
ISNaS - incompressible flow solver
Mathematical manual

Report 93-96

Guus Segal
Kees Vuik

William Kuppen
Marcel Zijlema

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c 1993 by the Faculty of Technical Mathematics and Informatics, Delft, The
Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They are located in the directory /pub/publications/tech-reports at ftp.twi.tudelft.nl

ISNaS - incompressible ow solverMathematical manualGuus SegalKees VuikWilliam KuppenMarcel Zijlemaversion 1.0 23-12-1992

1

Contents1 Introduction 42 Some basic notations from tensor analysis 53 Discretization of the metric tensors 93.1 2D-case : 93.2 3D-case : 134 Space discretization of the di�erential equations 174.1 The momentum equations and continuity equation : : : : : : : : : : : : : : : 174.1.1 2D-case : 174.1.2 3D-case : 194.2 The convection-di�usion equation : 224.3 Turbulence models : 234.3.1 The k � L model : 234.3.2 The k � " model : 234.3.3 2D implementation of turbulence models : : : : : : : : : : : : : : : : : 245 Implementation of the boundary conditions 265.1 Prescribed velocities : 265.1.1 2D implementation : 265.1.2 3D implementation : 275.2 Stresses prescribed : 295.2.1 2D implementation : 295.2.2 3D implementation : 315.3 Semi-natural outow condition : 355.3.1 2D implementation : 355.3.2 3D implementation : 365.4 Slip boundary condition : 375.4.1 2D implementation : 375.4.2 3D implementation : 375.5 Transition of types of boundary conditions : 395.5.1 2D implementation : 395.5.2 3D implementation : 415.6 Treatment of boundary conditions at the corners of the region : : : : : : : : : 425.6.1 2D : 425.6.2 3D : 435.7 Boundary conditions for the convection-di�usion equations : : : : : : : : : : 485.8 Wall functions : 495.8.1 Introduction : 495.8.2 Boundary conditions for the momentum equations : : : : : : : : : : : 495.8.3 Boundary conditions for the turbulence equations : : : : : : : : : : : : 502

6 Time-discretization 526.1 Introduction : 526.2 The �-method : 536.3 Time discretization of turbulence equations : : : : : : : : : : : : : : : : : : : 547 Pressure correction 567.1 Introduction : 567.2 The pressure-correction method : 568 The linear solver 588.1 Introduction : 588.2 Survey of iterative methods : 618.3 Preconditioning : 628.4 Concluding remarks : 639 Post-processing 649.1 Interpolation of scalars in 2D : 649.2 Interpolation of the velocity in 2D : 669.3 Computation of the stream function : 66A Proof of (5.6) and (5.7) 70B Proof of (5.22) and (5.23) 74

3

1 IntroductionIn this manual we describe the mathematical techniques that are used in the ISNaS incom-pressible program. We do not give any derivation; for the mathematical theory we refer tothe literature used.This manual is meant for ISNaS developers only.

4

2 Some basic notations from tensor analysisIn the ISNaS incompressible code we are dealing with curvilinear boundary �tted grids.These grids are mapped (by an unknown transformation) onto a rectangular computationalgrid. Figure 2.1 gives a typical example of the mapping from physical (i.e. curvilinear) tocomputational grid. All computations are performed in the computational grid and hence the

 y " ! x

T! G

η

ξFigure 2.1: Boundary �tted co-ordinates and computational griddi�erential equations are transformed from physical grid to computational grid. The resultingsolution is transformed backwards.In the sequel we shall use the following notations:x = (x1; x2; x3) is the Cartesian co-ordinate system,� = (�1; �2; �3) is the general co-ordinate system,i.e. the co-ordinate system corresponding to the computational grid.The mapping T from Cartesian to computational domain is given byT : x� = x�(�1; �2; �3) (2.1)We assume that the Jacobian J : J = j@x�@�� j (2.2)is unequal to zero.We de�ne the covariant base vector a(�) as the tangent vector to the surface x(��), hencea(�) = @x@�� (2.3)5

The subscript � is placed between parentheses to emphasize that a(�) is not a componentbut one of the three base vectors a1;a2;a3.Contravariant base vectors a(�) are de�ned as normal vectors to the �� = constant surfaces:a(�) = grad �� (2.4)It can be shown that a(�) = 1pga(�) ^ a() for �; �; cyclic (2.5)where ^ denotes the outer product.The correspondence between vector and tensor notation for a rank one tensor is expressed byu = U�a(�) = U�a(�) (2.6)For a tensor of rank two the correspondence between the two notations is given by, for examplein the case of a mixed tensor: U = U�� a(�)a(�) (2.7)The covariant and contravariant components of a vector u can be obtained fromU� = a(�) � u; U� = a(�) � u (2.8)For a rank two tensor we have for exampleU�� = a(�) �U � a(�) (2.9)The metric tensor The covariant and contravariant metric tensors g�� and g�� are de�nedas follows: g�� = a(�) � a(�) ; g�� = a(�) � a(�) (2.10)The name metric tensor is related to the fact that the length ds of a small line-segmentsatis�es ds2 = dx�dx� = g��d��d�� (2.11)The determinant of g�� is called g, and is given bypg = a(1) � (a(2) ^ a(3)) (2.12)The two-dimensional version of (2.12) is given bypg = a1(1)a2(2) � a2(1)a1(2) (2.13)By writing out the right-hand side one sees thatpg = J (2.14)6

The covariant derivative A covariant derivative is a tensor which reduces to a partialderivative of a vector �eld in Cartesian coordinates. For a scalar, the covariant derivative isthe same as the partial derivative, and is denoted by�;� = @�@�� (2.15)The covariant derivative of a contravariant tensor of rank one is given byU�;� = @U�@�� + f �� gU (2.16)where f �� g is the so-called Christo�el symbol of the second kind given byf �� g = a(�)@a()@�� = @��@x� @2x�@�@�� = f �� g (2.17)It can be shown that f �� g = 12g��(@g�@�� + @g��@� � @g�@��) (2.18)The covariant derivative of a covariant tensor of rank one is given by the expression:U�;� = @U�@�� � f ��gU (2.19)It can be shown that U�;� = 1pg @pgU�@�� (2.20)The covariant derivative of a contravariant tensor of rank two is de�ned as follows:T��; = @T��@� + f �� gT �� + f �� gT�� (2.21)It can be shown that T��;� = 1pg �pgT��@�� + f �� gT � (2.22)and g��;� = 0 (2.23)The covariant derivative of a scalar density (i.e. a relative scalar of weight 1) is de�ned as�;� = @�@�� � �f ���g (2.24)It can be shown that �;� = pg@�=pg@�� (2.25)Hence pg;� = 0 (2.26)7

The volume element The in�nitesimal volume element d
 in d dimensions is given byd
 = pgd�1d�2:::d�d (2.27)The divergence theorem in vector and tensor notation Let V �
, and let S be theboundary of V . The divergence theorem says, in vector notation,Z
 div udV = I� u � d� (2.28)Here d� stands for the vector nd�, with n the outward unit normal on �, and d� the(physical) surface element. In tensor notation the divergence theorem is given byZ
 U�;�d
 = I� U�d�� (2.29)For a derivation and further references see van Kan et al (1991).

8

3 Discretization of the metric tensorsSince we assume that the transformation T is not explicitly known, but only implicitly bythe mapping of the co-ordinates of the vertices, it is necessary to discretize the geometricalquantities mentioned in section 2. In the ISNaS incompressible code there are several waysof computing these quantities. The choice of which of these methods is used is de�ned by theinput parameter geotype. In this section we shall treat the various possibilities as function ofgeotype. We distinguish between 2D and 3D.3.1 2D-caseGeotype = 12D The following quantities are computed and stored in all points of the grid, i.e. the vertices,the centroids and the midside points:a(�); g��;pg; f �� gThe quantities are computed in the following way:Consider the p-cell with local numbering as shown in Figure 3.1. First a(1) is computed in
(0, 0)

(1, 0)

(0, -1)

(-1, 0)

(0, 1)

Figure 3.1: local numbering in P -cell(0;�1) and a(2) in (�1; 0) by:a(1)(0;�1) = x(1;�1)� x(�1;�1) (3.1)a(2)(�1; 0) = x(�1; 1)� x(�1;�1) (3.2)Next a(1) and a(2) are computed in all points where they are not available by linear or bilinearinterpolation, using the fewest number of interpolation points.9

Hence: a(1)(0; 0) = 12fa(1)(0; 1)+ a(1)(0;�1)g (3.3)a(2)(0; 0) = 12fa(2)(1; 0)+ a(2)(�1; 0)g (3.4)a(1)(�1; 0) = 14fa(1)(0; 1)+ a(1)(0;�1)+ a1(�2; 1)+ a1(�2;�1)g (3.5)a(2)(0;�1) = 14fa(2)(1; 0)+ a(2)(�1; 0)+ a2(�1;�2) + a2(1;�2)g (3.6)a(1)(�1;�1) = 12fa(1)(�1; 0) + a(1)(�1;�2)g (3.7)a(2)(�1;�1) = 12fa(2)(0;�1) + a(2)(�2;�1)g (3.8)etc.From a(1) and a(2) we compute the g�� in centroid byg�� = a(�) � a(�) (3.9)and g�� in all other points is computed by linear or bilinear interpolation from these centroidpoints.For example:g��(�1; 0) = 12fg��(�2; 0)+ g��(0; 0)g (3.10)g��(�1;�1) = 14fg��(0; 0)+ g��(�2; 0) + g��(0;�2)+ g��(�2;�2)g (3.11)etc.Next pg is computed in all points using the values of g�� just computing bypg = qjdet (g��)j (3.12)To compute f �� g formula (2.18) is applied in all points of the elements.So: f 111 g = 12g1�(@g�1@�1 + @g�1@�1 � @g11@��)= 12g11@g11@�1 + g12(@g21@�1 � 12 @g11@�2)= 12 g22g @g11@�1 � g12g (@g21@�1 � 12 g11@�2) (3.13)10

f 112 g = 12g1�(@g�1@�2 + @g�2@�1 � @g12@��)= 12g11(@g11@�2 + @g12@�1 � @g12@�1) + 12g12(@g21@�2 + @g22@�1 � @g12@�2)= 12 g22g @g11@�2 � 12 g12g @g22@�1 (3.14)f 122 g = 12g11(@g12@�2 + @g21@�2 � @g22@�1) + 12g12(@g22@�2 + @g22@�2 � @g22@�2)= g22g (@g12@�2 � 12 @g22@�1)� 12 g12g @g22@�2 (3.15)f 212 g = 12g21(@g11@�2 + @g12@�1 � @g12@�1) + 12g22(@g21@�2 + @g22@�1 � @g12@�2)= �12 g21g @g11@�2 + 12 g11g @g22@�1 (3.16)f 211 g = 12g21(@g11@�1 + @g11@�1 � @g11@�1) + 12g22(@g21@�1 + @g21@�1 � @g11@�2)= �12 g21g @g11@�1 + g11g (@g21@�1 � 12 @g11@�2) (3.17)f 222 g = 12g21(@g12@�2 + @g12@�2 � @g22@�1) + 12g22(@g22@�2 + @g22@�2 � @g22@�2)= �g21g (@g12@�2 � 12 @g22@�1) + 12 g11g @g22@�2 (3.18)In these expressions we have used that g�� is the inverse of g��, so" g11 g12g12 g22 # = 1g " g22 �g12�g12 g11 # (3.19)The derivatives @ �=@�� are approximated by central di�erences using two neighbouring points.Geotype = 2The same quantities as for geotype = 1 are computed and stored in the same points. How-ever, there are some minor di�erences, which result in a more accurate discretization of thedi�erential equations.The base vector a(�) are computed in exactly the same way as for geotype = 1, i.e. formulae(3.1) and (3.2) are applied. 11

The Jacobian pg of the transformation in all points is computed from the base vectors inthose points, using the expression:pg(�;�) = ja1(1)a2(2) � a2(1)a1(2)j(�;�) (3.20)for all points.In the same way g�� is computed by (3.12) in all points.With respect to the Christo�el symbols f �� g not only the interpolation is canceled but alsoformula (2.18) is replaced by formula (2.17). The base vectors a(�) are computed by inversionof a(�), i.e. a(1) = 1pg (a2(2); �a1(2)); a(2) = 1pg (�a2(1); a1(1)) (3.21)The derivatives are again computed by central di�erences based on 2 neighbouring points.The formulae derived for the geometrical quantities can all be computed for the internalregion. However, at the boundary some extra kind of extrapolation is necessary. In thepresent version of the ow solver the extrapolation has been taken care of by the introductionof virtual cells and hence virtual co-ordinates. See Figure 3.2.
j+2

0
0

1

1

n

n

nn i+2i +1

j+1

Figure 3.2: virtual cells surrounding the boundary of the region (computational space)The co-ordinates of the virtual boundary are computed by linear extrapolation, for examplexi;0 = 2xi;1 � xi;2 (3.22)The co-ordinates in the 4 vertex points are computed by taking the mean value of the linearextrapolation of the co-coordinates along the two virtual boundaries corresponding to thisvertex.For example x0;0 = 12[(2x1;0� x2;0) + (2x0;1 � x0;2)] (3.23)12

The base vectors a(�) are computed in the centroids of all virtual cells and in the midsidepoints of these cells. The metric tensor g�� is computed in all non-virtual points as well as allvirtual points that are not situated at the outer boundary of the virtual alls. The Christo�elsymbols are only computed at the non-virtual points.3.2 3D-caseThe implementation here is only done for geotype = 2.The covariant base vector a(�) is computed in the centre of the edges of a P -cell parallel tothe ��-axis, see Figure 3.3.
(0,1,1)

(0,0,0)

(0,1,-1)

: place where

; place where

: place where

a

a

a

(1)

(2)

(3)

is computed

is computed

is computed

(0,-1,-1)

(0,-1,1)

Figure 3.3: P -cell with local numbering and the places where a(1), a(2) and a(3) are computed.The a(1);a(2) and a(3) are computed in the following way:a(1)(0; i; j) = x(1; i; j)� x(�1; i; j) (3.24)a(2)(i; 0; j) = x(i; 1; j)� x(i;�1; j) (3.25)a(3)(i; j; 0) = x(i; j; 1)� x(i; j;�1) (3.26)where i; j;2 f�1; 1g.Just as the 2D-case we compute a(1);a(2) and a(3) in all grid points where they are notavailable by a linear interpolation, using the fewest number of interpolation points.So:a(1)(�1;�1;�1) = 12fa(1)(�2;�1;�1)+ a(1)(0;�1;�1)g (3.27)a(1)(�1; 0;�1) = 14fa(1)(�2;�1;�1)+ a(1)(0;�1;�1)+ a(1)(�2; 1;�1)+a(1)(0; 1;�1)g (3.28)a(1)(�1;�1; 0) = 14fa(1)(�2;�1;�1)+ a(1)(0;�1;�1)+ a(1)(�2;�1; 1)+a(1)(0;�1; 1)g (3.29)a(1)(�1; 0; 0) = 18fa(1)(�2;�1;�1)+ a(1)(0;�1;�1)+ a(1)(�2; 1;�1)+ a(1)(0; 1;�1)+a(1)(�2;�1; 1)+ a(1)(0;�1; 1)+ a(1)(�2; 1; 1)+ a(1)(0; 1; 1)g (3.30)13

etc.The geometrical quantity pg is computed for all gridpoints from the covariant base vectors;using the expression: pg(i;j;k) = (a1(1)a2(2)a3(3) � a1(1)a3(2)a2(3) +a2(1)a3(2)a1(3) � a2(1)a1(2)a3(3) +a3(1)a1(2)a2(3) � a3(1)a2(2)a1(3))(i;j;k): (3.31)The geometric tensors g�� and g�� are computed for all gridpoints by:g��(i; j; k) = (a(�) � a(�))(i;j;k) (3.32)and g��(i; j; k) = ((�1)�+�det (G��)g)(i;j;k) (3.33)where G�� = minor�� 264 g11 g12 g13g21 g22 g23g31 g32 g33 375 : (3.34)Christo�el symbols are computed by formula (2.17) for the centers of the faces of a p-cell,f 111 g; f 112g; :::; f 133g for the front and back face f 211 g; f 212g; :::; f 233g for the right and leftface and f 311 g; :::; f 333g for the upper and lower face, see Figure 3.4 1
(0,0,0)

3

2

1

1

3

2

1: f 111 g; f 112 g; :::; f 133g2: f 211 g; f 212 g; :::; f 233g3: f 311 g; f 312 g; :::; f 333gFigure 3.4: Places in the p-cell where the Christo�el symbols are computed.1In 3D we don't need the Christo�el symbols in all grid points, because we use another formula for thedeviatoric stress tensor ((4.16) instead of (4.2) with (2.16)).14

The contravariant base vectors in formula (2.17) are computed by (2.5).Just as in the 2D-case we introduce virtual cells to compute the geometrical quantities at theboundaries. See Figure 3.5.
+2)i

j

k

ni

nk

+2

+2

nj+2

(i

(i

(i

(i, nj

(i,nj

,0,

,0,

,0,0)

1)

+2,

+2,0)

nk

(i

nk

,1,0)

+2)

Figure 3.5: The virtual cells surrounding the boundary with a cross-section of the cube.The co-ordinates of the virtual boundary are computed by a linear extrapolation, for exampleface i = 0 x0;j;k = 2x1;j;k � x2;j;k ; (3.35)15

edge i = 0 and j = 0 x0;0;k = 12[(2x1;0;k � x2;0;k) + (2x0;1;k � x0;2;k)] ; (3.36)vertex i = 0; j = 0 and k = 0x0;0;0 = 13[(2x1;0;0 � x2;0;0) + (2x0;1;0� x0;2;0) + (2x0;0;1 � x0;0;2)] : (3.37)

16

4 Space discretization of the di�erential equationsIn this section we describe the space discretization of the momentum equations and convection-di�usion equations in the inner region. Discretizations due to the boundary conditions aretreated in section 5.4.1 The momentum equations and continuity equationThe momentum equations in general co-ordinates read (see van Kan et al 1991; formula 5.2)@@t(�U�) + (�U�U�);� + (g��p);� � ���;� = �f� (4.1)with ��� the deviatoric stress tensor given by��� = (�+ �t)(g�U�; + g�U�;): (4.2)Here U� is the contravariant velocity, � the density, p the pressure, �f� some external forceper unit volume, � dynamic viscosity and �t denotes eddy-viscosity, which has to be speci�ed.This speci�cation is accomplished by a turbulence model. This will be presented in section 4.3.In the present version all coe�cients may depend on space, time and previous computedsolutions. However, with respect to the density a correct implementation is only guaranteedfor � is constant.The continuity equation reads (see van Kan et al 1991; formula 5.1):U�;� = 0 (4.3)As unknowns the uxes V � = pgU� are used.Equations (4.2) and (4.3) are discretized by a �nite volume method.We distinguish between the 2D and the 3D case.4.1.1 2D-caseThe discretization of the continuity equation is straightforward. We use a staggered gridarrangement as plotted in Figure 4.1.The continuity equation is integrated over a so-called pressure-cell. This yields:V 1j(1;0)(�1;0) + V 2j(0;1)(0;�1) = 0; (4.4)where the local numbering of Figure 3.1 is used.With respect to the discretization of the momentum equations we distinguish between thetime-derivative, the convection term, the pressure gradient, the deviatoric stress tensor andthe right-hand-side term. 17

2

U

U

U

1 points

2 points

control volume

scalar points

scalar control volume

U1 control volumeFigure 4.1: Arrangement of the unknowns for a staggered gridThe discretization of the time-derivative is given by formula (5.35) of van Kan et al (1991)):@@t(�V �j(0;0)); (4.5)where (0, 0) is the center of a V �-cell.The discretization of the right-hand-side term is given by formula (5.34) of that report:�f�pgj(0;0) (4.6)In order to solve the so-called no ow problem, the discretization of the right-hand side hasslightly been improved by taking �pg(a(�)1 f1 + a(�)2 f2)j(0;0)See Segal (1993).The discretization of the convective terms requires a linearization. At this moment only onetype of linearization is available, the Newton linearization given byV �V � � V � �V � + �V �V � � �V � �V � (4.7)where V � is taken at the new time level and �V � at the preceding one.Apart from the linearization, the discretization of the convective terms is given by formulae(5.8) and (5.9) of van Kan et al (1991):V 1-cell: �pg (V 1)2j(1;0)(�1;0) + �pgV 1V 2j(0;1)(0;�1) + �pgf 1�gV V � j(0;0) (4.8)V 2-cell: �pgV 2V 1j(1;0)(�1;0) + �pg (V 2)2j(0;1)(0;�1) + �pgf 2�gV V � j(0;0) (4.9)18

Unknowns not present at points where they are required, are computed by linear interpolationusing the least number of neighbouring points possible.The discretization of the deviatoric stress tensor is carried out according to formulae (5.23)to (5.25) in van Kan et al (1991):V 1-cell: �pg�(g11U1;1+g12U1;2)j(1;0)(�1;0)�pg�(g11U2;1+g22U1;2)j(0;1)(0;�1)�f 1�g��pgj(0;0) (4.10)V 2-cell: �pg�(g11U2;1+g22U1;2)j(1;0)(�1;0)�pg2�(g12U2;1+g22U2;2)j(0;1)(0;�1)�f 2�g��pgj(0;0) (4.11)with U�;� given by formula (2.22) and ��� by formula (4.2).The derivatives @U�@�� are computed by central di�erences, hence@U�@�1 j(�;�) = U�j(�+1;�) � U�j(��1;�) (4.12)@U�@�2 j(�;�) = U�j(�;�+1) � U�j(�;��1): (4.13)where for (�; �) the local numbering is used.The same type of interpolation is used as for the convective terms. U� is replaced by V �=pgin the points where U� is evaluated, although a better method might be to replace pgU�;� byV �;� , since pg;� = 0.Finally, the discretization of the pressure gradient is carried by formula (3.14) in Segal andKassels (1991): (p(1;0) � p(�1;0))(g�1pg)(0;0) + (p(0;1)� p(0;�1))(g�2pg)(0;0) (4.14)4.1.2 3D-caseFirst we show in Figure 4.2 the staggered grid arrangements of the unknowns together withthe control volumes.
19

(

U

U

U

1

2

3

points

points

points

pressure point

U

U

2 control volume
2(- cell)

(U1- cell)

control volumeP

(p - cell)

control volume1U

control volume3U

- cell)3UFigure 4.2: Arrangement of the unknowns for a staggered grid
20

If we integrate the continuity equation over a p-cell getV 1j(1;0;0)(�1;0;0)+ V 2j(0;1;0)(0;�1;0)+ V 3j(0;0;1)(0;0;�1) = 0 ; (4.15)this is a simple extension of formula (4.4).Just as the 2D-case we splitup the momentum equation. The formulae (4.5) - (4.14) are allmost the same in 3D. The main di�erence between 2D and 3D follows from the fact that nota discretization of formula (4.2) is used but from:��� = �(g� @U�@� + g� @U�@� � @g��@� U) : (4.16)This formula (4.16) follows directly from equation (4.2), (2.16), (2.21) and g��; = 0.The discretization of the time derivative is given by:@@t((�V �)j(0;0;0)) ; (4.17)where (0; 0; 0) is the centre of a V �-cell.The discretization of the right-hand-side term is given by(�f�pg)j(0;0;0) : (4.18)The discretization of the convective terms is given by a straight forward extension of formulae(5.7) and (5.8a)-(5.8b) of Van Kan et al (1991):V � � cell : �pgV �V 1j(1;0;0)(�1;0;0)+ �pgV �V 2j(0;1;0)(0;�1;0) + �pgV �V 3j(0;0;1)(0;0;�1)+�pgf �� gV V �j(0;0;0) for � 2 f1; 2; 3g : (4.19)For all non-linear terms in (4.19) we used the Newton linearization given byV �V � � V � �V � + �V �V � � �V � �V � (4.20)where V � is taken at the new time level and �V � at the old level.Unknowns not present at points where they are required, are computed by linear interpolationusing the fewest number of interpolation points.The discretization of the deviatoric stress tensor is carried out according to:V � � cell : �pg��1j(1;0;0)(�1;0;0) �pg��2j(0;1;0)(0;�1;0)�pg��3j(0;0;1)(0;0;�1)�(f �� g��pg)j(0;0;0) ; (4.21)21

with ��� given by formula (4.16).The derivatives @U�@�� in (4.16) are computed by central di�erences, thus:@U�@�� j(i;j;k) = U�j(i;j;k)+�� � U�j(i;j;k)��� (4.22)where �� = (12 j� � 2j j� � 3j; j� � 1j j� � 3j; 12 j� � 1j j� � 2j) : (4.23)U� is replaced by V �=pg. We make here also the remark that it might be better to replacepgU�;� by V �;� . So use pg��� = �(g� @V �@� + g� @V �@� � @g��@� V) (4.24)instead of formula (4.16) in (4.21).Finally the discretization of the pressure term is carried out by a generalization of formula(3.14) in Segal and Kassels (1991):V � � cell : (g�1pg)j(0;0;0)(p(1;0;0)� p(�1;0;0)) + (pg�2pg)j(0;0;0)(p(0;1;0)� p(0;�1;0)) +(g�3pg)j(0;0;0)(p(0;0;1)� p(0;0;�1)) : (4.25)4.2 The convection-di�usion equationThe convection-di�usion equation in Cartesian co-ordinates reads:@c�T@t + u � r(c�T) + div (krT) +DT = f�; (4.26)with k the matrix (k11 k12k21 k22) and k12 = k21.Translated into general co-ordinates this equation becomes (see van Kan et al 1991, formula5.4): @c�T@t + (c�U�T);�)� (K��T;�);� +DT = f�; (4.27)with K�� = a(�) a(�)� k�The discretization of equation (4.27) is given bypg(0;0)@c�T(0;0)@t + c�V 1T j(1;0)(�1;0) + c�V 2T j(0;1)(0;�1)pgk1� @T@�� j(1;0)(�1;0) � pgk2� @T@�� j(0;1)(0;�1) +pgDT j(0;0) = pgf�j(0;0) (4.28)With respect to interpolations and derivatives the same rules as for the momentum equationsare applied. 22

4.3 Turbulence modelsIn section 4.1 we have stated that �t in (4.2) has to be determine by introducing a turbulencemodel. In this section we shall discussed two turbulence models.4.3.1 The k � L modelThe standard one-equation model called the k�L model uses a modelled transport equationfor turbulent kinetic energy k, which is by de�nition positive, and an algebraic expression fora characteristic length scale L. The k equation in general co-ordinates reads@�k@t + (�U�k);� � (�t�k g�k;);� = R��g�U;� � �cdk3=2L (4.29)where R�� is the Reynolds stress tensorR�� = �t(g�U�; + g�U�;) (4.30)Concerning source terms, the �rst term on the right hand side of (4.29) is the so-calledproduction of turbulent kinetic energy and the last term is the dissipation rate of turbulentenergy. Furthermore, cd and �k are empirical constants, which values are 0.08 and 1.0,respectively. These values were proposed by Launder & Spalding, (1972).It is necessary to �nd an algebraic expression for L, which depends on the ow geometry.This is an important disadvantage of the k� L model, because, it is not very easy to �nd anexpression for L for an arbitrary ow geometry. However, this model can be used for near-walltreatment, where little empirical information on the length scale distribution is available.Finally, with k and L we can compute the eddy-viscosity�t = �pkL (4.31)4.3.2 The k � " modelThe k� " model which is developed by Jones & Launder (1972) has been generally acceptedas the standard turbulence model used in CFD codes. This two-equation model is presentedhere in full: �t = �c�k2" (4.32)@�k@t + (�U�k);� � (�t�k g�k;);� = P � �" (4.33)@�"@t + (�U�");� � (�t�" g�";);� = "k (c1"P � c2"�") (4.34)where P is the production of turbulent kinetic energyP = R��g�U;� (4.35)23

c� c1" c2" �k �"0.09 1.44 1.92 1.0 1.3Table 4.1: Constants for k � " modeland " is the dissipation rate of turbulent energy, which is essentially positive. Furthermore,c�, c1", and c2" are empirical constants and �k and �" are the turbulence Prandtl/Schmidtnumbers for k and ", respectively. The values of these contents are given in table 4.3.2 andare recommended by Launder & Spalding, (1974). An important remark is that turbulencemodels introduced above apply only to regions of ow with high Reynolds number. For aderivation and further references, see Zijlema, (1993).4.3.3 2D implementation of turbulence modelsThe equations (4.29) or (4.33) and (4.34) can be considered as convection-di�usion equations.Hence, for the implementation of the k�L and k� " model the equation (4.27) will be used.The evaluations of the functions c�, K�� , D and f� will be treated in section 6.3.Before the transport equations have to be solved, the production term (4.35) must be evalu-ated. The discretization of the production term is carried out at the centre of a scalar cell.Since we use V � = pgU� as unknowns, the covariant derivative of the contravariant velocitycomponents must be expressed in terms of ux components. ThuspgU�;� = @V �@�� � f �gV � + f �� gV (4.36)The partial derivative of the ux component can be approximated by central di�erences.The same interpolation rules as for the momentum equations are applied. All geometricalquantities are evaluated at the centre of a scalar cell. Closest to a boundary, some derivatives@V �=@�� also contain virtual uxes. These virtual quantities are expressed in internal uxesby using linear extrapolation. For example, at lower boundary we get:V 1i;�2 = 2V 1i;0 � V 1i;2 (4.37)In order to obtain non-negative solutions of the equations (4.33) and (4.34) a �rst order upwindscheme has to be used for the convection terms Zijlema, (1993). Consider the convection termof a convection-di�usion equation (4.27) in integral form:Z
(c�U�T);� = Z� c�U�Td�� = c�V 1T j(1;0)(�1;0) + c�V 2T j(0;1)(0;�1) (4.38)Consider only the �rst part of the right hand side of (4.38). Since T is only given in the centreof a scalar cell, further approximation is needed. This can be done with a �rst order upwindscheme: T(1;0) � 12[1 + sign(V 1(1;0))]T(0;0)+ 12[1� sign(V 1(1;0))]T(2;0) (4.39)T(�1;0) � 12[1� sign(V 1(�1;0))]T(0;0)+ 12[1 + sign(V 1(�1;0))]T(�2;0) (4.40)24

where the local numbering of �gure (4.3) is used. The second part of the convective termscan be approximated the same way.
-1

-2 -1 0 1 2

-2

0

1

2

Figure 4.3: Local numbering for scalar cells

25

5 Implementation of the boundary conditionsIn the present version of the ISNaS incompressible program, the following types of boundaryconditions have been implemented.Boundary conditions for the momentum equations:Type 1: Velocity prescribed (Dirichlet boundary condition)Type 2: Stress prescribed (Natural boundary condition)Type 3: Normal stress and tangential velocity given (Semi natural ow)Type 4: Tangential stress and normal velocity given (Slip boundary condition and also sym-metry condition)Boundary conditions for the convection-di�usion equations are:Type 1: Scalar T prescribed (Dirichlet boundary condition)Type 2: �T + (krT) �n prescribed (Robbins boundary condition)In the next paragraphs we consider the various boundary conditions separately.In 2D the notion normal and tangential vector have been de�ned in a somewhat strange way.For a user the normal vector is de�ned as the outward normal in the case of a counterclockwisedirection and as the inward normal in the case of a clockwise direction. The tangential vectoris de�ned in the direction of the outer boundary. In the program, however, the normal andtangential vector are always de�ned in the 1 or 2 direction in the computational grid. Henceat the boundary �2 = 0, the normal direction is the �2 direction and tangential direction the�1 direction. At the boundary �1 = nx, the normal direction is �1 and the tangential direction�2 etc.In the sequel the internal de�nition will be used.5.1 Prescribed velocities5.1.1 2D implementationIn 2D, prescribed velocity given means in the present version u � n and u � t given. Thesequantities are transformed to contravariant components using the formulae (6.1) and (6.4)from van Kan et al. (1991): Un = pgnnu �n (5.1)U t = 1gtt (pgttu � t� gntUn) (5.2)Here the de�nitions of n and t as described above are meant both for the physical componentsas for the computational components. 26

The given normal velocity component (in computational space) is implemented by explicitlyprescribing the velocity unknown at the boundary. In the program this is implemented bysetting the corresponding main diagonal element equal to 1 and the o�-diagonal elements inthe corresponding rows to 0. The right-hand-side component corresponding to this unknownis made equal to the unknown itself.The given velocity component U t is implemented in the following way:The matrix is built for all unknowns including all the "tangential" unknowns. The rowscorresponding to the "tangential" unknowns closest to the boundary (see Figure 5.1) containelements referring to virtual pressures and virtual "tangential" velocity unknowns. The virtual
0

1

-3 -2 -1 0 1 2 3

-1

-2

2Figure 5.1: A "tangential" velocity cell at the boundaryquantities are expressed in internal unknowns and prescribed velocity components at theboundary using linear extrapolation. For example for the lower boundary (Figure 5.1) weget: pi;�2 = 2pi;0 � pi;2 (5.3)V 1i;�2 = 2V 1i;�1 � V 1i;0; (5.4)where V 1i;�1 is the value of pgU t at the boundary point. The coe�cient in the matrix corre-sponding to the virtual unknown multiplied by the expression (5.3) or (5.4) is transported tothe right-hand side or the other matrix terms.5.1.2 3D implementationWe give here two ways to describe the velocities in the physical domain:(i) with Cartesian velocity components,(ii) with normal and tangential components.In the present version, only the �rst approach is implemented.27

(i) If the Cartesian velocity components are prescribed we can compute the contravariantcomponents in the following way: U� = a(�) � u (5.5)(ii) Normal and tangential components are prescribed on the plane where �n is constant.The scalar products u � n; u � � 1 and u � � 2 with the tangential vectors � 1 and � 2 aregiven by the user. See Figure 5.2.
n (u . n) n

tangent plane

ξ
t
1

t2ξ

ξ = constant

(u .τ
2
) τ

2
n

u

τ τ(u .. 11)

(u . n) n

tangent plane

ξ
t
1

t2ξ

ξ = constant

(u .τ
2
) τ

2
n

u

τ τ(u .. 11)

ξ
n

ξ

Figure 5.2: The scalar products u � n; u � �1 and u � �2 and tangential vectors �1 and �2 areprescribed. Here is knk = k�1k = k�2k = 1.From u � n; u � � 1; u � � 2; � 1 and � 2 we can compute Un; U t1 and U t2 by:Un = sign (a(n) � n)pgnnu � n (5.6)" U t1U t2 # = " gt1t1 gt1t2gt2t1 gt2t2 #�18<:" �11 �12�21 �22 #�1 " u � � 1u � � 2 #� Un " gnt1gnt2 #9=; (5.7)28

where �i1 = ����� � i � a(t1) gt1t2� i � a(t2) gt2t2 ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� ; (5.8a)�i2 = ����� gt1t1 � i � a(t1)gt2t1 � i � a(t2) ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� : (5.8b)Formula (5.7) makes no sense if the tangential vectors � 1 and � 2 are linear dependent, sothey have to be linear independent.The given Un; U t1 and U t2 are implemented in almost the same way as in the 2D-case.5.2 Stresses prescribed5.2.1 2D implementationIn 2D stresses prescribed implies that normal and tangential stress components at the bound-ary are prescribed. Let Snn and Snt be the normal resp. tangential physical stress at theboundary, where the normal and tangential vector are de�ned as in 5.1.1.From Snn and Snt we can compute �nn and �nt by�nn = gnnSnn; (5.9)�nt = (pgnngttSnt � gnt�nn)=gtt; (5.10)where ��� is de�ned by ��� = �g��p+ ���: (5.11)An important remark is that in this formulation pressure and deviatoric stress tensor can notbe separated, hence the discretization of both must be the same at the boundary. For thatreason the discretization of the pressure at the boundary will be di�erent from the one in theinner region.Since no velocities are prescribed, it is necessary to consider �nite volume cells around eachvelocity unknown, including the "normal" velocity points at the boundary.Let us �rst consider the "tangential" boundary cell as sketched in Figure 5.1. The discretiza-tion of the convective terms, the right-hand side and the time derivative are exactly the sameas for the inner cells, with the exception that virtual (tangential) velocities are eliminated bylinear extrapolation as in formula (5.4). 29

The stress tensor (deviatoric part and pressure together) is discretized by:pg�11j(1;0)(�1;0) +pg�12j(0;1)(0;�1)+ f 1�g��pgj(0;0) (5.12)In this expression �12j(0;�1) is given by formula (5.4). All other terms are treated in the usualway (except of course for the pressure).With respect to the normal velocity unknown at the boundary a half cell is de�ned as inFigure 5.3. The discretization of the convective terms plus the stress tensor at the boundary
3

-2

-1

0

1

2

-3 -2 -1 0 1 2Figure 5.3: A "normal" velocity half cell at the boundaryis given by formula (6.14) from van Kan et al (1991):12pgT 21j(1;1)(�1;1) +pgT 22j(0;1)(0;0)+ 12pgf 2�gT �j(0;0); (5.13)where T�� = �U�U� � ��� (5.14)The discretization of the right-hand side gives12�f�pgj(0;0) (5.15)and of the time-derivative: 12 @@t(�V �)j(0;0) (5.16)The discretization of the convective terms is derived from (5.13) by substitution ofT�� = �U�U� (5.17)and the approximation V 10;0 = 12(V 11;1+ V 1�1;1) (5.18)30

The discretization of the stress tensor at the boundary is given by formulae (6.14), (6.15) ofvan Kan et al (1991): RHS �pg�22j(0;1)� 12pgf 211 g�11j(0;0); (5.19)where RHS is de�ned byRHS = �12pg�21j(1;0) + 12pg�21j(�1;0) +pg�22j(0;0)�12pgf 222 g�22j(0;0)� pgf 212 g�12j(0;0) (5.20)The evaluation of �11j(0;0) introduces extra di�culties.Following van Kan et al (1991), page 76, we use p0;1 instead of p0;0.Furthermore @U1@�2 j(0;0) is computed at the preceding time-level, and @U1@�1 j(0;0) replaced by@U1@�1 j(0;1). Virtual velocities are not used. To compute @U1@�2 j(0;0) at the preceding time level,U1 at the boundary is computed by linear extrapolation from inside, using two points.5.2.2 3D implementationThe normal and tangential stress components at the boundary are prescribed. Let Snn bethe normal stress component at the boundary and Sn� the tangential stress component in the� direction (see Figure 5.4). So: S�n=const = Snnn+ Sn�� (5.21)where n is an unit normal vector and � is an unit tangential vector. From Snnn and Sn�� wecompute �nn; �nt1 and �nt2 the stresses in the computational domain. Just asin the 2D-case
tangent plane

= constant.

ξξ

ξ

ξ = constant
t t

1 2

S

S

n

n

n
nn

nτ
S τ

nξ

Figure 5.4: The normal and tangential stress in the physical domain at the boundary �n =constant. 31

is: �nn = gnnSnn ; (5.22)�nt1 and �nt2 are computed by:" �nt1�nt2 # = sign (a(n) � n)pgnnSn� " �1�2 #� �nn " gt1t1 gt1t2gt2t1 gt2t2 #�1 " gnt1gnt2 # (5.23)where �1 = ����� � � a(t1) gt1t2� � a(t2) gt2t2 ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� :; (5.24a)�2 = ����� gt1t1 � � a(t1)gt2t1 � � a(t2) ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� (5.24b)The stress ��� is de�ned by ��� = �g��p+���. At the boundary it is impossible to separatethe pressure from te deviatoric stress tensor ��� . So the discretization of the pressure at theboundary will be di�erent from the one in the inner region.We have to consider three di�erent cells closest to the boundary two "tangential" and one"normal" velocity cell.Let us �rst consider the "tangential" cells. The two "tangential" cells closest to the boundaryare considered di�erently from the ones in the inner region, because the stencil contain virtualunknowns (see Figure 5.5). The discretization of the convective terms, the right-hand sideand the time derivative are the same as for the inner cells, with the exception that virtualvelocities are eliminated by linear extrapolation. For example for the bottom boundary (seeFigure 5.5) we get: V 1i;j;�2 = 2V 1i;j;0 � V 1i;j;2 (5.25)V 2i;j;�2 = 2V 2i;j;0 � V 2i;j;2 (5.26)V 3i;j;�3 = 2V 3i;j;�1 � V 3i;j;1 (5.27)The stress tensor ��� is discretized in the following way for the V �-cell:�pg��1j(1;0;0)(�1;0;0)�pg��2j(0;1;0)(0;�1;0) �pg��3j(0;0;1)(0;0;�1)�pgf �� g��j(0;0;0) for � = 1; 2: (5.28)Term ��3j(0;0;�1) is given by formula (5.23), if we are concerned with the bottom boundary.All other terms are treated in the usual way. 32

3

point

point

point

U

U

p

2

3

ξ

k

k

k

k

k = -3

= 0

= 1

= 2

= 3

k = -2

k = -1
= constantFigure 5.5: A cross-section (�1 = constant) over an U2-cell closest to the bottom of theregion.Since no normal velocity components are prescribed at the boundary we have to consider a�nite volume around a "normal" velocity point at the boundary (see Figure 5.6). We willnow consider the discretization for a "normal" velocity cell at the bottom boundary.The discretization of the time-derivative gives:12 @@t(�V 3)j(0;0;0) (5.29)and of the right-hand side: 12(�f3pg)j(0;0;0) : (5.30)The discretization of the convective terms is given by:12 �pgV 3V 1j(1;0;0)(�1;0;0)+ 12 �pgV 3V 2j(0;1;0)(0;�1;0)+ �pgV 3V 3j(0;0;1)(0;0;0)+12 �pg f 3�gV V �j(0;0;0) (5.31)and the approximation: V 1i;j;0 = V 1i;j;1 (5.32)V 2i;j;0 = V 2i;j;1 : (5.33)33

3

k = 1

k = 0

k = -1

k = -2

k = 2 U

U

p

3

2 point

point

point

= constantξFigure 5.6: A cross-section (�1 = constant) over an U3-cell at the bottom.If V 1 or V 2 are not present at (i; j; 1) then they are approximated by:V 1i;j;1 = 12(V 1i�1;j;1 + V 1i+1;j;1) (5.34)V 2i;j;1 = 12(V 2i;j�1;1 + V 2i;j+1;1) : (5.35)The discretization of the stress tensor at the boundary is given by the following formula:�12pg�31j(1;0;0)(�1;0;0) � 12pg�32j(0;1;0)(0;�1;0)� pg�33j(0;0;1)(0;0;0)�12pgf 3�g��j(0;0;0) (5.36)or RHS � pg�33j(0;0;1)� 12pgf 311 g�11j(0;0;0)� pgf 312 g�12j(0;0;0)� 12pgf 322 g�22j(0;0;0) (5.37)where RHS is given by:RHS = �12pg�31j(1;0;0)(�1;0;0)� 12pg�32j(0;1;0)(0;�1;0) +pg�33j(0;0;0)�pgf 313 g�13j(0;0;0)�pgf 323 g�23j(0;0;0)� 12pgf 333 g�33j(0;0;0) : (5.38)The evaluation of �11j(0;0;0); �12(0;0;0) and �22(0;0;0) introduces some di�culties. First we needthe pressure in point (0; 0; 0), because we have to split up �11; �12 and �22. Instead of p0;0;034

we use p0;0;1 just as in the 2D-case.Secondly we need @U1@�� and @U2@�� at (0,0,0) for � = 1; 2; 3. The derivatives @U1@�1 j(0;0;0); @U1@�2 j(0;0;0);@U2@�1 j(0;0;0) and @U2@�2 j(0;0;0) are replaced respectively by @U1@�1 j(0;0;1); @U1@�2 j(0;0;1); @U2@�1 j(0;0;1) and@U2@�2 j(0;0;1). In van Kan et al (1991), page 34, there are three strategies mentioned to compute@U1@�3 j(0;0;0) and @U2@�3 j(0;0;0). It seems reasonable if we use the same strategy as used in the 2D-case. That is, the derivatives @U1@�3 j(0;0;0) and @U2@�3 j(0;0;0) are computed at the preceding timelevel, U1 and U2 at the boundary are computed by linear extrapolation, using two points, so:@U�@�3 j(0;0;0) = U�j(0;0;3)� U�j(0;0;1) (5.39)(at the preceding time level) for � = 1; 2.5.3 Semi-natural outow condition5.3.1 2D implementationWith semi-natural outow condition we mean tangential velocity and normal stress prescribedat the boundary, i.e. u � t and Snn given. (5.40)Although u � t prescribed does in general not imply U t prescribed we assume that instead of(5.40) the following boundary condition is given:U t and Snn given (5.41)where Snn is related to �nn by (5.9).Boundary condition (5.41) inuences both the tangential velocity cell as sketched in Figure 5.1,as the normal velocity half-cell sketched in Figure 5.3.With respect to the tangential cell, the molecule is built in the same way as for the inner cells.The only di�erence is that virtual velocity components and virtual pressures are eliminatedby linear extrapolation, i.e. by applying formulae (5.3) and (5.4).The normal velocity half cell gives rise to the following discretization of the stress tensor (seevan Kan et al 1991, formula (6.19)):�12pg�21j(1;0)(�1;0) �pg�22j(0;1)� 12pg(f 211 g�11 + 2f 212 g�12)j(0;0)+pg�22j(0;0) � 12pgf 222 g�22j(0;0); (5.42)where �22j(0;0) is given by (5.9). Virtual velocities are eliminated by linear extrapolationusing formula (5.3). It must be remarked that the �rst term with respect to the pressure is35

evaluated in the points (1,1) and (-1,1) instead of (1,0) resp. (-1,0).The convective terms are evaluated by expanding12�pgU2U� j(1;0)(�1;0) + �pgU2U�j(0;1)(0;0) + 12�pgf 2�gUU� j(0;0) (5.43)using the standard inter- and extrapolations.5.3.2 3D implementationThe tangential velocity and normal stress are prescribed at the boundary, i.e.:u � �1; u � �2; � 1; � 2 and Snn are given . (5.44)From equation (5.7) it is clear that we can calculate U t1 and U t2 as gnt1 and gnt2 are zero,otherwise we have to make an assumption about U t1 and U t2 . In the remainder of this sectionwe assume that U t1 ; U t2 and Snn are given , (5.45)at the boundary.From Snn and equation (5.22) follows the stress �nn at the boundary in the computationaldomain.Boundary condition (5.45) inuences the two "tangential" velocity cells (see Figure 5.5) andthe "normal" velocity half-cell (see Figure 5.6).The U1 and U2 "tangential" cells (bottom boundary) are built in a similar way as the innercells. The only di�erence is that virtual velocity components and pressures are eliminated bylinear extrapolation. For example for the bottom boundary we get:V �i;j;�2 = 2V �i;j;�1 � V �i;j;0 for � = 1; 2 (5.46)V 3i;j;�3 = 2V 3i;j;�1 � V 3i;j;1 (5.47)pi;j;�2 = 2pi;j;0 � pi;j;2 : (5.48)The normal velocity half-cell at the bottom boundary. The discretization of the convectiveterm gives 12 �pgV 3V 1j(1;0;0)(�1;0;0)+ 12 �pgV 3V 2j(0;1;0)(0;�1;0)+ �pgV 3V 3j(0;0;1)(0;0;0)+12 �pg f 3�gV V �j(0;0;0) : (5.49)Terms with the factor V 3V 3 are the only terms where we need a linearization procedure, sinceV 1 and V 2 are given at the boundary.We use the following discretization of the stress tensor:� 12pg�31j(1;0;0)(�1;0;0) � 12pg�32j(0;1;0)(0;�1;0)� pg�33j(0;0;1)(0;0;0)� 12pgf 3�g��j(0;0;0) ; (5.50)36

where �33j(0;0;0) is given by (g33S33)j(0;0;0). So the right-hand side gets the contribution:(�1 + 12f 333 g)pg�33j(0;0;0) : (5.51)The virtual velocities introduced by formula (5.51) are eliminated by linear extrapolation.Just as in 2D is the pressure evaluated in the points (1,0,1), (-1,0,1), (0,1,1) and (0,-1,1)instead of (1,0,0), (-1,0,0), (0,1,0) and (0,-1,0).5.4 Slip boundary condition5.4.1 2D implementationThe slip boundary condition is equivalent to tangential stress as well as normal velocitycomponent given. The treatment of this type of boundary conditions is the subject of Segal(1991). All formulae in this section are copied from that report.The normal velocity given implies Un given by the relation (5.1). The tangential stress given,however, does not automatically imply that a component of the contravariant stress tensoris prescribed. In fact it only implies a linear combination between stress components at theboundary through the relation pgnngttSnt = gnt�nn + gtt�nt (5.52)Since the normal velocity component is given no normal half cells are introduced.The discretization of the convective terms implies the evaluation of virtual velocities by linearextrapolation. The discretization of the stress tensor is given by� pg�11j(1;0)(�1;0) �pg�12j(0;1)(0;�1) � f 1�g��pgj(0;0) (5.53)The linear extrapolation formula for the velocities is given byV 1i;�2 = 2V 1i;0 � V 1i;2 (5.54)The term (pg�12)(0;�1) is equal to:pg�12j(0;�1) = Sntj(0;�1) �pg g21g11�22j(0;�1); (5.55)where the �rst term is given and the second term involves virtual velocities and pressuresthat can be eliminated by (5.54) resp. (5.3).5.4.2 3D implementationIn this condition the normal velocity u � n and tangential stress Sn� with � are prescribed.So we don't need "normal" velocity half-cells. We have only to consider the two "tangential"37

cells. For the remainder of this section is the slip boundary condition given on the bottomboundary.The discretization of the convective terms is given by:�pgV �V 1j(1;0;0)(�1;0;0)+ �pgV �V 2j(0;1;0)(0;�1;0)+ �pgV �V 3j(0;0;1)(0;0;�1)+ �pgf �� gV V � j(0;0;0) for � = 1; 2 : (5.56)Since V 3 = pgU3 is prescribed at the bottom boundary we do not have to use a linearapproximation for V �V 3j(0;0;�1) (see Segal (1991), formula (3.9)):V �V 3j(0;0;�1) = 12(3V �j(0;0;0)� V �j(0;0;2))V 3j(0;0;�1) for � = 1; 2 : (5.57)The discretization of the stress tensor is given by:�pg��1j(1;0;0)(�1;0;0)� pg��2j(0;1;0)(0;�1;0)� pg��3j(0;0;1)(0;0;�1)�pgf �� g��j(0;0;0) for � = 1; 2 : (5.58)The virtual velocities introduced by formula (5.58) are eliminated by linear extrapolation, i.e.using formula (5.25), (5.26) and (5.27).The term ��3j(0;0;�1) in (5.58) is for � = 1 (U1-cell) equal to:�13j(0;0;�1) = 0@sign (a(3) � n)qg33Sn��1 � �33eT1 " g11 g12g21 g22 #�1 " g31g32 #1A j(0;0;�1) (5.59)where eT1 = [1 0], so:�13j(0;0;�1) = �sign (a(3) �n)qg33Sn��1 � �33g22g31 � g12g32g11g22 � g12g21� j(0;0;�1) : (5.60)Term ��3j(0;0;�1) in (5.58) is for � = 2 equal to:�23j(0;0;�1) = 0@sign (a(3) � n)qg33Sn��2 � �33eT2 " g11 g12g21 g22 #�1 " g31g32 #1A j(0;0;�1) (5.61)where eT2 = [0 1], so:�23j(0;0;�1) = �sign (a(3) �n)qg33Sn��2 � �33g11g32 � g21g31g11g22 � g21g12� j(0;0;�1) : (5.62)The factors �1 and �2 are calculated with formula (5.24a)-(5.24b).The �33j(0;0;�1) in (5.60) and (5.62) involves virtual velocities and pressures that can beeliminated by (5.25)-(5.27) and (5.48).Before treating the boundary conditions for the scalar equations we shall �rst consider thespecial cases where we have a transition of one type of a boundary condition to another aswell the case of a corner of the region. 38

5.5 Transition of types of boundary conditions5.5.1 2D implementationJust as in the preceding cases we restrict ourselves to the lower boundary in the computationaldomain. Let at the vertex point S we have two types of boundary conditions (see Figure 5.7).
SFigure 5.7: transition point S (vertex of cell). At the left of point S the type of boundarycondition di�ers from the one on the right.We shall only consider the boundary condition at the left of point S but in relation to theboundary condition at the right. In all cases the most restrictive boundary conditions, i.e. theone that inuences the velocity most directly will be applied. Let us �rst consider Dirichletboundary conditions at the left of S. Since Dirichlet boundary conditions are the mostrestrictive, it is assumed that also in point S the velocity is prescribed. All points left of Sare treated in the usual way. The only special treatment is required for the tangential celljust above point S (Figure 5.8).

S
-1

0

1

2

2

-2 -1 0 1 2Figure 5.8: Tangential cell just above transition point S.The molecule corresponding to V 1(0;0) contains 3 virtual points, 2 of which can be eliminated39

by linear extrapolation using the boundary conditions.The only special point is V 1(2;�2). If at the right side of S we have a boundary condition oftype 3 this point may be treated in the usual way. However, if boundary conditions of type2 or 4 are prescribed V 1(2;�2) must be eliminated by the linear extrapolation:V 1(2;�2) = 2V 1(2;0)� V 1(2;2) (5.63)Now suppose that we have a boundary condition of type 2 at the left side of S and a boundarycondition of type 1, 3 or 4 at the right side of S. It is su�cient to consider the tangential cellsketched in Figure 5.8 and the normal half cell left of point S sketched in Figure 5.9.
S

0

1

-1Figure 5.9: Normal half cell left of the transition point SAll other cells are treated in the usual way. Let us �rst consider the tangential cell ofFigure 5.8. If at the right side of point S we have a boundary condition of type 1 or type 3,the tangential velocity in point S is given and the cell is treated as if corresponding to theright side. In the case of boundary conditions of type 4 the cell may be treated in the usualway.With respect to the normal half cell we can proceed as usual. Since no virtual velocitiesappear no special treatment is necessary.In the case that we have a boundary condition of type 3 at the left side of S we also distinguishbetween the tangential cell of Figure 5.8 and the normal half cell of Figure 5.9. With respectto the tangential cell the procedure described in 5.3.1 can be applied without any restriction.With respect to the normal half cell we may also proceed in the standard way, i.e. applyformula (5.42). This procedure leads to virtual unknowns which may be eliminated in theusual way. There is no need to use extra information if velocities are given at the right ofpoint S.Finally with respect to boundary conditions of type 4 it is su�cient to consider the tangentialcell of Figure 5.8. If at the right side of point S boundary conditions of type 1 or type 3are given (i.e. ut prescribed) these boundary conditions prevail. In the case of boundarycondition of type 2 at the right side of S, no special action is necessary.40

5.5.2 3D implementationJust as in the 2D case we restrict ourselves to only one boundary, the bottom boundary in thecomputational domain. First we assume that only one boundary condition type is prescribedon a "bottom boundary"-face of a p-cell, see Figure 5.10.
A

ξ

ξ

bottom boundary

ξ
1

2

3

Figure 5.10: There is only one boundary condition type prescribed on A, the "bottomboundary"-face of a p-cell.It is clear that the only thing that has to be treated very carefully is the extrapolations ofthe virtual points, see Figure 5.11.
2

A B

U
2

(1,1,-2)

(a)

(b)

(c)

virtual

virtual

virtual

U

U

U

1

3Figure 5.11: A cross-section of the bottom boundary and an (a) U1-cell, (b) U2-cell and (c)U3-cell, with the positions of the virtual unknowns.41

For the extrapolation of for instance V 2(1;1;�2) in a U1-cell (see Figure 5.11(a)) we have toconsider the boundary conditions in the two "bottom boundary"-faces A and B. If boundarycondition type 1 (Dirichlet) or type 3 (semi-natural outow) is prescribed in one of the two"bottom boundary"-faces then the following extrapolation is used:V 2(1;1;�2) = 2V 2(1;1;�1)� V 2(1;1;0) ; (5.64)otherwise V 2(1;1;�2) = 2V 2(1;1;0)� V 2(1;1;2) : (5.65)It is clear that a similar procedure can be used for all virtual velocities in the "tangential"cells and "normal" half cell.5.6 Treatment of boundary conditions at the corners of the regionWith respect to the corners of the region, it is necessary to consider the boundary condi-tions carefully, because unknowns may be not present anymore. Let us investigate the fourboundary conditions in this special case.5.6.1 2DFor simplicity we restrict ourselves to the case of a boundary condition at the right side ofthe lower boundary in the computational region.In the case of Dirichlet boundary conditions (type 1), no points at the right of the leftboundary appear, hence no special precautions are necessary.In the case of boundary conditions of type 2 we have to distinguish between "tangential"cells and normal half cells. Only tangential cells of tangential velocities not lying on anotherboundary are considered. As a consequence the last tangential cell is at a distance 1 from theboundary and no special treatment is necessary.With respect to the normal half cell sketched in Figure 5.12 we have to be more careful.
"right" boundary

-2 -1 0 1 2

0

1

2

"lower" boundaryFigure 5.12: "normal" half-cell at the intersection of "lower" and right boundary.42

The discretization of the convective terms using formulae (5.13), (5.17) and (5.18) introducesvirtual velocities in the points (2,0) and (2,2). These virtual velocities are eliminated in thestandard way by linear extrapolation using the value of V 2 at the right boundary if availableand otherwise using the values V 2(0;i) and V 2(�2;i). Hence even if V 2 is given at the rightboundary, we still use the interpolated values. This approach simpli�es the treatment of theboundary conditions.The stress tensor in this cell as treated in formulae (5.19), (5.20) does not introduce virtualunknowns at the right of the right boundary. Hence this part does not require a specialtreatment.With respect to boundary conditions of type 3 and type 4 the standard procedure may befollowed, provided virtual velocities are eliminated in the usual way. This is the case both forthe tangential cells and the normal half cells.5.6.2 3DIn the 3D-case we have to consider two kinds of corners, edges and vertices.Edges We restrict ourselves to the case of boundary conditions at the edge left under(�2 = 0 and �3 = 0) in the computational domain. There are 42 = 16 possible combinationsto prescribe the boundary conditions, but only 4 + 2� 12 ! = 10 are really di�erent, seeTable 5.1. boundary condition typecombination left boundary bottom boundary(�2 = 0) (�3 = 0)(i) 1 1(ii) 1 2(iii) 1 3(iv) 1 4(v) 2 2(vi) 2 3(vii) 2 4(viii) 3 3(ix) 3 4(x) 4 4Table 5.1: Combinations of the boundary conditions for the edge left under (�2 = 0 and�3 = 0.) 43

Combination (i)Since the normal velocities are given at the boundaries we have only to consider the "tangen-tial" U1-cell, see Figure 5.13.

point at a half cell distance from the cross-section

= 0)global

3
ξ(plane

global

2
ξ(plane = 0)

k = 3

k = 2

k = 1

k = 0

k = -1

k = -2

k = -3

j = -1j = -2j = -3 j = 3j = 2j = 1

U1
(0,-2,-2)

j = 0

bottom boundary

left boundary

U

U

U1

2

3

point

point at a half cell distance from the cross-sectionFigure 5.13: Cross-section over the "tangential" cell near the edge left under.The virtual velocities are eliminated in the usual way 1 one exception that is for V 1(0;�2;�2).1 V �(i;j;�2) = 2V �(i;j;�1) � V �(i;j;0) for � = 1; 2 and j 6= �2V �(i;�2;k) = 2V �(i;�1;k) � V �(i;0;k) for � = 1; 3 and k 6= �2V 2(i;�3;0) = 2V 2(i;�1;0) � V 2(i;1;0)V 3(i;0;�3) = 2V 3(i;0;�1) � V 3(i;0;1) :44

This virtual quantity can be extrapolated in the following way:V 1(0;�2;�2) = 4V 1(0;�1;�1)� 2V 1(0;�1;0)� 2V 1(0;0;�1)+ V 1(0;0;0) (5.66)or V 1(0;�2;�2) = 2V 1(0;�1;�1)� V 1(0;0;0) : (5.67)Both equations have the same order of accuracy.Combination (ii)Here we have to consider the "tangential" cell and the "normal" half-cell at the bottomboundary, see Figures 5.13 and 5.14.
a

k = 0

a a a

aaaa

a a a

2

1

-1

-2

-2-3 -1 1 2j = 0 3

bottom boundary

left boundary
(

(ξ

ξ

3

2

global

global

= 0)

= 0)

U

U

U

1

2

3

point at a half cell distance from the cross-section

point

pointFigure 5.14: Cross-section over a "normal" U3 half-cell."Tangential" U1-cell.The approach is here al most the same as the one prescribed in paragraph 5.2.2. Althoughthere are more virtual unknowns they can be eliminated in the usual way. The V 1(0;�2;�2)45

velocity forms an exception in this case. We can only use equation (5.67) for the eliminationof V 1(0;�2;�2), since V 1 is not prescribed at the bottom boundary."Normal" U3 half-cell.Only the velocities marked an a in Figure 5.14 appear in the discretization, since �31; �32 and�33 respectively U1; U2 and U3 are given at the bottom boundary respectively left bound-ary. The approach is almost identical to the one given in paragraph 5.2.2, only the terms12 �pgV 3V 2j(0;�1;0) and @U1@�2 j(0;0;�1) are treated in a di�erent way. The �rst term is completelyknown since V 2 and V 3 are prescribed at the left boundary. So this term can be transportedto the right-hand side.The derivative @U1@�2 j(0;0;1) = 12(U1(0;2;1) � U1(0;�2;1)), introduced by the stress tensor can becomputed using the standard elimination rules, so:@U1@�2 j(0;0;1) = 12(U1(0;2;1)� (2U1(0;�1;1)� U1(0;0;1)) (5.68)where U1(0;i;j) = 12(U1(�1;i;j) + U1(1;i;j)) : (5.69)Combination (iii)The U1; U2 and �33 are given at the bottom boundary and U1; U2 and U3 at the left boundary,so it is necessary to consider besides the "tangential" cell the "normal" U3 half-cell.The "tangential" cell can be treated in almost the same way as the "tangential" cell incombination (i), see also paragraph 5.2.2.The discretization for the "normal" U3 half-cell is almost given in paragraph 5.2.2. Butnow there are more virtual unknowns and some of them: V 1(0;�2;�1); V 2(0;�3;�1) and V 3(0;�2;�2)can not be eliminated in the usual way. The virtual unknowns V 1(0;�2;�1) and V 1(0;�3;�1) andV 3(0;�2;�2) (see Figure 5.14) can be eliminated by using one of the following equations:V 1(i;�2;�1) = 4V 1(i;�1;0)� 2V 1(i;0;0)� 2V 1(i;�1;1)+ V 1(i;0;1) (5.70)for i = �1 or 1, V 2(0;�3;�1) = 4V 2(0;�1;0)� 2V 2(0;1;0)� 2V 2(0;�1;1)+ V 2(0;1;1) ; (5.71)and V 3(0;�2;�2) = 4V 3(0;0;0)� 2V 3(0;2;0)� 2V 3(0;0;2)+ V 3(0;2;2) : (5.72)Combination (iv)Here we have only to consider the "tangential" cell, since the "normal" velocities are given (U2at the left boundary and U3 at the bottom boundary). For the treatment of the "tangential"cell, we refer to paragraph 5.4.2. All virtual unknowns (see Figure 5.13) exept of V 1(0;�2;�2)are eliminated in the usual way. For V 1(0;�2;�2) we can use formula (5.67).46

Combination (v)The stresses �21; �22 and �23 are prescribed at the left boundary and �31; �32 and �33 at thebotom boundary. So we have to consider two "normal' half-cells and the "tangential" U1-cell.See paragraph 5.2.2, for the treatment of the "tangential" U1 cell (Figure 5.15) and the"normal" half-cells (Figure 5.14). However, in this case there are some di�erences:Firstly, there are more virtual unknowns, but they caus no extra problems, since they can beeliminated by using the standard rules.Secondly, the discretization of the stress tensor ��� for the "tangential" U1-cell produces adi�erence. In formula (5.28) not only �13j(0;0;�1) is given, but also �12(0;0;�1).

unknowns do not appear, since

= 0)global

3
ξ(plane

global

2
ξ(plane = 0)

k = 3

k = 2

k = 1

k = 0

k = -1

k = -2

k = -3

j = -1j = -2j = -3 j = 3j = 2j = 1j = 0

bottom boundary

left boundary

U

U

U1

2

3

point

point at a half cell distance from the cross-section

point at a half cell distance from the cross-section

na

na

na

na σ12
(0,-1,0)

and σ13
(0,0,-1)

are givenFigure 5.15: Cross-section over the "tangential" U1-cell.47

5.7 Boundary conditions for the convection-di�usion equationsThe boundary conditions for the convection-di�usion type equations are much easier to im-plement than the boundary conditions for the velocity components.In the case of Dirichlet boundary conditions it is su�cient to use linear extrapolation toeliminate virtual scalars. So for example in Figure 5.16 we use the following formulae:T:;0 = 2T:;1=2� T:;1 (5.73)for normal boundary points andT0;0 = 12(2T1;0� T2;0) + 12(2T0;1� T0;2) (5.74)for the corner points. In the case of a Robbins boundary condition we follow van Kan et al
3

3

2

1

0

0 1 2Figure 5.16: Cells for scalar quantities and corresponding virtual points.(1991). This means that the Robbins boundary conditionk��T;�n� = b� �T (5.75)is substituted in the di�usive term:Z
 �(k��T;�);�d
 = � Z� k��T;�n�d�= � Z�n�b k��T;�n�d�� Z�b (b� �T)d� ; (5.76)where �b is the boundary at which the robbins boundary condition is given. Virtual scalarsT are eliminated in the usual way. 48

5.8 Wall functions5.8.1 IntroductionIn this section we shall consider the boundary conditions for the momentum and turbulencetransport equations along a solid wall.In the case of laminar ows at the wall the no-slip conditions are directly applied. Thesituation is much more complicated if turbulent ow is calculated. The reason for this istwofold:� in the near{wall region there are very steep gradients of the ow properties and so theneed for �ne mesh is required to resolve the wall layer properly in a numerical scheme;� there is an important role of molecular viscosity near the wall and hence the "highReynolds number" version of the k � " model can not be applied in the near{wallregion.However, speci�cation of the boundary conditions right at the wall is not necessary becauseempirical laws of su�cient generality are available. One of these laws is the "law of thewall", which can be used to provide near{wall boundary conditions for the momentum andturbulence transport equations, rather than on the wall itself. Other advantage of the "law ofthe wall" is that its allows some additional empirical information in special cases, for examplethe roughness of the wall.More details can be found in Zijlema (1993).5.8.2 Boundary conditions for the momentum equationsWe shall consider the control volumes adjacent to the wall. Figure (5.17) shows a scalar pointP whose associated volume is bounded on the south side by the wall.
1

P

0 1-1

-1

0 Figure 5.17: A scalar cell adjacent to a wallThe following boundary conditions for the momentum equations will be used:u � n = 0 and Snt = �w (5.77)49

where u � n is the physical velocity component normal to the wall, Snt is the physical shearstress tangent to the wall and �w is the wall shear stress. This type of boundary conditionsis the same as discussed in section 5.4.The wall shear stress �w can be computed in point P from the "law of the wall"�w = �c1=4� �pkPln(EY +P) u � tP (5.78)where Y +P � �c1=4� YPpk� (5.79)and YP is the normal distance of the point P from the wall, u � t is the physical velocitycomponent along the wall, � is the Von K�arm�an constant (� 0.4) and E is a roughnessparameter, approximately equal to 9.0 for a smooth wall. In the above u � t and k areevaluated at the previous iteration. However, a distinction is �rst made between the �rstcomputational points associated with scalar volumes, which lie in the viscous region andthose which lie in the turbulent region. The limiting value is Y +v = 11:3 which is determinedby matching the linear and logarithmic velocity pro�les. Thus, for Y +P > 11:3, �w is calculatedfrom (5.78). For Y +P < 11:3 the wall shear stress is given by�w = �u � tPYP (5.80)The tangential velocity along the wall expressed in terms of contravariant components reads:u � t = gt�pgttU� (5.81)The contravariant velocity components U� at point P is computed by linear interpolationusing the neighbouring points. Finally, the normal distance YP is evaluated as follows, seeFigure (5.18): cos� = AB:BCjABj:jBCjsin� = q1� cos2 �YP = 12 jBCj sin�where A = x(i;j); B = x(i+1=2;j) and C = x(i+1=2;j+1=2). The co-ordinates of points B and Care obtained by linear interpolation in the obvious way.5.8.3 Boundary conditions for the turbulence equationsBoundary conditions are required for k and " to solve the k � L or k � " equations. Theturbulent energy k at the �rst grid point away from the wall is calculated by the transportequation (4.33). However, to ensure an accurate numerical representation of near-wall e�ects,50

C

φ

P

YP

A
BFigure 5.18: Calculation of distance between near wall point and the walla special care is needed in evaluating the source terms, i.e. the production and dissipationrate, of k-equation in wall-adjacent cells. Let us consider the production term of the k-equation. Since the near-wall ow is assumed of the Couette type, the dominant contributionto the production is P = �w @u � t@n (5.82)To discretize this term we use the midpoint rule. The volume-integrated production of k maybe approximated by Z
h Pd
 � �wu � t(0;0)YP pg(0;0) (5.83)where the local numbering of Figure (5.17) is used, and �w is evaluated according to Y +P value.The dissipation term in the k equation is integrated in the same way using the followingrelation for ": " = c3=4� k3=2�Y (5.84)See Launder & Spalding (1974). This assumption leads toZ
h �"d
 � �c3=4� k3=2P ln(EY +P)�YP pg(0;0) (5.85)when Y +P > 11:3. If Y +P < 11:3 thenZ
h �"d
 � �c3=4� k3=2P Y +PYP pg(0;0) (5.86)The boundary condition @k=@n = 0 for k-equation has been applied at the wall.Finally, the "-equation is not solved in wall-adjacent cells, because of its inapplicability there.Instead, the expression (5.84) is used for the evaluation of dissipation rate in the �rst com-putational point. 51

6 Time-discretization6.1 IntroductionAfter application of the space discretization of momentum and transport equations and theimplementation of the boundary conditions as described in chapter 5, the discretized Navier-Stokes equations in the time-domain read:M _V + S(V) +GP = F ; (6.1)DV = 0 ; (6.2)M i _Ti + SiT i = F i : (6.3)In (6.1) - (6.3) V denotes the vector of velocity unknowns, P the vector of pressure unknownsand T i the vector of the ith scalar unknowns.The matrixM is a diagonal matrix containing the value of � in the centroids on the diagonal.The expression S(V) represents the discretization of the deviatoric stress tensor and theconvective terms. GP represents the discretization of the pressure gradient, and F thediscretization of the source terms.The equation DV = 0 denotes the discretized continuity equation.Equation (6.3) stands for the general discretized convection-di�usion equation, where againM i is a diagonal matrix, and F i the discretization of the source term.SiT i represents the discretization of the convective and di�usive terms. In fact this term mayalso be non-linear, but in our program it is treated as if it is linear.The �rst important decision that has been made is that momentum equations and continuityequation are coupled, but that all scalar convection-di�usion equations are decoupled fromthe momentum equations and the other convection-di�usion equations.In fact this means that for each time step �rst the momentum and continuity equation aresolved and then each scalar equation separately in the sequence given by their index number.So per time-step: Solve V and PSolve T1Solve T2...The time discretization is performed with a standard technique for the solution of ordinarydi�erential equations. At this moment only one type of time-solver is present: the so-called� method. 52

6.2 The �-methodThe standard �-method applied to (6.1), (6.2) reads:MV n+1 � V n�t + �S(V n+1) + (1� �)S(V n) + �GP n+1 + (1� �)GP n (6.4)= �F n+1 + (1� �)F nDV n+1 = 0 ; 0 � � � 1 : (6.5)n + 1 denotes the new and n the preceding time-level.To solve (6.3), (6.4) it is necessary to linearize the term S(V n+1). In ISNaS, the convectiveterms are linearized by a Newton linearization as given in formula (4.7). Coe�cients thatdepend on the solution, like for example the viscosity, are evaluated at the preceding time-level.The �-method is unconditionally stable for 0:5 � � < 1. In the range 0 � � < 0:5 a time-steprestriction is necessary. At this moment � < 0:5 has not been tested.Practical implementation:Instead of solving (6.4), (6.5) immediately, we introduce an intermediate level n + � by:V n+� = �V n+1 + (1� �)V nP n+� = �P n+1 + (1� �)P n (6.6)F n+� = �F n+1 + (1� �)F nIf we assume that S(V) is linearized, i.e. can be written as S(V n+1) ' A(V n)+B(V n)V n+1,then (6.4) reduces to:MV n+1 � V n�t + �B(V n)V n+1 + (1� �)B(V n)V n + �GP n+1 + (1� �)GP n+ A(V n) = �F n+1 + (1� �)F n (6.7)Substitution of (6.6) into (6.7) and (6.5) givesMV n+� � V n��t +B(V n)V n+� +GP n+� = F n+� �A(V n) (6.8)DV n+� = 0 (6.9)From (6.6) it then follows that:V n+1 = 1� (V n+� � (1� �)V n) (6.10)P n+1 = 1� (P n+� � (1� �)P n)Once the momentum equations have been solved for tn+1, each of the scalar convection-di�usion equations is solved for one time step. Exactly the same � method with practicalimplementation is used as for the momentum equations. Quantities already computed, likethe velocity are substituted in these equations, thus improving the stability.53

6.3 Time discretization of turbulence equationsFor each time step �rst the momentum and continuity equations are solved and then eachscalar equation separately. Finally, the turbulence equations are solved. It should be notedthat for all equations the eddy viscosity �t is evaluated at old time level. This is also true forthe momentum equations.Normally, the equations for k and " are coupled, in other words, k appears in the " equationand vice versa. Bearing in mind that each convection-di�usion equation is solved separately,the equations for k and " will be treated as decoupled equations, in the following way: foreach time step �rst the equation for k is solve using the updated velocity components U� andnon-updated turbulence quantities, i.e. k, " and �t. The same holds for the equation for ",which is solved after k.The right hand side of equations (4.33)-(4.34) can rise considerable problems, because itrepresents a function of the solution U�, k and " and is non-linear. We are compelled touse fully-implicit scheme enabling such a linearization. In the present solver, a Newtonlinearization is use. The dissipation term in k-equation in both k � L and k � " model isevaluated as follows " = �c�k2�t (6.11)This non-linear expression is linearized on the following way:�c�(2 knew kold � (kold)2�t) (6.12)The same holds for the destruction term in the "-equation:2 "new "old � ("old)2kold (6.13)Finally, the functions c�, K�� , D and f� for both equations are given by:� k-equation: c� = �K�� = g�� �oldt�kD = 2�2c� kold�oldtf� = P + �2c� (kold)2�oldt54

� "-equation: c� = �K�� = g�� �oldt�"D = 2c2"� "oldkoldf� = "oldkold (c1"P + c2"�"old)On the grounds of the foregoing considerations the fully-implicit time scheme, i.e. � = 1,must be used in the present solver.It can be shown that the discrete equations for k and ", which is a result of applying up-wind scheme for convection terms and Newton linearization for non-linear source terms, yieldpositive values for k and " Zijlema (1993).

55

7 Pressure correction7.1 IntroductionAn essential di�culty in the solution of the coupled momentum equations and continuityequation (6.1), (6.2) or its (time discretized form (for example (6.8), (6.9), is the absence ofthe pressure in the continuity equation. If we consider the system of equations as one largesystem of linear equations to be solved, this means that in the part corresponding to thecontinuity equations we have zeros at the main diagonal. Formally equations (6.8), (6.9) maybe written as: " S GD 0 #" V n+�P n+� # = " F n+�1F n+�2 # ; (7.1)where F n+�2 is only non-zero if non-zero Dirichlet boundary conditions for the velocity areprescribed.The solution of systems of equations of the form (7.1) is in general more di�cult for a linearsolver than the solution of equations arising from the discretization of standard convection-di�usion equations. There are several ways to solve this problem. One of the possible ways isto perturb the continuity equation. This leads to methods like the penalty method or Uzawaiterations. An alternative way to solve the problem is formed by projection methods. In thesemethods �rst the pressure at the new level is estimated, for example by the old pressure, andthen the momentum equations are solved yielding an intermediate velocity �eld. By projectingthis velocity onto the space of divergence-free vector �elds a new velocity and pressure maybe computed. An important representant of this class is the so-called pressure-correctionmethod, which will be treated in 7.2.7.2 The pressure-correction methodThe pressure-correction method as implemented in the ISNaS incompressible code is the onedescribed in van Kan et al (1991). Starting point is the �-method formulated by (6.4), (6.5)or the variant (6.8), (6.9).Following van Kan et al (1991) we de�ne an intermediate velocity V � by:MV � � V n��t +B(V n)V � +GP n = F n+� �A(V n) (7.2)V � must be such that the boundary conditions at t = tn + ��t are satis�ed. In the case ofprescribed normal velocities this means that the corresponding rows in the matrix G containzeros.Subtraction of (7.2) from (6.8) givesM V n+� � V ���t = �G(P n+� � P n) ; (7.3)56

where the term B(V n)(V n+� � V �) has been neglected.Application of (6.9) to (7.3) gives�DV � = ���tDM�1G(P n+� � P n) ; (7.4)which is a Laplacian-type equation for the pressure correction. Once P n+� has been computedV n+� follows from (7.3): V n+� = V � � ��tM�1G(P n+� � P n) (7.5)Remark: the matrix �DM�1G is in general non-symmetrical.

57

8 The linear solver8.1 IntroductionThe discretization of the incompressible Navier-Stokes equations in general curvilinear co-ordinates is described in the foregoing sections. The space discretization consists of a �nitevolume technique on a structured grid. The motivation for these choices is that we want tosolve large two and three dimensional problems. In these problems it is important to obtainfast iterative methods to solve the discretized equations. This is easier using a �nite volumetechnique instead of a �nite element technique. Finally the structured grid enables us todevelop a good implementation of the methods on vector computers.The linear systems to be solved are Vuik (1992), Vuik (1993):the momentum equationsMn+1un+1 = fn+1 ; un+1 = 0B@ un+11un+12un+13 1CA ;the pressure equation P�pn+1 = gn+1 ; �pn+1 = pn+1 � pn ;and eventually one or more transport equations:transport equations Cn+11 cn+11 = dn+11 ;...Cn+1k cn+1k = dn+1k :Suppose ni is the number of grid points in the xi-direction, where we take n3 = 1 for a 2-dimensional problem. The pressure and transport matrices have n1 �n2 �n3 rows and columns.The dimension of the momentum matrix is 2�n1 �n2 in 2-dimensional problems and 3�n1�n2 �n3in 3-dimensional problems.For the structure of the matrices in 2-dimensions we refer to Vuik (1992) and Vuik (1993). Inthe 3-dimensional case the nonzero structure is symmetric for all matrices. In 3 dimensionsthe structure of the pressure equation is given in Figure 8.1.Note that the nonzero structure is symmetric. The momentum matrix can be partitioned inthe following form: 0B@ M11 M12 M13M21 M22 M23M31 M32 M33 1CA0B@ u1u2u3 1CA = 0B@ f1f2f3 1CA :The structure of Mii; i = 1; 2; 3 is the same as for the pressure equations. The o�-diagonalblocks contain 16 non zero diagonals. The non zero structure of the momentum matrix is nonsymmetric. To illustrate this we give M12 and M21 in Figures 8.2 and 8.3 and note the non58

zero structure of M12 is not equal to the non zero structure of MT21.In the following table we summarize the number of non zero elements in some matrices.2D 3Dpressure matrix 9 � n1 � n2 19 � n1 � n2 � n3momentum matrix 13 � 2 � n1 � n2 51 � 3 � n1 � n2 � n3Table 8.1: Number of non zero elements
Figure 8.1: The pressure matrix PIn three dimensions the momentum matrix is much larger than the pressure matrix. Theratio in 2D is equal to 13�29 = 3 whereas the ration in 3D is equal to 51�319 = 8.So in 3D a momentum matrix times vector is 8 times as expensive as a pressure matrix timesvector.The momentum matrix and the transport matrix depend on the time t. In many problemsthe pressure matrix is independent of the time. However, this property of the pressure matrixis not used in the current implementation. 59

Figure 8.2: The momentum-matrix M12
Figure 8.3: The momentum-matrix M2160

8.2 Survey of iterative methodsThe systems given in Section 8.1 are solved with iterative methods of CG-type. All themethods used in ISNaS can be applied to unsymmetric matrices. The methods used in ISNaSare:LSQRThis is a stable implementation of CG applied to the normal equations Paige et al (1982).CGSCGS is an iterative method based on the Bi-Lanczos algorithm Sonneveld (1989).GMRESAn iterative method, which computes an approximation with a minimal residual Saad et al(1986).GMRESRA method based on GMRES, but in general cheaper with respect to work and memory Vander Vorst et al (1993). In Table 8.2 we summarize the properties of the iterative methods.This table only gives an indication of the properties. So in many experiments the resultsproperties bad good � �!memory GMRES GMRESR CGS LSQRrobustness CGS GMRES GMRESR LSQRCPU-time LSQR GMRES CGS GMRESRTable 8.2: Properties of the iterative methodsagree with Table 8.2. However, for speci�c problems the results may be di�erent.Stopping criteriaFor iterative methods it is necessary to specify a stopping criterion. In general the norm ofthe residual: krkk2 = kb�Axkk2 is easy to obtain. So all our stopping criteria are based onkrkk2. For the di�erent equations we recommend di�erent stopping criteria. For the detailswe refer to Vuik (1992), p. 8 for the momentum equations, Vuik (1992), p.13 for the pressureequation, and Vuik (1992), p. 15 for a transport equation.Starting vectorFinally we have to choose a starting vector for the iterative methods. Since we solve thesystems for every timestep, the solution of the foregoing timestep is in general a good startingvector. For the details we refer to Vuik (1992), p. 6, 7 for the momentum equations, Vuik(1992), p. 13 for the pressure equation, and Vuik (1992), p. 15 for a transport equation.61

8.3 PreconditioningIn many applications, iterative methods are combined with a preconditioner Meijerink et al(1977). It is a well known fact that a good preconditioner is very important in order toobtain fast iterative methods. The preconditioners used in ISNaS are based on incompleteLU decompositions. In such a preconditioner, one constructs a lower triangular matrix L andan upper triangular matrix U , where L and U have a prescribed nonzero pattern, and LU isa good approximation of A. The iterative methods can be applied toU�1L�1Ax = U�1L�1b ; (8.1)AU�1L�1y = b ; (8.2)or L�1AU�1y = L�1b : (8.3)We call equation (8.1) a preconditioned system and equation (8.2) a postconditioned system.The �nal equation is only used in combination with the Eisenstat implementation Eisenstat(1981). In general, the convergence behaviour of a Krylov type iterative method depends onthe eigenvalue distribution of the matrix. In the three equations given above the eigenvaluesof the product-matrices are the same. So the convergence behaviour is approximately thesame when we use (8.1), (8.2), or (8.3). A small advantage of a postconditioned system isthat the norm of a residual is not inuenced by the matrices L and U (compare Vuik (1992),p. 12, 13).Below we give a short description of the preconditioners used in ISNaS.Diagonal scalingA diagonal preconditioner is obtained by choosing L = I and U = diag (A). This is acheap preconditioner with respect to memory and can be used in combination with vectorand parallel computers. For most problems the gain in the number of iterations is small.ILUDFor this preconditioner we construct LD�1U as an approximation of A. To obtain L;D, andU we use the following rules Van der Vorst (1981):- diag (L) = diag (U) = D;- the o�-diagonal parts of L and U are equal to the corresponding parts of A;- diag (LD�1U) = diag (A).The third rule can be replaced by the following:rowsum (LD�1U) = rowsum (A) for every row ;which leads to the MILU preconditioning. We always use an average of ILUD and MILUD.This preconditioner is also cheap with respect to memory. It costs two extra vectors, one62

for D and the other one for D�1. Using the Eisenstat implementation we are able to saveone matrix vector product per iteration. In the ISNaS program ILUD preconditioner meansapplication of the iterative method to (8.3) and not to (8.1), which is done in the otherpreconditioners. Multiplication with L�1 and U�1 leads to recurrencies. So these parts donot run in vector speed on a vector computer.ILUThis preconditioner is only used for the pressure and transport equations. The matrices Land U are constructed such that LU approximates A and satis�es the following rules:- diag (L) = I ;- the structure of L and U is comparable to the structure of A;- if aij 6= 0 then (LU)ij = aij .Again the last rule for i = j can be repaced by- rowsum (LU) = rowsum (A),which leads to MILU. We always use an average of ILU and MILU. The convergence be-haviour of an iterative method combined with MILU is in general beter than a combinationwith MILUD. A disadvantage is that extra memory space is needed to store L and U . Theamount of extra memory is the same as the amount of memory to store A. Furthermore it isimpossible to save a matrix vector product per iteration (compare the Eisenstat implemen-tation). From our experiments we conclude that if the memory space is available than it isbetter to use MILU.Memory spaceDuring the solution of the pressure or transport equation the memory space of the momentummatrix is available. For this reason we always use the MILU preconditioner to solve the pres-sure and transport equations, and the MILUD preconditioner for the momentum equations.VectorizationDue to the recurrencies, the multiplication of L�1 or U�1 for MILUD or MILU runs in scalarspeed on a vector computer. In the ISNaS program the loops are rewritten in such a way thatthey run in vectorspeed Ashcraft (1988). Note that the rewritten loops use indirect adressingand are much shorter than the original loops. On the Convex C3840 this leads to good results.8.4 Concluding remarksNot all the combinations described in the foregoing sections are implemented. In Van Nooyen(1993) all the implemented combinations are summarized.63

9 Post-processingThe ISNaS incompressible program computes the uxes V � in the midside points of the cellsand the scalars in the centroids. For post-processing purposes these quantities are needed inthe vertices of the cells. For that reason it is necessary to interpolate (or at the boundaryextrapolate) the computed values to the vertex points. Numerical examples have shown thata straighforward interpolation in the computational space is not accurate enough. For thatreason a weighted approach, taking into account the distances in physical space, is necessary.In the following sections we consider the interpolation and backtransformation applied bothfor scalar quantities and for the uxes.9.1 Interpolation of scalars in 2DThe scalar unknowns are positioned in the centroids of the cells. In order to interpolate thesevalues to the vertices a weighted mean value of the four surrounding cells is used. Figure 9.1sketches a typical example. In this �gure point i; j is the vertex in which the interpolated
12

11 21

i,j

y

x

12 22

11 21

1-

1-

v

u u

v

ξ

η

22

Figure 9.1: Vertex i; j with four surrounding cells and mapping of quadrilateral formed bycentroids on to a square.values must be computed. This point is part of 4 cells with centroids 11, 21, 12 and 22.In order to compute the interpolated value, the quadrilateral spanned by the 4 centroids ismapped onto a unit square (0, 1) � (0,1) by a bilinear mapping as is usual in �nite elements.So " xy # = 2Xi;j=1 �i(�)�j(�) " xy #ij ; (9.1)with �1(�) = 1� �; �2(�) = �The value of the scalar in (x; y) is computed byScalar (x; y) = 2Xi;j=1 �i(�)�j(�) scalar (xij ; yij) (9.2)64

To evaluate (9.2) it is necessary to know the value of (�; �) in point (x; y). This value can becomputed from (9.1) by solving this system of non-linear equation with a Newton-Raphsonmethod.De�ne " F1(�; �)F2(�; �) # = 2Xi;j=1 �i(�)�j(�) " xy #ij � " xy # (9.3)The Newton-Raphson method can be written as:(�; �)1 = (1=2; 1=2)" @F1=@� @F1=@�@F2=@� @F2=@� #n (" �� #n+1 � " �� #n = � " F1F2 #n n = 1; 2; ::: (9.4)Since Newton is a fast converging process, the maximal number of iterations is restricted to5. At this moment the iterations is stopped if k�n+1 � �nk < 0:001.From (9.3) it follows that:F (�; �) = (1� �)(1� �)x11 + ��x21 + (1� �)�x12 � x= x11 + (x11 + x22 � x21 � x12)�� + (x21 � x11)� + (x12 � x11)� � x (9.5)and @F@� = (x11 + x22 � x21 � x12)� + x21 � x11 (9.6)@F@� = (x11 + x22 � x21 � x12)� + x12 � x11 (9.7)With respect to the boundary points it is not longer possible to use an interpolation. In thatcase an extrapolation is used. Figure 9.2 shows the four points that are used to compute thevalue at an under boundary.
i,jFigure 9.2: Cells that are used to extrapolate the scalar value at the under boundary i; j.65

9.2 Interpolation of the velocity in 2DThe interpolation of the velocity is performed in three steps.In the �rst step the Cartesian velocity is computed in the cell centre. First the uxes V 1 andV 2 are averaged according to V 1(0;0) = (V 1(1;0)+ V 1(�1;0))=2 ; (9.8)V 2(0;0) = (V 2(0;1)+ V 2(0;�1))=2 ; (9.9)see Figure 9.3 for the notations. Next the uxes are transformed to Cartesian velocity com-
V V1
(-1,0)

(0,1)

(1,0)
1

V 2

(0,0)

V 2
(0,-1)Figure 9.3: Cell with uxes and centroidponents using: V � = pgU� ;u = U�a� ;hence u = (V 1a(1) + V 2a(2))=pg (9.10)In the second step each of the components is interpolated to the vertices by exactly theprocedure described for scalars in 9.1.Finally at the boundary essential boundary conditions, if present, are substituted in order toavoid unnecessary interpolation erors.9.3 Computation of the stream functionA special scalar that is computed, is the stream function . Since in fact ISNaS incompressiblecomputes the uxes, the steam function computation is straightforward.At present we assume = 0 at the vertex point (1,1). The values in the other vertices arecomputed by summation: 66

For j := 1(1)nj do 1;j+1 := 1;j + V 11;ji := 1(1)ni do i+1;j+1 := i;j+1 + V 2i;j+1

67

References[1] C.C. Ashcraft and R.G. Grimes,"On vectorizing incomplete factorization and SSOR preconditioners",SIAM J. Sci. Stat. Comput., 9, pp. 122-151, (1988).[2] S.C. Eisenstat,"E�cient implementation of a class of preconditioned conjugate gradient methods",SIAM J. Sci. Stat. Comput., 2, pp. 1-4, (1981).[3] Kay, C. David,"Schaum's outline of theory and problems of tensor calculus",McGraw-Hill book company, (1988).[4] W.P. Jones and B.E. Launder,"The prediction of laminarization with a two-equation model of turbulence",Int. J. of Heat and Mass Transfer, 15, pp. 301-314, (1972).[5] J.J.I.M. van Kan, C.W. Oosterlee, A. Segal and P. Wesseling,"Discretization of the incompressible Navier-Stokes equations in general coordinates us-ing contravariant velocity components",Report 91-09, Faculty of Technical Mathematics and Informatics, Delft University ofTechnology, (1991).[6] B.E. Launder and D.B. Spalding,"Lectures in mathematical models of turbulence",Academic Press, London, 1972.[7] B.E. Launder and D.B. Spalding,"The numerical computation of turbulent ows",Comp. meth. in Appl. Mech. and Eng., 3, pp. 269-289, (1974).[8] J.A. Meijerink and H.A. van der Vorst,"An iterative solution method for linear systems of which the coe�cient matrix is asymmetric M -matrix",Math. of Comp., 31, pp. 148-162, (1977).[9] R.R.P. van Nooyen,ISNAS user manual, version 1.0 a, (1993).[10] C.C. Paige and M.A. Saunders,"LSQR: an algorithm for sparse linear equations and sparse least squares",ACM Trans. Math. Soft., 8, pp. 43-71, (1982).[11] Y. Saad and M.H. Schultz,"GMRES: a generalized minimal residual algorithm for solving non symmetric linearsystems",SIAM J. Statist. Comput., 7, pp. 856-869, (1986).68

[12] Guus Segal,"The treatment of slip boundary conditions for the incompressible Navier-Stokes equa-tions in general co-ordinates",Report 91-22, Faculty of Technical Mathematics and Informatics, Delft University ofTechnology, (1991).[13] Guus Segal and Kees Kassels,"Some 2D test examples for the ISNaS incompressible code",Report 91-44, Faculty of Technical Mathematics and Informatics, Delft University ofTechnology, (1991)[14] Guus Segal,"The no ow problem",to appear.[15] P. Sonneveld,"CGS: a fast Lanczos type solver for nonsymmetric linear systems",SIAM J. Sci. Stat. Comput., 10, pp. 36-52, (1989).[16] H.A. van der Vorst,"Iterative solution methods for certain spares linear systems with a non-symmetric matrixarising from PDE problems",J. Comp. Physics, 44, pp. 1-19, (1981).[17] H.A. van der Vorst and C. Vuik,"GMRES: a family of nested GMRES methods",J. Num. Lin. Alg. Appl., to appear (1993),Report 91-80, Faculty of Technical Mathematics and Informatics, Delft University ofTechnology, (1991).[18] C. Vuik,"Solution of the discretized incompressible Navier-Stokes equations with the GMRESmethod",Int. J. Num. Math. in Fluids, 16, pp. 507-523, (1993)[19] C. Vuik,"Termination criteria for GMRES-like methods to solve the discretized incompressibleNavier-Stokes equations",Report 92-50, Faculty of Technical Mathematics and Informatics, Delft University ofTechnology, (1992).[20] M. Zijlema,"Finite volume discretization of the k � " turbulence model in general coordinates",Technical report, to be published, (1993).69

AppendicesIn these appendices we prove equations (5.6), (5.7), (5.22) and (5.23).A Proof of (5.6) and (5.7)We have to prove (see Figure A.1):Un = sign(a(n) � n)pgnn u �n (A.1)and " U t1U t2 # = " gt1t1 gt1t2gt2t1 gt2t2 #�18<:" �11 �12�21 �22 #�1 " u � � 1u � � 2 #� Un " gnt1gnt2 #9=; (A.2)where �i1 = ����� � i � a(t1) gt1t2� i � a(t2) gt2t2 ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� (A.3)and �i2 = ����� gt1t1 � i � a(t1)gt2t1 � i � a(t2) ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� (A.4)First (A.1): u � n = u � a(n)ka(n)k = Unpgnnso Un = pgnn u � n :This formula is true if a(n) and n have the same direction else we have to use:Un = �pgnn u �n : 2Formula (A.2):The tangential vector � i, given by the user can be decomposed in the following way:� i = �i1a(t1) + �i2a(t2) ; (A.5)see Figure A.2. 70

tangent plane

ξ 1t

ξ
n

ξ 2t

ξ n
= constant

u(u . n) n

τ(u .) τ

(u .)τ τ

1 1

2 2Figure A.1: Normal and tangential velocity components are given by the user (knk = k�1k =k�2k = 1)The calculation of �ij :From Figure A.2 it is clear thata(t1) � �i2a(t2) = a(t1) � (� i � �i1a(t1))a(t1) � a(t1)�i1 + a(t1) � a(t2)�i2 = a(t1) � � i (A.6)and a(t2) � �i1a(t1) = a(t2) � (� i � �i2a(t2))a(t2) � a(t1)�i1 + a(t2) � a(t2)�i2 = a(t2) � � i : (A.7)Frome (A.6), (A.7) and Cramer's rule we obtain.�i1 = ����� a(t1) � � i a(t1) � a(t2)a(t2) � � i a(t2) � a(t2) ���������� a(t1) � a(t1) a(t1) � a(t2)a(t2) � a(t1) a(t2) � a(t2) ����� = ����� a(t1) � � i gt1t2a(t2) � � i gt2t2 ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� (A.8)and �i2 = ����� a(t1) � a(t1) a(t1) � � ia(t2) � a(t1) a(t2) � � i ���������� a(t1) � a(t1) a(t1) � a(t2)a(t2) � a(t1) a(t2) � a(t2) ����� = ����� gt1t1 a(t1) � � igt2t1 a(t2) � � i ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� (A.9)71

τ i

a

a

i2

aα
i1

α a

(t)

(t)

(t)

1

1

2

(t)2 Figure A.2: Decomposition of � i.Back to formula (A.5): u � � i = u � (�i1a(t1) + �i2a(t2))= �i1u � gpt1a(p) + �i2u � gpt2a(p)= (�i1gpt1 + �i2gpt2)Up ; (A.10)so: u � � 1 = (�11gt1t1 + �12gt1t2)U t1 + (�11gt2t1 + �12gt2t1)U t2 +(�11gnt1 + �12gnt2)Un ; (A.11)u � � 2 = (�21gt1t1 + �22gt1t2)U t1 + (�21gt2t1 + �22gt2t2)U t2 +(�21gnt1 + �22gnt2)Un : (A.12)Formula (A.11) and (A.12) in matrix notation gives:" �11gt1t1 + �12gt1t2 �11gt2t1 + �12gt2t2�21gt1t1 + �22gt1t2 �21gt2t1 + �22gt2t2 #" U t1U t2 # = " u � � 1 � (�11gnt1 + �12gnt2)Unu � � 2 � (�21gnt1 + �22gnt2)Un #or: " �11 �12�21 �22 # " gt1t1 gt1t2gt2t1 gt2t2 # " U t1U t2 # = " u � � 1u � � 2 # � Un " �11 �12�21 �22 # " gnt1gnt2 #Hence: 72

" U t1U t2 # = " gt1t1 gt1t2gt2t1 gt2t2 #�18<:" �11 �12�21 �22 #�1 " u � �1u � �2 #� Un " gnt1gnt1 #9=; 1where �ij is given by (A.8) and (A.9). 2

1This formula can be modi�ed in the following way:� U t1U t2 � = � gt2t2 gt1t2�gt2t1 gt1t1 �(� �11 �12�21 �22 ��1 � u � �1u � �2 �� Ungt1t1gt2t2 � gt1t2gt2t1 � gnt1gnt2 �)where �i1 = ���� �i � a(t1) gt1t2�i � a(t2) gt2t2 ����and �12 = ���� gt1t1 �i � a(t1)gt2t1 �i � a(t2) ����73

B Proof of (5.22) and (5.23)We have to prove (see Figure B.1):
= constant

ξ 1t

ξ
n

ξ 2t

ξ n
= constant

tangent plane

S

S

S
nn

n

nτ
τ

n
ξ

Figure B.1: The normal and tangential stress in the physical domain at the boundary �n =constant. �nn = gnnSnn (B.1)and " �nt1�nt2 # = sign(a(n) � n) � pgnnSn� " �1�2 #� �nn " gt1t1 gt1t2gt2t1 gt2t2 #�1 " gnt1gnt2 # 2 (B.2)2This formula can also be modi�ed in the following way:� �nt1�nt2 � = 1gt1t1 � gt2t2 � gt1t2 � gt2t1 �sign(a(n) � n)pgnnSn� � �1�2 �� �nn � gt2t2 �gt1t2�gt2t1 gt1t1 �� gnt1gnt2 ��where �1 = ���� � � a(t1) gt1t2� � a(t2) gt2t2 ����and �2 = ���� gt1t1 � � a(t1)gt2t1 � � a(t2) ���� :74

where �1 = ����� � � a(t1) gt1t2� � a(t2) gt2t3 ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� ; (B.3)�2 = ����� gt1t1 � � a(t1)gt2t1 � � a(t2) ������������ gt1t1 � � a(t1)gt1t1 gt1t2gt2t1 gt2t2 ������� : (B.4)We start with formula (3.17) from Kay (1988):S�n=constant = ��ij(n � ei)ej (B.5)where ��ij is stress tensor in the physical domain.From S�n=constant = Snnn+ Sn�� and (B.5) we get:��ij(n � ei)ej = Snnn + Sn�� (B.6)so (��ij(n � ej)ej) � g(n) = (Snnn + Sn��) � a(n) = Snnn � a(n) : (B.7)It should be noticed that Snn and Sn� are not tensors.The normal vector n pointing in the outside direction of the domain is equal to: 1ka(n)ka(n)if a(n) is pointing in the outside direction and � 1ka(n)ka(n) otherwise. Formally we can write:n = sign(a(n) � n)ka(n)k a(n) : (B.8)From (B.7) and (B.8) we get:(��ij(a(n) � ei)ej) � a(n) = Snna(n) � a(n)��ij(a(n))i(a(n))j = Snngnn��ij @�n@xi @�n@xj = gnnSnnso �nn = gnnSnn : 2Formula (B.2):The tangential vector � is just as in the previous proof equal to:� = �1a(t1) + �2a(t2) (B.9)75

where �1 = ����� � � a(t1) gt1t2� � a(t2) gt2t1 ���������� gt1t1 gt1t2gt2t1 gt2t2 �����and �2 = ����� gt1t1 � � a(t1)gt2t1 � � a(t2) ���������� gt1t1 gt1t2gt2t1 gt2t2 ����� :From (B.7), (B.8) and (B.9) it follows that:(��ij(sign(a(n) � n)ka(n)k a(n) � ei)ej) � atl) = Sn� (�1a(t1) + �2a(t2)) � a(tl)sign(a(n) �n)��ij(a(n))i(a(tl))j = ka(n)kSn� (�1a(t1) � a(tl) + �2a(t2) � atl))sign(a(n) �n)��ij(a(n))igptl(a(p))j = pgnnSn� (�1gt1tl + �2gt2tl)sign(a(n) �n)gptl��ij @�n@xi @�p@xj = pgnnSn� (�1gt1t1 + �2gt2tl)so: sign(a(n) � n)gptl�np = pgnnSn� (�1gt1tl + �2gt2tl) ; (B.10)where ��� is the stress tensor in the computational domain. For l = 1; 2 we get:sign(a(n) � n)fgt1t1�nt1 + gt2t1�nt2 + gnt1�nng = pgnnSn�(�1gt1t1 + �2gt2t1)and sign(a(n) � n)fgt1t2�nt1 + gt2t2�nt2 + gnt2�nng = pgnnSn�(�1gt1t2 + �2gt2t2)or:" gt1t1 gt2t1gt1t2 gt2t2 # " �nt1�nt2 #+ �nn " gnt1gnt2 # = sign(a(n) �n)pgnnSn� " gt1t1 gt2t1gt1t2 gt2t2 # " �1�2 #so: " �nt1�nt2 # = sign(a(n) � n)pgnnSn� " �1�2 # � �nn " gt1t1 gt2t1gt1t2 gt2t2 #�1 " gnt1gnt2 #hence:" �nt1�nt2 # = sign(a(n) �n)pgnnSn� " �1�2 #� �nn " gt1t1 gt1t2gt2t1 gt2t2 #�1 " gnt1gnt2 # : (B.11)76

By using Cramers rule in formula (B.11) we get:" �nt1�nt2 # = 1gt1t1gt2t1 � gt1t2gt2t1 (sign(a(n) �n)pgnnSn� " �1�2 #� �nn " gt2t2 �gt1t2�gt2t1 gt1t1 # " gnt1gnt2 #)(B.12)where �1 = ����� � � a(t1) gt1t2� � a(t2) gt2t2 ����� (B.13)and �2 = ����� gt1t1 � � a(t1)gt2t1 � � a(t2) ����� : (B.14)2

77

