ∂2w0

∂x2

(
∂w0

∂x

)2
due to mem-

brane sti�ening which cannot fully be partially integrated. However, the requirement on the derivatives
of w0 in this term can be reduced to �rst order. Note that this is a formality in principle, since the
bending contributions still requires second order derivatives. The process is as follows:∫ x2

x1

−ϕ3

2
EA

d2w0

dx2

(
dw0

dx

)2

dx =

∫ x2

x1

−1

2
EA

[
d
dx

(
ϕ

(
dw0

dx

)3
)
− dϕ

dx

(
dw0

dx

)3
]
dx

=

∫ x2

x1

1

2
EA

dϕ
dx

(
dw0

dx

)3

dx−
[

1

2
EAϕ

(
dw0

dx

)3
]x2

x1

,

Which results in the following weak form for equation (A.7):

Find w0 ∈ Σ(Ω) = H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

−ϕρAẅ0 +
1

2
EA

dϕ
dx

(
dw0

dx

)3

+ EI
d2ϕ

dx2

d2w0

dx2
dx+

+

[
EIϕ

d3w0

dx3
− EI dϕ

dx
d2w0

dx2
− 1

2
EAϕ

(
dw0

dx

)3
]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)

(A.10)

Lastly, the full set of equations from equation (A.6) requires two basis functions in the weak formu-
lation, because there are two governing equations. For the �rst equation, which represents horizontal
equilibrium, the test function ψ is used and for the second equation the test function ϕ is still used.
For the �rst equation, multiplication with ψ, integrating over Ω = (x1, x2) and application of partial
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integration gives:∫ x2

x1

−ψEA d
dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)

dx =

∫ x2

x1

−EA d
dx

[
ψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)]

+

+ EA
dψ
dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)

dx

= −
[
EAψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)]x2

x1

+

+

∫ x2

x1

EA
dψ
dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)

dx

=

∫ x2

x1

ψρAü0 + ψt dx

Furthermore, the extra term in the second equation is due to the membrane stretching due to the
horizontal displacement. Multiplication with the test function ϕ and using partial integration for this
term gives:

−
∫ x2

x1

EAϕ
d
dx

[
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]

dx =

∫ x2

x1

EA

{
− d

dx

[
ϕ
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]

+

+
dϕ
dx

[
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]}

dx

= −EA
[
ϕ
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]x2

x1

+

+

∫ x2

x1

EA
dϕ
dx

[
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]

dx

Thus, the �nal weak form for the PDEs in equation (A.6) become:

Find u0 ∈ H1(Ω), w0 ∈ H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

EA
dψ
dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)

+ ψρAü0 dx− EA
[
ψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)]x2

x1

=

∫ x2

x1

ψt dx

∫ x2

x1

ϕρAẅ0 + EA
dϕ
dx

[
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)]

+ EI
d2ϕ

dx2

d2w0

dx2
dx+

+

[
−EA

{
ϕ
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2
)}

+ EI

{
ϕ
d3w0

dx3
− dϕ

dx
d2w0

dx2

}]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)
(A.11)

Lastly, the right hand side of the weak form is determined by a given traction f(x) and a given vertical
pressure p(x). However, if there is a pressure acting on the beam, this always acts in normal direction.
Hence, a pressure acting on the beam is:

pn = p

[
nx
ny

]
,
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Where n is the normal vector of the beam with components nx and ny. Obviously, the normal vector
of the beam is not known until the solution of the system is known. However, we know that the (unit)
normal vector along an arbitrary curve is given by:

n =
1√(

1 + du0

dx

)2
+
(
dw0

dx

)2
[
−dw0

dx

1 + du0

dx

]
, (A.12)

And hence the right hand side forcing vectors in case of a following pressure p(x) become:∫ x2

x1

ψt dx −→ −
∫ x2

x1

p(x)ψ
dw0

dx√(
1 + du0

dx

)2
+
(
dw0

dx

)2 dx,

∫ x2

x1

ϕp dx −→
∫ x2

x1

p(x)ψ
1 + du0

dx√(
1 + du0

dx

)2
+
(
dw0

dx

)2 dx.

A.3 Beam with Initial Deformation
The governing equations for a non-linear beam with initial de�ections w∗(x) are [31]

−EA
[
d
dx

(
du
dx

)
+

1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

]
+ ρAü = t

−EA d
dx

[(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)
dw + w∗

dx

]
+ EI

d4w

dx4
+ ρAẅ = p

(A.13)

The weak form of this equation is obtained by multiplying the �rst equation with test fuction ψ(x) and
the second with ϕ(x) and integrating them over the domain Ω. The derivation is similar to the one
given in section A.2.1. However, some additional terms, which are boxed in the following equations are
present due to extra terms with w∗. Similar to equation (A.11), the weak form becomes:

Find u0 ∈ H1(Ω), w0 ∈ H2(Ω), Ω = (x1, x2) ∈ R1 s.t.

∫ x2

x1

EA
dψ
dx

(
du0

dx
+

1

2

(
dw0

dx

)2

+
dw
dx

dw∗

dx

)
+ ψρAü0 dx+

−EA
[
ψ

(
du0

dx
+

1

2

(
dw0

dx

)2
)

+
dw
dx

dw∗

dx

]x2

x1

=

∫ x2

x1

ψt dx

∫ x2

x1

ϕρAẅ0 + EA
dϕ
dx

[
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2

+
dw
dx

dw∗

dx

)
+

dw∗

dx

(
du0

dx
+

1

2

(
dw0

dx

)2

+
dw
dx

dw∗

dx

) ]
+

+EI
d2ϕ

dx2

d2w0

dx2
dx+

[
− EA

{
ϕ
dw0

dx

(
du0

dx
+

1

2

(
dw0

dx

)2

+
dw
dx

dw∗

dx

)
+

+ ϕ
dw∗

dx

(
du0

dx
+

1

2

(
dw0

dx

)2

+
dw
dx

dw∗

dx

) }
+ EI

{
ϕ
d3w0

dx3
− dϕ

dx
d2w0

dx2

}]x2

x1

=

∫ x2

x1

ϕp dx

∀ϕ ∈ Σ(Ω)
(A.14)
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A.4 Jacobian of the Sti�ness Matrix
The Jacobian of the sti�ness matrix of the non-linear beam equation can be obtained using [104]

JG =
∂R

∂α
.

Where R = D(α)α − F . Matrix D in this case is the sum of both sti�ness matrices in equation (5.12)
and F is the right-hand-side vector. Recall the total sti�ness matrix of the non-linear beam:

D(α) =

[
KA SAB(α)

SBA(α) KB + SB(α)

]
Where (using inner-product notation),

KA,ij =

∫ 1

0

EA
dψi
dx

dψj
dx

dx,

KB,ij =

∫ 1

0

EI
d2ϕi
dx2

d2ϕj
dx2

dx,

SAB,ij(α) =

∫ 1

0

EA

2

dψi
dx

dϕj
dx

(
c
dϕ
dx

)
dx,

SBA,ij(α) =

∫ 1

0

EA
dϕi
dx

dψj
dx

(
c
dϕ
dx

)
dx,

SB,ij(α) =

∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

(
c
dϕ
dx

)2

dx,

The corresponding Jacobian matrix is de�ned as:

JG =

[
JA JAB
JBA JB

]
With (see [104]),

JA,ij = DA,ij +
∂DA,ij

∂a
· a+

∂DAB,ij

∂a
· c− ∂Fi

∂aj

= DA,ij + 0 + 0

JAB,ij = DAB,ij +
∂DA,ij

∂c
· a+

∂DAB,ij

∂c
· c− ∂F

∂c

= DAB,ij + 0 +
∂

∂c

(∫ 1

0

EA

2

dψi
dx

dϕj
dx

(
c
dϕ
dx

)
dx

)
· c− 0

= DAB,ij +

(∫ 1

0

EA

2

dψi
dx

dϕj
dx

∂

∂c

(
c
dϕ
dx

)
dx

)
· c

= DAB,ij +

(∫ 1

0

EA

2

dψi
dx

dϕj
dx

dϕ
dx

dx

)
· c

= DAB,ij +

∫ 1

0

EA

2

dψi
dx

dϕj
dx

dϕ
dx
· c dx

= DAB,ij +DAB,ij = 2DAB,ij

JBA,ij = DBA,ij +
∂DBA,ij

∂a
· a+

∂DB,ij

∂a
· c− ∂F

∂a
= DBA,ij + 0 + 0− 0
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JB,ij = DB,ij +
∂DBA,ij

∂c
· a+

∂DB,ij

∂c
· c− ∂F

∂c

= DB,ij +
∂

∂c

(∫ 1

0

EA
dϕi
dx

dψj
dx

(
c
dϕ
dx

)
dx

)
· a+

∂

∂c

(∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

(
c
dϕ
dx

)2

dx

)
· c− 0

= DB,ij +

(∫ 1

0

EA
dϕi
dx

dψj
dx

∂

∂c

(
c
dϕ
dx

)
dx

)
· a+

(∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

∂

∂c

(
c
dϕ
dx

)2

dx

)
· c

= DB,ij +

(∫ 1

0

EA
dϕi
dx

dψj
dx

dϕ
dx

dx

)
· a+ 2

(∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

(
c
dϕ
dx

)
dϕ
dx

dx

)
· c

= DB,ij +

(∫ 1

0

EA
dϕi
dx

dψ
dx

dϕj
dx

dx

)
· a+ 2

∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

(
c
dϕ
dx

)
dϕ
dx
· c dx

= DB,ij +

(∫ 1

0

EA
dϕi
dx

(
dψ
dx
· a
)
dϕj
dx

dx

)
+ 2

∫ x2

x1

EA

2

dϕi
dx

dϕj
dx

(
c
dϕ
dx

)2

dx

Additionally, the optionally extra terms from the contribution of the initial deformation of the beam
should also be incorporated in the Jacobian matrix. Recall that the sti�ness matrices due to initial
deformation of the beam are (using inner-product notation instead of sum notation for the non-linear
term):

D∗AB,ij =

∫ 1

0

EA
dψi
dx

dϕj
dx

dw∗

dx
dx,

D∗BA,ij =

∫ 1

0

EA
dϕi
dx

dψj
dx

dw∗

dx
dx,

D∗B,ij =

∫ 1

0

EA
dϕi
dx

dϕj
dx

(
dw∗

dx

)2

dx+

∫ 1

0

3

2
EA

dϕi
dx

dϕj
dx

dw∗

dx

(
c · dϕ

dx

)
dx.

The only term that contributes to the Jacobian matrix is the derivative of D∗B,ij with respect to c. Hence,
the additional terms for the Jacobian matrix due to the initial deformations are:

J∗A,ij = D∗A,ij
J∗AB,ij = D∗AB,ij
J∗BA,ij = D∗BA,ij

J∗B,ij = D∗B,ij +
∂D∗BA,ij
∂c

· a+
∂D∗B,ij
∂c

· c− ∂F

∂c

= D∗B,ij + 0 +
∂

∂c

(∫ 1

0

3

2
EA

dϕi
dx

dϕj
dx

dw∗

dx

(
c · dϕ

dx

)
dx

)
· c− 0

= D∗B,ij +

(∫ 1

0

3

2
EA

dϕi
dx

dϕj
dx

dw∗

dx
∂

∂c

(
c · dϕ

dx

)
dx

)
· c

= D∗B,ij +

(∫ 1

0

3

2
EA

dϕi
dx

dϕj
dx

dw∗

dx
dϕ
dx

dx

)
· c

= D∗B,ij +

(∫ 1

0

3

2
EA

dϕi
dx

dϕj
dx

dw∗

dx

(
dϕ
dx
· c
)

dx

)
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B | Some notes on Di�erential Geome-

try

This section gives a brief overview of the prerequisites of Di�erential Geometry for Isogeometric Analysis.
This is based on the work of Ivancevic and Ivancevic[154], which are recommended for further reading
on the topic. In the sequel, it is assumed that a curve C, a surface S and a volume V are represented by
NURBS or B-splines:

C(ξ) =

n∑
i=1

Ni(ξ)Bi,

S(ξ) =

n∑
i=1

n∑
j=1

Ni(ξ)Nj(η)Bi,j ,

V(ξ) =

n∑
i=1

n∑
j=1

n∑
k=1

Ni(ξ)Nj(η)Nk(ζ)Bi,j,k,

Where matrix Bi contains the coordinates (in a 1D, 2D or 3D space) of control point i, Bi,j for control
point i, j and so on.

Firstly, the process in IGA relies on a mapping from the physical domain to a parent domain. Let
Ω ⊂ Rp be the physical domain, Ω̂ ⊂ Rq and let s : Ω→ Ω̂ be a mapping from the physical domain to the
parent domain. The inverse mapping is then denoted by s−1 : Ω̂→ Ω. Furthermore, a point denoted by
captials (e.g. X) is a p-dimensional point in the physical domain (e.g. X ∈ Ω ⊂ Rp) and a point denoted
by a lower case letter (e.g. x) is a q-dimensional point in the parent domain (x ∈ Ω̂ ⊂ Rq). There are no
restrictions on the dimension p and q.

Let now f : Ω → R be a function from the physical domain to R (w.l.o.g. 1D) which is evaluated
on point X. Then the function can be evaluated from the parameter domain by the composite function
g = f ◦ s : Ω̂ → R from the point x, since X = s(x). Here the f ◦ s = f(s) Furthermore, the Jacobian
matrix of the mapping is de�ned as:

J =
∂s

∂x
=
∂si
∂xj

Furthermore, the fundamental (material) covariant metric tensor (in short metric tensor) g [154] is de�ned
as:

g = JT J =
∂si
∂xj

∂si
∂xk

(B.1)

Which has inverse g−1. The determinant of J , which is used for changing integration domains, is denoted
by:

det(J) = |J | (B.2)
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However, if J is not square, which is possible when the dimensionality of the physical domain and the
parent domain are not equal, it is not possible to calculate the determinant of J directly. In that case,
the metric tensor is utilised:

det(J) =
√
g =

√
JT J (B.3)

When the dimensionality of the physical and parent domains are equal, this is equal to the determinant
of J . Suppose again that we have the functions f : Ω→ R and g = f(s) : Ω̂→ R. Then, from Calculus
text books it is widely known that ∫

Ω

f(X) dΩ =

∫
Ω̂

f ◦ s(x)detJ dΩ̂ (B.4)

Furthermore, as the basis of the spaces changes under the mapping, di�erential operators from the
Euclidean space also change. For this study, the curvilinear equivalent for the gradient and the laplacian
are relevant:

∇Xf = g−1∇xf ◦ s Curvilinear Operator,

∇2
Xf =

1√
g
∇x
(√

gg−1∇xf ◦ s
)

Laplace-Beltrami Operator,
(B.5)

B.1 Numerical Implementation for B-splines
The di�erential theory as presented in the previous section needs to be implemented for B-splines

in the IGA code in order to compute the deformations of initially curved beams. This section brie�y
elaborates on the calculation of the above quantities speci�cally for a curve C described by B-splines.
Firstly, recall that this curve is de�ned by:

C(ξ) =

n∑
i=1

Ni(ξ)Bi (B.6)

Hence, the curve is naturally a mapping of basis function of a parent domain Ω̂. Namely, the parametric
domain can be indexed by the coordinate ξ and the basis function Ni(ξ) can be used for analyses in this
parametric domain, which is the idea behind IGA. Furthermore, the matrix Bi in fact transforms the basis
function Ni(ξ) to the physical space Ω. Summarizing, the mapping s for a B-spline is naturally equal to
C(ξ), i.e. s = C : Ω̂→ Ω. The only parameter that describes the curve is ξ. Hence, the dimensionality of
the parametric domain is 1 and the dimensionality of the physical domain is arbitrary.

The Jacobian matrix J for a curve described by B-splines (or NURBS) consists of the derivatives of
the elements of the curve with respect to the parameter ξ. Hence, for a curve in 3D:

J =


∂Cx
∂ξ
∂Cy
∂ξ
∂Cz
∂ξ

 =


∑n
i=1

dNi
dξ (ξ)Bx,i∑n

i=1
dNi
dξ (ξ)By,i∑n

i=1
dNi
dξ (ξ)By,i

 , (B.7)

And hence the metric tensor (scalar in this case) becomes:

g = JT J =

(
n∑
i=1

dNi
dξ

(ξ)Bx,i

)2

+

(
n∑
i=1

dNi
dξ

(ξ)By,i

)2

+

(
n∑
i=1

dNi
dξ

(ξ)Bz,i

)2

, (B.8)

And its inverse is simply

g−1 = 1/g =
1(∑n

i=1
dNi
dξ (ξ)Bx,i

)2

+
(∑n

i=1
dNi
dξ (ξ)By,i

)2

+
(∑n

i=1
dNi
dξ (ξ)Bz,i

)2 . (B.9)
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The di�erential operators over the curve C are calculated using the metric tensor and its inverse. Let
f : C → R be a function de�ned on the curve. Then, the gradient in the Euclidean space becomes:

∇Xf =
1

g

d
dξ

(f ◦ s), (B.10)

And the Laplace-Beltrami operator in Euclidean space can be simpli�ed to:

∇2
Xf =

1√
g

d
dξ

(√
g

1

g

d
dξ

(f ◦ s)
)
, (B.11)

=
1√
g

[
1

2g
√
g

dg
dξ

d
dξ

(f ◦ s)−
√
g

g2

dg
dξ

d
dξ

(f ◦ s) +
1√
g

d2

dξ2
(f ◦ s)

]
. (B.12)

Here, the last step is performed for implementation in a code and results from basic mathematical
di�erentiation rules. Note that this requires additionally the derivative of g with respect to ξ. This is:

dg
dξ

= dJT J + JTdJ (B.13)

Where dJ is:

dJ =


∂2Cx
∂ξ2

∂2Cy
∂ξ2

∂2Cz
∂ξ2

 =


∑n
i=1

d
2Ni
dξ2 (ξ)Bx,i∑n

i=1
d
2Ni
dξ2 (ξ)By,i∑n

i=1
d
2Ni
dξ2 (ξ)By,i

 , (B.14)
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