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Further Investigation on the Solution ofthe Incompressible Navier-Stokes Equationsby Krylov Subspace and Multigrid MethodsS. Zeng C. Vuik P. WesselingSeptember 28, 1993



AbstractAs a sequel to [7], a further study is carried out. Three iterative methods, that is, GMRESR,which consists of GCR with GMRES as inner loop, GCR with multigrid as inner loop anda multigrid method, are investigated by means of numerical experiments. The multigrid al-gorithm in the second and the third methods uses an ILU smoother. Numerical experimentsare performed on a workstation and a vector mini supercomputer, and robustness and e�-ciency of the three methods are studied. E�ciency of the second and the third methods arecompared with the corresponding two methods discussed in [7], where an alternating Jacobiline smoother is used in the multigrid algorithm. It appears that good methods would comeout of some suitable combinations of GCR type methods and multigrid methods.



1 IntroductionIn [7] three iterative methods, i.e., GMRES ([2]) with ILU preconditioning (Method 1�),GCR ([1]) with multigrid as its inner loop (Method 2�) and a (standard) multigrid method(Method 3�), are investigated for the solution of the incompressible Navier-Stokes equationsdiscretized by a �nite volume method on staggered grids in general coordinates. Concerningrobustness and computational e�ciency of the three methods, the following observations areobtained. Method 1� and Method 2� are equally robust; Method 3� is the least robust one.On a scalar computer, Method 1� is the most e�cient on coarser grids, while Method 2�and Method 3� become more e�cient as the grid is re�ned. Combining the advantages ofMethod 1� and Method 3�, Method 2� seems very promising.The above conclusions, however, are drawn from results obtained on a scalar machine; onvector computers, results may be di�erent. The reason is that most arithmetic operationsinvolved in a GMRES and GCR type method are matrix-vector multiplications and vector-vector additions, which are easily vectorizable. As a consequence, such methods would havehigher e�ciency, especially when the grid is �ne, which leads to larger vector lengths. Butfor a multigrid method, use of vectors of shorter lengths is inevitable, since use of coarsergrids is necessary. This hampers multigrid e�ciency on vector computers. Combination ofa GCR type method with multigrid, using multigrid as inner loop, will su�er from the samedisadvantage. On the other hand, a good multigrid method, in general, has a reductionfactor (almost) independent of grid size, whereas the performance of GMRES and GCR typemethods deteriorates as the grid is re�ned, due to the fact that the number of iterations isincreased. This raises the question whether for GMRES and GCR type methods the gain fromincreasing computational speed due to better vectorization can balance the loss due to thegrowth of number of iterations when re�ning the grid, and whether multigrid methods as wellas combinations of GCR and multigrid can still achieve high e�ciency on vector machines asthey do on scalar machines when the grid gets �ner. To tackle these questions is the purposeof this paper.Apart from e�ciency, robustness is also an important aspect of a numerical method. For amultigrid method, using powerful smoothers such as those of ILU type makes it robust and thisis necessary for di�cult problems as in general coordinates, where simple smoothers do notwork very well and often fail. Furthermore, more robust smoothers can give smaller reductionfactors and so need fewer iterations. But this does not simply imply higher e�ciency, becauseusually robust smoothers have less vectorization potential than simpler smoothers and oneiteration is therefore more costly. E�ciency consideration cannot be ignored for a practicalmethod. So this brings us back to the consideration of e�ciency: whether more powerfulsmoothers can still be acceptably e�cient while improving robustness.In this paper, based on the above considerations, we investigate three methods: a GM-RESR method which uses a preconditioned (with RILU) GMRES method as inner loop(Method 1), and GCR using multigrid as inner loop (Method 2), and a multigrid method(Method 3). In the multigrid algorithm used in Methods 2 and 3, an ILU smoother is em-ployed. The three methods di�er from the three methods studied in [7] as discussed above.The reason for this change is that Method 1 is more e�cient and usually more robust thanMethod 1�, and the same is true for Methods 2, 3 and Methods 2�, 3�, as will be seen later.1



It is thought better to let the best methods available compete.The outline of this paper is as follows. For principles of the methods, we refer to [7] andthe references therein; here only those that have not been described in [7] will be presentedin section 2. The results as well as analyses and comparisons are given in section 3. Section 4summarizes the observations.2 Solution Methods2.1 GMRESR with GMRES as Inner LoopThe GMRESR method is described in [3]. Let the linear system to be solved beAx = b: (2.1)The inner loop in GMRESR, which is briey denoted as C(A; r) in [7], gives an approximationof the solution to the equation system Au = r; (2.2)where r = b � Ax is the residual. C(A; r) is regarded as preconditioning. Here C(A; r) isobtained byK GMRES iterations with RILU preconditioning, as explained in [5] and [6], withK = 5. The maximum number nt� 1 of outer iterations is taken to be 10 for the solution ofthe momentum equations and 20 for the solution of the pressure equation. When the numberof outer iterations is reached and the required accuracy is not yet obtained, the so-called minalfa version ([4]) of the truncated GMRESR method is used, and computation is continued,until the required accuracy is obtained.2.2 GCR with Multigrid as Inner LoopIn this method, the approximation ~u of (2.2) is given by applying one F-cycle of multigriditeration, as explained below. Here we use the trunclast version (see also [4]) of the truncatedGCR and set nt equal to 15, which is never reached, however, for the accuracy requirementthat we set. Thus the outer loop of GCR is not truncated and is actually the full GCR.2.3 The Multigrid MethodAn ILU smoother is used, using the standard 9-point non-zero pattern. The momentumequations are smoothed in a decoupled way, successively in all directions. Update of variablesis carried out with damping; the damping factor ! is �xed at 0.8, based on numerical exper-iments. The F-cycle is employed. The coarsest grid is �xed at 2� 2, on which a direct solveris used to solve the equation system.3 Numerical ExperimentsThe four test problems of [7], namely the square driven cavity problem, the non-uniform squaredriven cavity problem, the skewed driven cavity problem and the L-shaped driven cavity2



problem, are used in numerical experiments. For convenience of reference, these problemsare designated as Problems 1 to 4, respectively. Three time intervals, namely �t = 0:0625,0:125, 0:25, are considered, but the number of time marching steps is �xed at 40. We solvethe equation systems at each time step until the ratio of the present norm krk of the residualto the norm kr0k of the initial residual at the beginning of the present timestep satis�eskrk=kr0k < tol, with tol = 10�4 for the momentum equations and tol = 10�6 for the pressureequation. Computations are carried out on an HP 735 workstation and a Convex 3840 minisupercomputer. When operating in scalar mode, the Convex is slower than the HP.In Tables 3.1 to 3.4 are presented the total CPU time tt, the CPU time tv for the solutionof the momentum equations and the CPU time tp for the solution of the pressure equation, onthe HP machine. All CPU times are measured in seconds. At the �nal time step, the numberof outer iterations for Method 1 and Method 2 and the number of multigrid iterations forMethod 3 are counted and are denoted as kv and kp for the solution of the momentumequations and the pressure equation, respectively. The corresponding reduction factors, �vand �p of the multigrid algorithm, used in Method 2 and Method 3, are also listed for thelast iteration at the �nal time step.From these tables it is obvious that all three methods have better robustness and e�ciencythan the corresponding three methods studied in [7]. It is easier to compare the performanceof the three methods by means of �gures instead of tables of data. So in Figure 3.1 throughFigure 3.8, the CPU times tt and tp are plotted for n � n grids, with n along the abscissasand the ordinates indicating the CPU time per grid point for the 40 time steps. We see thatfor the solution of the pressure equations, the curves (in the �gures on the right columns) fordi�erent �t are almost identical in each method. This is natural since the pressure matrixdoes not change with �t for a problem. The minor di�erences are probably caused by notvery accurate measurement of the CPU times.It is clear that for Method 2 and Method 3, the CPU time per grid point is almost con-stant, independently of grid size and Reynolds number. However for Method 1, the CPUtime increases signi�cantly as the grids are re�ned, especially for the solution of the pressureequation and for the low Reynolds number cases. There is an exception for Problem 2 atRe = 1000, where Method 1 does not loose e�ciency when the grid becomes �ner (see theleft-top �gure in Figure 3.4); the reason is not clear. In this �gure, there are some test pointsmissing due to divergence. Usually on coarser grids Method 1 is the most e�cient, but on�ner grids Method 2 and Method 3 are more economical. So for a computation case thereexists a cross-over point with respect to grid size, beyond which Method 2 and Method 3 aremore e�cient than Method 1. It seems that Method 1 is more suitable for solving the mo-mentum equations, especially at high Reynolds numbers where some superlinear convergenceoccurs, and Methods 2 and 3 are preferable for solving the pressure equation. Comparedwith Method 3, Method 2 seems not to be so superior, and sometimes gives even somewhatworse performance. But the loss of e�ciency in Method 2 for some cases is very small. Thisindicates that when a multigrid algorithm is su�ciently powerful, the gain by accelerating itwith GCR type methods is small, but still helpful, as we will see when Methods 2 and 3 arecompared on the Convex. On the other hand, when a multigrid algorithm is not so strong,as in the case of Method 3�, combination of it with GCR, leading to Method 2�, turns out3
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2Figure 3.1: Problem 1 at Re = 1 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 4
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2Figure 3.2: Problem 1 at Re = 1000 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plut marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 5



20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

n

C
P

U
 t/

n^
2

Method 1

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

n

C
P

U
 t/

n^
2

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

n

C
P

U
 t/

n^
2

Method 2

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

n

C
P

U
 t/

n^
2

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

n

C
P

U
 t/

n^
2

Method 3

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

n

C
P

U
 t/

n^
2Figure 3.3: Problem 2 at Re = 1 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 6
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2Figure 3.4: Problem 2 at Re = 1000 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 7
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2Figure 3.5: Problem 3 at Re = 1 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 8
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2Figure 3.6: Problem 3 at Re = 1000 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 9
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2Figure 3.7: Problem 4 at Re = 1 on the HP: CPU time per grid point on di�erent grids forthe solution of the momentum equations (left) and for the solution of the pressure equation(right). Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125;dotted lines and circles: �t = 0:25 10
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2Figure 3.9: CPU time per grid point against grid size for the solution of the momentumequations for Problem 1 on the HP. The Left column: Re = 1; the right column: Re = 1000.Solid lines and plus marks: �t = 0:0625; dashdot lines and x-marks: �t = 0:125; dotted linesand circles: �t = 0:25to be much better than multigrid itself. In Figure 3.9, we demonstrate the performance ofMethods 2�and 3� for the solution of the momentum equations for Problem 1, and see clearlythat the combination helps a lot indeed, especially for the high Reynolds number case.Next, we will see what happens on the Convex. The results are presented in Table 3.5.The kv's, kp's, �v's and �p's are the same as in Tables 3.1 to 3.4, of course, and therefore arenot given again. Only the cases with Re = 1 and �t = 0:0625 are considered; the other casesdo not add new insights. Again, we plot the CPU times per grid point against grid size inFigure 3.10. In order to bring out better the e�ect of vector length on this vector computer,computations on a 256 � 256 grid are included for Problem 4. Figure 3.10 show the samebehaviour as on the HP: the e�ciency of Method 1 deteriorates and that of Methods 2 and 3improves with grid re�nement, but cross-over points when Method 2 and Method 3 surpassMethod 1 move to �ner grids. On the 32 � 32 grids, on the Convex Methods 2 and 3 are12
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Figure 3.10: CPU time per grid point against grid size for the solution of the momentumequations (left column) and for the solution of the pressure equation (right column) by themultigrid using an ILU smoother on the Convex. Plus marks and solid lines: Method 1; x-marks and dashdot lines: Method 2; circles and dotted lines: Method 3, Re = 1, �t = 0:0625slower than on the HP, while Method 1 keeps the same speed. The results for Problem 4show, that on �ne grids, the solution of the pressure equation dominates computing time forMethod 1. For Problems 1, 2 and 4, Methods 2 and 3 are equally e�cient, although for somecases Method 3 does a little better job; but for Problem 3, Method 2 is obviously better.Now we investigate further the e�ciency of Method 2 and Method 3, and Method 2�and Method 3� as well, by making some comparisons. The four methods have been used onthe HP machine. Results show that Methods 2 and 3 are more e�cient than Methods 2�and 3� on the HP, in addition to being obviously more robust. Because the smoother inMethods 2� and 3� uses a simple alternating Jacobi line smoothing, which is thought to havegreater vectorization potential than the ILU smoothing used in Methods 2 and 3, whetherMethod 2 and Method 3 still possesses higher e�ciency on the Convex remains a question.Before making any comparisons, we note that the e�ciency of an algorithm depends not onlyon the portion of code that can be vectorized in theory, but also on many practical factorssuch as how vectorization is realized and how memory is accessed. Here we avoid discussionsof these matters, and just present numerical results in Table 3.6 for Problem 1, obtained byrunning the same code on the Convex. In this table, the speed-up factors, de�ned here asthe ratio of the CPU time on the HP to the CPU time on the Convex, are also given. Forexample, st = tt(HP)=tt(Convex). Comparing the results here with the data for Methods 2and 3 in Table 3.1, we may conclude that Methods 2� and 3� are less e�cient than Methods 2and 3 on the 128 � 128 grid, although on coarser grids they seem to be the same. But itis hard to say from the results that Methods 2� and 3� will be less e�cient with furthergrid re�nement, since, the speed-up is larger than for Methods 2 and 3, which implies that14
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2Figure 3.11: E�ciency comparison of Methods 2� and 3� with Methods 2 and 3 on the Convexfor the solution of the momentum equation for Problem 4. Left column: Re = 1; right column:Re = 1000. Solid lines and plus marks: Method 2� or Method 3�; dashdot lines and x-marks:Method 2 or Method 3. �t = 0:0625Methods 2� and 3� indeed have better vectorization properties. The test problem used issimple perhaps, because the numbers of iterations for these methods do not di�er very much.Going to more di�cult problems, say Problem 3, Methods 2� and 3�, in spite of their largerspeed-up factors, will be less e�cient since they require a larger number of iterations thanMethods 2 and 3 (cf. [7]). In this case, the speed-up can hardly balance the loss of e�ciencyresulting from the increase of number of iterations. This is veri�ed by carrying out a furthertest, for example for Problem 4. The results are plotted in Figure 3.11, which shows clearlythat Methods 2� and 3� are not able to beat Methods 2 and 3. Although for the low Reynoldsnumber Methods 2� and 2, Methods 3� and 3 have similar performance, for the high Reynoldsnumber Methods 2 and 3 are superior to Methods 2� and 3�. Method 3� does not work wellon �ner grids and even fails on the 256�256 grid. The curves become at when going to �nergrids, which indicates that the e�ciency gain from vectorization is exhausted. In this case,15



further improvement of e�ciency must rely on improvement of the mathematical e�ciency(for example, smaller reduction factor) of the algorithm. Looking carefully at Method 2�going from the grid 128 � 128 to the grid 256 � 256 for the case of Re = 1000, we see thatthe e�ciency on the �ner grid is slightly lower than on the coarser one. The reason is thatthe reduction factor grows with re�nement of the grid.4 ConclusionsWe have investigated numerically three iterative methods, namely, Method 1: GMRESR:GCR with GMRES as inner loop, Method 2: GCR with multigrid as inner loop and Method 3:a multigrid method, in the context of application to the solution of the incompressibleNavier-Stokes equations in general coordinates. The smoother in the multigrid algorithmfor Method 2 and Method 3 is an ILU smoothing.Numerical experiments are carried out on a sequential computer and on a vector machine.Numerical results demonstrate that the three methods have di�erent numerical behaviour.In particular, Method 1 is di�erent from Method 2 and Method 3; Method 2 and Method 3show similar performance. On the sequential computer, some facts observed in [7] also applyhere. On coarser grids, Method 1 is much more e�cient than Method 2 and Method 3. Whengoing to �ner grids, Method 1 becomes less e�cient due to a considerable increase of thenumber of iterations. For Method 1, it seems that the pressure equation is harder to solvethan the momentum equations, but for Methods 2 and 3, none of the equations causes specialdi�culties and both methods show a typical convergence property of multigrid methods, i.e.,convergence being (almost) independent of grid size. When moving to the vector computer,Method 1 always bene�ts from vectorization, while Method 3 and therefore also Method 2loose e�ciency if the grid is not su�ciently �ne (here the 32� 32 grids). But the tendency isthat Methods 2 and 3 are still more e�cient than Method 1 if the grid is �ne enough, as inthe case on the 128� 128 grid.It is found that when the smoother is strong enough, combination of GCR type methodswith multigrid does not pay o� a lot and actually sometimes gives slightly poorer perfor-mance than multigrid itself, but it does help in general. When the smoother is rather weak,combination of both methods improves both robustness and e�ciency of the methods. Wethink that combination of GCR with multigrid would lead to better algorithms than eitherone of them alone.Although methods 2 and 3 vectorize less well than methods 2� and 3�, we still expect themto be faster on most vector computers, because of their signi�cantly faster rate of convergence.The results suggest that the following solution strategies are advantageous for the futureimplementation of algorithms:1. To switch to Method 2 or Method 3 from Method 1 if the grid is �ne enough. Thisdepends on the speci�c computer being used and the problem.2. A more dynamic way is to �rst carry out a few GMRES type iterations, for exam-ple, a few iterations of Method 1. If the problem is found to be di�cult to solve by,16



say, checking convergence rate, then the solution procedure switches to Method 2 orMethod 3.3. A further combination, in addition to combination of GCR with multigrid as in Method 2,may be to use GMRES type methods like Method 1 in multigrid on coarser grids suchthat the coarsest grid is not too coarse, making use of the property that GMRES typemethods may be more e�cient on coarser grids than multigrid algorithms.
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Table 3.1: Problem 1 on the HP: the total CPU time tt, the CPU times tv and tp, thenumbers of iterations kv and kp at the �nal time step, and the reduction factors �v and �p ofthe multigrid algorithm in the last iteration at the �nal time step, the underrelaxation factor! = 0:8 Re = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 12 4, 3 3, 4 9 1, 3 1, 4� .125 13 5, 3 4, 4 10 2, 3 2, 432 .25 13 6, 3 4, 4 10 2, 3 2, 464 .0625 88 44, 26 5, 6 58 13, 27 2, 6� .125 94 49, 26 5, 6 60 15, 26 2, 664 .25 102 56, 27 6, 6 64 19, 26 2, 6128 .0625 697 366,252 7, 9 405 78,247 2, 10� .125 787 446,261 9, 9 438 106,251 3, 10128 .25 870 521,268 10,11 481 154,247 4, 10Method 232 .0625 46 22, 11 3, 4 .0804,.0513 45 21, 11 3, 4 .0684,.0424� .125 46 22, 11 3, 4 .0814,.0512 46 22, 11 3, 4 .116 ,.045432 .25 46 22, 11 3, 4 .0902,.0491 52 29, 11 4, 4 .130 ,.048664 .0625 161 81, 43 3, 4 .0851,.0509 160 80, 43 3, 4 .0907,.0418� .125 160 80, 43 3, 4 .0955,.0530 181 100, 43 3, 4 .0938,.044064 .25 161 80, 43 3, 4 .115 ,.0534 185 105, 43 4, 4 .105 ,.0463128 .0625 705 361,193 3, 4 .109 ,.0547 703 361,193 3, 4 .0812,.0445� .125 703 361,192 3, 4 .118 ,.0563 813 470,193 4, 4 .106 ,.0452128 .25 703 360,193 3, 4 .129 ,.0565 814 472,193 4, 4 .115 ,.0463Method 332 .0625 46 21, 12 3, 5 .0877,.0687 43 20, 11 3, 4 .0829,.0504� .125 46 21, 12 3, 5 .0871,.0700 46 22, 11 3, 4 .120 ,.055332 .25 47 22, 12 3, 5 .0927,.0709 51 26, 12 4, 5 .156 ,.056864 .0625 163 79, 46 3, 5 .0913,.0710 157 76, 43 3, 5 .106 ,.242� .125 167 83, 46 3, 5 .0997,.0714 172 89, 45 3, 5 .122 ,.24464 .25 175 92, 46 3, 5 .113 ,.0719 180 96, 46 4, 5 .173 ,.0579128 .0625 749 399,200 4, 5 .124 ,.0719 700 358,192 3, 4 .111 ,.0574� .125 748 401,197 4, 5 .135 ,.0721 737 394,193 4, 4 .140 ,.0559128 .25 746 405,191 4, 5 .148 ,.0725 750 397,203 4, 5 .143 ,.061518



Table 3.2: Problem 2 on the HP: the total CPU time tt, the CPU times tv and tp, thenumbers of iterations kv and kp at the �nal time step, and the reduction factors �v and �p ofthe multigrid algorithm in the last iteration at the �nal time step, the underrelaxation factor! = 0:8 Re = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 15 4, 6 3, 8 31 20, 6 12, 7� .125 15 4, 6 3, 7 d(9)32 .25 15 4, 6 3, 7 d(3)64 .0625 111 35, 56 4, 12 166 90, 56 14,12� .125 116 39, 57 5, 12 d(5)64 .25 121 44, 57 5, 12 d(2)128 .0625 1268 574,608 13, 21 848 204,558 5,18� .125 2039 1347,606 32, 21 945 305,553 7,18128 .25 d(1) 1126 468,572 11,21Method 232 .0625 48 22, 13 3, 4 .0838,.0577 46 22, 11 3, 4 .0774,.0470� .125 48 22, 13 3, 5 .0846,.0477 46 22, 11 3, 4 .0891,.056032 .25 47 22, 13 3, 5 .0968,.0474 46 22, 11 3, 4 .0978,.049264 .0625 162 80, 44 3, 4 .0679,.0608 161 80, 43 3, 4 .0849,.0699� .125 162 80, 44 3, 4 .0681,.0647 161 80, 43 3, 4 .0820,.064464 .25 163 81, 44 3, 4 .0685,.0631 161 80, 43 3, 4 .0839,.0625128 .0625 713 360,202 3, 4 .0633,.0934 703 360,193 3, 4 .0750,.0832� .125 720 360,210 3, 4 .0630,.0924 701 359,192 3, 4 .0719,.0858128 .25 733 360,223 3, 4 .0627,.0818 703 360,192 3, 4 .0719,.0808Method 332 .0625 46 20, 13 3, 5 .0935,.0725 46 21, 12 3, 5 .103 ,.0606� .125 46 20, 13 3, 5 .0925,.0766 46 21, 13 3, 5 .104 ,.074232 .25 46 20, 13 3, 5 .0942,.0737 46 21, 13 3, 5 .104 ,.058164 .0625 155 70, 47 3, 5 .0842,.0774 159 75, 46 3, 5 .0913,.0691� .125 156 70, 48 3, 5 .0838,.0852 159 75, 46 3, 5 .0885,.061964 .25 156 70, 48 3, 5 .0834,.0863 159 75, 46 3, 5 .0876,.0722128 .0625 690 328,212 3, 5 .0916,.107 679 329,200 3, 5 .0854,.0694� .125 688 325,213 3, 5 .0915,.111 680 329,201 3, 5 .0867,.0800128 .25 682 320,211 3, 5 .0913,.118 683 330,202 3, 5 .0886,.10319



Table 3.3: Problem 3 on the HP: the total CPU time tt, the CPU times tv and tp, thenumbers of iterations kv and kp at the �nal time step, and the reduction factors �v and �p ofthe multigrid algorithm in the last iteration at the �nal time step, the underrelaxation factor! = 0:8 Re = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 19 7, 7 5, 9 13 1, 7 1, 8� .125 19 7, 7 5, 8 14 2, 7 2, 832 .25 19 8, 7 5, 8 15 3, 7 3, 864 .0625 151 74, 57 8,13 90 14, 56 2, 12� .125 158 81, 57 9,12 93 18, 55 3, 1164 .25 162 86, 57 10,13 104 28, 56 4, 12128 .0625 1501 774,642 14,22 830 97,648 2, 22� .125 1617 879,653 18,22 870 132,652 4, 22128 .25 1655 917,653 20,23 951 213,653 6, 23Method 232 .0625 64 29, 22 4, 8 .203,.346 54 22, 19 3, 7 .0792,.214� .125 64 29, 22 4, 8 .209,.350 58 26, 19 4, 7 .117 ,.23332 .25 64 29, 22 4, 8 .213,.357 63 80, 19 5, 7 .201 ,.23164 .0625 228 106, 84 4, 8 .216,.233 192 80, 74 3, 7 .0932,.247� .125 228 106, 85 4, 8 .217,.260 216 104, 74 4, 7 .117 ,.23264 .25 227 106, 84 4, 8 .210,.234 217 106, 74 4, 7 .193 ,.244128 .0625 1003 474,378 4, 8 .215,.234 947 465,332 4, 7 .142 ,.219� .125 1001 473,378 4, 8 .202,.231 957 471,335 4, 7 .156 ,.252128 .25 1004 474,379 4, 8 .185,.223 958 471,336 4, 7 .169 ,.229Method 332 .0625 74 26, 35 4,14 .246,.371 63 20, 30 3, 12 .0871,.366� .125 74 27, 35 4,14 .240,.373 66 24, 30 4, 11 .142 ,.31332 .25 74 27, 34 4,14 .226,.372 72 29, 30 6, 11 .250 ,.34664 .0625 257 97,122 4,14 .229,.370 224 76,110 3, 12 .0933,.351� .125 255 98,120 4,14 .215,.371 240 91,111 4, 11 .138 ,.36664 .25 252 97,117 4,13 .200,.370 240 93,109 4, 11 .214 ,.357128 .0625 1073 424,499 4,13 .203,.370 1015 395,470 4, 10 .163 ,.354� .125 1058 425,484 4,13 .194,.370 1056 410,496 4, 11 .179 ,.338128 .25 1045 425,470 4,12 .190,.368 1099 417,532 4, 12 .191 ,.35820



Table 3.4: Problem 4 on the HP: the total CPU time tt, the CPU times tv and tp, thenumbers of iterations kv and kp at the �nal time step, and the reduction factors �v and �p ofthe multigrid algorithm in the last iteration at the �nal time step, the underrelaxation factor! = 0:8 Re = 1 Re = 1000Grid �t tt tv; tp kv; kp �v; �p tt tv; tp kv; kp �v; �pMethod 132 .0625 14 4, 5 3, 6 12 1, 5 1, 6� .125 15 5, 5 3, 6 12 2, 5 2, 632 .25 15 5, 5 3, 7 14 4, 5 4, 664 .0625 105 38, 47 4, 10 81 13, 47 2,11� .125 110 42, 48 4, 11 87 18, 48 3,1164 .25 113 45, 48 5, 11 103 35, 48 6,10128 .0625 992 305,599 6, 20 756 89,580 2,21� .125 1051 353,611 7, 21 814 135,592 4,21128 .25 1094 395,612 8, 22 979 300,591 12,21Method 232 .0625 55 29, 14 4, 5 .114,.111 47 22, 12 3, 5 .0563,.105� .125 55 29, 14 4, 5 .117,.111 54 28, 13 4, 5 .110 ,.098232 .25 55 29, 14 4, 5 .126,.102 58 31, 14 5, 5 .211 ,.086064 .0625 195 104, 53 4, 5 .118,.131 176 87, 51 3, 5 .0893,.126� .125 195 104, 53 4, 5 .124,.130 195 106, 52 4, 5 .187 ,.12064 .25 194 103, 53 4, 5 .131,.130 213 124, 52 6, 5 .301 ,.133128 .0625 861 472,238 4, 5 .124,.111 838 453,234 3, 5 .110 ,.129� .125 858 470,238 4, 5 .128,.109 856 471,235 4, 5 .0818,.132128 .25 859 471,238 4, 5 .136,.125 855 470,234 4, 5 .123 ,.129Method 332 .0625 54 27, 15 4, 6 .193,.110 47 21, 14 3, 6 .0746,.117� .125 54 26, 15 4, 6 .192,.113 53 25, 15 4, 7 .148 ,.43532 .25 54 26, 15 4, 6 .189,.127 58 31, 14 5, 6 .214 ,.14164 .0625 186 96, 53 4, 6 .191,.335 172 80, 55 3, 7 .0954,.153� .125 186 96, 53 4, 6 .188,.364 191 96, 58 4, 7 .202 ,.17864 .25 184 94, 52 4, 6 .184,.400 213 118, 58 6, 6 .387 ,.146128 .0625 773 420,203 4, 5 .188,.0847 806 418,238 3, 7 .117 ,.437� .125 774 419,205 4, 5 .190,.0968 890 489,251 5, 7 .198 ,.468128 .25 775 416,208 4, 5 .194,.0819 881 489,243 5, 6 .202 ,.17821



Table 3.5: CPU times measured on the Convex: the total CPU time tt, the CPU times tvand tp, the underrelaxation factor ! = 0:8, �t = 0:0625, Re = 1Problem 1 Problem 2 Problem 3 Problem 4Grid tt tv ; tp tt tv ; tp tt tv ; tp tt tv ; tpMethod 132� 32 12 5, 3 14 4, 6 18 7, 7 14 5, 564� 64 53 25, 15 65 20, 32 89 42, 33 68 23, 30128� 128 299 152, 97 520 238,231 606 314,242 421 133,236Method 232� 32 90 33, 19 93 33, 23 110 41, 36 105 44, 2464� 64 170 70, 40 171 70, 41 225 91, 78 199 90, 49128� 128 376 166, 95 384 167,100 523 221,187 452 218,118Method 332� 32 89 32, 22 92 32, 23 131 40, 59 102 41, 2664� 64 168 68, 44 170 64, 47 262 86,120 200 86, 54128� 128 408 193,101 375 153,105 577 206,258 419 200,103Table 3.6: CPU times measured on the Convex for Methods 2� and 3� and speed-up factorsfor Methods 2�, 3�, 2 and 3, for Problem 1 with �t = 0:0625Grid tt tt; tp st sv ; sp st sv ; spMethod 2� Method 232� 32 83 37, 15 .75 .89, .80 .51 .67, .5864� 64 170 85, 33 1.3 1.5, 1.3 .95 1.2, 1.1128� 128 409 218, 82 2.3 2.6, 2.4 1.9 2.2, 2.0Method 3� Method 332� 32 89 39, 18 .71 .95, .78 .52 .66, .5564� 64 187 98, 37 1.3 1.7, 1.4 .97 1.2, 1.0128� 128 450 255, 86 2.4 2.8, 2.6 1.8 2.1, 2.022
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