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Abstract

A stability analysis is presented for staggered schemes for the governing equations
of compressible flow. The method is based on Fourier analysis. The approximate

nature of pressure-correction solution methods is taken into account.

1 Introduction

The aim of this paper is to describe a simple way of analyzing the stability properties of
staggered schemes for the governing equations of compressible flow. These methods [1, 4,
6, 8, 11, 16, 18] are extensions of incompressible methods, that are able to handle weakly
compressible flow with Mach ↓ 0 as well as fully compressible flow [1, 9]. Frequently, in this
type of method the primitive variables are not updated collectively, but in some sequential
order, as in fractional step methods. Such methods will be referred to as segregated
solution methods. For the stability conditions of these schemes only heuristic arguments
have been available, arising from the analysis of numerical schemes for a model scalar
convection equation. Here we present a stability analysis based on Fourier analysis of
the coupled system, that gives a prediction for the maximum allowable timestep for both
(semi)-implicit and explicit methods as a function of the Mach number. The analysis can
serve as a guideline for the development of new time integration schemes and solution
procedures. The stability of the time stepping schemes can be influenced by choosing

∗Supported by the Netherlands Organization for Scientific Research (NWO).

3



different integration schemes for each equation as well as for different terms in each equation
(IMEX-approach). The latter can lead to unexpected stability properties.

For the sake of brevity we present all results in only one spatial dimension. However,
the results for the fully compressible case apply equally well to the multi-dimensional case,
by considering the velocity componentwise.

The outline of the paper is as follows: In Section 2 we will consider a particular example
of a segregated solution method for compressible fluid flow, that we use to illustrate our
approach.

In Section 3 the application of the Homogeneous Equilibrium Model (HEM) for two-
phase flow is briefly discussed. In the HEM the two-phase flow is modelled as a homoge-
neous mixture, with a spatially strongly varying speed of sound. The latter fact will cause
the Mach number (Ma ≡ u/c, u = velocity, c = speed of sound) in the flow domain to
vary from the incompressible limit Ma = 0 to the highly compressible values Ma = 20−30
and provides an excellent opportunity to test our predicted threshold on the CFL number
(CFL ≡ sup(|u|)δt/δx), CFLmax = f(Ma).

Section 4 describes our method for stability analysis. We start in Section 4.1 with a
scheme for which the heuristic approach for stability analysis leads to incorrect predictions
of the stability bounds. Next we treat this case to illustrate our method for stability analysis
in Section 4.2. In Section 4.3 the more advanced case where the solution procedure is also
incorporated in the analysis is considered.

In Section 5 a verification of these results is given for a number of testcases based on
one-dimensional Riemann problems. For these cases the predicted bounds turn out to be
very accurate.

2 Compressible pressure correction

In this paper we restrict ourselves to inviscid isothermal flow. The isothermal Euler equa-
tions are given by:

∂ρ

∂t
+

∂m

∂x
= 0, (1)

∂m

∂t
+

∂

∂x
(um) = −

∂p

∂x
.

As opposed to methods based on flux-vector/flux-difference splitting or approximate
Riemann solvers, here the equations are solved for sequentially. In the pressure correction
method [1, 5, 10] the pressure is taken implicit in the momentum equation. This ensures
that in the incompressible limit the scheme will reduce to the incompressible MAC-scheme,
where the pressure acts as a Lagrangian multiplier to fulfill the solenoidality constraint on
the velocity. In the case of high Mach number flow, it is not necessary to handle the pressure
implicitly in the momentum equation. First a prediction is made of the momentum:

m∗ − mn

δt
+

∂

∂x
(unm∗) = −

∂

∂x
pn. (2)
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Next the following correction is postulated:

mn+1 ≡ m∗ −
∂

∂x

(

pn+1 − pn
)

≡ m∗ −
∂

∂x
δp (3)

and substituted in the mass-conservation equation to give the following pressure cor-
rection equation:

ρ(pn + δp) − ρn

δt
+

∂

∂x

(

m∗ −
∂p

∂x

)

= 0. (4)

3 Homogeneous Equilibrium Model

Our motivation for studying the method outlined above lies in its ability to handle the
governing equations of the Homogeneous Equilibrium Model (HEM) very efficiently. The
HEM is a simple model for two-phase liquid-vapor flow. Assuming thermodynamic equi-
librium and neglecting velocity slip between both phases, it is possible to derive single
phase equations for the two-phase mixture completed with a mixture equation of state.
The equation of state p = p(ρ) makes the density of the mixture equal to the density of the
liquid phase when the pressure is above the vapor pressure, and equal to the density of the
vapor phase below the vapor pressure, with a smooth, but artificial, transition in between.
When the pressure of the mixture is either well below or above the vapor pressure, the
speed of sound is large but finite and the flow is weakly compressible. In the phase transi-
tion region the speed of sound has a very small value of O(1m/s). In practical applications
this means that the Mach number will vary from 0 to an artificial value well in the range
of 10-30. For efficient computation of two-phase flow with the HEM it is therefore required

Figure 1: Cyclic behavior of unsteady sheet cavitation on hydrofoil.

that the time integration method is accurate and efficient uniformly in the Mach number
for 0 < Ma < 30.

Supported by the following stability analysis method we have found it possible to derive
a first order time integration scheme with almost unconditional stability for 0 < Ma < 30,
but this scheme will not be discussed here.
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The HEM has been applied to model unsteady sheet cavitation on hydrofoils in [2, 3,
7, 13, 14, 15, 17, 19]. This is a cyclic process involving periodic formation and shedding
of thin vapor filled pockets on the suction side of hydrofoils, as illustrated in Figure 1. In
each cycle, the cavity appears and grows to its maximum size. Meanwhile a re-entrant jet
develops at the aft end of the cavity, that moves forward and upward as time progresses.
At a certain instant the forward moving re-entrant jet touches the upper liquid/vapor
interface, and the aft part of the cavitation bubble is shed. The cyclic behavior becomes
periodic after a large number of cycles has been completed. To bridge this initial phase
efficiently a time integration scheme is required, that allows for large time steps .

4 Stability analysis

First we show how a heuristic approach fails to predict the stability condition for a simple
scheme. Next an improved stability analysis is formulated and applied to the latter scheme
and to one with a more advanced spatial discretisation and solution procedure. For brevity
we restrict ourselves to isothermal flow, but inclusion of an energy equation in the analysis
is straightforward.

4.1 Breakdown of heuristic approach

We start with an example that shows how a heuristic approach fails to predict stability of
the time integration method. We consider the following discretised version of (1):

ρn+1

j − ρn
j

δt
+

1

δx

(

ρn+1

j

1

2

(

ρn+1
j+1 + ρn+1

j

)mn+1

j+ 1

2

−
ρn+1

j−1

1

2

(

ρn+1
j + ρn+1

j−1

)mn+1

j− 1

2

)

= 0, (5)

mn+1

j+ 1

2

−mn
j+ 1

2

δt
+

1

δx

(

un
j+ 1

2

mn
j+ 1

2

− un
j− 1

2

mn
j− 1

2

)

= −
1

δx

(

pn+1
j+1 − pn+1

j

)

.

Note the following features:

• staggering of momentum m with respect to the scalar unknowns ρ and p (Figure 2),

• spatial discretisation of the convective terms in the momentum equation is first order
upwind, whereas the pressure gradient is centrally discretised,

• application of first order density upwind bias [1] in the mass conservation equation,

• explicit discretisation of the convective term in the momentum equation, which re-
moves the splitting error, encountered in fully implicit pressure correction.

An heuristic approach to analyze the stability of this system is to look at the convection
equation for a scalar φ:

φt = −aφx, (6)
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Figure 2: Staggered placement of unknowns

with the convection velocity a taken equal to the maximum signal speed of the isothermal
Euler equations, |u|+c, where u is the fluid velocity and c is the speed of sound, defined as
(

dρ
dp

)−
1

2

. Either by Schur-Cohn theory or by the approach of [20] it is possible to analyze

the stability for various spatial and temporal discretisations. For a first order upwind
discretisation, the implicit Euler method is unconditionally stable, and the explicit Euler
method is stable under the following condition:

sup(|u|+ c)δt

δx
< 1 ⇔

sup(|u|)(1 + Ma−1)δt

δx
< 1, (7)

or

CFL ≡
sup(|u|)δt

δx
≤

1

1 + Ma−1
=

Ma

1 + Ma
. (8)

Practical experience shows that this gives a useful indication for stability of colocated
schemes that use explicit Euler time stepping. Note that we do not use the more common
definition CFL = sup(|u| + c)δt/δx.

The scheme under consideration uses a mixture of implicit and explicit Euler timestep-
ping, and therefore one might think that a conservative estimate of the maximumallowable
timestep could be made based on (8). However, numerical experiments for high Mach num-
ber Riemann problems revealed that the scheme is stable only if the CFL number is taken
much smaller than required by (8), and that the maximumallowable CFL number decreases
with increasing Mach number. This example illustrates, that the stability properties of a
system cannot be deduced in a simple manner from those of a scheme for a single equation,
when a staggered scheme is used. A more sophisticated stability analysis is needed, that
is able to handle different time integration schemes for the individual equations.
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4.2 Fourier stability analysis; case 1

We start our analysis by reformulating the discretised system in the two variables m and
ρ. To make Fourier analysis possible we assume a linear equation of state:

ρ = c−2p.

A perturbed solution is postulated:
(

ρj + δρj

mj + δmj

)

and substituted in the discretised system (5). Next the system is linearized. This leaves
us with the following system for the perturbations:

δρn+1
j − δρn

j

δt
+

1

δx

[(

δmn+1

j+ 1

2

+ un+1

j+ 1

2

(

δρn+1

j − δρn+1

j+1

)

)

−
(

δmn+1

j− 1

2

+ un+1

j− 1

2

(

δρn+1
j−1 − δρn+1

j

)

)]

= 0,

δmn+1

j+ 1

2

− δmn
j+ 1

2

δt
+

1

δx

[(

2un
j+ 1

2

δmn
j+ 1

2

−
(

un
j+ 1

2

)2

δρn
j+ 1

2

)

−

(

2un
j− 1

2

δmn
j− 1

2

−
(

un
j− 1

2

)2

δρn
j− 1

2

)]

= −
1

δx
c2
(

δρn+1
j+1 − δρn+1

j

)

,

where we have written:

uj+ 1

2

≡
2mj+ 1

2

ρj + ρj+1

.

In order to apply Fourier analysis to the ”frozen coefficients” case we put un+1

j+ 1

2

= U =

constant and obtain ( dropping the increment notation):

ρn+1
j − ρn

j

δt
+

1

δx

[(

mn+1

j+ 1

2

− mn+1

j− 1

2

)

+

1

2
U
(

−ρn+1

j−1 + 2ρn+1

j − ρn+1

j

)

]

= 0,

mn+1

j+ 1

2

− mn
j+ 1

2

δt
+

1

δx

[(

2Umn
j+ 1

2

− U2

(

ρn
j+1

2

))

−

(

2Umn
j− 1

2

− U2

(

ρn
j−1

2

))]

+
1

δx
c2
(

ρn+1

j+1 − ρn+1

j

)

= 0.

If the perturbations are postulated to have the following form:
(

ρn
j

mn
j

)

=

(

ρ̃n

m̃n

)

eijθ,
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the system can be written as :
[

1 + Uδt
δx

(1 − cos(θ)) 2δt
δx

i sin(θ/2)
2c2δt
δx

i sin(θ/2) 1

](

ρ̃n+1

m̃n+1

)

=

[

1 0
U2δt
2δx

i sin(θ)e−
1

2
iθ 1 − 4Uδt

δx
i sin(θ/2)e−

1

2
iθ

](

ρ̃n

m̃n

)

,

or in brief

G2

(

ρ̃n+1

m̃n+1

)

= G1

(

ρ̃n

m̃n

)

.

The amplification matrix of the system is G−1
2 G1. The scheme is Von Neumann stable if:

|λ1,2(G
−1
2 G1)| ≤ 1.

Note that λ1,2 solve the equation

det(G1 − λG2) = 0,

which leads to :

λ1,2 =
1

2 ((1 + b) − a2c2)
[2 − 2 (1 + b) ag − ak + b± (9)

(

4 (1 + b)2 a2g2 − 4b (1 + b) ag + 4a2kg (1 + b) − 4ak

+b2 − 2abk + a2k2 + 4a2c2 − 8a3gc2
)

1

2

]

,

where

a = 2δt
δx

i sin(θ/2),
b = Uδt

δx
(1 − cos(θ)) ,

g = Ue−
1

2
iθ,

k = U2δt
δx

i sin(θ)e−
1

2
iθ.

Figures 3(a) and 3(b) show graphs of |λ1,2| as a function of θ. If both U , δt
δx

and
c are systematically varied we find numerically that in all cases the graph is an even
function of θ and that a local extremum occurs for θ = 0. As consistency requires that
for θ = 0, λ1,2(G

−1
2 G1) = 1, the occurrence of a local minimum for θ = 0 means that in

the neighborhood of θ = 0, |λ1,2(G
−1
2 G1)| will exceed unity and the integration will be

unstable.
Based on this argument we can formulate the following necessary, but not sufficient

condition for stability:

∃ε > 0 | ∀θ ∈ 〈−ε, ε〉\{0} :
d2|λ1,2|

dθ2
< 0. (10)

Expansion for |θ| << 1 gives

λ1,2λ1,2 = 1 + b1,2θ + c1,2θ
2 + O(θ3).
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Figure 3: Dependence of |λ1,2(G
−1
2 G1)| on θ.

Because b1,2 = 0, obviously, a necessary but not sufficient condition for stability is:

(c1,2) ≤ 0,

or
(

4 −
2

Ma2
± 2Ma

)

Uδt

δx
≤ 3, (11)

which should be fullfilled for both the + and − sign. If the Mach number is in the range
0.5 < Ma < 1.5 we found that, although the eigenvalues are in the unit circle for |θ| < ε,
|λ1,2| can exceed unity for θ = ±π. For this an additional constraint can be formulated:

λiλi

∣

∣

θ=±π
< 1

which leads to the following conditions:

Uδt

δx
<

Ma2 − Ma2

√

9 − 4

Ma2

1 − 2Ma2
,
2

3
< Ma, or (12)

Uδt

δx
>

Ma2 + Ma2

√

9 − 4

Ma2

1 − 2Ma2
,
2

3
< Ma.

For the case without density bias we can similarly derive from (10):

(

4 −
2

Ma2
± 2Ma

)

Uδt

δx
≤ 2 ± Ma, (13)
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Figure 4: Stability conditions for (5).

together with:

Uδt

δx
< Ma2 + Ma2

√

1 −
1

Ma2
, 1 < Ma, or (14)

Uδt

δx
> Ma2 − Ma2

√

1 −
1

Ma2
, 1 < Ma.

Taking the limit Ma ↓ 0 in (11) or (13), one finds unconditional stability. However, this
stability prediction does not carry over to the multi-dimensional case. The one-dimensional
case is special, because in the incompressible limit the mass conservation reduces to the
solenoidality constraint, which in one spatial dimension means:

∂m

∂x
= 0 ⇒ m = m(t), (15)

and this means that the momentumfield is fully represented by the Fourier mode θ = 0.
For a consistent discretisation the amplification factor of the zeroth order mode is unity
by definition, and therefore the scheme is unconditionally stable. However, the multi-
dimensional equivalent of (15)

div m = 0,

does have a nontrivial solution, a solenoidal vector field, and the previous argument no
longer holds. In the multi-dimensional case we find indeed experimentally that for very
small Mach numbers the scheme is not unconditionally stable. But practical experience
shows that for Ma ∼= 0.3 the above necessary stability conditions give good predictions of
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Figure 5: Stability conditions for (5).

the stability properties in the multi-dimensional case, if the above conditions are applied
on a component-by-component basis.

In Figure 4(a) the two conditions (11) and (12) are shown. The integration will be stable
if the CFL-number is chosen below curve (11) and curve (12). However, an additional region
of stability exist between curves (11) and (12), shown as the black region in Figure 4(b).
This additional region is of course of no practical interest.

Figure 5 shows the maximum allowable CFL number based on the heuristic prediction
(11) and the one following from the present Fourier analysis of the system. It is clear that
only for Ma < 1.3 the heuristic approach gives a conservative estimate of the maximum
allowable CFL number, but that for Ma > 1.3 the heuristic condition is much weaker than
(11). In Section 5 we will confirm the necessity of stability threshold (11), by a number of
numerical experiments.

To show the general applicability of the stability analysis we analyzed the following four
variants of scheme (5):either with an explicit or an implicit discretisation of the convective
terms in the momentum equation and either with or without the density upwind bias in
the mass conservation equation. For these four schemes the calculated upper and lower
bounds on the CFL-number for two different Mach numbers are summarized in Table 1.

Note:

• For scheme 1 and Ma = 4 both an upper and a lower bound on the CFL-number
should be satisfied, which is impractical.

• Although scheme 2 is more diffusive than scheme 1, due to the density upwind bias,
the former is actually stable for a smaller CFL-number than the latter for Ma = 4.
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scheme
momentum
convection

density
upwind bias

Ma = 4 Ma = 20

1 explicit no 0.485 < CFL < 0.505 uncond. unstable
2 explicit yes CFL < 0.253 CFL < 0.068
3 implicit no uncond. unstable uncond. unstable
4 implicit yes CFL < 3.315 CFL < 2.1

Table 1: Stability properties of four variants of (5)

• Only schemes 2 and 4 can be used for practical computations.

• Although scheme 3 is discretised more implicitly than scheme 1, the latter actually
has a stability window, whereas the former has not.

• By implicitly discretising the convective terms in the momentum equation, we can
raise the stability bound by a factor 10 or more. Moreover, the dependence of the
stability on Ma of the implicit scheme is much weaker than for the explicit case.

• The CFL-number threshold for scheme 4 of O(2), is what one would expect for an
explicit scheme, not for an almost fully implicit scheme.

We will check the anomalous behavior of schemes 1 and 3, and the stability bound for
scheme 4, for the case of Ma = 4 in Section 5.

4.3 Fourier stability analysis: case 2

If the convective terms in the momentum equation are discretised implicitly, the pressure
correction formulation will no longer be identical to the original scheme. This is due to the
fact that in the postulated momentum correction, the difference between the convective
terms in the momentum predictor equation and the discretised momentum equation is ne-
glected. We distinguish between the target, actual and resolved discretisation. The target

discretisation is obtained after finite volume discretisation, can be nonlinear, and can only
be solved for in an iterative manner. The actual discretisation follows from the target

discretisation after linearisation, and the introduction of further approximations, such as
deferred or defect correction. Finally, the resolved discretisation includes the segregated
(pressure correction) solution procedure. The stability properties of target and resolved

discretisation can differ considerably. Figure 6 shows the dependence of |λ1,2(G
−1
2 G1)| on

θ, for the fully implicit version of (5), both with and without inclusion of the pressure
correction algorithm. The different behavior of resolved and target discretisation as ob-
served in Figure 6 shows that it is essential to study the stability properties of the resolved
discretisation to make a correct estimate of the stability thresholds.

In the second case we will discuss, we include the pressure correction method in the
stability analysis together with the necessary deferred correction steps, required to obtain
a high order spatial discretisation on a compact stencil. The solution procedure is now as
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Figure 6: Dependence of |λ1,2(G
−1
2 G1)| on θ, with and without inclusion of the pressure

correction algorithm.

follows: First the momentum predictor equation is solved with the κ−scheme in a deferred
correction manner:

m∗

j+ 1

2

− mn
j+ 1

2

δt
+

1

δx
(Fj+1 − Fj) = −

1

δx

(

pn
j+1 − pn

j

)

,

Fj+1 = un
j+ 1

2

m∗

j+ 1

2

− un
j+ 1

2

mn
j+ 1

2

+
(

κ − 1

4
un

j− 1

2

mn
j− 1

2

+
4 − 2κ

4
un

j+ 1

2

mn
j+ 1

2

+
κ + 1

4
un

j+ 3

2

mn
j+ 3

2

)

.

Application of the κ−scheme to the mass conservation equation in (5) in a deferred

14



correction manner leads, after linearisation, to the following pressure correction equation:

ρn+1

j − ρn
j

δt
+

1

δx

(

Gj+ 1

2

− Gj− 1

2

)

= 0,

Gj+ 1

2

= σn
j+1/2,HOm∗

j+1/2 +
(

δx

4ρ2c2

∂p

∂x
|m∗|

)

j+1/2

(

(

dρ

dp

)

j

δpj +

(

dρ

dp

)

j+1

δpj+1

)

+

(

−
1

2ρ
|m∗|

)

j+1/2

(

(

dρ

dp

)

j+1

δpj+1 −

(

dρ

dp

)

j

δpj

)

− σn
j+1/2,HO

δt

∆x
(δpj+1 − δpj)

+

(

(σn
LO − σn

HO) m∗

2ρn

)

j+1/2

(

(

dρ

dp

)

j+1

δpj+1 +

(

dρ

dp

)

j

δpj

)

,

where

σn
j+ 1

2
,HO

=
2
(

κ−1

4
ρn

j−1 + 4−2κ
4

ρn
j + κ+1

4
ρn

j+1

)

ρn
j + ρn

j+1

,

σn
j+ 1

2
,LO

=
2ρn

j

ρn
j + ρn

j+1

.

Application of the Fourier analysis procedure described in Section 4.2 leads to the following
system of equations:
Predictor step

(

1 0
0 1 + ag

)(

ρ̂∗

m̂∗

)

=

(

1 0
−q − ac2 1 + ag − p

)(

ρ̂n

m̂n

)

,

Corrector step

(

1 + ag − l + s 0
ac2 1

)(

ρ̂n+1

m̂n+1

)

=

(

1 + s 0
ac2 0

)(

ρ̂n

m̂n

)

+

(

ag − 1

2
p −a

0 1

)(

ρ̂∗

m̂∗

)

,

where we have introduced the following abbreviations:

s = 1 − 2 cos(θ), p =
1

4
Uλ
(

e−2iθ − 7e−iθ + 3 + 3eiθ
)

, l = Uλi sin(θ),

q =
1

16
U2λρ̂n+1

(

−e−2 1

2
iθ + 6e−1 1

2
iθ + 4e−

1

2
iθ − 6e

1

2
iθ − 3e1 1

2
iθ
)

.

Or in operator form:
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Figure 7: Dependence of |λ1,2(G
−1
2 G1)| on θ, for 1st-order upwind scheme with and without

higher order upwind deferred correction.

G1
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)

= G0

(

ρ̃n

m̃n

)

,

G4

(

ρ̃n+1

m̃n+1

)

= G3

(

ρ̃n

m̃n

)

+ G2

(

ρ̃∗

m̃∗

)

.

The amplification matrix is now given by:

G−1
4

(

G3 + G2G
−1
1 G0

)

.

For stability we require that

|λ1,2(G
−1
4

(

G3 + G2G
−1
1 G0

)

)| ≤ 1.

We have not succeeded yet in deriving from this simple necessary stability conditions,
as in the first case. Instead, we compute |λ1,2(θ)| for a sufficiently fine distribution of
−π < θ < π. For a scalar convection diffusion equation, we know [12] that stability is
not affected by a deferred correction step. Figure 7 shows, however, that in the case of
a system the functional dependence of |λ1,2| on θ is qualitatively different from that for
the first order upwind scheme. Generally the CFL-number threshold for the higher order
upwind scheme is much smaller than for the first order upwind scheme.
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5 Verification of stability thresholds

We will first verify experimentally the stability conditions (11) and (12) for a number
of testcases with increasing Mach-number. The testcase is a one-dimensional isothermal
Riemann problem, with the initial states sufficiently close together. This means we can
regard the solution of the Riemann problem as a small but structured perturbation of the
initial constant state. The initial conditions are chosen in such a way that the velocity
remains bounded by the initial left and right states.

CFL-number
Mach-number

stable
predicted(11),(12)
present approach

predicted(8)
heuristic approach

unstable

0.1 4.000 ∞ 0.009 —
1 0.600 0.618 0.500 0.650
5 0.200 0.215 0.833 0.250
10 0.080 0.125 0.909 0.170
15 0.060 0.088 0.938 0.100

Table 2: Numerical verification of the stability thresholds (11) and (12).

Table 2 shows the predicted threshold for the CFL number together with the small-
est CFL number tested that induced instability and the largest CFL number tested that
preserved stability for a range of Mach numbers. It is clear that the predicted stability
threshold is very accurate. For the case Ma=1, use is made of the additional condition
(12).

Figure 8 and Figure 9 show results for the testcase Ma = 5. At the start of the
computation stability is dominated by nonlinear effects due to the discontinuous initial
condition. An initial overshoot is created, but when the CFL number is chosen within the
stability limits, it is eventually damped out.

Next we will verify experimentally the stability thresholds for the schemes presented
in Table 1 in Section 4.2 for a testcase with Ma ≈ 4. First we choose scheme 1, for which
both an upper and a lower bound on the CFL-number should be fullfilled. Figure 10 shows
results for CFL = 0.43 chosen slightly smaller than the lower bound. The wiggles are
clearly amplified. Next we choose CFL = 0.493, halfway between the upper and lower
bound. Although wiggles occur during the startup phase, they are clearly damped out in
time (Figure 11).

Next scheme 3 is used, with the same CFL = 0.493. Although this scheme is more
implicit than Scheme 1, Figure 12 shows that the integration is unstable, in complete
agreement with our analysis! Finally we will verify the stability threshold for scheme 4.
Figure 13 shows a computation with CFL = 3.19, and Figure 14 with CFL = 3.61. In
the first case the solution remains stable, whereas in the second case a smooth wiggle is
formed. The smoothness of this overshoot is due to the fact that the absolute value of the
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Figure 8: Stable integration of Ma = 5 testcase, CFL = 0.20.
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Figure 9: Unstable integration of Ma = 5 testcase, CFL = 0.25.
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Figure 10: Unstable integration with scheme 1, CFL = 0.430.
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Figure 11: Stable integration with scheme 1, CFL = 0.493.

19



200 400 600 800 1000 1200
−5000

0

5000

10000

x

u

t=10
t=20

Figure 12: Unstable integration with scheme 3, CFL = 0.493.
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Figure 13: Stable integration with scheme 4, CFL = 3.19.
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Figure 14: Unstable integration with scheme 4, CFL = 3.61.

eigenvalues of the amplification matrix exceeds unity in the low frequency domain, near
θ = 0. Of course only the schemes with density bias can be used for practical computations.

6 Conclusions and Future Extensions

Stability conditions based on heuristic extension of stability results for a scalar model
problem are found not to be generally valid for segregated solution procedures. Therefore
a more refined method of analysis is used, in which it is possible to include the details of
the sequential solution procedure, and different time integration schemes for the individual
equations. A number of numerical experiments support the derived stability thresholds.

We note that among the schemes considered only the last scheme discussed in Section
5 has reasonable stability properties, and that only for moderate Mach numbers. But with
our stability analysis method we can optimize the scheme, to obtain a solution method, with
unconditional stability and accuracy uniform in the Mach number, with special interest
for efficient computations with the HEM.
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