
Fast iterative solvers for the
discretized incompressible
Navier-Stokes equations

Report 93-98

C. Vuik

Technische Universiteit Delft
Delft University of Technology

Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

ISSN 0922-5641

Copyright c 1993 by the Faculty of Technical Mathematics and Informatics, Delft, The
Netherlands.
No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Delft, phone+3115784568.
A selection of these reports is available in PostScript form at the Faculty’s anonymous
ftp-site. They are located in the directory /pub/publications/tech-reports at ftp.twi.tudelft.nl

Fast iterative solvers for the discretized incompressibleNavier-Stokes equationsC. VuikFaculty of Technical Mathematics and InformaticsDelft University of TechnologyP.O. Box 50312600 GA DelftThe NetherlandsAbstractIn this paper some iterative solution methods of GMRES type to solve the discretizedNavier-Stokes equations are treated. The discretization combined with a pressure correc-tion scheme leads to two di�erent types of systems of linear equations: the momentumsystem and pressure system. These systems may be coupled to one or more transportequations. For every system we specify a particular ILU type preconditioner and showhow to vectorize these preconditioners. Finally some numerical experiments to show thee�ciency of the proposed methods are presented.
1

1 IntroductionIn this paper we treat the solution of the discretized incompressible Navier-Stokes equations.The discretization of these equations in general curvilinear coordinates is described in [8],[15] [9], [13] and [23]. As space discretization a �nite volume technique on a boundary �ttedstructured grid is used. In [22] iterative methods of Krylov type to solve the discretizedequations have been presented. Reference [22] also contains a short survey of other iterativemethods. In this paper we shall give improvements of the iterative methods described in [22]and apply them to a wider range of problems. The improvements with respect to [22] are:preconditioners with a better rate of convergence and vectorization of the preconditioners.The methods given will be applied to problems with large gridsize (up to 160� 320 cells) andproblems which include transport equations.The discretized equations given in [15] have also been solved by multi-grid methods. Forstationary problems we refer to [10], [12] and for instationary problems to [11], [25]. For astationary problem it is not easy to compare the various methods, since the multigrid methodgiven in [10] solves the momentum equations simultaneously with the pressure equation,whereas in our software we use a time stepping method combined with pressure correction.For instationary problems the Krylov subspace methods described in this paper are moree�cient than the multigrid methods described in [11], [25]. Recently we have combined theKrylov subspace method with multigrid as a preconditioner. This combination gives promisingresults ([24]).Since the discretized equations contain nonsymmetric matrices [22], we are not able to usethe conjugate gradient or conjugate residual method. This motivates us to use GMRES-like methods, which are robust and have an optimal rate of convergence [14], [19], [21].The incompressible Navier-Stokes equations in general coordinates are given by ([15]): thecontinuity equation U�;� = 0 ; (1)and the momentum equations@@t(�U�) + (�U�U�);� + (g��p);� � ���;� = �f� ; (2)where ��� represents the deviatoric stress tensor��� = �(g�U�; + g�U�;) ;with g�� the contravariant metric tensor, � the viscosity, p the pressure, U� the contravariantvelocity component, � the density of the uid, and f� the contravariant component of a bodyforce. The transport equation for a scalar C is given byk1@C@t + (U�C);� � (K��C;�);� + k2C = k3 (3)where k1; k2; k3 and K�� are given functions. 2

Before discretization the physical domain is mapped onto a computational domain consistingof a number of rectangular blocks. In this paper we restrict ourselves to the one block case.In order to avoid possible pressure oscillations a staggered grid arrangement is used. Thepressure is computed in the cell centers and the normal velocity components are calculated atthe centers of the cell faces. In the remainder of this paper ni is the number of �nite volumesin the xi direction. For further details and the discretization of the boundary conditions werefer to [15].Finally, the spatial discretization is combined with �nite di�erences for the time derivative.We use the Euler backward scheme together with pressure correction. The time step isdenoted by �t. For a given function v and n 2 IN; vn is an approximation of v(n�t). AfterNewton linearization we obtain two systems of equations ([15], [22]), namely the momentumequation: Mn+1un+1 = fn+1 ; un+1 = Un+11Un+12 ! ; (4)and the pressure equation:P�pn+1 = gn+1 ; where �pn+1 = pn+1 � pn : (5)A discretization of (3) will be called a transport equation and denoted by:Cn+1cn+1 = kn+13 : (6)The iterative methods are applied to two test problems: the ow through a curved channeland a Boussinesq problem. We have found that in a number of problems the behaviour ofthe iterative methods is comparable to that in the aforementioned test problems.Curved channelThe curved channel is displayed in Figure 1.
0 1 2 3

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1

2

34

Figure 1: The physical domain of the curved channel problem.As initial condition we take the velocities equal to zero. The boundary conditions are: a3

parabolic velocity pro�le at inow (boundary 1), a no slip condition at boundaries 2 and 4and the normal stress and tangential velocity given at outow (boundary 3). We take � = 250,and � = 0:5.Boussinesq problemIn the Boussinesq problem the Navier-Stokes equations are coupled with a temperature (trans-port) equation. We use a standard benchmark problem, published by [3]. The physical domainand the 20� 10 grid is displayed in Figure 2. Due to buoyancy we have a body force given by
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: The 20� 20 grid used in the Boussinesq problem.f1 = 0 ;f2 = ~g�(T � T0) ;where ~g is the acceleration of gravity, � a volume expansion coe�cient, and T0 a referencetemperature. For the velocities we take no slip boundary conditions. The temperature satis-�es a transport equation. As temperature boundary conditions we take T = 1 at the left-handwall and T = 0 at the right-hand wall. The lower and upper walls are isolated. We calculatethe solution with � = 1; � = 1; Pr = 0:71 and Ra = 106.In Section 2 we discuss the optimization of the RILUD preconditioner on vector computers.Furthermore an RILU preconditioner is given for the pressure equation. GMRES-like meth-ods combined with RILU have a better rate of convergence than with RILUD, but requiresmore memory than RILUD. For the pressure equation the memory is available (because forthe momentum system much more storage is needed) so we always use the RILU precondi-tioner. In order to reduce storage the momentum equation has been solved with the RILUDpreconditioner.In Section 3 the RILUD preconditioner is adapted for the momentum equation. The insightsobtained from the solution of the pressure and momentum equations are used to solve thetransport equations. A new variant of GMRESR is given in Section 4. Reuse of search di-4

rections leads to a faster rate of convergence for the pressure equation. Section 5 containsnumerical experiments for two test problems on di�erent gridsizes.2 The pressure equationIn this section we consider the pressure equation. In Subsection 2.1 the preconditioner isoptimized for vector computers. Next we derive a new preconditioner which has a better rateof convergence, and can be vectorized in exactly the same way.2.1 Vectorization of the preconditionerThe discretization of the Navier-Stokes equations leads to a pressure equation, with a matrix Pwith nine nonzero diagonals (see [22]). In this subsection an incomplete LD�1U decompositionof P is used as preconditioner, so that the iterative method is applied toU�1DL�1Px = U�1DL�1b (7)instead of to Px = b. In this paper the preconditioner given in [22] is denoted by ILUD.The ILUD preconditioner is implicitly de�ned by the following rules [7], [17]:- diag (L) = diag (U) = D;- the o�-diagonal parts of L and U are equal to the corresponding parts of P ;- diag (LD�1U) = diag (P).If the last rule is replaced byrowsum (LD�1U) = rowsum (P) ; (8)the MILUD preconditioner of [6] is obtained.We have also used an averaged RILUD(�) preconditioner (see [2]). To de�ne the RILUDpreconditioner we note that if the diagonal elements dILUDi and dMILUDi are calculated bythe following expressions: dILUDi = '1;i(dILUDi�1 ; :::; dILUD1) ;dMILUDi = '2;i(dMILUDi�1 ; :::; dMILUD1) ;then the diagonal elements of the RILUD(�) preconditioner are calculated by:dRILUDi = '3;i(dRILUDi�1 ; :::; dRILUD1) ;where '3;i = �'2;i + (1� �)'1;i ; and 0 � � � 1 .It is well known that using an ILUD-type preconditioner leads to the solution of systems oflinear equations with an upper or lower triangular matrix. Due to recurrences a straight-forward algorithm for this part runs in scalar speed on a vector machine. We �rst give an5

optimization of such scalar code, according to the lines set out in [18]. Then we specify avectorized version of the preconditioner.Row scalingIn this paragraph it is shown that a row scaling of the pressure system leads to less work periteration.For the RILUD decomposition there exists a matrix R such thatP = LD�1U � R :Multiplication by D�1 leads to~P = D�1P = D�1LD�1U �D�1R = ~L ~U � ~R :The matrices ~P ; ~L and ~U have the following properties:- diag (~L) = diag (~U) = I ,- the o�-diagonal parts of ~L and ~U are equal to the corresponding parts of ~P ;- diag (~L ~U) = diag (~P).With ~b = D�1b we apply the iterative method to ~U�1 ~L�1 ~Px = ~U�1 ~L�1~b. Note that themultiplication by D in every iteration is no longer necessary. Furthermore, the solution ofthe triangular systems is cheaper, because the main diagonals of ~L and ~U are equal to theidentity matrix. A nice property of this row scaling by D�1 is that if L;D and U satisfy theMILUD rule (8) then rowsum (D�1P) = rowsum (D�1LD�1U) ;so that ~L; ~U also satisfy the MILUD rule. This is in contrast with a symmetric scaling (a rowand column scaling ([18])) where this property may be get lost for the scaled system. In theremainder of this section the row scaled quantities are denoted by P; L; U and b.Eisenstat implementationIn every iteration step we have to compute vj+1 = U�1L�1Pvj . So the amount of work periteration is approximately two times as much as for the unpreconditioned system. In [5] it isshown that much of the extra work can be avoided. To achieve this it is necessary to applythe iterative method to L�1PU�1y = L�1b ; (9)where the solution vector x is given by x = U�1y. The rate of convergence of GMRES-like methods depends on the eigenvalue distribution of the matrix ([14], [20]). Since thespectrum of U�1L�1P is equal to the spectrum of L�1PU�1 we expect the same convergencebehaviour if we use (9) instead of (7). During the iterative solution of (9) we have to calculatevj+1 = L�1PU�1vj . Using the following equations:vj+1 = L�1PU�1vj = L�1(L+ P � L� U + U)u�1vj= U�1vj + L�1(vj + (diag (P)� I)U�1vj)6

the work to calculate vj+1 is reduced to two vector updates and the solution of an upper andlower triangular system. So one iteration of the preconditioned system costs approximatelythe same amount of ops as the unpreconditioned system. A disadvantage, however, is thatthe decrease of CPU time is small on vector computers, since a matrix vector product isavoided, which is well vectorizable, whereas the hard to vectorize parts remain.VectorizationIn this subsection we discuss some ways to vectorize the solution of triangular systems. Theideas for these vectorizations come from [1] and [18]. The vector of unknowns will be denotedby x(i; j) where i refers to the index of the corresponding �nite volume in x1-direction, andj the similarly in the x2-direction. Straightforward solution of Lx = y leads to the followingexpression:for j = 1; n2for i = 1; n1x(i; j) = y(i; j) � L(i; j; 5)x(i� 1; j)� L(i; j; 4)x(i+ 1; j � 1)� L(i; j; 3)x(i; j� 1)� L(i; j; 2)x(i� 1; j � 1)endforendforNote that recurrences prohibit vectorization.In Figure 3 a diagonal ordering of the calculation is shown. In this �gure the values of x in
i ->

j
->Figure 3: Ordering used for the vectorization of the solution of the system Lx = y.the points denoted by a + sign have already been calculated. The points denoted by a � signdisplay the stencil of L. Using this �gure it is easily seen that all the points on the dasheddiagonal (i+ 2j = c) can be calculated independently. So this ordering leads to vectorizablecode (compare [1]). This implementation has the following drawbacks: the initial and �nal7

diagonals have a small vector length and indirect addressing is used. Indirect addressing costsextra CPU time and may lead to memory bank conicts. Indirect addressing can be avoidedby an explicit reordering of the unknowns. After this reordening, the unknowns are storedin memory in the same way as they are accessed in the diagonal wise calculation of x fromLx = y. Especially for large values of n1 explicit reordering gives a faster code on the ConvexC3840 that we used in our experiments.Another way to vectorize the code is to change the order such that all the points on the linesparallel to the x1-axis are calculated together. Advantages are: all vectorlengths are equal ton1, easy implementation, and no indirect addressing. A disadvantage is that one recurrenceremains so 34 of the work is done in vector speed and 14 in scalar speed.On the Convex C3840 the diagonal ordering leads to somewhat smaller computing times thanthe line ordering. On other machines the line ordering may be faster.Single precisionOne of the methods to solve the pressure equation is the GMRESR method [19]. This methodconsists of an inner and outer loop. In the inner loop a good search direction for the outerloop is calculated. Since this search direction is an approximate solution of a linear equation,the inner loop can be calculated with a low accuracy. On current computers single precisionmay be much faster than double precision arithmetic (compare [16] and [26]). Implementationof a single precision inner loop on the Convex C3840 leads to a 25% reduction of CPU time([21]).2.2 Better preconditionersIn this subsection we specify ILU preconditioners, which combined with a GMRES-likemethod have a faster rate of convergence, but require more memory. Vectorization of thesepreconditioners is possible along the same lines as in Subsection 2.1. Finally, some remarksabout a preconditioner for a singular pressure matrix are given.The �rst preconditioner considered in this subsection consists of the classical incomplete LUdecomposition of P (all �ll-in is neglected). This preconditioner is denoted by ILU:ILUThe matrices L and U satisfy the following rules:- diag (L) = I ;- the nonzero structure of the matrix L+ U is identical to the nonzero structure of P ;- if Pij 6= 0 then (LU)ij = Pij .The last rule can for i = j be replaced byrowsum (LU) = rowsum (P) ; (10)which leads to the MILU preconditioner. Also for this preconditioner we always use anaveraged method: RILU(�) which is de�ned in the same way as the RILUD(�) preconditioner,8

but now (M)ILUD is replaced by (M)ILU.It is known that for a �ve-point stencil the RILUD and the RILU preconditioner are thesame. However for a nine-point stencil it is easily seen that RILU leads to a preconditionerdi�erent from RILUD. Note that for this preconditioner the matrices L; U and P should bekept in memory. So the amount of extra memory for this preconditioner is nine vectors (thesame amount of memory as needed for P). The Eisenstat implementation cannot be used forthis preconditioner, since the o�-diagonal part of P is not identical to the o�-diagonal partof L+ U . With respect to vectorization we note that the nonzero structures of L and U arethe same as in Subsection 2.1. So this preconditioner can be vectorized in the same way asthe RILUD preconditioner.The optimal choice of � is an open question. Results in [2] indicates that for symmetricmatrices � close to 1 is a good choice. Furthermore, for increasing grid size the optimalvalue of � approaches 1. These insights are con�rmed by our experiments (see Section 5).The combination of a GMRES-like method with RILU and � = 1 has a fast convergencebehaviour as well. However this choice is not used for the following reason: the stoppingcriterion is based on the norm of the preconditioned residual. Since U�1L�1P has a largecondition number for the choice � = 1, this stopping criterion leads to inaccurate results inour experiments.For a problem where all boundary conditions for the velocities are of Dirichlet type, thepressure matrix P is singular. The null space of P is given bynull (P) = 8><>:0B@ 1...1 1CA9>=>; : (11)For such a problem RILU(� = 1) gives a breakdown of the iterative method (the same forRILUD(� = 1)). This can be explained as follows: equation (10) can be written as:LU 0B@ 1...1 1CA = P 0B@ 1...1 1CA : (12)(12) together with (11) implies that P 0B@ 1...1 1CA = 0, so LU is singular. Due to the de�nitionof L it follows that U is singular, which leads to a breakdown of the preconditioned GMRESmethod. A closer look at U shows that the last main diagonal element is equal to zero.Changing this element to a small number makes the iterative method to converge, but in ourexperiments � < 1 leads to a much better rate of convergence.We have also tried an incomplete decomposition of P where the stencil of P; L and U aregiven in Figure 4.The matrices L and U are such that: 9

U

5 1 6

432 2 3

1 6

7 8 9

5 1

8 9

P LFigure 4: The stencils of P; L and U .- if Lij 6= 0 or Uij 6= 0 then (LU)ij = (P)ij .The amount of extra memory required is equal to 7 vectors. In our experiments the rate ofconvergence of this preconditioner is better than with RILUD but worse than with RILU. Dueto the reduced stencils this preconditioning can be vectorized along the diagonals i + j = c(see [1], [18]). This leads to a better vectorized code because the vector length of the loops islonger than for the diagonal ordering given in Subsection 2.1. However we conclude from ourexperiments that it is better to use the RILU preconditioner or the RILUD preconditioner.3 The momentum and transport equationsIn this section we consider the momentum and transport equations. The preconditionersspeci�ed in Section 2 will be adapted to the momentum equations. Furthermore, we considera system resulting from a discretization of a transport equation. The insight obtained fromthe solution of the pressure and momentum equations will be used to solve the transportequations in an e�cient way.3.1 The momentum equationThe momentum equation is given by Mn+1un+1 = fn+1. The dimension of the matrix Mn+1is two times the dimension of the pressure matrix P . The matrix Mn+1 has 13 nonzeroelements per row. For the structure of Mn+1 we refer to [22]. Note that the matrix P onlydepends on the geometry and boundary conditions, whereas Mn+1 depends also on the timeand the choice of the time step �t, on � and on �. In the following we delete the superscriptn + 1 for brevity.Due to the extra memory needed for the RILU preconditioner (13 extra vectors of length2:n1:n2) we restrict ourselves to the RILUD preconditioner for the momentum equation. Thesame optimization techniques as in Subsection 2.1 will be used.So the preconditioner is combined with row scaling and the Eisenstat implementation. For10

the vectorization we use the following block structure of M;L and U :Mu = M11 M12M21 M22 ! u1u2 ! ;L = L11 0L21 L22 ! ; U = U11 U120 U22 ! : (13)In [22] it has been shown that the nonzero structure of the diagonal blocks M11 and M22 isthe same as for the matrix P .Let us now consider the computation of x from Lx = y. The �rst partL11x1 = y1 (14)can be vectorized as indicated in Subsection 2.1. In the second part x2 is calculated fromL22x2 = y2 � L21x1 : (15)Since x1 is already known, the right-hand side of (15) can be calculated in vector speed.Finally, the computation of x2 from (15) can be done in the same way as the solution of (14).The preconditioner RILUD is a combination of the ILUD and MILUD preconditioner. Ourexperiments showed that for the curved channel problem the choice � close to zero is optimal,whereas in the Boussinesq problem � close to one is optimal. Since our solver is mainly usedas a black box solver, we prefer a preconditioner such that one choice of � is optimal for a widerange of problems. For that reason we consider the MILUD preconditioner more carefully. Inthe following we denote the MILUD preconditioner by MILUD 1. The matrices L;D; and Uof MILUD 1 satisfy the following equation:rowsum (LD�1U) = rowsum (M) ; so (16)rowsum (L11D�111 U11 + L11D�111 U12) = rowsum (M11 +M12) ;rowsum (L21D�111 U11 + L21D�111 U12 + L22D�122 U22) = rowsum (M21 +M22):It is well known that the MILUD 1 preconditioner is very e�ective if the solution is a slowlyvarying function. In the extreme case of no variation the multiplication by M and LD�1Uleads to the same result. Since in our code we use contravariant uxes, which implies thatvelocity components are scaled by the length of cell sides, it is possible that there is a largedi�erence between the u1 and u2 velocities. As a consequence, � close to one can lead to a badrate of convergence. This insight motivates us to propose a slightly adapted preconditionerwhich is called MILUD 2.MILUD 2The matrices L;D and U satisfy the same rules as for MILUD 1 except the rule (16), whichis replaced by: rowsum (L11D�111 U11) = rowsum (M11) ;rowsum (L21D�111 U12 + L22D�122 U22) = rowsum (M22) : (17)11

We expect that this preconditioner works well if u1 and u2 are slowly varying functions,whereas the di�erence between u1 and u2 may be large. In all our experiments this precondi-tioner has a nice convergence behaviour for � close to one. Hence the MILUD 2 preconditioneris more robust than MILUD 1.The transport equationIn this subsection we describe the iterative method that we use to solve a transport equation.Transport equations of the type (3) can be used to describe the transport of temperature,certain quantities occurring in engineering models of turbulence, the concentration of salt inan estuary, etc. We distinguish between two classes of transport equations. The �rst classdescribes the transport of a passive scalar. In this a case the Navier-Stokes equations canbe solved independently of the transport equation. Thereafter the velocities u1 and u2 canbe used in (3) to obtain a solution of the transport equation. The second class describes thetransport of an active scalar. This class consist of applications, where the Navier-Stokes equa-tions are coupled with the transport equation (5), e.g., a Boussinesq problem or turbulencemodelling. Since the transport equation has the same properties for both classes, the choiceof the iterative solution method is independent of the type of scalar.We note that equation (3) resembles the equations given in (2). This explains why the con-vergence behaviour of the iterative methods applied to a transport equation is comparable tothe momentum equation. The matrix Cn+1 depends on the geometry, boundary conditions,the velocities, the time step and the choice of the functions K1; K��; and K2. An importantdi�erence is that the momentum equations describe a vector quantity, whereas a transportequation describes a scalar quantity. As a consequence the dimensions and the structure of atransport matrix are the same as those of the pressure matrix. This motivates us to solve atransport equation with a GMRES-like method combined with an RILU preconditioner.4 Reuse of search directions for the GMRESR methodIn this section we describe a new technique to save iterations and CPU time using theGMRESR method. The key idea is the following: if a system of linear equations is solvedwith di�erent right-hand sides then the information obtained from the solution process forthe �rst right-hand-side vector is used for the following right-hand sides.We describe the adapted GMRESR algorithm for the pressure equationP�pn+1 = gn+1 : (18)In this equation the matrix P is constant, whereas the right-hand sides are di�erent in everytime step. The GMRESR algorithm is given by (b = gn+1 and xk is an approximation of�pn+1):GMRESR algorithmr0 = b� Px0 ; k = �1 ;while krk+1k2 >tol do 12

k := k + 1 ; compute u(0)k and c(0)k = Pu(0)k ;for i = 0; 1; :::; k� 1 do�i = cTi c(i)k ; c(i+1)k = c(i)k � �ici ; u(i+1)k = u(i)k � �iui ;ck = c(k)k =kc(k)k k2 ; uk = u(k)k =kc(k)k k2 ;xk+1 = xk + ukcTk rk ;rk+1 = rk � ckcTk rk :In the original GMRESR algorithm u(0)k is computed by one iteration of GMRES(m) appliedto Py(0)k = rk. Other variants are proposed in [4] and [24]. In this paper the original GMRESRalgorithm is used combined with the "min alfa" truncation strategy (for the details of "minalfa" see [21]).In the �rst time step we solve P�p(1) = g(1) with the GMRESR method. The number of outeriterations is equal to n1, while GMRESR is truncated after nt outer iterations. In the �rsttime step the search directions uk; k = 0; 1; :::; ns are used, where ns = min(n1; nt). Thesevectors and the vectors ck = Puk are stored in memory. For the solution of P�p(2) = g(2)we use the following adapted version of GMRESR. Before we start the iteration process theresidual is made perpendicular to span fc0; :::; cnsg as follows:for k = 0; 1; :::; ns dox0 = x0 + ukcTk r0 ;r0 = r0 � ckcTk r0 : (19)Thereafter we start the iteration, where the orthogonalization process in the GMRESR al-gorithm now runs from i = 0 to min(ns + k � 1; nt). The number of outer iterations in thesecond timestep is equal to n2. The vectors uk and ck; k = 0; 1; :::; ns = min(ns + n2; nt) arestored in memory. These directions are reused in the third timestep etc. Note that nt is anupperbound of the number of direction vector, which are reused.Di�erent strategies are possible for the selection of search directions, which are kept in mem-ory. In the experiments reported here, we start by storing all search directions. If ns + k � 1becomes equal to nt the "min alfa" truncation strategy is used to discard an old search direc-tion. This implies that the search directions stored in memory may be di�erent in every timestep. Another strategy could be: to obtain the ns search directions in the �rst time step, andreuse these in every following time step. So the search directions remain the same for everytime step n � 2.To illustrate this adaptation of the GMRESR algorithm we give results for the �rst test prob-lem on a 16 � 64 grid with � = 250; � = 0:5, implying a Reynolds number of 500. We useGMRESR with GMRES(8) as inner loop, and no preconditioning. In Table 1 the resultsare given for the pressure equation at the second time step. The CPU time is measuredin seconds on one processor of a Convex C3840. Note that there is a considerable speedupwhen the search directions are reused. The convergence behaviour is given in Figure 5. Forthe original GMRESR algorithm the superlinear convergence sets in after 13 outer iterations.The GMRESR algorithm with reuse of search directions leads to fast convergence from the13

0 5 10 15 20 25
-7

-6

-5

-4

-3

-2

-1

0

i
10

lo
g(

re
s(

i))

Figure 5: Convergence behaviour of GMRESR (|{), and GMRESR with reuse of searchdirections (0) (grid 16� 64).beginning. So the gain in iterations and CPU time is not a consequence of the decrease of thenorm of the initial residual due to (19), but a consequence of the fact that the components inslowly converging eigenvectors are absent, due to the expanded orthogonalization. Comparethe description of the superlinear convergence behaviour of GMRES as given in [20]. Theresults in Table 1 show that the number of iterations decreases when the value of nt increases.This agrees with our explanation if more search directions are reused (nt larger) then morecomponents in slowly converging eigenvectors are absent, so a faster rate of convergence re-sults. A drawback is that increasing nt leads to larger memory requirements.original GMRESR(8) GMRESR(8) with reusent outer iterations CPU outer iterations CPU30 24 0.40 8 0.1620 24 0.39 10 0.1910 30 0.46 18 0.30Table 1: Number of iterations and CPU time for di�erent GMRESR variants.We conclude that the reuse of search directions is a good idea if the original GMRESR al-gorithm applied to the linear system of equations has a superlinear convergence behaviour.If, furthermore, the required accuracy is low, the CPU time decreases considerably whenwe reuse the search directions (low accuracy is in general su�cient for nonlinear or time-dependent problems).We also give results for GMRESR combined with an RILU preconditioner (� = 0:975). Weagain use the �rst test problem but now on a 64� 256 grid. The results given in Table 2 andFigure 6 are comparable with the results for the 16� 64 grid.14

0 2 4 6 8 10 12 14
-3

-2

-1

0

1

2

3

4

i
10

lo
g(

re
s(

i))

Figure 6: Convergence behaviour of GMRESR (|{), and GMRESR with reuse of searchdirections (0), combined with an RILU preconditioner (grid 64� 256).original GMRESR(4) GMRESR(4) with reusent outer iterations CPU outer iterations CPU20 14 2.56 7 1.515 14 2.56 8 1.710 14 2.56 10 2.0Table 2: Number of iterations and CPU time for di�erent GMRESR variants combined withRILU (� = 0:975).Reuse of search directions can also be used for the momentum equations Mn+1un+1 = fn+1.Although Mn+1 6= Mn, we expect that after some time steps the search directions for Mn+1and Mn are related. Since Mn+1 6= Mn the relation Mn+1uk = ck does no longer hold. Soonly the vectors uk are stored in memory. The adapted GMRESR algorithm is now startedwith the following loop:for k = 0; :::; nsu(0)k = uk ; c(0)k = Mn+1u(0)k ;for i = 0; :::; k� 1�i = cTi c(i)k ;c(i+1)k = c(i)k � �ici ; u(i+1)k = u(i)k � �iui ;ck = c(k)k =kc(k)k jj2 ; uk = u(k)k =kc(k)k k2 ;Thereafter the GMRESR method continues with (19) and the expanded orthogonalization asfor the pressure equation. For the momentum equation we see only a small gain in iterationsand in general no gain in CPU time. There are two reasons for this: �rstly the search direc-15

tions are di�erent or Mn+1 and Mn, and secondly the original GMRESR method convergeslinearly. The second reason implies that it is improbable to obtain a faster convergence byreusing search directions. This is illustrated by the �rst test problem with the 16� 64 grid,� = 250; � = 0:5 and �t = 0:15. The convergence behaviour of GMRESR, with GMRES(4)as inner loop, and without preconditioning is given in Figure 7 for the momentum equation inthe third time step. From this �gure it appears that the convergence behaviour of GMRESR
0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

i

10
lo

g(
re

s(
i))

Figure 7: Convergence behaviour of GMRESR (|{), and GMRESR with reuse of searchdirections (0).is linear. Note that there is only a small gain in iterations, whereas the CPU time is larger.So for the momentum equation, GMRESR with reuse of search directions does not lead to afaster solution method.For the transport equation in the second testproblem we obtain the same results as for themomentum equation.5 Numerical resultsIn this section we present the results of some numerical experiments. We start with thecurved channel problem. The e�ciency of the solution methods for the momentum and pres-sure equations are given using vectorized ILU-type preconditioners. Thereafter we measurethe CPU times required to solve the Navier-Stokes equations for various grid sizes. For theBoussinesq problem comparable experiments have been done. In all cases the CPU time hasbeen measured in seconds on one processor of a Convex C3840.Curved channel problemConsider the curved channel problem described in Section 1. First we investigate the vector-ization of the preconditioner. On the Convex, the megaop rate for a vector update (whichruns in vector speed) is 35 Mop/s. In Table 3 the megaop rate is given for the diagonal-wiseordering given in Subsection 2.1. 16

grid size 16� 64 32� 128 64� 256 128� 512Mop/s 15 22 32 35Table 3: Megaop rate of the vectorized RILU(D) preconditioner with diagonal ordering forthe pressure equation.Without vectorization the multiplication by L�1 or U�1 has a megaop rate equal to 9. FromTable 3 it appears that the megaop rate for the vectorized version becomes higher for in-creasing grid size. For large grid sizes it is equal to the megaop rate of a vector update.In Subsection 2.2 we have given some guidelines for the choice of � for the RILU precon-ditioner used in the solution of the pressure equation. We have performed experiments forvarious values of �. In general we prefer postconditioning instead of preconditioning. Thereason for this is that using postconditioning, which means the solution of PU�1L�1y = b andx = U�1L�1y, the termination criterion is based on krkk2, whereas with with preconditioningit is based on kU�1L�1rkk2. Table 4 gives the number of iterations for GMRES (withoutrestarting) and various choices of �. The iteration process is stopped if krkk2=kr0k2 � 10�6.� 0.975 0.99 1grid size16� 64 23 24 2232� 128 34 34 3264� 256 57 49 46128� 512 104 84 64Table 4: Number of iterations of GMRES using the RILU(�) postconditioner for the pressureequation.Note that for this problem � = 1 leads to the minimal number of iterations. Furthermore forsmall grid sizes � 2 [0:975; 1] leads to the same number of iterations, whereas for large gridsizes the optimal values of � are close to one, and the sensitivity of the number of iterationsrequired to � increases.In Figure 8 the number of iterations for full GMRES combined with the MILUD or MILUpostconditioner are given for the pressure equation. One iteration costs approximately thesame amount of CPU time for both postconditioners. So this �gure gives a good idea of theperformance of the postconditioners. Note that especially for large grid sizes MILU becomesmuch better than MILUD. The results presented in Figure 8 motivate us to use an RILUpreconditioner instead of a RILUD preconditioner. Whereas the results of Table 4 motivateus to choose RILU(0.99) for the pressure equation. This choice of � is a compromise betweena fast convergence and a not too large condition number.17

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

i

N
um

be
r

of
 it

er
at

io
ns

Figure 8: Number of iterations of full GMRES combined with MILUD (|{) and MILU(� � ��). The grid size is equal to (16:2i)� (64:2i).Table 5 shows CPU times for the solution of the pressure equation, using the RILU(0.99)postconditioner combined with truncated GMRESR(m) and reuse of the search directions.grid size nt m iterations CPU memory vectors16� 64 10 3 7 0.09 3232� 128 15 3 7 0.32 4664� 256 15 4 7 1.21 47128� 512 20 6 7 7.38 55Table 5: The amount of memory, CPU time and the number of iterations for the pressureequation.The results are measured in the second time step. Comparing these results with [22] we seea large gain in CPU time. Part of this gain comes from the fact that the Convex C3840is 2.5 times faster than the Convex C240 used in [22], but in addition the new method isapproximately 3 times faster.In [22] the momentum equation has been solved with a diagonal preconditioner. In this sub-section the results are produced by GMRES(20) combined with a diagonal or ILUD precondi-tioner. For the momentum equation the preconditioned system L�1Mn+1U�1y = L�1b; x =U�1y has been solved. Termination criteria based on krkk2 and kL�1rkk2 lead to the sameresults. Furthermore, the Eisenstat implementation is used, which saves CPU time. Theiteration process is stopped if krkk2=kr0k2 � 10�4. The experiments are done in the secondtime step. Table 6 demonstrates that ILUD saves many iterations and much CPU time. Forthis problem MILUD 1 leads to worse results, whereas the number of iterations and CPUtime for MILUD 2 are comparable with ILUD. Comparing the results for the 16 � 64 grid18

diagonal ILUD buildinggrid size time step iterations CPU iterations CPU of systems16� 64 0.15000 41 0.24 7 0:075 0.0732� 128 0.07500 38 0.75 6 0.20 0.1864� 256 0.03750 36 2.74 6 0.73 0.60128� 512 0.01875 39 13.05 7 3.21 2.16Table 6: Number of iterations and CPU time using di�erent preconditioners for the momen-tum equations.with [22] we see again a large gain in CPU time. The last column in Table 6 contains theCPU time to build the momentum and pressure equation. Note that comparison of tables 5and 6 show that the solution of the pressure equation is the most time consuming part, ashas been the general experience on Cartesian grids in the past.Boussinesq problemFor the Boussinesq problem we shall start with experiments for the pressure equation. Wehave used the RILU(0.975) postconditioner combined with GMRESR(m), where the searchdirections are reused. The results we show are measured in the third time step, which wasfound to be typical The termination criterion used is the same as for the curved channelgrid size nt m iterations CPU memoryvectors20� 40 10 4 5 0.047 3240� 80 15 5 6 0:33 4680� 160 15 6 10 2:0 47160� 320 20 7 11 9:7 55Table 7: The amount of memory, CPU time and the number of iterations for the pressureequation.problem.Table 8 gives results for the momentum equations. In these experiments GMRES(20) com-bined with ILUD and RILUD 2(0.95) as preconditioners have been used. In all cases a timestep dt = 4:10�4 has been chosen independently of the grid size. Note that for increasinggrid size RILUD 2 becomes much better than ILUD. Since RILUD 2 has at least the sameperformance as ILUD for other problems, e.g. the curved channel problem, it is recommendedto use the RILUD 2(0.95) preconditioner in all cases.Finally Table 9 gives the results for the transport equation. In every time step �rst the mo-mentum and pressure equations are solved and then the transport equation. The computed19

ILUD RILUD 2grid size iterations CPU iterations CPU20� 40 5 0.034 5 0.03440� 80 8 0:22 8 0:2280� 160 13 0:94 10 0:73160� 320 23 8:1 12 4:1Table 8: The number of iterations and CPU time for the momentum equation.temperature is used in the right-hand side of the next time step.buildinggrid size iterations CPU of systems20� 40 6 0.016 0.0540� 80 10 0.11 0.1580� 160 14 0.48 0.49160� 320 16 2.3 1.8Table 9: The number of iterations and CPU time for the transport equation.The GMRES(20) method combined with the MILU postconditioner has been used. The iter-ations process is stopped if krkk2=kr0k2 � 10�6. Note that comparison of tables 7, 8, and 9again shows that the solution of the pressure equation is the most time consuming part.6 ConclusionsIn this paper we have described properties of GMRES type iterative methods combined withILU type preconditioners to solve a discretization of the incompressible Navier-Stokes equa-tions in general coordinates with the pressure correction method. Comparing the results ofthis paper with [22] we note a considerable decrease of CPU time to solve the pressure andmomentum equations, due to the novel idea of reuse of search directions for the pressureequation and improvements in pre- and postconditioning, and vectorization.The pressure equation has been solved with GMRESR combined with an RILU postcondi-tioner. In the case of a non-singular pressure matrix � = 0:99 appears to be a good choice forthe average parameter, whereas in the singular case � = 0:975 should be preferred. Finallyreuse of the GMRESR search directions leads to a large reduction of CPU time in the solutionof the pressure equation. The required memory is available because the memory required tostore the momentum matrix can be re-used.The momentum equation has been solved with GMRES(20) combined with RILUD 2. A20

good choice for � is 0.95. The properties of the momentum equation not only depend on thegeometry and boundary conditions, but also on the other parameters as there are: time, timestep, �; � etc. So the number of iterations and CPU time may be di�erent for di�erent valuesof these parameters.The transport equation has been solved with GMRES(20) combined with MILU postcondi-tioning. Solving for the pressure takes most of the time, as in the Cartesian case.References[1] C.C. Ashcraft and R.G. Grimes. On vectorizing incomplete factorization and SSORpreconditioners. SIAM J. Sci. Stat. Comput., 9:122{151, 1988.[2] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioningmethods. Numer. Math., 48:479{498, 1986.[3] G. de Vahl Davis and I.P. Jones. Natural convection in a square cavity: a comparisonexercise. Int. J. Num. Meth. Fluids, 3:227{248, 1983.[4] E. De Sturler and D.R. Fokkema. Nested Krylov methods and preserving the orthogo-nality. In T.A. Manteu�el and S.F. McCormick, editors, Proceedings of the Sixth CopperMountain Multigrid Conference on Multigrid Methods, VA, 1993. NASA Langley Re-search Center, Hampton.[5] S.C. Eisenstat. E�cient implementation of a class of preconditioned conjugate gradientmethods. SIAM J. Sci. Stat. Comput., 2:1{4, 1981.[6] I.A. Gustafsson. A class of �rst order factorization methods. BIT, 18:142{156, 1978.[7] J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for linear systemsof which the coe�cient matrix is a symmetric M-matrix. Math. Comp., 31:148{162, 1977.[8] A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressibleNavier-Stokes solver: invariant discretization. Applied Scienti�c Research, 48:175{191,1991.[9] C.W. Oosterlee. Robust multigrid methods for the steady and unsteady incompressibleNavier-Stokes equations in general coordinates. PhD thesis, Delft University of Technol-ogy, The Netherlands, 1993.[10] C.W. Oosterlee and P. Wesseling. A multigrid method for an invariant formulation ofthe incompressible Navier-Stokes equations in general co-ordinates. Communications inApplied Numerical Methods, 8:721{734, 1992.[11] C.W. Oosterlee and P. Wesseling. Multigrid schemes for time-dependent incompressibleNavier-Stokes equations. Impact Comp. Science Engng, 5:153{175, 1993.21

[12] C.W. Oosterlee and P. Wesseling. A robust multigrid method for a discretization of theincompressible Navier-Stokes equations in general coordinates. Impact. Comp. ScienceEngng., 5:128{151, 1993.[13] C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee. Benchmark solutions for theincompressible Navier-Stokes equations in general co-ordinates on staggered grids. Int.J. Num. Meth. Fluids, 17:301{321, 1993.[14] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solvingnon-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856{869, 1986.[15] A. Segal, P. Wesseling, J. Van Kan, C.W. Oosterlee, and K. Kassels. Invariant discretiza-tion of the incompressible Navier-Stokes equations in boundary �tted co-ordinates. Int.J. Num. Meth. Fluids, 15:411{426, 1992.[16] K. Turner and H.F. Walker. E�cient high accuracy solutions with GMRES(m). SIAMJ. Sci. Stat. Comput., 13:815{825, 1992.[17] H.A. Van der Vorst. Iterative solution method for certain sparse linear systems with anon-symmetric matrix arising from PDE-problems. J. Comput. Phys., 44:1{19, 1981.[18] H.A. Van der Vorst. High performance preconditioning. SIAM J. Sci. Stat. Comp.,10:1174{1185, 1989.[19] H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numer.L.A.A., 1993. to appear.[20] H.A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES.J. Comput. Appl. Math., 48:327{342, 1993.[21] C. Vuik. Further experiences with GMRESR. Supercomputer. to appear.[22] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with theGMRES method. Int. J. for Num. Meth. Fluids, 16:507{523, 1993.[23] P. Wesseling, A. Segal, J.J.I.M. van Kan, C.W. Oosterlee, and C.G.M. Kassels. Finitevolume discretization of the incompressible Navier-Stokes equations in general coordi-nates on staggered grids. Comp. Fluid Dynamics Journal, 1:27{33, 1992.[24] S. Zeng, C. Vuik, and P. Wesseling. Solution of the incompressible Navier-Stokes equa-tions in general coordinates by Krylov subspace and multigrid methods. Report 93-64,Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft,1993.[25] S. Zeng and P. Wesseling. Multigrid solution of the incompressible Navier-Stokes equa-tions in general coordinates. SIAM J. Num. Anal., 1993. to appear.[26] M. Zubair, S.N. Gupta, and C.E. Grosch. A variable precision approach to speedupiterative schemes on �ne grained parallel machines. Parallel Comp., 18:1223{1232, 1992.22

