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SUMMARY

Large-scale systems of nonlinear equations appear in many applications. In various applications, the solution
of the nonlinear equations should also be in a certain interval. A typical application is a discretized system of
reaction diffusion equations. It is well known that chemical species should be positive otherwise the solution
is not physical and in general blow up occurs. Recently, a projected Newton method has been developed,
which can be used to solve this type of problems. A drawback is that the projected Newton method is not
globally convergent. This motivates us to develop a new feasible projected Newton–Krylov algorithm for
solving a constrained system of nonlinear equations. Combined with a projected gradient direction, our fea-
sible projected Newton–Krylov algorithm circumvents the non-descent drawback of search directions which
appear in the classical projected Newton methods. Global and local superlinear convergence of our approach
is established under some standard assumptions. Numerical experiments are used to illustrate that the new
projected Newton method is globally convergent and is a significate complementarity for Newton–Krylov
algorithms known in the literature. © 2016 The Authors. International Journal for Numerical Methods in
Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

The mathematical model of chemical vapor deposition typically involves the Navier–Stokes
equations associated with the energy equation and a usually large number of advection–diffusion-
reaction equations that model the interaction of the reactive species. Because of the different time
scales involving the species transport and their conversion as consequence of chemical reactions,
the system of species equations is a stiff system of partial differential equations. In order to fulfill
stability requirements, the species equations are discretized implicitly in time. This leads to a large-
scale system of strongly nonlinear algebraic equations that need to be solved in each time step. In
addition to the stability issues, the non-negativity of the species mass fractions is also required to
satisfy the physical quantity like the concentrations.

Based on these observations, van Veldhuizen, Vuik, and Kleijn [1] proposed a class of projected
Newton–Krylov methods to find the nonnegative solutions of the advection–diffusion-reaction
equations arising from laminar reacting flow problems for chemical vapor deposition. More
specifically, the authors [1] first used the first-order Euler backward method to discretize the
advection–diffusion-reaction equations and then employed projected Newton–Krylov methods to
solve the underlying large-scale systems of nonlinear equations in the form of
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²
F.x/ D 0

x > 0; (1)

where F W Rn ! Rn is continuously differentiable. From the class of discretized nonlinear partial
differential equations, the size of system (1) is very large; 109 or more unknowns are no excep-
tion. This type of projected Newton–Krylov methods is very effective, because the authors have
used it successfully to solve large advection–diffusion-reaction systems (50 chemical reactions),
in which the standard nonlinear solver packages are not easy or impossible to use. In fact, these
methods can be considered as a classical projected Newton method that involves preconditioned
iterative linear solvers (i.e., Krylov subspace methods, cf. [2]). Although their numerical results are
promising, these methods do not overcome the possible non-convergence of the classical projected
Newton method. In particular, there is no guarantee for the descent property of search directions
(i.e., projected Newton directions) used for minimizing the underlying merit function, see Example 7
in Section 3.

On the other hand, as is well known in optimization, a projected gradient direction on a constraint
set is usually a descent direction‡, see, for example [3–6]. This actually motivates us to modify the
projected Newton–Krylov methods in [1] by means of introducing a series of projected gradient
directions. Roughly speaking, we will use a projected gradient direction as a descent direction to
calculate the next iterate when the current projected Newton direction is not descent. As will be
shown in Section 2, this modification will not only ensure the global convergence of the projected
Newton–Krylov methods in [1] but also inherit the computational advantages of these methods, such
as the capacity of solving extreme large-scale problems mentioned earlier, the matrix-free operation,
and preconditioning technique, and so on, see, for example, [7]. In other words, we extend the theory
of Newton–Krylov methods in [2, 8] fully to the projected case. In particular, we add new descent
feasibility of the projected Newton–Krylov methods in [1], under reservation of the computational
advantages of these methods.

In order to accomplish the purposes of this paper in a very general setting, we consider the
numerical solution of the following constrained system of nonlinear equations²

F.x/ D 0

x 2 �;
(2)

where � is a convex constraint set of Rn, such as the well known box constraint set ¹x 2 Rn j l 6
x 6 uº, li 2 ¹R [ ¹�1ºº and ui 2 ¹R [ ¹�1ºº, li < ui , i D 1; : : : ; n, F W Rn ! Rn is
continuously differentiable on �. Note that constraints x > 0 in system (1) are special cases of
box constraints.

In addition to appearing in systems of discretized partial differential equations, compare with
[1], system (2) also arises from optimization and equilibrium problems, compare with [3, 9]. Great
efforts have been made to find a solution of nonlinear equations (2) by solving an equivalently
constrained minimization problem

min‚.x/ D
1

2
kF.x/k2; x 2 �; (3)

see [3, 10–14] and references therein. In particular, Gould, Leyffer, and Toint [10] developed a
multidimensional filter algorithm for the solution of systems of nonlinear equations and nonlinear
least-squares problems with � D Rn. This algorithm combines the efficiency of filter techniques
and the robustness of trust-region methods. Moveover, the algorithm was later extended to find
vectors satisfying general sets of nonlinear equations and/or inequalities on Rn [11]. For a general
set�, Kanzow, Yamashita, and Fukushima [12] discussed a global projected Levenberg–Marquardt
method for the numerical solution of the general nonsquare systems of bound-constrained nonlinear
equations. The method proposed by Ulbrich [13] is based on a Newton-like method with projection

‡A direction d 2 Rn is a descent direction for a continuous differentiable function‚.x/ at x if
d‚.xC td/

dt

ˇ̌̌
ˇ
tD0

D r‚.x/>d < 0:
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wrapped into a trust-region technique. It requires the minimization of quadratic problems on � and
achieves quadratic convergence. In [14], Wang, Monteiro, and Pang described a potential reduction
type interior point method for the solution of constrained problems.

The remainder of this paper is organized as follows. In Section 2, we give a detailed statement of
our new feasible projected Newton–Krylov method and establish its global and local convergence. In
Section 3, we provide numerical examples to illustrate the necessity of a projected gradient direction,
in the case of a projected Newton direction being not descent. We give some concluding comments
in Section 4.

A few words about the notation used throughout the paper. Given a continuously differentiable
function F W Rn ! Rn, its Jacobian matrix at x 2 Rn is denoted by F 0.x/, and its transposed
Jacobian matrix by rF.x/. k � k denotes the Euclidean norm, and P.�/ is the orthogonal projection
operator onto �.

2. FEASIBLE PROJECTED NEWTON–KRYLOV METHOD

In this section, we illuminate a new feasible projected Newton–Krylov method, by introducing
projected gradient directions. In our feasible projected Newton–Krylov method, a simple and prac-
tical but effective switching strategy between projected Newton directions and projected gradient
directions is employed to ensure the descent feasibility of search directions, which overcome the
possible non-convergence of classical projected Newton methods. The convergence analysis of our
new approach is also presented.

We start by giving our feasible projected Newton–Krylov method as follows. We remark that the
forcing term ¹�kº in our feasible projected Newton–Krylov method can be chosen according to the
strategy for inexact Newton method without projection in [8, 15–18], because the nonexpansiveness
of the projection operator [3, 4] does not affect the local convergence of the projected Newton
method. Thus, inequality (5) is always satisfied as iterative point xk is close enough to the solution
of F.x/ on �, see Theorem 5 stated in the succeeding text. Moreover, if the Newton direction dk

in step 2 exists, that is, inequality (4) is solvable, then inequality (5) is also satisfied with � D Rn,
see [8, Lemma 3.1].

Our feasible projected Newton–Krylov method (i.e., Algorithm 1) can be traced back to the ones
in [1] and thus inherits the computational advantages of these methods, such as the capacity of
solving extreme large-scale problems, the matrix-free operation, and preconditioning technique.
Moveover, Algorithm 1 in this paper has some peculiar characteristics of its own. For example, we
exploit a projected gradient direction P.xk � �r‚.xk// � xk to generate next iterate xkC1, in
the case when projected Newton direction is unavailable or fails to be a direction of descent for
the projected Newton–Krylov algorithms in [1]; in addition, we make use of a simple indicator
variable FLAGNG.D 0 or 1/, to determine the switching between a projected Newton direction and a
projected gradient direction. As will be shown in this section (i.e., Lemma 3), the projected gradient
direction P.xk � �r‚.xk// � xk is always descent. Consequently, inequality (6) can be always
satisfied, in particular, when inequality (5) is not valid. Therefore, our feasible projected Newton–
Krylov method is well-defined.

In what follows, we give a theoretical analysis of the feasible projected Newton–Krylov method,
that is, Algorithm 1. We first recall some basic properties of a projection operator.

Lemma 1 (see [4, Lemma 2.1])
Let P be the projection into �.

(a) If ´ 2 � then .P.x/ � x; ´ �P.x// > 0 for all x 2 Rn.
(b) P is a monotone operator, that is .P.y/�P.x/;y�x/ > 0 for x;y 2 Rn. If P.y/ ¤P.x/

then strict inequality holds.
(c) P.x/ is a nonexpansive operator, that is, kP.y/ �P.x/k 6 ky � xk for x;y 2 Rn.

The next lemma is given by Gafni and Bertsekas in [5, Lemma 3] and [6, Lemma 1.a)], and
reconsidered with a simple proof by Calamai and Moré in [4, Lemma 2.2].
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Algorithm 1 Feasible projected Newton–Krylov method

Require: x0 2 �, t; � 2 .0; 1/, �max 2 Œ0; 1/, 0 < �min 6 �0 6 �max < 1, mmax 2 N, and
FLAGNG D 0

1: for k D 0 step 1 until convergence do
2: if FLAGNG D 0 and a preconditioned Krylov subspace method finds some �k 2 Œ0; �max�

and a vector dk satisfying

kF.xk/C F 0.xk/dkk 6 �kkF.xk/k (4)

then
3: m D 0, � D �0
4: while � 2 Œ�min; 1� and m < mmax do
5: � �m0
6: if

kF.P.xk C �dk//k 6 .1 � t�.1 � �k//kF.xk/k (5)

then
7: xkC1 D P.xk C �dk/, m D mmax, FLAGNG D 0
8: else
9: m D mC 1, FLAGNG D 1

10: end if
11: end while
12: else
13: dk D �r‚.xk/
14: m D 0, � D �0
15: while � 2 .0; 1� and m < mmax do
16: � �m0
17: if

‚.P.xk C �dk// 6 ‚.xk/C �r‚.xk/>.P.xk C �dk/ � xk/ (6)

then
18: xkC1 D P.xk C �dk/ and m D mmax, FLAGNG D 0
19: else
20: m D mC 1
21: end if
22: end while
23: end if
24: end for

Lemma 2
Let P be the projection into �. Given x 2 Rn and d 2 Rn, then function  defined by

 .˛/ D
kP.x C ˛d/ � xk

˛
; ˛ > 0; (7)

is antitone (nonincreasing).

With these properties for the projection operator P , we can show that the projected Newton–
Krylov method is well-defined.

Lemma 3
Suppose that xk is not a stationary point of (3) and � 2 .0; 1�. Then P.xk � �r‚.xk// � xk is a
descent direction of (6).
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Proof
In fact, let x D xk ��r‚.xk/ and ´ D xk in the part (a) of Lemma 1. An immediate consequence
of the part (a) of Lemma 1 yields that

0 6
�
P
�
xk � �r‚.xk/

�
�
�
xk � �r‚.xk/

�
;xk �P

�
xk � �r‚.xk/

��
6
�
P
�
xk � �r‚.xk/

�
� xk;xk �P

�
xk � �r‚.xk/

��
C
�
�r‚.xk/;xk �P

�
xk � �r‚.xk/

��
6 �

���P �
xk � �r‚.xk/

�
� xk

���2 � �r‚.xk/> �P �xk � �r‚.xk/� � xk� :
(8)

By (8), we have

r‚.xk/>
�
P
�
xk � �r‚.xk/

�
� xk

�
6 � 1

�

���P �xk � �r‚.xk/� � xk���2 < 0; (9)

which establishes the assertion. �

Now, we are ready to state and prove the promised convergence result of the feasible projected
Newton–Krylov method. To this end, we assume that the feasible projected Newton–Krylov method
does not terminate at a stationary point at any finite step.

Theorem 4
Assume that ¹xkº � � is a sequence generated by the feasible projected Newton–Krylov method.
Then any accumulation point of ¹xkº is at least a stationary point of (3). Further, if (5) is satisfied
by the projected Newton direction for all but finitely many k, then x� is a zero of F.x/ on �.

Proof
Let x� be an accumulation point of a sequence ¹xkº generated by the feasible projected Newton–
Krylov method. We consider two cases. Suppose first that the projected Newton direction is used
(i.e., (5) holds) for infinitely many iterations. It follows immediately that F.x�/ D 0. So x� is a
stationary point.

On the other hand, suppose that the projected gradient direction is used (i.e., (6) holds) for all but
finitely many iterations. It follows from (6) that ¹‚.xk/º is monotonically decreasing (unless the
method terminates at a stationary point at any finite step) and is bounded below by zero. Hence, it
converges and

lim
k!1

�
‚.xkC1/ �‚.xk/

�
D 0: (10)

By (6), this implies that

lim
k!1

r‚.xk/>
�
P
�
xk � �

mk
0 r‚.x

k/
�
� xk

�
D 0: (11)

Let ¹xk; k 2 Kº be a subsequence converging to x�. We consider two subcases for (11).
Case 1: Assume

lim inf
k.2K/!1

�
mk
0 > 0:

By (11) and (9) in Lemma 3, it follows that for some infinite subset K 0 � K,

lim
k.2K0/!1

�
���P �xk � �mk0 r‚.xk/� � xk���2 D 0: (12)

Hence, x� is a stationary point of (3).
Case 2: Assume that there is a subsequence ¹xkºk2J , J � K, with

© 2016 The Authors. International Journal for Numerical Methods
in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 110:661–674
DOI: 10.1002/nme



666 J. CHEN AND C. VUIK

lim
k.2J/!1

�
mk
0 D 0: (13)

Then, for sufficiently large k.2 J /, xk is not a stationary point. Otherwise, if xk is a stationary
point, then �mk0 D 1 follows from (6). This is in contradiction to (13). Therefore, for sufficiently
large k.2 J /, it holds that ���P �xk � �mk�10 r‚.xk/

�
� xk

��� > 0: (14)

In addition, it follows from (6) that

‚
�
P
�
xk � �

mk�1
0 r‚.xk/

��
�‚.xk/ > �r‚.xk/>

�
P
�
xk � �

mk�1
0 r‚.xk/

�
� xk

�
: (15)

Moveover, by the mean value theorem, we know

‚
�
P
�
xk � �

mk�1
0 r‚.xk/

��
�‚.xk/

D r‚.�k/>
�
P
�
xk � �

mk�1
0 r‚.xk/

�
� xk

�
D
�
r‚.�k/ � r‚.xk/

�> �
P
�
xk � �

mk�1
0 r‚.xk/

�
� xk

�
Cr‚.xk/>

�
P
�
xk � �

mk�1
0 r‚.xk/

�
� xk

�
> �r‚.xk/>

�
P
�
xk � �

mk�1
0 r‚.xk/

�
� xk

�
;

(16)

where �k D �xk C .1� �/P.xk � �mk�10 r‚.xk// for some � 2 .0; 1/, that is, �k is a point in the
line segment between xk and P.xk � �mk�10 r‚.xk//. Consequently,�

r‚.�k/ � r‚.xk/
�> �

P
�
xk � �

mk�1
0 r‚.xk/

�
� xk

�
> .1 � �/r‚.xk/>

�
xk � P

�
xk � �

mk�1
0 r‚.xk/

��
:

(17)

Further,

r‚.xk/>
�
xk � P

�
xk � �

mk�1
0 r‚.xk/

��
<

1

1 � �

�
r‚.�k/ � r‚.xk/

�> �
P.xk � �mk�10 r‚.xk/ � xk

�
<

1

1 � �

���r‚.�k/ � r‚.xk/��� ���P �xk � �mk�10 r‚.xk/
�
� xk

��� :
(18)

On the other hand, by Lemma 2, it follows that kx
k�P.xk��r‚.xk//k

�
is monotonically nonin-

creasing with respect to �. From (9), we then have

‚.xk/>
�
xk � P

�
xk � �

mk�1
0 r‚.xk/

��

>

���xk �P.xk � �
mk�1
0 r‚.xk//

���2
�
mk�1
0

>
��xk � P.xk � �0r‚.xk//

��
�0

���xk � P.xk � �mk�10 r‚.xk//
��� :

(19)

This, combined with (14) and (18), implies��xk � P.xk � �0r‚.xk//
��

�0
<

1

1 � �

���r‚.�k/ � r‚.xk/��� : (20)

© 2016 The Authors. International Journal for Numerical Methods
in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 110:661–674
DOI: 10.1002/nme



GLOBALIZATION TECHNIQUE FOR PROJECTED NEWTON–KRYLOV METHODS 667

Passing to the limit as k.2 J /!1, we obtain

kP.x� � �0r‚.x�// � x�k
�0

D 0; (21)

which implies x� is a stationary point. Therefore, in either case, we establish the assertion. �

We next pass to prove the local convergence of the feasible projected Newton–Krylov method.
To this end, we need some basic concepts in convergence analysis of iterative algorithms. Let the
sequence ¹xkº converges a point x�. The convergence rate is said to Q-linear with Q-factor � 2
.0; 1/ if

kxkC1 � x�k 6 �kxk � x�k

for all large enough k and some norm on Rn. The convergence rate is called to Q-superlinear if

lim
k!1

kxkC1 � x�k

kxk � x�k
D 0

for some norm on Rn, see [19, Chapter 9] for details. We call that a function F.x/ has a strong
Fréchet derivative F 0.x/ at x (cf. [19, Defination 3.2.9]) if

lim
y!x
´!x

kF.x/ � F.y/ � F 0.x/.´ � y/k

k´ � yk
D 0: (22)

If F.x/ is continuously differentiable, then F.x/ is locally Lipschitz continuous at x, that is, there
exists a constant Lx such that for all y sufficiently close to x,

kF.y/ � F.x/k 6 Lxky � xk: (23)

Further, if F 0.x/ is nonsingular at x�, that is, there exists a constant Cx� such that kF 0.x�/�1k 6
Cx� , then there exists a constant C such that F 0.y/�1 exists, and

kF 0.y/�1k 6 C (24)

for all y sufficiently close to x�, see, for example, [19, Theorem 2.3.3].

Theorem 5
Assume that x� 2 � is a limit point of ¹xkº generated by the feasible projected Newton–Krylov
method. Assume also that F.x�/ D 0 and F 0.x�/ is nonsingular. Then the whole sequence ¹xkº
converges to x�. Furthermore, for large enough k,

(a) if �max and t are chosen by´
�max 2 .0; 1/; t 2

�
C 2L; 1

�
; if C 2L < 1,

�max 2
�
0; 1�t
C2L�t

�
; t 2 .0; 1/; if C 2L > 1,

(25)

where L is the Lipschitz constant of F at x� (see (28)), and C is an upper bound of inverse
of F.x/ defined in a neighborhood of x� (see (30)), then the projected Newton direction is
eventually accepted with � D 1, that is, no projected gradient direction is carried out;

(b) if ´
�max 2

�
0;min

®
1
CL
; 1
¯�
; t 2

�
C 2L; 1

�
; if C 2L < 1,

�max 2
�
0;min

°
1
CL
; 1�t
C2L�t

±�
; t 2 .0; 1/; if C 2L > 1,

(26)

then the convergence rate is Q-linear;
(c) if �k ! 0, the convergence rate is Q-superlinear.
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Proof
The nonsingularity of F 0.x�/ implies that x� is an isolated limit point of the sequence ¹xkº. By
exploiting the proof of Theorem 4, and the nonexpansiveness of the projection operator P , it
follows that

lim
k!1

���xkC1 � xk��� D 0: (27)

This indicates that the entire sequence ¹xkº converges to x�.
Let ek D xk � x�. Owing to continuous differentiability of F.x/, it follows that F.x/ is locally

Lipschitz continuous at x 2 �, and its Fréchet derivative F 0.x/ at x is strong. Therefore, there
exists a constant L such that for all xk sufficiently close to x�,

���F.xk/ � F.x�/��� 6 L ���ek��� : (28)

Also, by the definition of strong Fréchet derivative (i.e., (22)), it follows that

���F.xk/ � F.x�/ � F.xk/ek��� D o ����ek���� : (29)

Furthermore, by making use of the nonsingularity of F 0.x�/ again, there exists a constant C
such that ���F 0.xk/�1��� 6 C (30)

for all xk sufficiently close to x�.
In addition, for all xk sufficiently close to x�, it holds that

P.xk C dk/ � x� D P
�
xk � F 0.xk/�1F.xk/C F 0.xk/�1

h
F 0.xk/dk C F.xk/

i�
� x�:

From this and (30), taking into account (28) and (29), we have

kP.xk C dk/ � x�k D kP
�
xk � F 0.xk/�1F.xk/C F 0.xk/�1

h
F 0.xk/dk C F.xk/

i�
� x�k

6
���F 0.xk/�1 �F 0.xk/ek � F.xk/C F 0.xk/dk C F.xk/����
6 C

h���F.xk/ � F.x�/ � F 0.xk/ek���C ���F 0.xk/dk C F.xk/���i
6 C

����F.xk/ � F.x�/ � F 0.xk/ek���C �k ���F.xk/����
6 C

�
L�k

���ek���C o ����ek�����
D C .L�k C o.1//

���ek��� ;
(31)where the last inequality is due to (28) and (29). In addition,

kekk D
���F 0.xk/�1 hF 0.xk/ek � F.xk/C F.x�/C F.xk/i���

6
���F 0.xk/�1��� ����F 0.xk/ek � F.xk/C F.x�/���C ���F.xk/����
6 C

�
o
����ek����C ���F.xk/���� :

(32)

Consequently, ���ek��� 6 C

1 � Co.1/

���F.xk/��� : (33)
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Using (31) and (29), we have

���F.P.xk C dk//
��� 6 L ���P.xk C dk/ � x����
6 C

�
L�k

���ek���C o ����ek�����
D C .L�k C o.1//

���ek���
6 C

2.L�k C o.1//

1 � Co.1/

���F.xk/��� :
(34)

This, together with (5), yields that statement (a) is valid if and only if

C 2.L�k C o.1//

1 � Co.1/
6 1 � t .1 � �k/ (35)

holds. By solving (35) with respect to �k , and the fact that t 2 .0; 1/, we have

8<
:
�k 2 .0; 1/; t 2

h
C2L

1�Co.1/
; 1
�
; if C2L

1�Co.1/
< 1,

�k 2
�
0; .1�t/.1�Co.1//�C

2o.1/

C2L�t.1�Co.1//

i
; t 2 .0; 1/; if C2L

1�Co.1/
> 1.

(36)

An intuitive alternative for (36) is

´
�k 2 .0; 1/; t 2

�
C 2L; 1

�
; if C 2L < 1,

�k 2
�
0; 1�t
C2L�t

�
; t 2 .0; 1/; if C 2L > 1,

(37)

which is of the form (25). Therefore, if we take �max and t from (37) (e.g., (25)), then statement (a)
follows, that is, for large enough k, the method eventually accepts the projected Newton direction
with � D 1.

To prove assertion (b), we need to show that �k in (31) satisfies

C.L�k C o.1// < 1: (38)

Solving for �k in (38), we obtain

�k <
1 � Co.1/

CL
: (39)

This, combined with (36), yields that

8<
:
�k 2

�
0;min

°
1�Co.1/
CL

; 1
±�
; t 2

h
C2L

1�Co.1/
; 1
�
; if C2L

1�Co.1/
< 1,

�k 2
�
0; 1�Co.1/

CL

�
\
�
0; .1�t/.1�Co.1//�C

2o.1/

C2L�t.1�Co.1//

i
; t 2 .0; 1/; if C2L

1�Co.1/
> 1.

(40)

By (40), we obtain the following choices for �max and t ,

�max 2

´ �
0;min

®
1
CL
; 1
¯�
; t 2

�
C 2L; 1

�
; if C 2L < 1,�

0;min
°
1
CL
; 1�t
C2L�t

±�
; t 2 .0; 1/; if C 2L > 1.

(41)

This is the expression of (26), so we conclude the assertion (b).
Finally, if �k ! 0, then (31) yields

���ekC1��� D o ����ek���� : (42)
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Consequently, ���F.P.xk C dk//
��� D ���F.P.xk C dk// � F.x�/���
D O

����P.xk C dk/ � x�����
D o

����ek���� D o ����F.xk/���� :
(43)

This establishes statement (c). �

Remark 6
We note that the choices for ¹�kº in Theorem 5 extend the ones in [8, 15–18, 20], in particular, for
the case of Q-linear convergence theory.

3. NUMERICAL TESTS

As illustrated in Section 2, there is no theoretical guarantee of success for calculating the next
iterative point via a projected Newton direction in the case in which the current one is far from the
solution. To attain an intuitive understanding for this, we consider a two-dimensional example.

Example 7
Solve the following constrained problem for x D .x1; x2/> 2 � D .�1; 1� � .�1; 1�:²

x21 � x2 � 2 D 0;
x1 � x2 D 0:

(44)

The unique solution for this problem on� is x� D .�1;�1/>. The Jacobian F 0.x/ D

�
2x1 �1
1 �1

	
.

The gradient of its merit function ‚.x/ is

r‚.x/ D
�
2x1.x

2
1 � x2 � 2/C x1 � x2;�.x

2
1 � x2 � 2/ � .x1 � x2/

�>
: (45)

We take an initial iteration vector x0 D
�
1; 1
2

�>
. Then it follows from Algorithm 1 that a

particular instance of Newton directions at x0 is d0 D
�
2; 5
2

�>
as �0 D 0 in Algorithm 1.

Notice that

r‚.x0/>d0 D

�
�
5

2
; 1

	
�

�
2;
5

2

	>
D �

5

2
< 0: (46)

Thus, Newton direction d0 is a good candidate for descent directions in the unconstrained case for
(44). However, the projected Newton direction P.x0 C �d0/� x0 is not descent for problem (44)
on �, because

P.x0 C �d0/ � x0 D

�
min ¹1C 2�; 1º ;min

²
1;
1

2
C
5�

2

³	>
�

�
1;
1

2

	>

D

�
0;min

²
1

2
;
5�

2

³	>
;

(47)

for any � 2 .0; 1�, and

r‚.x0/>.P.x0 C �d0/ � x0/ D

�
�
5

2
; 1

	
�

�
0;min

²
1

2
;
5�

2

³	>

D min

²
1

2
;
5�

2

³
> 0:

(48)
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In contrast, the projected gradient direction P.x0 � �r‚.x0// � x0 is descent. Indeed, for any
� 2 .0; 1�, we have

P.x0 � �r‚.x0// � x0 D

�
min

²
1C

5

2
�; 1

³
;min

²
1;
1

2
� �

³	>
�

�
1;
1

2

	>
D .0;��/> ;

(49)

and

r‚.x0/>.P.x0 C �d0/ � x0/ D

�
�
5

2
; 1

	
� .0;��/> D �� < 0: (50)

Next, example shows that our feasible projected Newton–Krylov method, ithat is, Algorithm 1,
can converge to a solution when a projected Newton direction fails to be a direction of descent.
Therefore, Algorithm 1 including projected gradient directions is a significant complement for the
projected Newton–Krylov algorithm in [1] from a computational point of view.

Example 8
Consider a system of nonlinear equations for x D .x1; : : : ; xn/

> with � D ¹x 2 Rn j x1 2
Œ0:8; 2�; xi 2 Œ0:5; 2�; 2 6 i 6 nº. 8̂̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

x21 � 1 D 0;

x1 � x
3
2 D 0;

x2 � x
3
3 D 0;

:::

xn�2 � x
3
n�1 D 0;

xn�1 � xn D 0:

(51)

The solution for the system of nonlinear equations on � is x� D .1; : : : ; 1/>.
We test Algorithm 1 with a standard modified Gram-Schmidt GMRES implementation [21]. We

use the zero vector to be the initial approximate solution for (4). The termination tolerance rule for

Table I. Output of Algorithm 1 for constrained prob-
lem (51) with dimension n D 100.

Iterates � kF.x/k Search direction

1 1 3.4873 PN
2 0.2500 3.4840 PN
3 0.1250 3.4813 PN
4 0.1250 3.4796 PN
5 0.6400 3.4779 PG
6 0.5000 3.8144 PN
7 1 3.6715 PN
8 1 3.6174 PN
9 0.6400 3.6087 PG
10 0.5000 4.1736 PN
11 1 3.7805 PN
12 1 3.7395 PN
13 0.6400 3.7388 PG
14 0.5000 4.9133 PN
15 1 3.8563 PN
16 0.0039 3.5496 PN
17 0.1250 2.3928 PN
18 1 0.5615 PN
19 1 0.1172 PN
20 1 0.0037 PN
21 1 2.6134e-06 PN
22 1 1.1652e-12 PN
23 1 3.8432e-13 PN

© 2016 The Authors. International Journal for Numerical Methods
in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 110:661–674
DOI: 10.1002/nme



672 J. CHEN AND C. VUIK

the nonlinear iterations is kF.xk/k 6 10�12. GMRES iterations terminate when (4) is satisfied with
the rule of forcing term �k proposed in [16] and �max D 0:9. For line search technique used in (5)
and (6), we take t D � D 10�4, mmax D 20, �0 D 0:5 in (5), and �0 D 0:8 in (6). In addition, both
maximum allowable number of nonlinear iterations and maximum allowable number of GMRES
iterations per nonlinear iteration are 100.

We first run our algorithm for constrained problem (51) with n D 100, by taking the initial value
of nonlinear iterations x0 as x0.1 W 20/ D 0:9 and x0.21 W 100/ D 0:5. Table I shows details of the
iterations, that is, step size �, residual norm kF.x/k, and search direction. In particular, we denote
a projected Newton direction and a projected gradient direction by PN and PG, respectively, for the
search direction item.

From Table I, we can see that Algorithm 1 enjoys not only a global convergence but also a rapid
local superlinear convergence.

We next test Algorithm 1 for the constrained problem (51) with n D 105. We use the same
parameters as mentioned earlier, except for the initial value of nonlinear iterations. In particular, we
choose x0.1 W 70000/ D 0:9, and x0.70001 W 100000/ D 0:5. Table II gives details of the partial
iterations, including step size �, residual norm kF.x/k, and search direction. The complete residual
norm (i.e., kF.x/k) history is shown in Figure 1.

Table II and Figure 1 illustrate that Algorithm 1 is capable of solving large-scale constrained
nonlinear problems with global and local superlinear convergence properties.

Table II. Output of Algorithm 1 for constrained prob-
lem (51) with dimension n D 105.

Iterates � kF.x/k Search direction

1 1 79.1577 PN
2 1 66.1661 PN
3 1 65.1058 PN
4 0.0625 65.1019 PN
5 0.6400 65.0966 PG
6 0.5000 65.5796 PN
7 0.5120 65.5297 PG
8 0.8000 66.6279 PG
9 0.5000 69.0157 PN
10 1 68.0353 PN
11 1 65.8934 PG
12 0.5000 69.1636 PN
13 0.1250 69.1366 PN
14 1 66.5676 PN
15 1 65.0184 PG
:::

:::
:::

:::
62 0.5000 66.2263 PN
63 0.6250 66.1883 PN
64 0.5120 66.1252 PG
65 0.5000 69.7062 PN
66 0.2500 69.5956 PN
67 0.5120 69.5064 PG
68 0.5000 79.7120 PN
69 1 68.7289 PN
70 0.2500 26.7161 PN
71 1 6.4583 PN
72 1 0.7691 PN
73 1 0.0661 PN
74 1 0.0014 PN
75 1 8.0587e-07 PN
76 1 2.6112e-13 PN
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Figure 1. Numerical solution of constrained problem (51) with dimension n D 105: residual norm (kF.x/k)
at intermediate iterates (solid lines) and used projected gradient direction (circles).

4. SUMMARY AND CONCLUSIONS

This paper developed a new feasible projected Newton–Krylov algorithm for solving constrained
system of nonlinear equations. This algorithm can be used to solve very large constrained systems of
nonlinear equations. A typical example is a large diffusion reaction system with up to 50 chemical
reactions, resulting in a constrained system of nonlinear equations with 109 unknowns.

A theoretical analysis is given to analyze the global convergence of the feasible projected Newton-
Krylov algorithm. In particular, based on a simple but effective switching strategy between projected
Newton directions and projected gradient directions, the feasible projected Newton–Krylov algo-
rithm always ensures its search directions of descent and can converge to a solution when a projected
Newton direction is unavailable or fails to be a descent direction. Also the rate of convergence
(linear, superlinear) is investigated.

Finally, some examples are given, which show that the new feasible projected Newton–Krylov
algorithm converges to a correct solution, whereas the classical projected Newton–Krylov algo-
rithm does not converge. From these experiments, it also follows that the projected Newton–Krylov
converges quadratically when the iterates are close to the exact solution.
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