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Abstract

GMRES and CGS are well-known iterative methods for the solution of certain sparse

linear systems with a non-symmetric matrix. These methods have been compared experi-

mentally in many studies and speci�c observations on their convergence behaviour have been

reported. A new iterative method to solve a non-symmetric system is proposed by Eirola

and Nevanlinna. The purpose of this paper is to investigate this method and to compare it

with GMRES. We have seen problems for which this method is more e�cient than GMRES.

The original method has as drawbacks that it is not scaling invariant and that it may suf-

fer from numerical instability but it will be shown that these de�ciencies can be repaired.

A method proposed by Broyden seems to be somehow related to the new method and is

therefore included in the comparison.
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Introduction

In this paper we compare the GMRES-method [6], the EN-method [3] and the B-method [1].

Our main motivation to study the EN-method is that it deepens the insight in projection-type

methods, which hopefully leads to better iterative methods. Descriptions and some relevant

properties of these methods are given in Section 1. In Section 2 we describe numerical exper-

iments for EN, which motivate the theoretical analysis of Section 3. In that section we give a

relation between the EN- and GMRES-method. Subsequently we compare the e�ciency of both

methods. Though in some cases the EN-method is more e�cient than the GMRES-method this

is not the case in general. In Section 4 we show that the convergence and the stability prop-

erties of EN are not scaling invariant, as they are for GMRES and other projection methods

and we also show how this can be repaired to the advantage of the EN-method. Furthermore,

we describe some problems for which EN diverges GMRES converges. In Section 5 we consider

a variant of the EN-method, which is algebraically equivalent to the GMRES-method. This

enables us to make a better comparison between GMRES and EN, and it gives more insight in

GMRES. Finally, in Section 6 we compare the EN-method with the B-method and a general

class of methods given in [2]. Furthermore we compare the e�ciency of B and GMRES. From

these comparisons it appears that the most e�cient and robust method is the implementation

of the full GMRES method as described in, e.g., [6] and [7]. However, it appears from experi-

ments that if the iterative methods (EN and GMRES) are restarted then EN can be much more

e�cient than GMRES. This aspect is subject of further study and is not reported in this paper.

1 GMRES, EN and B-method

The GMRES-method is originally proposed in [6]. We use results in [5] for understanding the

convergence behaviour of GMRES. Consider the linear system Ax = b with x; b 2 R

n

and

A 2 R

n x n

is nonsingular. The Krylov subspace K

k

(A; r

0

) is de�ned by K

k

(A; r

0

) = span

n

r

0

; Ar

0

; :::; A

k�1

r

0

o

. The k-th iterate x

k

is written as x

k

= x

0

+ z

k

where z

k

2 K

k

(A; r

0

) and

r

0

= b � Ax

0

. In the GMRES-method the vector z

k

is chosen as the vector which solves the

linear least-squares problem

z

k

= arg

min

z 2 K

k

(A; r

0

)

k b�A (x

0

+ z) k

2

: (1)

>From this de�nition it follows that

k r

k

k

2

=

min

z 2 K

k

(A; r

0

)

k b�Ax

0

�Az k

2

=

min

�

1

; :::; �

k

2 R

k r

0

+

k

X

i=1

�

i

A

i

r

0

k

2

: (2)

In the EN-method we take a di�erent splitting of the matrix in each iteration step:

A = H

�1

k

�R

k

;

which leads to the basic iteration method

x

k

= x

k�1

+H

k

r

k�1

:
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The key idea is to improve H

k

from step to step by (cheap) rank-1 updates:

H

k

= H

k�1

+ u

k�1

v

T

k�1

:

For the k-th step this leads to

r

k

= r

k�1

�A(H

k�1

+ u

k�1

v

T

k�1

)r

k�1

= (I �AH

k�1

)r

k�1

� �

k�1

Au

k�1

with �

k�1

= v

T

k�1

r

k�1

:

The ideal choice for u

k�1

would have been, such that

�

k�1

Au

k�1

= (I � AH

k�1

)r

k�1

;

or �

k�1

u

k�1

= A

�1

(I �AH

k�1

)r

k�1

:

If H

�1

k�1

de�nes a suitable splitting for A then A

�1

could be replaced by H

k�1

and this motivates

the choice for u

k�1

:

u

k�1

= H

k�1

(I �AH

k�1

)r

k�1

:

The choice for v

k�1

now follows by minimizing k r

k

k

2

as a function of �

k�1

:

�

k�1

= (Au

k�1

)

T

(I � AH

k�1

)r

k�1

= k Au

k�1

k

2

2

so that

v

k�1

=

1

k Au

k�1

k

2

2

(I �AH

k�1

)

T

Au

k�1

is an obvious choice.

This leads to the following algorithm ([3]: p.512,513):

1. given x

0

; H

0

; compute r

0

and take k = 0,

2. E

k

= I �AH

k

; u

k

= H

k

E

k

r

k

; v

k

= E

T

k

Au

k

= k Au

k

k

2

2

;

3. H

k+1

= H

k

+ u

k

v

T

k

; x

k+1

= x

k

+H

k+1

r

k

; r

k+1

= b�Ax

k+1

;

4. stop if k r

k+1

k

2

is small enough, otherwise k : = k + 1 and return to step 2.

The only di�erence between EN and GMRES is the choice of u

k

. By taking u

k

= H

k

r

k

, instead

of u

k

= H

k

E

k

r

k

, we obtain an iterative method algebraically equivalent to GMRES.

The following equalities and de�nitions will be used in our analysis:

c

k

� Au

k

= k Au

k

k

2

; (3)

E

k+1

= (I � P

k

)E

0

; P

k

=

k

X

i=0

c

i

c

T

i

and c

T

i

c

j

= 0 for i 6= j; (4)

r

k+1

= E

k+1

r

k

: (5)

Equation (4) only holds if all H

k

are nonsingular. Therefore, in the case that H

k+1

is singular

whereas H

k

is nonsingular we take H

k+1

= H

k

(see [3]: p.518). The following property may be

3



used to check wether H

k+1

is singular.

Property 1.6 ([3]: p.518, Proposition 2.1)

Assume H

k

is nonsingular. Then H

k+1

is singular if and only if c

T

k

E

0

r

k

= 0.

The description of the algorithm given above is suitable for analysis, however in order to save

computational work we prefer the following implementation given in ([3]: p.519):

at step k x

k

; r

k

; u

0

; :::; u

k�1

; c

0

; :::; c

k�1

are known, then compute

1. �

i

= c

T

i

(r

k

�AH

0

r

k

) for i = 0; :::; k� 1; � = H

0

r

k

+

k�1

P

i=0

�

i

u

i

; � = r

k

� A�;

2. �

i

= c

T

i

(� �AH

0

�) for i = 0; :::; k� 1; u

k

= �

 

H

0

� +

k�1

P

i=0

�

i

u

i

!

; c

k

= Au

k

;

where � is such that k c

k

k

2

= 1,

3. x

k+1

= x

k

+ � + u

k

c

T

k

�; r

k+1

= � � c

k

c

T

k

�:

In the sequel, EN1 denotes the given implementation.

In another implementation given in ([3]: p.519), � and c

k

are computed as follows: � =

r

k

� AH

0

r

k

�

k�1

P

i=0

�

i

c

i

and c

k

= �

 

AH

0

� +

k�1

P

i=0

�

i

c

i

!

. This implementation is used, in situ-

ations where it is more e�cient to compute a linear combination of k + 1 vectors instead of

multiplying one vector by A. Note that � is the component of r

k

� AH

0

r

k

orthogonal to span

fc

0

; :::; c

k�1

g. Hence �

i

is equal to �c

T

i

AH

0

� which implies that c

k

is the normalized compo-

nent of AH

0

� orthogonal to span fc

0

; :::; c

k�1

g. In this implementation the vectors � and c

k

are

made orthogonal by the Gram Schmidt process. For stability reasons we propose the following

implementation (EN2) based on the modi�ed Gram Schmidt process:

1. �

(0)

= (I �AH

0

) r

k

; �

(0)

= H

0

r

k

;

�

i

= c

T

i

�

(i)

; �

(i+1)

= �

(i)

� �

i

c

i

; �

(i+1)

= �

(i)

+ �

i

u

i

; i = 0; :::; k� 1;

2. c

(0)

k

= AH

0

�

(k)

; u

(0)

k

= H

0

�

(k)

;

�

i

= �c

T

i

c

(i)

k

; c

(i+1)

k

= c

(i)

k

+ �

i

c

i

; u

(i+1)

k

= u

(i)

k

+ �

i

u

i

; i = 0; :::; k� 1;

c

k

= c

(k)

k

= k c

(k)

k

k

2

; u

k

= u

(k)

k

= k c

(k)

k

k

2

;

3. x

k+1

= x

k

+ �

(k)

+ u

k

c

T

k

�

(k)

; r

k+1

=

�

1� c

k

c

T

k

�

�

(k)

:

In our experiments the stability properties of EN1 and EN2 have appeared to be more or less

equivalent.

In the B-method also a nonsingular matrix H

0

2 R

n x n

must be speci�ed which again is viewed

as an approximation to the inverse of A.

The algorithm runs as follows ([1]: p.94):

1. given x

0

; H

0

, compute r

0

and take k = 0 ;
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2. p

k

= H

k

r

k

; x

k+1

= x

k

+ p

k

; r

k+1

= b�Ax

k+1

;

3. y

k

= r

k

� r

k+1

;

4. H

k+1

= H

k

� (H

k

y

k

� p

k

) p

T

k

H

k

=p

T

k

H

k

y

k

; k : = k + 1 and return to step 2.

2 Numerical experiments

In order to get some idea of the convergence behaviour of the EN-method we report on some

numerical experiments. The numerical experiments have been carried out on a HP9000-845

computer in double precision arithmetic (about 15 decimal places). Our test matrices and right-

hand sides are taken from ([5]: p.16,17). These matrices are of the form A = SBS

�1

with

A; S;B 2 R

100 x 100

. We have selected S to be equal to

S =

0

B

B

B

B

B

@

1 � �

1

.

.

.

.

.

.

.

.

.

�

� 1

1

C

C

C

C

C

A

:

The system Ax = b is solved for right-hand sides, such that x = (1; :::; 1)

T

(experiments with

other choices of x show more or less the same convergence behaviour). In these experiments

we take H

0

= I and x

0

= (0; :::; 0)

T

. The matrices in our testset are as follows (the numbering

refers to the problems in ([5]: p.17]):

Problem P6:

B =

0

B

B

B

B

B

B

B

B

B

B

@

1

1 + �

3 �

4

.

.

.

�

100

1

C

C

C

C

C

C

C

C

C

C

A

: (double eigenvalue for �! 0) :

Problem P7:

B =

0

B

B

B

B

B

B

B

B

@

1 �

�� 1 �

3

4

.

.

.

� 100

1

C

C

C

C

C

C

C

C

A

: (conjugate eigenpair 1� �i):
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Problem P8:

B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1

�1 1 �

1 + � 1 + �

�1� � 1 + �

5

6

�

.

.

.

100

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(two conjugate eigenpairs which

come close for �! 0):

Problem P9:

B =

0

B

B

B

B

B

B

B

B

@

1 1

1 �

3

4

.

.

.

� 100

1

C

C

C

C

C

C

C

C

A

: (defect matrix with jordan block of order 2).

For these problems we have plotted the convergence behaviour of the EN-method in terms of

the reduction factors k r

k+1

k

2

= k r

k

k

2

; for di�erent values of � and � : In order to facilitate

comparison, di�erent curves have been plotted in the same �gure. The lowest curve is always

plotted on the right scale. Each successive curve has been raised by 0.1 vertically with respect

to the previous one.

The results for B : = B=100 (an explanation of this seemingly awkward choice is given in Section

4) are given in the Figures 1, 3, 5 and 7. These �gures are in a qualitative sense largely the

same as the Figures 2, 4, 6 and 8 for GMRES obtained from ([5]: Figures 17, 18, 20 and 21).

This leads us to expect some relation between EN and GMRES. In the following section, this

relation is identi�ed more explicitely.

A quantitative comparison of the experiments shows that k r

k

k

2

in EN is larger than

k r

2k

k

2

in GMRES. Furthermore, in Figure 1 we observe, for � = 0 and � = 0:9, peaks at

k = 9 and k = 50, whereas in Figure 2 these peakes occur at k = 16 and k = 79. For the other

situations similar observations have been made. This indicates that if GMRES leads to a peak

at the k-th iterate and if EN shows a peak at the j-th iterate, then j is larger than k=2. This

again underlines the idea that the convergence behaviour of GMRES after 2k steps is at least

comparable with EN after k steps. This seems reasonable since EN is per iteration step more

than twice as expensive as GMRES. In these experiments the implementations EN1 and EN2

give the same results.

Finally we describe some numerical experiments for a more realistic problem. We take 
 to

be the unit square and consider the pde

�4u+ u

x

= 1 on 
 and u j

@


= 0:

Using the standard �ve point central �nite di�erence approximation over an equidistant rectan-

gular grid we obtain a linear system (Problem P10). We take the step size in x- and y-direction

6



equal to 1/30 (EN is applied to the system multiplied by 450= (=60 + 1)):

Starting with x

0

= (0; :::; 0)

T

gives the following results:

method

 EN GMRES

0 38 65

30 44 84

60 35 70

300 86 150

3000 408 455

Table 1. Number of iteration steps, for which k r

i

k

2

= k b k

2

� 10

�12

Except for the choice  = 3000 ; it appears from Table 1 that roughly 2k steps of GMRES

are comparable with k steps of EN (see also the Figures 9 and 10).

3 A comparison of EN and GMRES

In this section we will show that the space spanned by the vectors c

k

; generated by EN, is

contained in a Krylov subspace. Furthermore, we will compare the norms of the residuals in EN

and GMRES. Then by estimating the required amount of work and memory we will be able to

compare the e�ciency of both methods.

First we will show that the vectors c

k

which are generated by the EN-method are elements of a

Krylov subspace.

Theorem 3.1

If H

k

is not singular and E

k

r

k

6= 0 then:

r

k

= r

0

+

2k

P

i=1

�

ki

(AH

0

)

i

r

0

and span fc

0

; :::; c

k

g � span f(AH

0

) r

0

; :::; (AH

0

)

2k+2

r

0

g :

Proof

In order to simplify relations, we rede�ne c

k

, in this proof, as:

c

k

= Au

k

; (6)

(note that only the direction of c

k

is relevant).

We prove the theorem by an induction argument in k. From (6) it follows that

c

0

= AH

0

E

0

r

0

= AH

0

(I �AH

0

) r

0

, so that c

0

2 span f(AH

0

) r

0

; (AH

0

)

2

r

0

g. This implies the

theorem to be true for k = 0.

Combination of (4) and (5) gives

r

k+1

= E

k+1

r

k

= (I � P

k

) (I �AH

0

) r

k

= (I � AH

0

) r

k

� P

k

E

0

r

k

:

Since P

k

is the orthogonal projection onto span fc

0

; :; c

k

g it follows by induction that

r

k+1

= r

0

+

2(k+1)

X

i=1

�

k+1;i

(AH

0

)

i

r

0

: (7)
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Furthermore, from (6) we obtain c

k+1

= AH

k+1

E

k+1

r

k+1

= (I � E

k+1

)E

k+1

r

k+1

.

Together with (4) this gives:

c

k+1

= (I � (I � P

k

) (I � AH

0

))E

k+1

r

k+1

= (AH

0

+ P

k

E

0

)E

k+1

r

k+1

:

Another application of (4) leads to:

c

k+1

= P

k

E

0

E

k+1

r

k+1

+AH

0

(I � P

k

) (I �AH

0

) r

k+1

and hence

c

k+1

= P

k

E

0

E

k+1

r

k+1

�AH

0

P

k

E

0

r

k+1

+AH

0

(I �AH

0

) r

k+1

:

Since P

k

is the orthogonal projection onto span fc

0

; :; c

k

g it follows by induction and (7) that

c

k+1

2 span f(AH

0

) r

0

; :::; (AH

0

)

2(k+1)+2

r

0

g ; which completes the proof. 2

The following de�nition is used for the comparison of the residuals of EN and GMRES.

De�nition 3.2

r

EN

k

is the residual in the k-th step of EN. r

G

k

is the residual in the k-th step of GMRES applied

to the postconditioned linear system AH

0

y = b where H

0

is the same matrix in both methods

(note that x = H

0

y solves the system Ax = b ).

>From Theorem 3.1 and (2) we obtain the following inequality

k r

EN

k

k

2

� k r

G

2k

k

2

: (8)

This inequality supports our earlier observation made in the numerical experiments, reported in

Section 2.

In order to compare the e�ciency of EN and GMRES we need an estimate for the amount of

work and memory in each method. For obvious reasons we have listed in Table 2 the amount of

work and memory requirements for k steps of EN and 2k steps of GMRES.

method steps multiplications with inner products vectorupdates memory

H

0

A

EN1 k 2k 4k k

2

k

2

2kn

EN2 k 2k 2k k

2

2k

2

2kn

GMRES 2k 2k 2k 2k

2

2k

2

2kn

�

+2k

2

�

Table 2. Amount of work and memory for di�erent methods.

The inner products in EN1 can be computed in parallel. Furthermore in EN2 the vectorup-

dates, used to form � and � (or u

k

and c

k

), can be computed in parallel. The inner products

and vectorupdates in the implementation of GMRES as given in [7] can not be computed in

parallel. This might be a disadvantage for GMRES in a parallel computing environment.

Since in most of our numerical experiments k r

EN

k

k

2

and k r

G

2k

k

2

di�er considerably, we also

give estimates for the amount of work and memory requirements for the following experiment.

The solution of Problem P10 with  = 300 is computed with the EN-method and the GMRES-

method. The results are plotted in Figure 11. Note that EN requires more multiplications with

8



H

0

and A than GMRES to obtain the same accuracy. Choosing eps = 10

�12

it appears that

k r

EN

86

k

2

= k b k

2

� eps and k r

G

150

k

2

= k b k

2

� eps. The amount of work and memory

requirements to obtain this accuracy are listed in Table 3.

method steps multiplications with inner products vectorupdates memory

H

0

A

EN1 86 172 344 7396 7396 154800

EN2 86 172 172 7396 14792 154800

GMRES 150 150 150 11250 11250 135000(+11250)

Table 3. Amount of work and memory for di�erent methods.

In practical situations the order of the linear system n will be much larger than the required

number of iterations. In such cases the term 2k

2

in the required amount of memory for the

GMRES-method is relatively negligible.

We conclude that when

k r

EN

k

k

2

� k r

G

2k

k

2

then the EN2-method is more e�cient than the GMRES-method in terms of ops-counts. How-

ever the given experiment has shown that there are problems for which

k r

EN

k

k

2

� k r

G

j

k

2

with j < 2k.

In the following section we will give more evidence for such situations. In such cases it is less clear

which method is preferable in terms of ops-counts. With respect to the memory requirements

we note that GMRES is preferable.

4 Some speci�c properties of EN

In this section we will show that the convergence and stability properties of the EN-method are

not scaling invariant. Subsequently we will provide some examples where the EN-method does

not converge. Finally we will show that Property 1.6 is useless from a practical point of view.

4.1 The convergence behaviour of EN with respect to scaling

>From its construction it follows that GMRES is scaling invariant, which means that when the

method is applied to the system �Ax = �b then the iterates are the same for every choice

of � 6= 0. One might expect from the foregoing that EN has the same property. However,

from our experiments it follows that EN is not scaling invariant. This is well illustrated by

the results for Problem P6 (with � = 10

�5

and � = 0:9 ). In our �rst experiment we take

H

0

= �I as an approximation for A

�1

. Obvious choices for � are � =

1

�

1

; � =

2

�

1

+�

n

; and

� =

1

�

n

; where �

1

= 1 is the smallest and �

n

= 100 the largest eigenvalue of A. We obtain

k r

EN

100

k

2

= k r

0

k

2

= 10

65

for � =

1

�

1

= 1 ; k r

EN

38

k

2

= k r

0

k

2

� 10

�12

for � =

2

�

1

+�

2

=

2

101

; and

k r

EN

40

k

2

= k r

0

k

2

� 10

�12

for � =

1

�

n

=

1

100

:

9



So the convergence behaviour of EN strongly depends on the choice of �.

As a second experiment we apply EN to Problem P6 with B := �B for � = 10

�1

; 10

�2

; 10

�3

and

10

�4

and H

0

= I . The method is terminated as soon as k r

i

k

2

= k b k

2

� 10

�12

. The number

of iteration steps, for di�erent choices of �, is given in Table 4.

� 10

�1

10

�2

10

�3

10

�4

iterates 78 40 64 66

Table 4. Number of iteration steps, for which k r

i

k

2

= k b k

2

� 10

�12

(for P6).

The convergence behaviour is displayed in Figure 12. In this �gure, each curve is plotted at

the right scale. For � = 10

�1

we notice that initially the residuals increase. For � = 10

�2

the

curve is identical to the corresponding curve in Figure 1. Note that the curves for � = 10

�3

and

� = 10

�4

are nearly the same. Furthermore, these curves show a striking resemblance with the

corresponding curve for GMRES in Figure 2.

A possible explanation for this might come from the observation that for � = 10

�4

we have

that E

0

= I � AH

0

� I . This together with (4) implies

E

k

� (I � P

k�1

) :

Using this expression and (5) it follows from

u

k

= H

k

E

k

r

k

= H

k

E

2

k

r

k�1

� H

k

E

k

r

k�1

= H

k

r

k

;

that u

k

� H

k

r

k

. This explains the resemblance of the curves, since the choice u

k

= H

k

r

k

leads

to a method algebraically equivalent to GMRES (see [3]: p.513 and also the following section).

In our example the choice � = 10

�2

is obviously preferable. We will call this value �

opt

for

our experiment. However, in general we know of no criterium which could be used for de�ning

a priori an optimal �. Hence �

opt

has to be determined experimentally. Furthermore, for this

example we observe for � = 10�

opt

the speed of convergence is halved, whereas for � = 0:1�

opt

the speed of convergence is approximately the same as for GMRES. Taking into account the

amount of work and memory for both methods (see Table 2, Section 3) we conclude that we

need a fairly good guess for �

opt

if we want EN be more e�cient than GMRES.

>From these experiments it seems attractive that the spectral radius of (I �AH

0

) has to be

less than one (compare Section 4.2). This conjecture is con�rmed by the following experiment.

We take 
 to be the unit square and consider the pde

�u = 0 on 
 and uj

@


is given:

Using the standard �ve point central �nite di�erence approximation over an equidistant rectan-

gular grid we obtain a symmetric linear system. For H

0

we take an average of the incomplete

Choleski (IC) and a modi�ed incomplete Choleski matrix (MIC) see ([8]: Section 3). The IC

matrix corresponds with � = 0, whereas the MIC matrix corresponds with � = 1. Taking 200

points in x- and y-direction, and x

0

= 0 we obtain the results as given in Table 5.

10



� 0 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1

iterates 21 17 14 13 14 13 17 46 *

Table 5. Number of iteration steps, for which k r

i

k

2

= k r

0

k

2

� 10

�6

Note that EN converges rather fast for the choices 0 � � � 0:98 but diverges for the choice

� = 1 which corresponds with the MIC preconditioner. This seems to be quite in line with

similar experiments reported for preconditioned cg in ([8]: Section 3). However, if we apply EN

to 0:1 � AH

0

and � = 1 then we obtain k r

EN

23

k

2

= k r

0

k

2

� 10

�6

. Therefore we believe that

these experiments con�rm our conjecture, since the spectral radius of (I � AH

0

) with the IC

matrix is less than one, whereas with the MIC matrix the spectral radius is much larger than

one (see [4]). This result suggests that the divergence for � = 1 in the previous experiment is not

caused only by a loss of independence among the Krylov subspace basis vectors for this value of

� (which is the reason for slow convergence of cg in this case ([8]: Section 3). We conclude that

the convergence behaviour of EN depends not only on the choice of H

0

but also on the scaling

parameter �

opt

. We expect good convergence if the spectral radius of (I � �

opt

AH

0

) is less than

one.

Our experiments show that EN is not invariant with respect to a general transformation of

coordinates. Note that this conclusion is not in contradiction with ([3]: Proposition 2.2), which

states that EN is invariant under unitary transformations.

4.2 The stability of EN with respect to scaling

>From Figure 12 it appears that initially the residuals increase for � = 10

�1

. To illustrate this

phenomenon we will describe some experiments for � in the vicinity of 0.1. The results are given

in Table 6 where i is the smallest value such that k r

i

k

2

= k b k

2

� 10

�12

and imax is de�ned

by kr

imax

k

2

= max

1�j�i

kr

j

k

2

.

�

0.09 0.10 0.11 0.13 0.15

imax 1 32 42 53 59

k r

imax

k

2

= k b k

2

1 1.9x10

1

1.8x10

3

4.5x10

7

9.4x10

11

i 74 78 80 84 91

k r

i

k

2

= k b k

2

9x10

�13

2.6x10

�13

4.3x10

�13

3.3x10

�13

4.4x10

�13

k b�Ax

i

k

2

= k b k

2

9x10

�13

4.3x10

�13

2.9x10

�11

1.4x10

�6

2.2x10

�2

Table 6. k r

imax

k

2

for di�erent values of �.

This table shows that initial residuals increase fast for � � 0:1 and that the inequality

k b � Ax

i

k

2

=kbk

2

� 10

�12

does not hold for � � 0:10, as it should in exact arithmetic.

For a possible explanation of the increase of the residuals we make use of the equality r

k+1

=

(I � P

k

)E

0

r

k

. The right-hand side consists of two parts: �rstly a multiplication with E

0

and

secondly a multiplication with the orthogonal projecion (I � P

k

). Since � (E

0

) � [1�100�; 1��]

it follows that when � > 2 � 10

�2

; k E

0

r

k

k

2

can be larger than k r

k

k

2

. For the second part

11



we always have k (I � P

k

)E

0

r

k

k

2

� k E

0

r

k

k

2

. From this it appears that for � 2 (0; 0:02) the

residual decreases in both parts. For � 2 [0:02; 0:09] the increase in the �rst part is cancelled

by the decrease in the second part. For � 2 (0:09;1) initially the increase in the �rst part

dominates whereas after a number of iteration steps (imax) the decrease in the second part

dominates.

Note that in exact arithmetic r

i

= b�Ax

i

. However, for � � 0:1 this is clearly violated in EN

and hence the reliability of r

i

given by EN depends on the value �. To explain this we assume

that r

i

and x

i

denote the exact values and r̂

i

and x̂

i

denote the numerically computed values.

Now de�ne z

i

= r

imax

� r

i

, ẑ

i

= r̂

imax

� r̂

i

, and suppose that k r̂

imax

� r

imax

k

2

= k r

imax

k

2

� �

and k ẑ

i

�z

i

k

2

= k z

i

k

2

� �, where � is a modest multiple of the machine precision. For � = 0:15

this implies kr̂

i

� r

i

k

2

= kr̂

imax

� r

imax

� (ẑ

i

� z

i

) k

2

� �fkr

imax

k

2

+ k z k

2

g � 2� 10

12

k b k

2

�

and k r̂

i

� (b� Ax̂

i

) k

2

= k r̂

i

� r

i

+ (b�Ax

i

) � (b�Ax̂

i

) k

2

� 2 � 10

12

k b k

2

�. This implies

that due to rounding errors it is possible for � = 0:15 that

k r

i

k

2

= k b k

2

� 10

�12

whereas

k b� Ax̂

i

k

2

= k b k

2

� 10

12

�

(note that �

2

(A) = 100 ).

We conclude that the stability of the EN-method depends on �. In the given experiment the

EN-method is quite stable for � � 0:09 and rather unstable for � � 0:1. It is, in general, not

known for which � EN is stable. These results do not support the stability properties claimed

in ([3]: p.516).

4.3 Some examples where the EN-method does not converge

In this subsection we give some examples for which EN fails to converge. In order to identify

such problems we look for nonsingular matrices A and H

0

such that H

1

is singular. Taking

H

0

= I it follows from (3) that if E

0

r

0

6= 0 then c

0

= AE

0

r

0

with  = 1= k AE

0

r

0

k

2

. Using

Property 1.6 it follows that H

1

is singular if and only if c

T

0

E

0

r

0

=  (AE

0

r

0

)

T

E

0

r

0

= 0. Thus

A should be such that (Av)

T

v = 0 for v 2 R

n

which means that Av and v are orthogonal. A

simple matrix with this property is A =

"

0 �1

1 0

#

.

Example 1

We apply EN to Ax = b with A =

"

0 �1

1 0

#

, H

0

=

"

1 0

0 1

#

; x =

 

1

�1

!

and b =

 

1

1

!

.

Starting with x

0

=

 

0

0

!

gives r

0

=

 

1

1

!

. Since E

0

= I � AH

0

=

"

1 1

�1 1

#

we obtain

E

0

r

0

=

 

2

0

!

and c

0

=

 

0

1

!

, which implies that c

T

0

E

0

r

0

= 0 ( H

1

singular). Continuing the

method with H

1

= H

0

yields E

1

= E

0

and c

T

1

E

0

r

1

= 0 ( H

2

singular). After k iteration steps

12



we obtain H

k

= H

0

; E

k

= E

0

and r

k

= E

k

0

r

0

. The eigenvalues of E

0

are 1+ i and 1� i so that

r

k

= P

"

(1 + i)

k

0

0 (1� i)

k

#

P

�1

r

0

and k r

k

k

2

!1 for k!1 :

Thus, for this example the EN-method is clearly divergent.

This example shows that EN does not converge for each given linear system. It is known that

GMRES converges slowly for this type of matrices. In ([5]: p.23) it is shown that when GMRES

is applied to Ax = b with A 2 R

n x n

given by

A =

0

B

B

B

B

B

B

@

0 0 1

1 0 0

0 1 0 0

.

.

.

� 1 0

1

C

C

C

C

C

C

A

; b = (1; 0; :::; 0)

T

and x

0

= (0; :::; 0)

T

;

then x

i

= x

0

; 0 � i � n� 1 and x

n

= x :

In our following example EN converges slowly, whereas GMRES converges very fast.

Example 2

Take

H

0

= I; A = �

0

B

B

B

B

B

B

B

B

@

0 �10

4

10

4

0 �

1:03

1:04

�

.

.

.

2

1

C

C

C

C

C

C

C

C

A

and x = (1; :::; 1)

T

:

Starting with x

0

= (0; :::; 0)

T

we obtain k r

EN1

100

k

2

= k b k

2

� 10

�7

for � = 10

�3

, whereas

k r

G

15

k

2

= k b k

2

� 10

�12

. The rather bizarre convergence behaviour of EN in dependence on

the scaling parameter � is nicely illustrated by the fact that k r

EN1

14

k

2

= k b k

2

� 10

�12

for

� = 10

�4

but k r

EN1

100

k

2

= k b k

2

� 10

�5

for � = 10

�5

. Using the EN2 implementation we obtain

for the updated residual k r

EN2

14

k

2

= k b k

2

� 10

�12

for � = 10

�3

; 10

�4

and 10

�5

whereas the

exact residual k Ax

14

� b k

2

= k b k

2

equals 3 x 10

�4

; 2 x 10

�6

and 5 x 10

�7

for � respectively

10

�3

; 10

�4

and 10

�5

.

In Section 4.1 we have seen, and explained, that for � small enough application of EN to

�Ax = �b gives k r

EN

i

k

2

� k r

G

i

k

2

for some problems. Example 2 shows that there are also

linear systems where this equivalence does not hold.

4.4 The practical relevance of Property 1.6

In this subsection we consider the application of EN1 to Example 2 for � = 10

�3

. Taking into

account the similarity between Examples 1 and 2 we expect that in Example 2, H

1

is nearly

singular. By computation it follows that k E

1

r

1

k

2

= 1:4� 10

2

and k H

1

E

1

r

1

k

2

= 2:6� 10

�10

so

k H

�1

1

k

2

is very large. It appears that the computed vector c

1

= AH

1

E

1

r

1

has a large relative

13



error and that c

T

0

c

1

equals 1:5� 10

�4

instead of 0. This explains the bad convergence behaviour

EN1 in Example 2.

The large relative error in c

1

is also predicted by ([3]: Theorem 2.2) if we use that

c

H

= k E

1

k

2

= k AH

1

E

1

r

1

k

2

� 3� 10

8

:

This experience motivates us to investigate the practical applicability of Property 1.6. We note

the following drawbacks:

- if c

T

k

E

0

r

k

= 0 then it is possible of course that the computed value of c

T

k

E

0

r

k

6= 0,

- if c

T

k

E

0

r

k

6= 0 then it is still possible that H

k+1

is nearly singular.

To get around these di�culties we could replace condition c

T

k

E

0

r

k

= 0 by

j c

T

k

E

0

r

k

j = k E

0

r

k

k

2

� � for � � 0: (9)

If inequality (9) holds we take H

k+1

= H

k

. However this condition has certain disadvantages

too. First of all it is not clear which value of � is feasible. Secondly implementation of this

condition does not help much in Example 2. In this case we have j c

T

0

E

0

r

0

j = k E

0

r

0

k

2

= 1.8

x 10

�12

. If we take � � 1.8 x 10

�12

then we obtain the same results as without this condition,

whereas � > 1.8 x 10

�12

leads to H

k

= H

0

for 0 � k � 100 and k r

100

k

2

= k b k

2

= 10

100

.

Hence, for Example 2 there is no value of � such that the EN1-method combined with (9) is

convergent.

This indicates that implementing Property 1.6 in this way is useless from a practical point of

view.

>From the given examples it follows that EN is not attractive if some of the matrices H

k

are

(nearly) singular. Therefore, it is important to know a priori when the matrices H

k

are (nearly)

singular. In ([3] p.516, Theorem 2.3) the following "safe" case is stated: if AH

0

is positive

(negative) de�nite then k (AH

k

)

�1

k

2

� 1=� where

� =

inf

k x k

2

= 1

j (AH

0

x)

T

x j =

�

k x k

2

2

+ k AH

0

x k

2

2

�

1=2

:

The following theorem states that if AH

0

is neither positive nor negative de�nite then it is

possible to obtain a singular matrix H

k

.

Theorem 4.2

If AH

0

is neither positive nor negative de�nite on Im (E

0

) then there exists a right-hand side

vector b such that H

1

is singular.

Proof

The condition on AH

0

implies that there is a vector v 2 Im (E

0

) such that (AH

0

v)

T

v = 0.

Since v 2 Im (E

0

) we can �nd b 2 R

n

such that E

0

b = v . Applying EN to this system with

x

0

= (0; :::; 0)

T

yields c

0

= AH

0

E

0

b with  = 1= k AH

0

E

0

b k

2

. From Property 1.6 and the

equations

c

T

0

E

0

r

0

=  (AH

0

E

0

b)

T

E

0

b =  (AH

0

v)

T

v = 0

it follows that H

1

is singular.

Note that if there is a vector v such that (Av)

T

v = 0 then 1=� is in�nite. 2

Our conclusion is that it is only "safe" to apply the EN-method if AH

0

is positive or negative

de�nite.
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4.5 A scaling invariant version of the EN method

In Section 4.1 and 4.2 we have shown that the convergence and stability properties of EN are

not scaling invariant. As a consequence of this one should estimate a parameter �

opt

such that

the spectral radius of (I � �

opt

AH

0

) is less than one. In this section we modify the EN method

such that parameter estimation is not longer required.

In Section 1 we have shown that r

k+1

= (I � AH

k

)r

k

� �

k

Au

k

. Combination with u

k

=

H

k

(I �AH

k

)r

k

gives r

k+1

= (I � �

k

AH

k

)(I �AH

k

)r

k

.

Since E

k

= (I �AH

k

) = (I � P

k�1

)(I � AH

0

); r

k+1

can also be written

as r

k+1

= (I � �

k

AH

k

)(I � P

k�1

)(I � AH

0

)r

k

:

Note that it is the multiplication with (I �AH

0

) which makes EN not scaling invariant. Using

this observation we modify EN such that r

k+1

obtained with the modi�ed EN method can be

written as follows:

r

k+1

= (I � �

k

AH

k

)(I � P

k�1

)(I � 

k

AH

0

)r

k

where the constant 

k

= (AH

0

r

k

)

T

r

k

= k AH

0

r

k

k

2

2

minimizes k (I � AH

0

)r

k

k

2

. To implement

the modi�ed method (EN3) the �rst step of the implementation EN2 should be changed as

follows:

 = (AH

0

r

k

)

T

r

k

= k AH

0

r

k

k

2

2

; �

(0)

= (I � AH

0

)r

k

; �

(0)

= H

0

r

k

; �

i

= c

T

i

�

(i)

; �

(i+1)

=

�

(i)

� �

i

c

i

; �

(i+1)

= �

(i)

+ �

i

u

i

; i = 0; :::; k� 1:

It is easy to show that EN3 is scaling invariant, which is con�rmed by our numerical experiments.

Application of EN3 to Problem P6 (with � = 10

�5

and � = 0:9) with B := �B gives k r

EN

35

k

2

= k r

0

k

2

� 10

�12

for all choices of �. Finally we apply EN3 to the pde problem given in Section

4.1. The results are given in Table 7.

� 0 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1

iterates 21 18 12 11 11 10 10 9 22

Table 7. Number of iteration steps, for which k r

EN3

i

k

2

= k r

0

k

2

� 10

�6

:

Note that EN3 converges also for the choice � = 1. Furthermore the optimal number of

iterates of EN2 in Table 5 equals 13 whereas the optimal number of iterates of EN3 in Table

7 equals 9. Thus in this example we observe that the convergence of EN3 is approximately 1.5

times as good as the convergence of EN2.

5 Another formulation of the GMRES-method

In ([3]: p.513) it is noted without proof that, when choosing

u

k

= H

k

r

k

; (10)

instead of u

k

= H

k

E

k

r

k

, the EN-method leads to an algorithm algebraically equivalent to

GMRES. In this section we �rst prove this equivalence under the assumption that the matrices

H

k

are nonsingular. Subsequently we give a slight modi�cation of the choice (10) such that

the method remains equivalent to GMRES even if the matrices H

k

are singular. A suitable

15



implementation of this method arises if an orthonormal basis for the Krylov subspace is generated

by the modi�ed Gram Schmidt process.

First we will show that the vectors c

k

form an orthonormal basis for

spanf(AH

0

) r

0

; :::; (AH

0

)

k+1

r

0

g:

Since (4) is only valid for the choice u

k

= H

k

E

k

r

k

we use the equality

E

k+1

=

�

I � c

k

c

T

k

�

E

k

(11)

(cf [3]: p.512) .

Theorem 5.1

Let u

k

be chosen as u

k

= H

k

r

k

in EN . When H

k

is not singular and r

k

6= 0 , then

r

k+1

= (I � P

k

) r

0

where P

k

=

k

P

i=0

c

i

c

T

i

is the orthogonal projection onto span f(AH

0

) r

0

; :::;

(AH

0

)

k+1

r

0

g.

Proof

Similar as in the proof for Theorem 3.1 we take

c

k

= Au

k

(12)

We prove the theorem by an induction argument in k. Using (10) and (12) we obtain c

0

=

(AH

0

) r

0

. Combination of (5) and (11) gives r

1

= E

1

r

0

=

�

I � c

0

c

T

0

�

E

0

r

0

. Since c

0

= (AH

0

) r

0

it follows that r

1

=

�

I � c

0

c

T

0

�

r

0

. This implies the theorem to be true for k = 0.

It follows from (10) and (12) that c

k+1

= AH

k+1

r

k+1

= (I �E

k+1

) r

k+1

.

Equation (11) implies E

k+1

= (I � P

k

)E

0

and c

k+1

= (I � (I � P

k

) (I �AH

0

)) (I � P

k

) r

0

by

induction. The last equation can also be written as

c

k+1

= (I � P

k

)AH

0

(I � P

k

) r

0

= (I � P

k

)

 

c

0

�

k

X

i=0

(AH

0

) c

i

c

T

i

r

0

!

:

By induction it follows that (AH

0

) c

i

2 span fc

0

; :::; c

k

g; for i = 0; :::; k� 1, hence

c

k+1

= � (I � P

k

)AH

0

c

k

c

T

k

r

0

(13)

Since c

k

has a non-zero component in the direction of (AH

0

)

k+1

r

0

; H

k+1

is nonsingular and

r

k+1

6= 0 it follows that c

k+1

has a non-zero component in the direction of (AH

0

)

k+2

r

0

. Using

(13) it follows by induction that c

T

i

c

k+1

= 0; i = 0; :::; k. Thus fc

0

; :::; c

k+1

g is an orthonormal

basis for span f(AH

0

) r

0

; :::; (AH

0

)

k+2

r

0

g. Combining (5), (11) and (12) we obtain

r

k+2

= E

k+2

r

k+1

=

�

I � c

k+1

c

T

k+1

�

(I �AH

k+1

) r

k+1

;

so that

r

k+2

=

�

I � c

k+1

c

T

k+1

�

(r

k+1

� c

k+1

) =

�

I � c

k+1

c

T

k+1

�

r

k+1

:
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By induction it follows that

r

k+2

=

�

I � P

k

� c

k+1

c

T

k+1

�

r

0

;

which concludes our proof. 2

>From this theorem we conclude that the method converges if the matrices H

k

are nonsin-

gular. Since GMRES leads to the solution within a �nite number of iteration steps we look for

a modi�cation of (10) such that the condition on H

k

can be dropped. To this end we note that

it follows from (13) that c

k+1

is a unit vector in the direction of (I � P

k

) (AH

0

) c

k

: Choose the

vector u

k

as follows

f

u

0

= H

0

r

0

which implies c

0

= AH

0

r

0

u

k

= u

k�1

�H

k

c

k�1

; k � 1 c

k

= � (I � P

k�1

)AH

0

c

k�1

(14)

it can be proven that r

k+1

= (I � P

k

) r

0

where P

k

=

k

P

i=0

c

i

c

T

i

is the orthogonal projection onto

span f(AH

0

) r

0

; :::; (AH

0

)

k+1

r

0

g . Furthermore, it is easy to show if c

k

6= 0 and c

k+1

= 0 then

r

k+1

= 0.

>From this remark and (2) it follows that EN with u

k

as in (14) is equivalent to GMRES

applied to the postconditioned linear system AH

0

y = b .

An implementation of this method is:

1. u

0

= H

0

r

0

= k AH

0

r

0

k

2

; c

0

= Au

0

; k = 0 ;

x

1

= x

0

+ u

0

c

T

0

r

0

and r

1

= r

0

� c

0

c

T

0

r

0

;

2. while k r

k+1

k

2

> eps do k := k + 1 ;

c

(0)

k

= AH

0

c

k�1

; u

(0)

k

= H

0

c

k�1

;

�

i

= c

T

i

c

(i)

k

; c

(i+1)

k

= c

(i)

k

� �

i

c

i

; u

(i+1)

k

= u

(i)

k

� �

i

u

i

; i = 0; :::; k� 1;

c

k

= c

(k)

k

= k c

(k)

k

k

2

; u

k

= u

(k)

k

= k c

(k)

k

k

2

;

3. x

k+1

= x

k

+ u

k

c

T

k

r

k

and r

k+1

= r

k

� c

k

c

T

k

r

k

.

Note that the vectors c

k

are made mutually orthogonal by the modi�ed Gram-Schmidt process.

In this implementation of GMRES, 2k iteration steps involve 2k multiplications with A and

H

0

; 2k

2

inner products, 4k

2

vectorupdates and 4knmemory space. Comparing this with GMRES

in Table 2 it follows that this implementation requires 2k

2

vectorupdates and 2kn memory space

extra.

Using the choice (14) the GMRES-method is formulated in the same way as the EN-method.

This correspondence gives some theoretical insight, for instance that also for GMRES a matrix

H

k

can be formed, which approximates the inverse of A. With respect to op-counts and memory

requirements we prefer the implementation of GMRES given in [6] and [7]
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6 A comparision of the EN- and the B-methods

In this section we compare the EN-method with the B-method described in [1]. The B-method is

mostly used to solve nonlinear systems but it can also be used to solve a linear system. The de-

scription of the B-method indicates certain similarities with the EN-method. However a further

investigation reveals essential di�erences.The main di�erence is that r

k

= r

0

+

2k

P

i=1

�

ki

(AH

0

)

i

r

0

for the EN-method, whereas

r

k

= r

0

+

k

P

i=1

�

ki

(AH

0

)

i

r

0

for the B-method . We conclude this section with a comparison of

the B- and the GMRES-methods.

>From the descriptions of the EN- and B-methods, in Section 1, we note the following corre-

spondence: in both methods rank-one updates are used to construct a matrix H

k

which is an

approximation to the inverse of A (compare [1] and [2]).

In order to make a more detailed comparison we use the following vectors:

De�nition 6.1

u

k

= � (H

k

AH

k

�H

k

) r

k

; v

k

= H

T

k

H

k

r

k

=r

T

k

H

T

k

H

k

AH

k

r

k

; c

k

= Au

k

:

Note that u

k

; v

k

; etc., are di�erent for the di�erent methods. Since only the residuals for

the methods will be compared we have chosen to identify them by a superscript like r

B

k

(for

Broyden), where necessary.

>From the description of the B-method, De�nition 6.1 and the equations p

k

+ H

k

r

k

and y

k

=

r

k

� r

k+1

= r

k

� b+ A (x

k

+H

k

r

k

) = AH

k

r

k

we deduce that

H

k+1

= H

k

+ u

k

v

T

k

: (15)

Theorem 6.2

If r

T

k

H

T

k

H

k

AH

k

r

k

6= 0 then r

k

= r

0

+

k

P

i=1

�

ki

(AH

0

)

i

r

0

, where

span fc

0

; :::c

k

g � span f(AH

0

) r

0

; ::: (AH

0

)

k+2

r

0

g .

Proof

We prove the theorem by an induction argument in k . From De�nition 6.1 it follows that

c

0

= Au

0

= � (AH

0

)

2

r

0

+ (AH

0

) r

0

; hence span fc

0

g � span f(AH

0

) r

0

; (AH

0

)

2

r

0

g: This

implies the theorem to be true for k = 0.

Since x

k+1

= x

k

+ H

k

r

k

we have r

k+1

= (I �AH

k

) r

k

. This together with De�nition 6.1 and

(15) yields

r

k+1

= r

k

� A

 

H

0

+

k�1

X

i=0

u

i

v

T

i

!

r

k

= r

k

� AH

0

r

k

�

k�1

X

i=0

c

i

v

T

i

r

k

:

Now, it follows by induction that

r

k+1

= r

0

+

k+1

X

i=1

�

k+1;i

(AH

0

)

i

r

0

: (16)
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By De�nition 6.1 we have that c

k+1

= � (AH

k+1

)

2

r

k+1

+ (AH

k+1

) r

k+1

. Since

H

k+1

= H

0

+

k

P

i=0

u

i

v

T

i

the following equation holds

c

k+1

= �

 

AH

0

+

k

X

i=0

c

i

v

T

i

!

2

r

k+1

+

 

AH

0

+

k

X

i=0

c

i

v

T

i

!

r

k+1

:

This implies that

c

k+1

= � (AH

0

)

2

r

k+1

+(AH

0

) r

k+1

+

k

X

i=0

c

i

v

T

i

f�AH

0

�

k

X

i=0

c

i

v

T

i

+1gr

k+1

�

k

X

i=0

(AH

0

) c

i

v

T

i

r

k+1

:

Using (16) it follows by induction that c

k+1

2 span f(AH

0

) r

0

; :::; (AH

0

)

k+3

r

0

g . 2

Theorem 6.2 together with (2) yields the following inequality k r

B

k

k

2

� k r

G

k

k

2

. From

the numerical experiments given in Section 2 it follows that k r

G

k

k

2

can be much larger than

k r

EN

k

k

2

. Hence, the B- and EN-methods can not be equivalent.

In [2] a generalization of the B-method is given. In this method, the BG-method, the update of

H

k

is as follows:

H

k+1

= H

k

� (H

k

y

k

� p

k

) q

T

k

=q

T

k

y

k

;

where p

k

= H

k

r

k

; y

k

= AH

k

r

k

and q

k

is an arbitrary vector subject only to the restriction that

q

T

k

y

k

6= 0. Note that with the choice q

k

= H

T

k

p

k

the BG-method is equal to the B-method. In

the same way as for the B-method it follows that k r

BG

k

k

2

� k r

G

k

k

2

, hence there is no choice

of q

k

such that BG and EN are equivalent.

It can be shown that for q

k

= E

T

k

Au

k

, BG is algebraically equivalent to GMRES, which

starts with x

0

+ H

0

(b�Ax

0

). Furthermore, it appears that BG with q

k

= E

T

k

Au

k

is a secant

method [2]. However, the speci�c method given in ([2]: p.373) , is di�erent from GMRES.

In order to estimate the e�ciency of the BG-method we make a comparison with the GMRES-

method. With respect to the amount of work and memory for an implementation of the BG-

method we note that the k-th step costs at least one multiplication with H

0

and A together

with k inner products and 2k vector updates, whereas 2k vectors of length n should be stored

in memory. This, in combination with the inequality k r

BG

k

k

2

� k r

G

k

k

2

, yields that for every

choice of q

k

the BG-method is less e�cient than GMRES applied to the postconditioned system

AH

0

y = b.

7 Conclusions

In this paper we have compared the methods GMRES, EN and B. From this comparison it

appears that in some numerical experiments EN takes less work than GMRES. However, a

theoretical investigation shows that the e�ciency of EN can be at most only slightly better

than that of GMRES. Furthermore, the numerical experiments show that the convergence and

stability of EN are not scaling invariant. However we specify a new version of the EN-method,

which is scaling invariant. The convergence behaviour of this version seems to be better than that

of the original EN-method. Subsequently we gave a formulation of GMRES in the same spirit
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as the EN-method. This correspondence gives theoretical insight, but in practical situations we

prefer the implementation of the GMRES-method as given in [6] and [7].

Since the class of BG-methods, proposed in [2], seems to be related to EN this class is included

in our comparison. We show that the EN-method (with uk = H

k

E

k

r

k

) is not equivalent to

any BG-method. With respect to GMRES, a BG-method is speci�ed, which is algebraically

equivalent to GMRES.
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Figure 1: Problem P6, � = 0:9, EN
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Figure 2: Problem P6, � = 0:9, GMRES
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Figure 3: Problem P7, � = 0:9. EN
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Figure 4: Problem P7, � = 0:9, GMRES
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Figure 5: Problem P8, � = 0:9, EN
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Figure 6: Problem P8, � = 0:9, GMRES
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Figure 7: Problem P9, EN

� = 0:95

� = 0:9

� = 0:5

� = 0:2

� = 0

Figure 8: Problem P9, GMRES
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Figure 10: Problem P10, GMRES
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