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Preface

This master thesis will be done at VORtech under supervision of E.A.H. Vollebregt. Vollebregt,
once a student of Prof. J.J. Kalker, is an expert in the field of (rolling) contact mechanics and has
done much work on the software package CONTACT. Recently it has been discovered that for certain
small values in the discretized timestep non-physical ’wiggles’ show up in the results. My master
thesis will focus on finding out what causes these wiggles to arise and how we can prevent this.

VORtech is a scientific software engineering company that produces, maintains, and optimizes
scientific software. They have long-term contracts with big corporations like Shell, Rijkswaterstaat,
Deltares, and TNO as well as smaller projects with SMEs. The majority of its 25 employees
has a mathematical or physical background. In the first place VORtech works by letting clients
hire VORtech’s mathematicians to be an addition to their team, backing them up with specific
expertise. Secondly VORtech develops and maintains software packages for clients that need certain
software but do not develop software them self. Lastly VORtech provides clients with mathematical
consultancy.

The software package CONTACT is maintained by Vollebregt, co-founder of VORtech. CONTACT is
mainly used in railway simulation packages to calculate the forces and other physical parameters
that occur in the wheel-rail contact. My master thesis will revolve around the forces calculated by
this software package.

Niels van der Wekken
Delft, June 2016
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Chapter 1

Introduction

Contact mechanics describes the way two (elastic) objects interact with each other when they touch,
make contact. As the two bodies are pressed against each other, at the point of contact the bodies
want to take up the same spot in space, resulting in each of them applying a repelling force on the
other. This force will deform the bodies so that a contact area appears where the resulting contact
forces balance the forces pressing the bodies together. In a wheel-rail system the two bodies (the
wheel and the rail) are not just pressed together, but the wheel will be rolling over the rail. This
rolling adds a dynamical component to the system, in the form of tangential friction.

J.J. Kalker [17] first developed the software package DUVOROL in 1978 [10,11], this package assumed
an elliptic contact area, as described in the Hertz theory [7], and was limited to steady-state rolling
contact. In 1982 he finished its successor CONTACT. This package could determine the actual contact
area, and could calculate for an instant frictional shift and transient rolling contact. Both pro-
grams were written in FORTRAN IV. The underlying theory and the framework of the algorithms are
described in Kalker’s most cited work [12]. The book describes the problem of rolling contact me-
chanics and gives both analytic solutions for certain geometries and the numerical scheme for more
complex geometries. Altough the software version of 1990 is outdated, the core of the methodology
has not changed.

In 1992-4 E.A.H. Vollebregt rewrote CONTACT in FORTRAN 77 [24], modernizing it in a way that
is easier adaptable. After the publishing of Kalker’s book in 1990 there has been much develop-
ment on CONTACT. Adding more functionality, like extensions on the friction model [23, 26] and an
extension towards conformal contact areas [27]. But also implementing faster numerical solvers,
utilizing Conjugate Gradient methods and Fast Fourier Transformations [20,22,29] to improve the
performance.

This thesis will focus on the occurrence of artificial numerical wiggles that arise when the timestep
becomes small. More specifically, the problems arise when the traversed distance per timestep δt ·V
is small compared to the gridsize δx. For brevity this traversed distance per timestep will be simply
called the “timestep” δq although δq is actually a distance. Its size compared to the gridsize is
controlled by a parameter c given by δt·V

δx = δq
δx . In the numerical scheme that arises the most

influential factor is a matrix B. Without giving further details yet, there are a few things that
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2 CHAPTER 1. INTRODUCTION

happen to B when c � 1. When c = 0 the matrix is singular and no solution exists. As c ↓ 0
the imaginary parts of the eigenvalues of B become bigger, relative to the real parts. Also the
condition number grows rapidly as c decreases, meaning that the solution will be very sensitive to
small deviations in the input, so little errors blow up in the results.

In [21] it is shown that the ratio c = δq
δx is an important factor concerning the accuracy of the

model. Whereas in other applications it is typically found that a lower value of c results in better
accuracy here it is found that for c < 0.55 the accuracy decreases again.

An example of the wiggles is given in Figure 1.1.

(a) Case: c = 1 (b) Case: c = 0.1 (c) Case: c = 0.025

Figure 1.1: Computations of tractions in 2D in CONTACT choosing different values of δq. This is the
2D Carter/Fromm problem, see [24, section 5.2].

In chapter 2 the necessary theoretical framework will be given. This includes the physical back-
ground that lies at the basis of contact mechanics in sections 2.1 and 2.2, techniques used to simplify
the problem in sections 2.3 - 2.6, the discretization 2.7, and implementation 2.8. Also remarks on
the use of piece-wise functions 2.9 and the use of itterative solvers 2.10 is given.
Chapter 3 describes the problem that needs to be solved and the different cases that can be con-
sidered. In section 3.1 a short description of possible research is given, together with a set of goals
to reach in the thesis.
Finally in section 3.2 the research questions for my master thesis will be given.



Chapter 2

Theory

In the following sections more details will be given concerning the equations that need to be solved,
and the way they are currently solved. The basic theory of elasticity can be found in Love [15].
This book includes theory on elasticity and the concepts of stress and strain. A good basis for the
theory on contact mechanics can be found in Johnson [8].

2.1 Elasticity

In order to work with elastic contact problems we need to understand what elastic deformation is.
Deformation of a physical body is the transformation of the positions of particles in the original
state to a their positions in the new state. When a particle had position x and after deformation
has position x + u.

Now introduce the strain ε. The strain consists of longitudial strains εii = ∂ui

∂xi
corresponding to

stretching of the body, and shear strains εij =
∂uj

∂xi
+ ∂ui

∂xj
for i 6= j corresponding to bending of the

body. The strains describe the relative displacement of the particles in the body.

Strain in the body can be caused both by outside stress, forces like gravity or pressure acting on the
body, as well as by internal elastic stress, resulting from the material resisting change. The strains
are linked to (internal) stress σ, according to the generalized Hooke’s Law through the elastic tensor
C by σij = Cijklεkl. We will use Einstein summation convention throughout this documents (as
we just did with the elastic tensor), there will be no summation over the εii though in the previous
paragraph.

When the elastic behaviour of a material is independent on the direction of the stress- and strain-
components the material is said to be isotropic. For example in the case of metals. An example
where this is no longer valid is wood, because of the uniformly directed fibrous structure the wood
reacts different under stress perpendicular or parallel to the direction of the fibres. The elastic
tensor Cijkl for an isotropic material reduces to two material properties λ and µ. Here µ is the
rigidity and λ+ 2

3µ the modulus of compression. Furthermore, when the material is homogeneous
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4 CHAPTER 2. THEORY

the λ and µ are constant through the material. For an isotropic material we can give the stresses
as functions of the strains through: σii = λ(ε11 + ε22 + ε33) + 2µεii and σij = µεij , i 6= j. Again do
not use summation over σii and εii.

2.2 Tractions and slip

The following scalar and vector quantities are important in the contact model. Before the bodies are
brought into contact we refer to them by their coordinates x in a right-handed coordinate system
where the x-axis points in the rolling direction and the z-axis points upwards into the upper body.
When the bodies are brought into contact stresses σ, strains ε and displacements u arise. We are
particularly interested in the surface quantities where we call the surface stresses of body 1 p(1)(x)
and of body 2 p(2)(x). Because these surface stresses work against each other they have the same
amplitude but opposite sign: p(1)(x) = −p(2)(x), so in the model we will only consider the surface
stress in body 1 and call this p(x) = p(1)(x). After the deformation the displacement of body 1
at a point x is given by u(1)(x). Now let the displacement difference be given by the difference in
the displacements of bodies 1 and 2 at a given position: u(x) = u(1)(x) − u(2)(x). Furthermore
we split the stress vector into a scalar value pn for the normal stress, and the 2-vector pτ for the
tangential stresses, called tractions. The normal distance between the undeformed surfaces is given
by h. Now the normal distance between the bodies in the deformed state is given by:

e := h+ un (2.1)

Finally we have a relative slip s (also a 2-vector as there is no slip in the normal direction) which
describes how fast the upper and lower body slide over each other compared to the rolling velocity
given by [12, equation 1.25]:

s = w +
u̇

V
(2.2)

V is the rolling velocity magnitude, because we choose the velocity to always be in the x-direction
we have that v = [V, 0, 0]T . Here w = [ξ − φy, η + φx]T is the relative rigid slip given as a
function of the longitudinal and lateral creepage ξ and η and the spin creepage φ. The relative slip
and relative rigid slip are relative compared to the magnitude of velocity. In rolling the build up
of tractions is mostly governed by the velocity of creeping relative to the overall rolling velocity.
Therefore we define the relative slip velocity srelative = sabsolute/V as a dimensionless slip velocity
and abbreviate s := srelative. The quantity u̇ is the material derivative of the displacement given
by: u̇ = ∂u

∂t − V ∂u
∂x . The minus in front of the spatial derivative is because as the upper body

moves in positive x-direction, this means that the surface particles actually move in the negative
x-direction through the contact area.

Now we can define the contact conditions:
In the normal problem:

in exterior area E : e > 0, pn = 0 (2.3)

in contact area C : e = 0, pn ≥ 0 (2.4)
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In the tangential problem:

in exterior area E : s free, pτ = 0 (2.5)

in adhesion area H : ||s|| = 0, ||pτ || ≤ g (2.6)

in slip area S : ||s|| > 0, pτ = −g s
||s|| (2.7)

This means that in the exterior area E the bodies do not touch each other so there is no stress and
the bodies move freely from each other so the slip can be anything. In the adhesion area H the
bodies touch each other without slipping, the stress between them is bound by an upper bound g,
in the slip area S the bodies slide over each other and the stress reaches its upper bound and is
directed in the opposite direction from the slip. This upper bound is called the traction bound and
is given by Coulomb’s friction law [4] as

g = µpn (2.8)

where µ is the coefficient of friction.

The displacements at x can now be determinted by integrating the product of the stress at the
contact area C with an influence function using:

ui(x) =

∫
C

Aij(x,y)pj(y)dS (2.9)

This equation describes how u is a function of the tractions p at the contact surface C. The indices
i, j in the function Aij run over 1, 2, 3 and Aij(x,y) tells us how the traction pj(y) influences the
the displacement ui(x). Note that we use Einstein summation convention over the index j.

2.3 Boundary Element Methods

The Boundary Element Method (BEM) is a numerical approximation method for solving partial
differential equations (PDEs). The BEM is derived by rewriting the PDE into an integral equation
defined on a boundary. Discretizing this integral equation gives the BEM. An advantage of BEMs
over finite element methods, finite volume methods, and finite difference methods is that the BEM
only solves the equations on the boundary of the domain of interest. Especially when Greens
functions are known and the influence can be calculated analytically it is interesting to solve the
system on the boundary using a BEM. Only calculating for the boundary means that we have one
dimension less to work with, so with the same grid coarseness as in other methods, less grid points
need to be considered, beware though that the system of equations coming from a BEM is dense
while a FEM generally gives a sparse system of equations. Another advantage is gained when the
body of interest is unbounded but has a bounded boundary, thus resulting in a finite domain for
the BEM.

The major drawback when using a BEM is of course the fact that you do not calculate anything
that happens below the boundary. When you are interested in internal parameters that can not
be calculated in a straightforward way from properties on the boundary (when there are no Greens
functions or comparable relations) you introduce extra errors, usually in the form of extrapolation
errors.
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2.4 Halfspace approximation

Although the full stress-strain equations are very complex it is possible to make some assumptions
to simplify the model. In our model we make use of the half-space approach. This means that
we assume that the two contacting bodies are infinite half spaces. This approach can be made if
the bodies look like the halfspaces in a zone where the elastic field is significant and only begin to
differ significantly from the half spaces where the elastic field is very small. This means that the
contact area must be small compared to the typical dimension of the bodies such that the radius
of curvature is large near the contact area. See Figure 2.1. Results in Kalker [12, Figure 5.20]
“support the statement that the half-space approximation is justified, when the diameter of contact
is less than 1/3 of the diameter of the contacting bodies”.

Figure 2.1: When the upper and lower body make contact the stresses and strains will only be ‘felt’
inside the blue circle because the influence of stresses and strains decreases as the distance increases
away from the contact zone. So the geometry of the bodies outside the blue circle is unimportant
and we may assume the bodies are two half spaces.

The strenght of the halfspace approximation lies in the fact that the formula’s for the influence
functions Aij used in equation (2.9) are derived by Boussinesq [2] and Cerruti [3] for the halfspace.
So explicit Greens functions can be used in the BEM.

2.5 Quasi-identical behaviour

Another simplification occurs when the two bodies of contact are quasi-identical. This is the
case when both the geometry and the elastic behaviour of the bodies are similar. The first is
automatically the case when we already have applied the half-space approach, both bodies are
halfspaces, and thus identical. The second condition is fulfilled when the Young’s Modulus E and
Poisson’s Ratio ν are equal. Stresses in one direction influence deformations in all three directions,
when the two contacting bodies are not quasi-identical the normal and tangential problem influence
each other. When the bodies are quasi-identical however the tangential displacements are the same
for both bodies so there is no relative tangential displacement and we can separate the normal and
tangential problem.
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Applying a BEM to solve the contact between two quasi-identical half spaces greatly simplifies the
model. Because now the normal and tangential problems are separated we fist solve the normal
problem on the contact surface and use the solution for the normal problem when solving the
tangential problem on the contact surface.

2.6 Problem dependent simplifications

Based on which assumptions we make we can adjust the equations to make them easier to solve.
We will make distinctions between solving the system in 2D and 3D and between transient and
steady-state rolling.

2.6.1 2D vs 3D

When we make the half-space approximation and the objects of contact are quasi-identical the
normal and tangential problems are already separated. So in both the 2D and 3D case we will first
solve the normal problem. In the 3D case the tangential contact area is 2D and equation (2.7) is
a quadratic equation. In the 2D case however the tangential contact area becomes a 1D line and
equation (2.7) is linear, thus easy to solve. This means that the 2D case is much easier to solve.
As the wiggles occur both in the 2D and 3D problem a solution is first sought for the 2D case since
this case is easier to study and a solution in 2D might be applicable in the 3D case as well.

2.6.2 Time-dependency

Equation (2.2) contains a time derivative. When we have a transient system we need an initial
state. Once this initial state is known the full solution has to be determinded by evolving the
solution in time.

A steady-state solution can be found in two ways. The first is simply applying the algorithm to
solve the transient rolling case and stop once the solution of the current time instance is the same as
the solution of the previous time instance. This is also what was originally implemented in Kalker’s
DUVOROL software.
A more sophisticated approach is going back to the equation for the stress (2.2) and set the time-
derivative to zero. Now pτ and thereby u can be calculated directly. This method will be called
the direct approach.

2.7 Discretization

Now that we have simplified the physical model into a mathematical description we can discretize
the problem. As stated in [12,21] in CONTACT the potential contact area is discretized using identical
rectangles I with size ∆x×∆y. The centre of rectangle I is denoted by (xI , yI), note that there is
no z-component because the contact area lies in the x-y plane so z = 0 is a constant on the whole
contact area. Equation (2.3) through (2.7) are discretized by using piece-wise constant functions
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φI that are 1 on rectangle I and 0 everywhere else. The true solution p is then approximated by
the piece-wise constant function

∑
i φi · pi.

The slip will be discretized by rewriting the slip equation. When looking at steady-state the time
derivative in the material derivative in equation (2.2) drops out and we are left with:

s = w − ∂u

∂x
(2.10)

Before we can discretize this equation we need to approximate the spatial derivative. The slip
equation is an advection equation, these equations are generally solved using an upwind-scheme.
What happened upstream is known, so using data from upstream will generally give good results.
Because the velocity is in the negative direction this upwind-scheme gives us a forward differentiation
for the spatial derivative. A first order scheme is used because of its robustness. We may now

approximate with a small enough ∆x the derivative to x by using: ∂u
∂x ≈

u(x+[∆x,0]T )−u(x)
∆x . This

will give us the expression:

s = w − u(x + [∆x, 0]T )− u(x)

∆x
(2.11)

If we now use ∆x = V · dt = dq and write x + [dq, 0]T = x′ then a particle that has position x at
time t had position x′ at time t′ = t− dt. This turns the slip equation into:

s = w +
u(x)− u(x′)

dq
(2.12)

Now only looking at the values of s and w in the centres of the rectangles I we get the discretized
form:

sI = wI +
u(xI)− u(x′I)

dq
(2.13)

The solution for the displacement do not need to be discretized, u(x) can be determined using
equation (2.9) for any x. Because p has been replaced by a piece-wise constant function the
integral in equation (2.9), it can be solved analytically using the results by Boussinesq [2] and
Cerruti [3]. The influence functions are discretized by calculating the displacements felt in element
I as a result of tractions in element J . This means that influence coefficient AIiJj indicates how
the displacement in rectangle I in the i direction is influenced by tractions in rectangle J in the j
direction. So we can write:

AIiJj =

∫∫
S

Aij(z)dS (2.14)

Where S is the surface of a rectangle that has centre xJ − xI with width ∆x and height ∆y. The
integral can thus be written as:

AIiJj =

∫ xJ−xI+ ∆x
2

xJ−xI−∆x
2

∫ yJ−yI+ ∆y
2

yJ−yI−∆y
2

Aij(z)dz2dz1 (2.15)

Explicit expressions for the influence functions Aij and solutions to the integrals for AIiJj are given
in [12, section 4.3.2].
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When the tractions pJ and influence functions AIiJj are know we can now determine the values of
u(xI) by using:

ui(xI) =
∑
Jj

AIiJjpJj (2.16)

Using this in equation (2.13) we find for the discretized slip equation in case of steady-state:

sIi = wIi +
(AIiJj −A′IiJj)pJj

dq
(2.17)

where A′IiJj is calculated similar to AIiJj but then with the centres of the rectangles I shifted a
distance dq to the right.

2.8 Implementation of CONTACT

In CONTACT the equations arising from the contact mechanical theory are modified into a mini-
mization problem. This is done through Kalker’s variational theory [9], using the principals of
minimizing the virtual work and maximizing the virtual complementary energy [12, §4.1-4.2]. This
minimization problem turns out to be a strictly convex quadratic problem, opening it up to a rich
theory around Quadratic Programming on a convex objective function constrained to a convex
feasible region [1, 5, 13,16,19].

Kalker used an algorithm that solves the convex minimization problem to solve the contact prob-
lem and calculate the tractions. This algorithm, KOMBI, computes both the normal and tangential
tractions. In the case of quasi identical elastic bodies the KOMBI algorithm can be split into first
solving the normal stresses pIn using NORM and then using the normal solution to solve the tangen-
tial tractions pIτ using TANG [12, §4.3].
These algorithms are active-set algorithms. Solving the equations for the tractions, either in adhe-
sion or slip, and restoring discretized elements of the contact area to the slip or the adhesion region
when the constraints (2.6) or (2.7) are exceeded.

Because of the convex quadratic programming approach, existence, uniqueness, and finite deter-
minability of the active set algorithm are given.

2.9 Piecewise linear approximation

The use of a piecewise constant approximation for the tractions p might be a cause of the appearance
of wiggles. To prevent or reduce these wiggles we will look at using piecewise linear approximations.
One direct advantage these solutions will give is the fact that while the derivative at any location
of a piecewise constant function is either zero or does not exist (it could be seen as a sum of Dirac
delta functions), the derivative of a piecewise linear function is a piecewise constant function. In
1D the shape of a piecewise linear function is trivial, however, in 2D the function can increase in
the x-direction, y-direction or in both the x- and y-direction at the same time. The last case is
called bi-linear.
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Multiple groups have published on Boussinesq-Cerruti solutions for (piece-wise) linear functions
instead of using the (piece-wise) constant function as applied in CONTACT.
Svec and Gladwell [18] give solutions of normal deformation due to polynomial normal pressure
distributions on a triangular surface area. Li and Berger [14] extend this by giving the full solutions
for constant and (bi)linear pressure loads over a triangular surface area.
The advantage of dividing the contact domain in triangles is its high adaptation level to curved
edges of the contact domain compared to rectangles. However, using rectangles simplifies the com-
putational model. Also, when the edges of the contact area are unknown in advance a rectangular
grid has the advantage over a triangular grid. CONTACT also uses rectangles to describe the contact
domain, so for this thesis we will focus on rectangular domains. Dydo and Busby [6] give solutions
to constant and (bi)linear pressure loads over a rectangular surface area.

2.10 Iterative solvers

In the two dimensional case constraints (2.6) and (2.7) are linear, in the three dimensional case
however these are not linear anymore. This means that the system of equations to solve the
discretized slip is not linear either. In the early versions of CONTACT this system was solved using
a Newton-Raphson method [28].
In 1993 an improvement was made by implementing a variation on the Gauss-Seidel method, later
enhanced and stabylised by application of Successive Over Relaxation [20,25].

Although these iterative solvers are used in the software, they are outside the area of interest of
this thesis.



Chapter 3

Problem statement

Problems arise when the factor c = dq
dx becomes small. Physically this means that the traversed

distance per timestep is small compared to the gridsize. Mathematically this means that the
discretized influence functions A(x)− A′(x + V · dt) have increasingly smaller eigenvalues. In [20]
Vollebregt remarks that the coefficients in steady-state depend on the time-step, and below a certain
point there will be either slower convergence or no convergence at all, “the restriction on the time
step is sometimes quite severe, so that physically attractive values cannot be used”.

A simple solution to this is never choosing a too small factor c. This is a nice solution when
only running the program CONTACT by itself, however CONTACT has been integrated in larger train
simulation packages, in such cases the input parameters by CONTACT are no longer handpicked but
fed to the software by the overall package. Ideally it would be best if CONTACT can be adjusted so
it converges properly for any value of c. Finding out why the wiggles occur can also help solve this
problem, because in that case CONTACT can check it’s input parameters and determine beforehand
whether the parameters will result in a converging solution and give feedback (and adjust the critical
parameters) when this is not the case.

3.1 Plan of action

A possible cause for the appearance of wiggles is that in the numerical scheme a piecewise constant
approximation is used. When taking the difference between two of such approximations, for example
when approximating a derivative or determining the influence coefficients A− A′, the middle part
completely drops out and only the edges are left. When instead a piecewise linear approximation is
used there will be a net result over the full interval, see Figure 3.1. Moving to linear approximations
not only gives a ‘smoother’ solution but might also increase accuracy or rate of convergence.

Although this might be a possible solution first it is important to determine what exactely causes
the wiggles to appear. From which factor c do the wiggles appear and why?

11
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Figure 3.1: The magenta graph is the constant (left) or linear (right) basis function on (0, 1). The
red graph is the same basis function shifted slightly to the right, the black graph is the difference
between them.

3.1.1 Slip-free 2D steady-state rolling

When solving the tangential problem we already have the solution of the normal problem. Instead
of using a realistic normal solution, like one obtained by the Hertzian theory or the NORM algorthm,
we can assume an infinite traction limit g. This means that constraint (2.6) is always met and as
a consequence we have adhesion over the full contact area. This is a usefull assumption because
in the slip region the traction reaches the traction bound and especially in two dimentions this
solution becomes rather trivial. In the adhesion area however problems with wiggles can arise, so it
is the adhesion area we are interested in. The advantage of assuming an infinite traction bound is
that in adhesion we have no slip and thus solving equation (2.2) is much easier to solve by simply
setting s = 0. The first testcase will be:

• solving the wiggle-problem on 2D steady-state rolling while assuming the full contact area
will be adhesion.

3.1.2 2D steady-state rolling

When a solution has been found in the case where we simplified the slip equation by setting the
slip to zero the next step will be trying to implement this solution to the case where we do have a
traction bound. So the second testcase will be:

• solving the wiggle-problem on 2D steady-state rolling in the precense of a slip-region.

3.1.3 2D transient rolling

Up until now focus has always been on steady-state rolling while using the direct approach. This
was because the matrix-operator used in this situation is given by AIiJj −A′IiJj . We can calculate
this matrix and use this to try and see what might cause the wiggles. The matrix-operator used
in the transient situation seems to be just the matrix AIiJj . But also in this situation wiggles are
detected. These wiggles do not appear in the initial states of the solution but progress over time.
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This has to do with the fact that the solution at a later time is the result of repeated application
of these matrix-operatos. What makes this problem harder is that the problem is not caused by a
single matrix operation but by an accumulation of operations. It would be convenient if a solution
to the steady-state problem also solves the transient problem, this however has to be checked and
possibly an extra solution has to be found. Just like for steady-state, also in the transient case we
want a solution to hold when the traction bound is added to the equation. This gives the third test
case:

• solving the wiggle-problem on 2D transient rolling while assuming the full contact area will
be adhesion.

• solving the wiggle-problem on 2D transient rolling in the precense of a slip-region.

3.1.4 3D rolling

When everything has been solved in two dimensions it is time to move on to real life, the three
dimensional world. A solution that works in the 2D case probably also works in the 3D case. This
is because even when we consider 2D the influence matrices AIiJj used are already calculated over
squares, in order to stay in 2D we just used a grid with only one point in the y-direction. Adding
more gridpoints in the y-direction will not significanly influence the behaviour of the influence
matrices. Nevertheless, again we have to test if the solutions really fix the problem in 3D, giving
us the fourth test case:

• solving the wiggle-problem in the 3 dimensional situation.

3.1.5 Implementing the solution in CONTACT

Finally, when a solution has been found for both steady-state and transient rolling contact in three
dimensions, the last step is implementing this solution into the CONTACT software. Which brings us
to the fifth test case:

• implementing the solution so that it works in the CONTACT software package in a algorithmic
efficienct way.

3.2 Research Questions

As a final closure I will here state the research questions for my master thesis.

1. What causes the wiggles that arise when the factor c = dq
dx becomes small?

2. Does replacing the piecewise constant basis functions by piecewise (bi)linear basis functions
solve this problem?

- If this is not the case, how can we solve it?

3. How does replacing the piecewise constant basis functions by piecewise (bi)linear basis func-
tions influence the rate of convergence of the algorithm?
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Chapter 4

Conclusion

The theory treated deals with the physical aspects concerned with rolling contact mechanics. After
stating the physical laws a mathematical interpretation is made, catching the laws of nature in
formula’s and adding assumptions and simplifications. This mathematical model is then discretized
in space (and time) in order to be able to solve it using a numerical scheme.

A plan of action has been made, together with a set of increasingly challenging testcases to test a
solution against.

The final goal of this thesis is to find out what exacely causes the wiggles to arise when the timestep
becomes small. If piecewise-linear approximations can solve this, and if a solution to the wiggles
also influences the order of the rate of convergence of the CONTACT software package.

15
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