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Summary Theory 
  
An iterative numerical method for solving the wave 
equation in an inhomogeneous medium with constant 
density is presented. The method is based on a Krylov 
iterative method and enhanced by a powerful 
preconditioner. For the preconditioner, a complex Shifted-
Laplace operator is proposed, designed specifically for the 
wave equation. A multigrid method is used to 
approximately compute the inverse of the preconditioner. 
Numerical examples on 2D problems show that the 
combined method is robust and applicable for a wide range 
of frequencies. Extension to 3D is straightforward. 

The time-harmonic wave problem is represented by the 
Helmholtz equation: 
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with d=2 or 3 for the 2D or the 3D case. Here 
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 is the wave-number, 

the speed of sound, and f the frequency. Absorbing 
boundary conditions have been used in the implementation. 
We have only considered the first-order absorbing 
condition [2], as the topic of boundary conditions is at this 
moment not our main concern. 

 
Introduction 

  
The discretization of Eq.(1) leads to a set of linear 
equations of the form 

Wave equation migrations are becoming more and more 
popular; they are currently based on a one-way scheme 
because in 3D the solution of the full wave equation is still 
too expensive. However, it has been shown in 2D that one-
way wave equations cannot image steep reflectors and do 
not predict the correct amplitudes of the reflections (see 
[4]). 

 , ,  (2) bAx = nnCA ×∈ nCbx ∈,
A is typically a complex matrix due to the inclusion of the 

radiation condition. A is sparse, but can be large because of 
resolution requirements of the solution. In 2D for example, 
with a 5-point finite-difference stencil, the matrix contains 
only 4 non-zero sub-diagonals, but has a maximum band 
width of n, with n the number of discretization points in 
one direction. In 3D, the maximum bandwidth is n2; this is 
the reason why a direct solver cannot be used to perform 
the LU decomposition. 

 
In 2D, it is possible to perform a full wave equation 
migration in the frequency domain, because a direct solver 
can be used to solve the large linear system obtained after 
the discretization of the two-way wave equation. In 3D, the 
linear system is too large to be solved with a direct solver. 
An iterative solver is then required. To accelerate the 
convergence a preconditioner is needed. Due to the 
indefiniteness of this linear system, most of the classic 
preconditioners, such as the incomplete LU decomposition, 
do not work or work only for a limited range of 
frequencies.  

 
In the 2D case, direct methods with nested dissection may 
be used to effectively solve Eq. (2). As we aim at solutions 
of Eq. (2) in the 3D case, direct methods become 
impractical due to excessive fill-in during the LU 
decomposition. We choose iterative methods within the 
class of Krylov subspace methods. In particular we prefer 
BiCGSTAB [6] because this method can be applied to 
general matrices and retains the same amount of work per 
iteration.  

 
Here, a preconditioner based on a complex shifted-Laplace 
operator is proposed. With this preconditioner, a 
generalization of the conjugate gradient method, namely 
the BICGSTAB method, is used to iteratively solve the 
linear system. This approach seems to be robust when the 
frequency increases, even though the number of iterations 
increases.  

 
It is well known, especially for ill-conditioned linear 
systems that without pre- (and post-) conditioning the 
Krylov iteration converges slowly. By pre-(and post-) 
conditioning we solve  
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theory is briefly explained. In the second section, two 2D 
examples are described and the results are compared with 
the solution obtained by the direct solver. Finally, some 
conclusions are drawn. 

where is the preconditioning matrix. With 
preconditioning in the BiCGSTAB algorithm, four 
operations with and  must be performed. 
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Several types of preconditioners have been proposed. 
However, it is known that existing preconditioners are still 
susceptible to breakdown or stagnation for sufficiently high 
frequencies. The convergence also deteriorates with sharp 
and large contrasts in . k


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



The preconditioning matrix M should approximate the 
matrix A in order to reduce the number of iterations, but at 
the same time, the linear preconditioner systems, Mx=y, 
should be easy to solve to obtain an efficient method. 
 
Recently, [3], we propose a preconditioner of the form 
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where 1−=i . We call this operator the “complex 
Shifted-Laplace (CSL)” operator. The preconditioning 
matrix, M , is then obtained by discretizing Eq. (4),  e.g. 
with the same discretization than the one used for Eq. (1). 
Note that one can also implement different discretizations 
for (1) and (4).  
 
As the matrix M is complex and symmetric definite, 
several efficient methods are available to solve the linear 
system Mx=y. In our code, a multigrid method was used. 
Furthermore, only post preconditioning is performed, 
reducing the work to only two preconditioner systems per 
iteration. To further reduce the amount of computational 
work, 1−M  is not computed very accurately. We perform 
one multigrid iteration to approximate 1−M  and this 
appears to be sufficient. 
 
The resulting method is a combination of inner and outer 
iterations with BiCGSTAB acting as the outer (or main) 
iteration and multigrid as the inner iteration. 
 
Examples 
 
We have performed computations on two test problems. 
The first example is based on the Marmousi model [1]. In 
this paper we only consider a portion of this model, shown 
in Figure 1a and having a size of 6000 × 1600 m2. The 
second example is a multi-layered rectangular domain of 
130 × 150 m2 (Figure 2a). In this case, a crosswell situation 
is modeled and this model will be referred as the wave 
guide model because of the main propagation is parallel to 
the layering. The computations were performed on a single 
2.6 GHz Pentium 4 processor with 512 Mb of RAM. The 
method was coded in Fortran77 and compiled under the 
LINUX operating system. 
 
The results of the simulation at 10 Hz on the Marmousi 
model are shown in Figures 1b and 1c. In these figures, the 
real part of the wave field at a given frequency is displayed. 

We notice that the result with the iterative solver is similar 
to the result with the direct solver except close to the 
boundaries. The discrepancy at the boundaries may be due 
to different implementations of the boundary conditions 
between the two solvers (the direct solver used the second 
order boundary condition instead of the first order). 
Nevertheless, this comparison shows that the iterative 
solver has converged. 
Table 1 lists the numerical performance of BiCGSTAB 
accelerated by the CSL preconditioner we proposed, for 
various frequencies. In the Marmousi problem, a unit wave 
source is placed just below the center of the surface. In 
Table 1, we also include the numerical performance of 
BiCGSTAB+CSL where the CSL preconditioning matrix is 
approximated with the incomplete LU decomposition, 
ILU(0). 
 
Table 1. Performance of BiCGSTAB+CSL. The iteration number 
and the CPU-time are listed 
 

 f (Hz) 1 10 20 30 
ILU(0) # iter 

time (s) 
2950 
351 

1519 
178 

3465 
1671 

- 
- 

Multigrid # iter 
time (s) 

16 
9 

177 
75 

311 
537 

485 
1445 

 
We observe that the number of iterations depends more or 
less linearly on the frequency when the preconditioner 
system is solved with a multigrid method. However, the 
required cpu-time increases more rapidly. 
 
Previously the Marmousi model has also been used to test 
the Separation of Variables (SV) preconditioner [5]. With 
this type of preconditioner, BiCGSTAB converges after 
648 iterations for f = 20 Hz, but fails to converge after 2000 
iterations for f = 30 Hz. The method based on the CSL 
preconditioner, therefore, outperforms the SV 
preconditioner and does not show any breakdown. With 
respect to the CPU-time, the method, however, is still 
slower than direct method based on the nested-dissection 
ordering. For f = 30 Hz with 2001 × 534 grid points, on a 
Xeon 3.0 GHz machine, the linear system is solved in 340 
seconds. For low frequencies, the CPU-time is more or less 
comparable. 
 
The main problem in the current implementation is that the 
solution of the preconditioner system is still expensive. In 
fact it may take about 80% of the total cpu-time. 
Nevertheless, since we target 3-D problems, a combination 
of BiCGSTAB and multigrid may become more efficient 
compared to direct methods. Furthermore, an improvement 
of the efficiency of the multigrid method seems feasible 
and will be the subject of future research. 
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The result with the wave guide model is shown Figure 2. In 
this case the source is at the depth of 60 m inside a low 
velocity zone. The example mimics a crosswell situation 
where the wave propagation is mainly parallel to the 
layering. In Figure 2b, we can see that most of the energy is 
trapped inside the low velocity layer due to guided-wave 
effects. The wave field obtained with the direct solver is 
plotted Figure 2c. Once again, the main differences occur at 
the boundaries. 
Table 2 summarizes the numerical performance of 
BiCSTAB+CSL for the waveguide problem. For various 
frequencies the method still converges to the specified 
accuracy. Furthermore, no indication of breakdown is 
observed. With ILU(0) and f = 10 Hz, BiCGSTAB does not 
converge after 500 iterations. In this example, the number 
of iterations and the cpu-time increase more or less linearly 
with frequency.   
 
Table 2. Numerical performance of BiCGSTAB+CSL for wave 
guide problem 
 

f  (Hz) 10 100 200 300 
# iter 
time (s) 

7 
18 

49 
77 

86 
128 

130 
191 

 
 
Conclusions 
 
We have presented an iterative method to solve the two-
way wave equation. The key ingredient is the use of a 
complex Shifted-Laplace preconditioner inside the 
BiCGSTAB iterative method. Combined with a multigrid 
method to solve the preconditioner system, this results in a 
robust and efficient method. The two numerical examples 
show that the iterative solver converges when the model 
contains relative large wave-numbers and sharp contrasts.  
The iterative solver still provides a solver slower than the 
direct solver in 2D. However the results are encouraging. 
The next step is to study the efficiency of this approach for 
3D models. 
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(a) Velocity profile 

 

(a) Velocity profile 

(b) Real part of the wave field computed with the iterative solver 
(b) Real part of the wave field computed with the iterative solver: 

 

(c) Real part of the wave field computed with a direct solver 
(c) Real part of the wave field computed with the direct solver 

 
  

 Figure 2: Wave guide problem solved at f = 300 hz with 
BiCGSTAB+CSL on a grid of  651× 751 points  Figure 1: Marmousi problem solved at f = 10 Hz with 

BiCGSTAB+SCL om a grid  of  751 × 201 points  
 


