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VORtech
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I Delft, de Torenhove

I Create software

I Maintain, optimize software
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Distribution of CONTACT.
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CONTACT

“Vollebregt & Kalker’s rolling and sliding contact model”
- http://www.kalkersoftware.org
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“Vollebregt & Kalker’s rolling and sliding contact model”
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CONTACT

“Vollebregt & Kalker’s rolling and sliding contact model”
- http://www.kalkersoftware.org

1978: DUVOROL

1982: CONTACT

1994: modernized
From here on many times extended and accelerated.
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Wiggles

Time discretization ∆t,
rolling velocity V ,
space discretization ∆x.

Definition

Traversed distance per timestep c = ∆t·V
∆x .
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Wiggles

Time discretization ∆t,
rolling velocity V ,
space discretization ∆x.

Definition

Traversed distance per timestep c = ∆t·V
∆x .

Instabilities arise when c� 1.
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Wiggles

(a) Case: c = 1 (b) Case: c = 0.1 (c) Case: c = 0.025

Figure: The 2D Carter/Fromm problem using different timesteps.
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Physics - deformation

Definition

Deformation of a physical body is the transformation of the
positions of particles in the original state to a their positions in
the new state.
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Physics - deformation

Definition

Deformation of a physical body is the transformation of the
positions of particles in the original state to a their positions in
the new state.

Particle in initial state has position x.
Particle in deformed state has position x + u.
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Physics - strain

Definition

Longitudinal strain: εii = ∂ui
∂xi

.

Definition

Shear strain: εij =
∂uj
∂xi

+ ∂ui
∂xj

, i 6= j.
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Physics - strain

Definition

Longitudinal strain: εii = ∂ui
∂xi

.

Definition

Shear strain: εij =
∂uj
∂xi

+ ∂ui
∂xj

, i 6= j.

Strain is relative displacement caused by stretching and
bending of the body.

Solving instabilities at small timesteps in CONTACT June 29, 2016

6



Physics - stress

Link strain to stress through the generalized Hooke’s Law with
elastic tensor C (a material property).

Definition

Stress: σij = Cijklεkl.
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Physics - stress

Link strain to stress through the generalized Hooke’s Law with
elastic tensor C (a material property).

Definition

Stress: σij = Cijklεkl.

Simplification in an isotropic material:

σii = λ(ε11 + ε22 + ε33) + 2µεii

and
σij = µεij , i 6= j

with material properties λ and µ.
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Situation

Figure: Train wheel on a rail.

Solving instabilities at small timesteps in CONTACT June 29, 2016

8



Situation

Figure: Schematic view of a wheel on a rail, where wheel and rail
overlap there will be a contact area.
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Traction

Surface stress of body 1: p(1), of body 2: p(2).
Newton’s third law of motion:

p(1) = −p(2).
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Traction

Surface stress of body 1: p(1), of body 2: p(2).
Newton’s third law of motion:

p(1) = −p(2).

Only work with p = p(1).
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Traction

Surface stress of body 1: p(1), of body 2: p(2).
Newton’s third law of motion:

p(1) = −p(2).

Only work with p = p(1).

Split the normal and tangential surface stress into:

I the scalar normal stress pn,

I the 2-vector tangential stress pτ , the traction.
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Displacement

After deformation a point on the surface of body 1 has moved
from x(1) to x(1) + u(1) by an amount u(1), this is called the
displacement.
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Displacement

After deformation a point on the surface of body 1 has moved
from x(1) to x(1) + u(1) by an amount u(1), this is called the
displacement.

Let the displacement difference be

u = u(1) − u(2).
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Displacement

After deformation a point on the surface of body 1 has moved
from x(1) to x(1) + u(1) by an amount u(1), this is called the
displacement.

Let the displacement difference be

u = u(1) − u(2).

Before deformation the normal distance between the bodies is:

h = x(1)
n + x(2)

n .

After deformation this normal difference becomes

e = h− un.
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Slip

Definition

Relative rigid slip w =

[
ξ − φy
η + φx

]
.

A function of the overall longitudinal creepage ξ, lateral
creepage η, and spin creepage ψ.
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Slip

Definition

Relative rigid slip w =

[
ξ − φy
η + φx

]
.

A function of the overall longitudinal creepage ξ, lateral
creepage η, and spin creepage ψ.

Definition

Relative slip s = w + u̇
V .

Both s and w are relative to the rolling velocity V .
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Contact conditions

In the normal problem:

in exterior area E : e > 0, pn = 0

in contact area C : e = 0, pn ≥ 0
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Contact conditions

In the normal problem:

in exterior area E : e > 0, pn = 0

in contact area C : e = 0, pn ≥ 0

In the tangential problem:

in exterior area E : s free, pτ = 0

in adhesion area H : ||s|| = 0, ||pτ || ≤ g
in slip area S : ||s|| > 0, pτ = −g s

||s||
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Contact conditions

In the normal problem:

in exterior area E : e > 0, pn = 0

in contact area C : e = 0, pn ≥ 0

In the tangential problem:

in exterior area E : s free, pτ = 0

in adhesion area H : ||s|| = 0, ||pτ || ≤ g
in slip area S : ||s|| > 0, pτ = −g s

||s||

Coulombs friction law: g = µpn.
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Influence function

Link between the tractions and displacements:

ui(x) =

∫
C
Aij(x,y)pj(y)dS
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Boundary Element Methods

I Numerical approximation to solutions of PDE’s.

I Rewriting PDE into integral equation over a boundary.
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Boundary Element Methods

I Numerical approximation to solutions of PDE’s.

I Rewriting PDE into integral equation over a boundary.

Advantages:

+ Only solve equations on the boundary using a Greens
function.

+ Can easily deal with unbounded domains with a bounded
boundary.
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Boundary Element Methods

I Numerical approximation to solutions of PDE’s.

I Rewriting PDE into integral equation over a boundary.

Advantages:

+ Only solve equations on the boundary using a Greens
function.

+ Can easily deal with unbounded domains with a bounded
boundary.

Disadvantages:

- When no Greens functions are known it is hard to find
solutions in the interior.

- System of equations resulting from a BEM is usually
dense.
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Half Space approach

Contact area small compared to radius of curvature at contact.

“The contact stresses are highly concentrated close to the
contact region and decrease rapidly in intensity with distance
from the point of contact.” - K.L. Johnson, 1985

Approximate the real solution by the solution of the contact
between two half spaces.
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Quasi-identical behaviour

Simplification when the contacting bodies are geometrically
and elasticlly symmetric.
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Quasi-identical behaviour

Simplification when the contacting bodies are geometrically
and elasticlly symmetric.

Geometric symmectic: half-space.

Elastic symmetry: for modulus of rigidity G and Poisson’s
ration ν we must have

1− 2ν1

G1
=

1− 2ν2

G2
.
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More simplifications

I Going from full 3D to 2D.

I Transient rolling vs steady-state.
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Discretization

Slip equations: relations between slip and displacements.
Contact conditions: relations between slip and tractions.

Influence functions Aij give a relation between the tractions
and displacements.
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Discretization

Slip equations: relations between slip and displacements.
Contact conditions: relations between slip and tractions.

Influence functions Aij give a relation between the tractions
and displacements.

AIiJj =

∫ xJ−xI+ ∆x
2

xJ−xI−∆x
2

∫ yJ−yI+ ∆y
2

yJ−yI−∆y
2

Aij(z)dz2dz1
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Problem

In discretization a factor A(x)−A′(x + dq) arises.

c = dq
dx becomes small → wiggles.
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Problem

In discretization a factor A(x)−A′(x + dq) arises.

c = dq
dx becomes small → wiggles.

Possible cause? Piecewise-approximation.
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Research Questions

1. What causes the wiggles that arise when the factor c = dq
dx

becomes small?
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Research Questions

1. What causes the wiggles that arise when the factor c = dq
dx

becomes small?

2. Does replacing the piecewise constant basis functions by
piecewise (bi)linear basis functions solve this problem?

- If this is not the case, how can we solve it?
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Research Questions

1. What causes the wiggles that arise when the factor c = dq
dx

becomes small?

2. Does replacing the piecewise constant basis functions by
piecewise (bi)linear basis functions solve this problem?

- If this is not the case, how can we solve it?

3. How does replacing the piecewise constant basis functions
by piecewise (bi)linear basis functions influence the rate of
convergence of the algorithm?
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Thank you!
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Thank you!

Questions?
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