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The superlinear convergence behaviour of

GMRES

H. A. Van der Vorst

�

and C. Vuik

y

April 7, 1994

Abstract

GMRES is a rather popular iterative method for the solution of

nonsingular nonsymmetric linear systems. It is well-known that GM-

RES often has a so-called superlinear convergence behaviour, i.e., the

rate of convergence seems to improve as the iteration proceeds. For

the conjugate gradients method this phenomenon has been related

to a (modest) degree of convergence of the Ritz values. It has been

observed in experiments that for GMRES too, changes in the conver-

gence behaviour seem to be related to the convergence of Ritz values.

In this paper we prove that as soon as eigenvalues of the original oper-

ator are su�ciently well approximated by Ritz values, GMRES from

then on converges at least as fast as for a related system in which

these eigenvalues (and their eigenvector components) are missing.

Introduction

In this paper we study the superlinear convergence behaviour of GMRES,

observed when solving relevant nonsymmetric nonsingular linear systems.

That is, our aim is to understand when and why the method converges faster

than in a previous phase of the iteration process. This should not be con-

fused with the fact that one can derive bounds for the residual that describe

convergence with almost any desired rate of convergence. These bounds are

usually obtained by replacing the actual Krylov iteration polynomial (which

produces the actual minimum norm residuals) by polynomials that are the
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product of factors that vanish at selected eigenvalues of the operator and a

Chebyshev polynomial that takes small values over the remaining part of the

interval. This is a well-known technique (see, e.g., [3], [1], and [10]), which

sometimes leads to useful bounds for the residuals, but which fails to predict

the gradual changes that one observes in actual convergence histories.

Our main motivation for this theoretical study are the results of the exper-

iments reported in [6] (see also [12]), which suggest a relation between the

convergence of the GMRES iterates and the convergence of the Ritz values

to the eigenvalues of the matrix. Such a relation for the conjugate gradients

method has been derived in [11]. The main problem in obtaining a similar

relation for GMRES is that the Ritz values are not the zeros of the iteration

polynomial for GMRES, as is the case for conjugate gradients.

Another di�culty is that a nonsymmetric matrix cannot always be trans-

formed to diagonal form by similarity transformations. One might argue

that in �nite precision arithmetic defectiveness of a matrix does not play a

role, because when a matrix has Jordan blocks of dimension larger than one

in exact arithmetic, then in the presence of rounding errors the multiplicity

of the eigenvalues will be one in practice. However, the eigenvector matrix

will be very ill-conditioned in that case. In our experiments we could not see

the di�erence in convergence behaviour for operators with single eigenvalues,

but ill-conditioned eigenvectors for some almost multiple eigenvalues, and

operators with those almost multiple eigenvalues replaced by Jordan blocks

of appropriate size. Therefore, we believe that it is worthwhile to include the

Jordan block case in the analysis, even if we wish to explain the phenomena

that one observes in rounding error arithmetic.

Our approach is based upon the relation with GMRES and the Full Orthog-

onalization Method (FOM), for which the iteration polynomial has the Ritz

values as its zeros. In our analysis we assume exact arithmetic. Neverthe-

less, it appears that our analysis may help to understand phenomena that

are observed in actual oating point computation.

In Section 1 we briey describe GMRES and FOM, and we summarize

some relevant properties of these methods.

In Section 2 we present relations between the convergence of GMRES and

FOM, and the convergence of the Ritz values.

Finally, in Section 3, we describe some numerical experiments, which illus-

trate our theoretical results.
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1 De�nitions and Preliminaries

In this section we recall some fundamental properties of the FOM and the

GMRES method [10], [2], which are iterative methods for solving linear sys-

tems with a non-symmetric matrix.

Consider the linear system Ax = b with x; b 2 IR

n

and with a non-

singular A 2 IR

n�n

. The Krylov subspace K

k

(A; r

0

) is de�ned by K

k

=

spanfr

0

; Ar

0

; :::; A

k�1

r

0

g. In both methods, FOM and GMRES, Arnoldi's

method is used for the construction of an orthonormal basis fv

1

; :::; v

k

g for

K

k

(A; r

0

). The modi�ed Gram-Schmidt version of Arnoldi's method can be

described as follows ([10]:p.857 or [4]: p.155):

1. Start: Choose x

0

and compute r

0

= b�Ax

0

and v

1

= r

0

=kr

0

k

2

,

2. Iterate: For j = 1; :::; k do:

v

j+1

:= Av

j

for i = 1; :::; j do:

h

ij

:= v

T

j+1

v

i

; v

j+1

:= v

j+1

� h

ij

v

i

,

h

j+1;j

:= kv

j+1

k

2

; v

j+1

= v

j+1

=h

j+1;j

.

(the non-de�ned h

i;j

are assumed to be zero).

With the n� k matrix V

k

= [v

1

; : : : ; v

k

] we have that H

k

= V

T

k

AV

k

is an

upper k � k Hessenberg matrix whose entries are the scalars h

ij

.

In the FOMmethod we construct an approximate solution x

F

k

of the form

x

F

k

= x

0

+z

F

k

where z

F

k

is an element of K

k

(A; r

0

) with the following property

r

F

k

= b�Ax

F

k

? K

k

(A; r

0

): (1)

Note that if A is symmetric then FOM is equivalent to CG (compare [11]:

relation (2.3)). If H

k

is nonsingular then it is easy to show that z

F

k

= V

k

y

F

k

,

where y

k

satis�es H

k

y

F

k

= kr

0

k

2

e

1

and e

1

is the �rst unit vector in IR

k

.

However, when H

k

is singular, it can be proved that a solution x

F

k

does not

exist (see [2]: Section 3).

We describe the solution method followed in GMRES in little more detail

since some of the iteration coe�cients are needed in Section 3. In GMRES

the approximate solution x

G

k

= x

0

+ z

G

k

with z

G

k

2 K

k

(A; r

0

) is such that

kr

G

k

k

2

= kb�Ax

G

k

k

2

= min

z2K

k

(A;r

0

)

kr

0

�Azk

2

: (2)
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As a consequence of (2) we have that r

G

k

is orthogonal to AK

k

(A; r

0

), or

r

G

k

? K

k

(A;Ar

0

). If A is symmetric then GMRES is equivalent to MINRES

[7].

De�ning the matrix

�

H

k

2 IR

k+1�k

as

�

H

k

=

 

H

k

0:::0 h

k+1;k

!

it follows that AV

k

= V

k+1

�

H

k

. Using this equation it is shown in ([10]:

Section 3.1) that x

G

k

= x

0

+V

k

y

G

k

, where y

G

k

solves the following least squares

problem

k�e

1

�

�

H

k

y

G

k

k

2

= min

y2IR

k

k�e

1

�

�

H

k

yk

2

; (3)

with � = kr

0

k

2

and e

1

is the �rst unit vector in IR

k+1

. In contrast with FOM,

the approximations x

G

k

obtained with GMRES exist for all k ([10]: Section

3.4, or [2]: Section 3).

To solve the least squares problem (3)

�

H

k

is factorized as Q

T

k

R

k

by Givens

rotations, where Q

k

2 IR

(k+1)�(k+1)

; Q

T

k

Q

k

= I

k+1

, and R

k

2 IR

(k+1)�k

is an

upper triangular matrix.

The matrixQ

k

is taken as Q

k

= F

1

� � �F

k

, where the matrix F

j

2 IR

(k+1)�(k+1)

is the following Givens rotation

F

j

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 �

.

.

.

1

c

j

�s

j

s

j

c

j

1

.

.

.

� 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

which eliminates the element in the (j + 1; j) position of F

j�1

F

j�2

� � �F

1

�

H

k

.

The product F

k�1

:::F

1

�

H

k

=

0

B

B

B

B

B

B

B

@

� : : : � �

.

.

.

.

.

.

.

.

.

� �

� 0 �

k

0 h

k+1;k

1

C

C

C

C

C

C

C

A

;

(where an asterisk stands for a non-zero element) implies that c

k

and s

k

should be chosen as follows:

c

k

= �

k

=

q

�

2

k

+ h

2

k+1;k

and s

k

= �h

k+1;k

=

q

�

2

k

+ h

2

k+1;k

: (4)
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Using this factorization the least squares problem (3) is equivalent to

k�e

1

�

�

H

k

y

G

k

k

2

= min

y2IR

k

kQ

k

�e

1

�R

k

yk

2

: (5)

Since the last row of R

k

is zero, y

G

k

is the solution of the linear system with

the leading k � k submatrix of R

k

as matrix and the �rst k components of

Q

k

�e

1

as right-hand side.

We cite the following important results for FOM and GMRES.

Lemma 1 ([10]: p. 862, Proposition 1)

The GMRES residual satis�es the following equation

kr

G

k

k

2

kr

G

k�1

k

2

= js

k

j : (6)

Lemma 2 ([2]: theorem 5.1)

If c

k

6= 0 then the FOM and the GMRES residuals satisfy the following

equation

k r

G

k

k

2

=j c

k

j k r

F

k

k

2

(7)

Note: For a discussion on the implications of these properties for FOM and

GMRES see [2].

The Ritz values and the Ritz vectors are de�ned as follows (compare [11]:

Section 2.3 or [5]: p. 274):

De�nition 1 The Ritz values �

(k)

1

; :::; �

(k)

k

are the eigenvalues of the matrix

H

k

= V

T

k

AV

k

(note that V

T

k

V

k

= I

k

). If y

(k)

i

2 IR

k

is a normalized eigenvector

of H

k

corresponding to �

(k)

i

then the vector z

k

i

= V

k

y

(k)

i

is called a Ritz vector.

De�nition 2 For all the iterative methods to be discussed, it follows that

the residual r

k

at the k-th iteration step is a member of K

k+1

(A; r

0

), and

hence it can be written as a k-th degree polynomial in A, acting on r

0

. In

connection with this we will speak about the polynomials for method M as,

the "M polynomial".

The following result is an immediate consequence of Theorem 5.1 in [8].

Lemma 3 If c

k

6= 0, where c

k

is de�ned in (4) then

1. The FOM polynomial satis�es p

F

k

(H

k

) = 0

2. �

(k)

i

6= 0; i = 1; � � � ; k

3.

p

F

k

(t) =

(�

(k)

1

� t) � � � (�

(k)

k

� t)

(�

(k)

1

) � � � (�

(k)

k

)

: (8)
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2 The convergence of FOM and GMRES

In this section we shall prove some relations between the convergence of the

Ritz values and the convergence of the FOM and the GMRES method. The

proofs of our theorems follow closely the lines set forth in a proof given by

([11]: p. 547) where the matrix A is symmetric and positive de�nite. In

that proof two important properties of the CG method are exploited: an

optimality property and the property that the Ritz values are the roots of

the "CG polynomial". However, when A is non-symmetric neither the FOM

method nor the GMRES method has both properties. This has led us to base

our proofs on the optimality property of GMRES (see (2)) together with the

fact that the Ritz values are the roots of the FOM polynomial (see Lemma

3).

For each matrixA there exists a nonsingular n�nmatrixX which reduces

the matrix A to its Jordan normal form, i.e.

X

�1

AX � J �

0

B

B

B

B

@

J

1

J

2

.

.

.

J

m

1

C

C

C

C

A

;

where each of the n

j

� n

j

submatrices J

j

has the form

J

j

=

0

B

B

B

B

B

@

�

j

1

.

.

.

.

.

.

.

.

.

1

�

j

1

C

C

C

C

C

A

:

We assume that the J

j

have been ordered so that if �

s

= �

t

for s > t then

�

i

= �

t

for all t � i � s, i.e., blocks with equal � have been grouped together.

Furthermore, we assume that if �

t

= �

t+1

then n

t

� n

t+1

, i.e., blocks with

equal � have been ordered in descending size. Note that these orderings can

be realized by simple symmetric permutations to X.

Occasionally we will write a vector with respect to the basis represented by

the columns ofX, and this representation will be partitioned correspondingly

to the partition of J , in particular r

0

= X, with  = (

1

; : : : ; 

m

)

T

.

De�nition 3 If t is such that �

1

= �

t

and �

t+1

6= �

t

, then the blockdiagonal

matrix D

(1)

, with n

j

�n

j

blocks D

(1)

j

along its diagonal, corresponding to the

blocksizes of J , is de�ned by

D

(1)

j

=

8

<

:

0; if j � t

Q

n

1

i=1

(

�

(k)

i

�

1

(�

(k)

i

I � J

j

)

�1

(�

1

I � J

j

)) if j > t

6



(we assume that n

1

� k).

Furthermore we de�ne a blockdiagonal matrix D

(2)

with a blockstructure cor-

responding to J as

D

(2)

j

= q

`

(J

j

); for j = 1; : : : ;m; and q

`

2 �

1

`

;

where �

1

k

denotes the class of polynomials of degree at most k and constant

term 1.

It is readily veri�ed that D

(1)

and D

(2)

commute.

Note that D

(2)

 = X

�1

q

`

(A)r

0

, so that it describes the iteration e�ect for

the polynomial q

`

with respect to the basis de�ned by X. Multiplication of

this vector by D

(1)

has the e�ect that the part corresponding to the �rst

Jordan block is removed and the parts corresponding to the other blocks are

multiplied by block matrices that converge to identity blocks as the �rst n

1

Ritz values converge to �

1

(i.e., roots �

(k)

i

converging to �

1

are replaced by

�

1

, see the corresponding polynomial de�ned in (9)).

Theorem 1 relates the residuals in a certain phase of GMRES to the resid-

uals of a comparison process in which the inuence of �

1

has been removed.

This comparison process is de�ned as follows.

De�nition 4 Let r

G

k

(or r

F

k

) denote the residual in the k-th step of GMRES

(or FOM) applied to Ax = b, with starting residual r

0

= X i.e., r

G

k

=

p

G

k

(A)r

0

(or r

F

k

= p

F

k

(A)r

0

).

For k such that H

k

is nonsingular we de�ne a comparison GMRES (or FOM)

process which starts with r

0

0

= p

F

k

(A)X

0

, where 

0

j

= 0 for j � t and 

0

j

= 

j

for j > t. I.e., the comparison processes start with the k-th residual of FOM,

after having deleted all the components corresponding to �

1

. The residual at

the `-th step of the comparison GMRES (or FOM) process is denoted by r

G

0

`

(or r

F

0

`

), and the corresponding GMRES polynomial by q

G

0

`

.

Theorem 1 Let k be such that H

k

is nonsingular and let n

1

� k, then for

all ` > 0 we have that

kr

G

k+`

k

2

� kXD

(1)

X

�1

k

2

kr

G

0

`

k

2

:

Proof: For the comparison process we have the relation

r

G

0

`

= q

G

0

`

(A)r

0

0

:

We can write r

G

0

`

with respect to X as

r

G

0

`

= Xq

G

0

`

(J)p

F

k

(J)

0

:

7



Now we de�ne the auxiliary polynomial h

k

2 �

1

k

as:

h

k

(t) =

n

1

Y

i=1

�

(k)

i

�

1

�

1

� t

�

(k)

i

� t

p

F

k

(t): (9)

(note that p

F

k

(t) is de�ned since H

k

is nonsingular).

It follows from the optimality property of GMRES that

kr

G

k+`

k

2

� kq

G

0

`

(A)h

k

(A)r

0

k

2

= kXD

(1)

X

�1

XD

(2)

p

F

k

(J)

0

k

2

� kXD

(1)

X

�1

k

2

kr

G

0

`

k

2

; (10)

which completes the proof. 2

With Lemma 2 we have immediately:

Corollary 1 If k and ` are such that H

k

, H

k+`

and H

0

`

are nonsingular, then

kr

F

k+`

k

2

� kXD

(1)

X

�1

k

2

jc

0

`

j

jc

k+`

j

kr

F

0

`

k

2

:

We obtain the following bound for kXD

(1)

X

�1

k

2

:

kXD

(1)

X

�1

k

2

� �

2

(X)kD

(1)

k

2

� �

2

(X)f

n

1

Y

i=1

j�

(k)

i

j

j�

1

j

g max

�

j

6=�

1

(

n

1

Y

i=1

fj

�

j

� �

1

�

j

� �

(k)

i

j+

n

j

X

p=2

j

�

1

� �

(k)

i

(�

j

� �

(k)

i

)

p

jg): (11)

In the derivation of this bound we have used that (�I � J

j

)

�1

and (�I � J

j

)

commute, and, furthermore, that k(�I�J

j

)

�1

(�I�J

j

)k

2

� k(�I�J

j

)

�1

(�I�

J

j

)k

1

.

In order to prove this inequality we use the norm inequality k k

2

�

q

k k

1

k k

1

([5]: Corollary 2.3.2). By writing out the matrix expression in the norm one

may verify that k(�I � J

j

)

�1

(�I � J

j

)k

1

= k(�I � J

j

)

�1

(�I � J

j

)k

1

.

When A is diagonalizable, i.e., n

i

= 1, for all i, then this rather unpleasant

expression reduces to

kXD

(1)

X

�1

k

2

� �

2

(X) �

j�

(k)

1

j

j�

1

j

� max

�

j

6=�

1

j

�

j

� �

1

�

j

� �

(k)

1

j � F

k

�

2

(X): (12)

This expression is quite similar as the expression derived in [11] for the CG

process. In [11] the factor �

2

(X) vanishes, since for symmetric A we have

8



that X is orthogonal.

When there is a Jordan block with �

1

of dimension n

1

6= 1 then we have to

wait for a phase in the GMRES process in which there are n

1

Ritz values

close to �

1

. From then on the factor kXD

(1)

X

�1

k

2

is bounded by �

2

(X)

times a modest constant, and we may expect that the method will further

converge about as fast as for a problem in with �

1

is absent. This is in quite

good agreement with an experiment in ([6]: p.22 and Fig.23).

Theorem 1 says that from the k-th step on, the continued GMRES pro-

cess behaves, except for a certain factor, as a GMRES process that has been

started with the FOM result after k steps, in which the components corre-

sponding to �

1

have been deleted. In order to get this factor small enough,

the value of k should be chosen so large that �

(k)

1

is relatively close to �

1

.

The weak point in this comparison is that we relate the convergence be-

haviour of the continued GMRES process to the result of a FOM process,

whereas it would be more natural to use the result of the �rst k GMRES

iterations. In view of the relation between GMRES and FOM the theorem

is then only of practical value in situations where jc

k

j is not too far from 1,

since kr

F

k

k

2

=

1

jc

k

j

kr

G

k

k

2

. In that case we may compare the continued GM-

RES process from the k-th step on with another GMRES process that has

been started with a slightly modi�ed GMRES residual at the k-th step. The

assumption about jc

k

j does not put a too severe restriction on the applica-

bility of the theorem, since it holds as soon as there is a noticeable reduction

in the norms of the residuals in GMRES (cf. Lemma 1).

Theorem 1 may also be used in combination with convergence estimates

for the GMRES method, and then it is a powerful tool to analyse the actual

convergence behaviour of GMRES. Such convergence estimates for the GM-

RES process are given in ([10]: Section 3.4). Note that, with Lemma 2 and

Corollary 1 this procedure can also be followed for the FOM process.

However, straight-forward application of Theorem 1 with, for instance, ([10]:

p. 866, Proposition 4) leads to a bound for the continued GMRES process

which contains the factor �

2

(X)

2

instead of the �

2

(X). The following theo-

rem does not have this disadvantage and it also relates the residuals of the

continued GMRES process with the residuals of a related GMRES process.

For simplicity this theorem has been formulated for the situation that all

n

j

= 1, i.e., that A is diagonalizable. The extension to the Jordan form case

is rather straight-forward.

Theorem 2 Let A 2 IR

n�n

be diagonalizable. Let k be such that H

k

is

9



nonsingular and let "

(`)

be de�ned as follows

"

(`)

= min

q2�

1

`

max

�

i

6=�

1

jq(�

i

)j

(compare [10]: p. 866, Proposition 4) then

kr

G

k+`

k

2

�

F

k

jc

k

j

�

2

(X)"

(`)

kr

G

k

k

2

;

where F

k

has been de�ned in equation (12).

Proof: We use h

k

as in (9) and we de�ne another auxiliary polynomial

q

`

2 �

1

`

as follows: q

`

is the polynomial for which

"

(`)

= max

�

i

6=�

1

jq

`

(�

i

)j:

For existence and uniqueness of this polynomial we refer to ([9]: p. 115).

Since q

l

h

k

2 �

1

k+`

we obtain

kr

G

k+`

k

2

� kq

`

(A)h

k

(A)r

0

k

2

= kXD

(1)

D

(2)

X

�1

X

0

B

B

@

p

F

k

(�

1

) �

.

.

.

� p

F

k

(�

n

)

1

C

C

A

0

B

B

@



1

.

.

.



n

1

C

C

A

k

2

� �

2

(X)F

k

"

(`)

kr

F

k

k

2

= �

2

(X)F

k

"

(`)

1

jc

k

j

kr

G

k

k

2

;

which proves the theorem. 2

Theorem 2 can be generalized as follows (compare [11]: Theorem 5.1):

Theorem 3 Let A 2 IR

n�n

be diagonalizable and let k be such that H

k

is

nonsingular. Let �

r

denote a set of r di�erent eigenvalues of A, and �

c

r

�

f�

i

j�

i

6= �

j

for all �

j

2 �

r

g. "

(`;r)

is de�ned as "

(`;r)

= min

q2�

1

`

max

�

i

2�

c

r

jq(�

i

)j

and

F

k;r

= max

�

j

2�

c

r

Y

�

i

2�

r

j�

(k)

i

j

j�

i

j

j�

j

� �

i

j

j�

j

� �

(k)

i

j

:

Then

kr

G

k+`

k

2

�

F

k;r

jc

k

j

�

2

(X)"

(`;r)

kr

G

k

k

2

:

Proof: The proof follows the lines set forth by the proof of Theorem 2. The

only di�erences are in the choice of h

k

and q

`

. Here they are chosen as

h

k

(t) =

Y

�

i

2�

r

�

(k)

i

�

i

(�

i

� t)

(�

(k)

i

� t)

p

F

k

(t) and q

`

2 �

1

`

is such that "

(`;r)

= max

�

j

2�

c

r

jq

`

(�

j

)j:

2

By Lemma 2 we obtain the following result for FOM :

10



Corollary 2 Let k and ` be such that H

k

and H

k+`

are nonsingular, then

kr

F

k+`

k

2

�

F

k;r

jc

k+`

j

�

2

(X)"

(`;r)

kr

F

k

k

2

:

3 Numerical experiments

We have chosen rather simple examples in order to have all the information

available to understand the convergence behaviour. These examples also

make it easy for the reader to repeat the experiments. First we give an

example for which GMRES is superlinear convergent. Then we present an

example in which the matrix has a Jordan block of size 3. Though even

small rounding errors perturb the matrix to a diagonalizable system, we will

see that the actual situation is quite di�erent from the multiple eigenvalue

situation and that the size of the Jordan block has a strong inuence on the

convergence behaviour. Finally, we discuss a well-known example where the

Ritz values do not converge. In this example the GMRES method is only

linear convergent, which corresponds with the results given in Section 2.

Our problems have been taken from ([6]: p.16, 17). The matrix is of the form

A = SBS

�1

with A;S;B 2 IR

100�100

. We have selected S to be equal to

S =

2

6

6

6

6

6

6

6

4

1 �

1 � �

.

.

.

.

.

.

�

.

.

.

�

1

3

7

7

7

7

7

7

7

5

and B =

2

6

6

6

6

6

6

6

4

1

1 + � �

3

�

.

.

.

100

3

7

7

7

7

7

7

7

5

:

The system Ax = b is solved for right-hand sides, such that x = (1; : : : ; 1)

T

.

The iterative methods start with x

0

= (0; : : : ; 0)

T

.

In our �rst example we consider the convergence behaviour for the linear

system with � = 0 and � = 0:9 in view of Theorem 1. The eigenvalues are

numbered as �

1

= 1, �

2

= 1 and �

i

= i, i = 3,...,100, and the Ritz values,

which are real, are numbered such that �

(k)

i

< �

(k)

i+1

.

The actual reduction factors kr

G

k+1

k

2

=kr

G

k

k

2

are shown in Figure 1. >From

k = 16 on, GMRES appears to be superlinear convergent. For this prob-

lem the residuals can be bounded by an upperbound that has a decay rate

(

q

�

max

=�

min

� 1)=(

q

�

max

=�

min

+1) (see [10]: Theorem 5 (with � = 0), and

use the fact that all eigenvalues are on the real axis). Of course, this gives

only a rough indication for the actual reduction factors, but it shows us that

we may expect faster convergence for problems for which the eigenvalue ratio

11



�

max

=�

min

is smaller. Obviously, since the eigenvalues, except for the �rst

two, are equidistantly distributed, the decay rate changes more if we delete

a small eigenvalue instead of a large eigenvalue. For this reason we restrict

our attention to the lower part of the spectrum. Note that the eigenvalue

�

2

= 1 does not play a role in this example.

The following table shows the convergence of the smallest Ritz value.

It appears that F

k;1

with �

1

= f�

1

g, has a moderate value from k = 16,

k 13 14 15 16 17 18 19 20

�

(k)

1

3.26 2.77 2.35 1.99 1.71 1.49 1.34 1.23

F

k;1

24 24 7 4 2.6 2.0 1.6 1.4

Table 1: The convergence of the �rst Ritz value for � = 0

and, from the discussion to Theorem 1, this implies that the convergence

behaviour is comparable with a process for a system in which the residual has

no component in the direction of the eigenvector corresponding to �

1

= 1.

After some iterations the second Ritz value converges to �

3

(see Table 2,

k 20 21 22 23 24 25 26 27 28 29 30

�

(k)

2

4.19 3.98 3.8 3.66 3.54 3.45 3.38 3.3 3.25 3.2 3.17

F

k;2

9 85 8 4 2.8 2.2 1.9 1.6 1.5 1.4 1.3

Table 2: The convergence of the second Ritz value for � = 0

where �

2

has been taken as �

2

= f�

1

; �

3

g). After k = 23 the process

converges as if the eigenvalues �

1

(as well as �

2

= �

1

) and �

3

are absent.

This is quite in line with the superlinear convergence behaviour of GMRES as

observed from Figure 1. The decay rates for the upperbounds, corresponding

to the comparison processes for the respective phases of the GMRES iteration

process, are (

q

�

100

=�

1

�1)=(

q

�

100

=�

1

+1) = :82, (

q

�

100

=�

3

�1)=(

q

�

100

=�

3

+

1) = :7, and (

q

�

100

=�

4

� 1)=(

q

�

100

=�

4

+ 1) = :67, respectively. We see

that the relative reduction in the decay rates is relatively large after the

elimination of �

1

, and then it becomes smaller and smaller. We see a similar

trend reected in the reduction factors, displayed in Figure 1: their decrease

is, indeed, much larger just beyond k = 16 than it is near k = 23. Note also

that the predicted decay rates are in quite good agreement with the observed

decay rates.

12



We consider in little more detail the situation for GMRES applied with

� = 0:1 and � = 0:9, also displayed in Figure 1. In this example we take

�

1

= 1; �

2

= 1:1 and �

i

= i for i = 3; � � � ; 100. Until k = 24 the convergence

behaviour is virtually the same as for GMRES applied to the system with � =

0 and � = 0:9. From k = 24 to k = 30 we observe only linear convergence.

We note that �

(24)

1

= 1:107 and �

(25)

2

= 1:091, thus from k = 25 the smallest

Ritz value is in [�

1

; �

2

].

>From k = 31 until k = 36 the reduction factor increases. The second Ritz

value is 3.096 for k = 30 and 2.951 for k = 31, so in that phase GMRES

"discoveres" a second eigenvalue less than �

3

= 3. From k = 37 the reduction

factor decreases again, which is in agreement with the results given in Table

k 30 31 32 33 34 35 36 37 38 39 40

�

(k)

2

3.03 2.95 2.87 2.77 2.63 2.46 2.24 1.98 1.74 1.54 1.39

F

k;2

227 112 40 22 13 8 5.4 3.6 2.5 1.9 1.5

Table 3: The convergence of the second Ritz value for � = 0:1

3 (where �

2

= f�

1

; �

2

g).

In Figure 2 we show the GMRES residuals for the choice � = 0 and

� = 0:1. It appears that the close eigenvalues �

1

= 1 and �

2

= 1:1 for

� = 0:1 has a decelerating e�ect. However the number of steps that GMRES

for � = 0:1 lags behind GMRES for � = 0 is rather small (compare [11]:

Section 6.7). It is not clear whether this phenomenon also occurs for problems

with a more realistic spectrum.

In our second example we consider a situation with a multiple eigenvalue.

In exact arithmetic the multiplicity of an eigenvalue plays no role, as long as

the matrix A is diagonalizable. To illustrate this we consider the case where

�

1

= �

2

= �

3

= 1 , and �

j

= j for j > 3, and � = 0:9. In Figure 3 we

see the error reduction plot for this case. The �rst, by now familiar bulge

arises at the 15-th iteration, after which the �rst Ritz value gets below 4,

i.e., enters its �nal interval, and thereafter we recognize the expected faster

convergence.

The picture changes completely if A is not diagonalizable, i.e, when the ma-

trix is defective. In Figure 4 we see the error reduction history for a system

in which the �rst three eigenvalues (all equal to 1) occur in a Jordanblock of

size 3.

At the �rst bulge, we have that �

(i)

1

comes close to 1, at the second bulge

13



�

(i)

2

arrives near 1 and at the third bulge a third Ritzvalue comes close to 1.

Only after these three Ritzvalues have arrived close enough to � = 1 we see

convergence at a reduced rate. This is quite in line with Theorem 1 which

states that faster convergence, corresponding to a process in which only �

j

for j > 3 are present, may be expected only after three Ritz values have been

converged su�ciently close enough to � = 1.

Because of rounding errors one might have expected the matrix to be diago-

nalizable, but in that case the transformation matrixX is very ill-conditioned

so that the system behaves like having a Jordan block, i.e., all three eigenval-

ues have to be discovered, and the corresponding subspace has to be removed,

before faster convergence can really take place.

In our �nal experiment we take the matrix B as follows [2], [6]:

B =

2

6

6

6

6

6

6

6

6

4

� 0 � � � 0 1

1

.

.

.

� 0

.

.

.

.

.

.

�

.

.

.

0

1 �

3

7

7

7

7

7

7

7

7

5

:

We choose � = 1:2; � = 0; the right-hand side b = (1; 0; � � � ; 0)

T

and starting

vector x

0

= 0.

It is easily seen that the Hessenberg matrixH

k

, obtained by Arnoldi's process,

is equal to the k� k upper part of B. So for k � 99 the Ritz value �

(k)

1

= 1:2

does not move to one of the eigenvalues �

k

= �+exp(2k�i=100); k = 0; � � � ; 99

of A. This is in agreement, of course, with our numerical results.

In Figure 5 it can be seen that FOM has a linear convergence behaviour,

which means that the reduction factors are constant. Applying GMRES the

reduction factor changes only in the �rst iterates. Experiments with other

values of � and b show more or less the same convergence behaviour.

4 Conclusions

We have analyzed in some detail the often observed superlinear convergence

behaviour of GMRES. Our results show that a reduction in the speed of con-

vergence, in a certain phase of the iteration process, can be expected as soon

as certain eigenvalues of the given matrix are su�ciently well approximated

by Ritz values. However, we have no theory why these eigenvalues should

be approximated in that phase of the process. Our �ndings are reasonably

well illustrated by numerical experiments and we believe that they have the

14



following important implication. In practice full GMRES is seldomly used,

instead one restarts GMRES after m iteration steps. It is then to be ex-

pected that if m is not large enough in order to allow critical eigenspaces

to be approximated by Ritz values, then slow convergence may be expected.

This is quite in line with observations reported in [12] and [6].
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Figure 1: GMRES, I: � = 0, II: � = 0:1

Figure 2: GMRES, I: � = 0, II: � = 0:1

Figure 3. GMRES for a spectrum with multiple eigenvalues

16



Figure 4. GMRES for a spectrum with a Jordanblock of size 3

Figure 5: � = 1:2. I: FOM, II: GMRES
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