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Abstract. We demonstrate the advantages of discretizing on
a staggered grid for the computation of solutions to hyper-
bolic systems of conservation laws arising from instationary
flow of an inviscid fluid with an arbitrary equation of state.
Results for a highly nonlinear, nonconvex equation of state
obtained with the staggered discretisation are compared with
those obtained with the Osher scheme for two different Rie-
mann problems. The staggered approach is shown to be supe-
rior in simplicity and efficiency, without loss of accuracy. The
method has been applied to simulate unsteady sheet cavitation
on a NACA0012 hydrofoil. Results show good agreement
with those obtained with a cavity interface tracking method.

1 Introduction

Our aim is to show the advantages of a staggered scheme for
computation of solutions to hyperbolic systems of conserva-
tion laws arising from instationary flow of an inviscid fluid
with an arbitrary equation of state. This contribution is an ex-
tension of the work of [1], where it has been shown how to
achieve work and accuracy uniform in the Mach numberM
for perfect gas flow, by discretizing on a staggered grid and
application of a scaling which removes the singularity for the
limit of M ↓ 0 in the system of equations.

The equation of state we choose has been used to model
hydrodynamic cavitation in channels [5] and on hydrofoils [8]
with the Euler equations. This equation of state makes the
density equal to the density of vapor when the pressure drops
below the vapor pressure and equal to the undisturbed liquid
density above the vapor pressure, with a smooth transition
between the two states. The cavitation bubble will appear in
the flow domain as the region where the density is below
(1+ ε) ·ρvapor. Contrary to methods that track the cavity in-
terface [3, 7, 9], this method allows for free growth and even
bifurcating behavior of the bubble (the shedding of a detached
part of the bubble in the flow).
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The mathematical model has the following special fea-
tures:
1. The speed of sound varies from low to very high values,

causing the flow to be highly compressible locally, while
being almost incompressible in other parts of the domain:
10−3< M< 25.

2. The nonconvexity of the equation of state makes it pos-
sible that both compression shocks and expansion shocks
occur that satisfy the entropy condition. The numerical
method has to select only physical weak solutions that sat-
isfy the entropy condition.

3. For the perfect gas system of Euler equations, the flux
is a homogeneous function of order one. In our case this
property is lost. Many flux-splitting schemes designed for
the Euler equations make explicitly use of this property, so
that they cannot be applied directly to our case.

4. In the limiting case of (almost) instantaneous phase tran-
sition, the equation of state will be an (almost) discontin-
uous function of the pressure.
Although the flow is assumed to be isothermal, the equa-

tion of state can easily be extended with an arbitrary depen-
dence on the enthalpy, in the same way as is done for the
perfect gas case [1]. For instance in the case of cavitating flow
of cryogenic fluids, the dependence of the vapor pressure on
the temperature has to be taken into account.

In Sects. 2 and 3 we discuss the governing equations of the
cavitation model. Section 4 contains a description of the solu-
tion algorithm employed. In Sect. 5 our approach is validated
by comparison with the Osher scheme for two different Rie-
mann problem test cases. Finally, application of the method
to the simulation of unsteady sheet cavitation is discussed
in Sect. 6.

2 Conservation equations

We employ the isothermal Euler equations, completed with
the earlier mentioned equation of state. Although the medium
in the transition between the liquid and vapor state is highly
compressible, the liquid state is almost incompressible, char-
acterized by a Mach number of order 10−3. Therefore use is
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made of the following Mach-uniform pressure based formu-
lation of the compressible Euler equations [1]:

dρ

dp

∂p

∂t
+ (ρUα),α = 0, (1)

∂ρUα

∂t
+ (ρUα Uβ),β =−(gαβ p),β. (2)

completed with a barotropic equation of stateρ = ρ(p). We
use general coordinates and tensor notation, withUα = a(α) ·u
denoting the contravariant velocity components,gαβ the con-
travariant metric tensor anda(α) the contravariant base vector
with respect to the mappingQ : x= x(ξ), wherex are Carte-
sian coordinates, whileξ are general boundary-fitted coordi-
nates. For details on spatial discretisation and time integration
we refer to [1].

3 Equation of state

The equation of state as treated in [6] and [11] is constructed
from an empirical point of view. It is known that the density
of the mixture should be the density of the liquid above the
vapor pressure and it should be equal to the density of vapor
well below the vapor pressure. The transition region is con-
structed based on empirical knowledge of the speed of sound
in a bubbly mixture. As we only need the relation between
pressure and density in the computational process an incom-
plete equation of state suffices [10].

3.1 Thermodynamic constraints

In theory one should first derive a complete equation of
stateE(V, S), and from this an incomplete equation of state
P(V, E). It should be noted that the complete equation of
state should respect the three laws of thermodynamics and
that completing an incomplete equation of state with an en-
tropy function to obtain a complete equation of state may not
be possible nor unique. Only if an incomplete equation of
state can be completed to obtain a complete equation of state,
the former can be regarded as a physical constitutive rela-
tion [10]. In the isothermal case an equation of stateE(S,V)
can be characterized by the following parameters:

– The adiabatic exponent:

γ =−V

P

∂P

∂V

∣∣∣∣
S

, (3)

– The fundamental derivative:

G=−1

2

∂3E/∂V3
∣∣
S

∂2E/∂V2
∣∣
S

= 1

2

V2

γP

∂2P

∂V2

∣∣∣∣
S
, (4)

plus the asymptotic behavior of the equation of state.
We make the following remarks:

– Thermodynamic stability requiresγ to be strictly nonneg-
ative [10]. Therefore the functionP(V) should be mono-
tonically decreasing. As a result a mixture equation of
state maintaining the isothermal behavior during phase
transition will be thermodynamically unstable. This can

be avoided by keeping a finite speed of sound in the tran-
sition region.

– Thermodynamics does not put a requirement on the sign
of G [10]. However, ifG changes sign within the domain,
simple wave solutions will have a more complicated, so
called composite, structure, which is discussed in Sect. 5.
Furthermore, ifG does not exist, discontinuous solutions
will not be stable against shock splitting [10]. This means
that, as opposed to the strictly convex case, a perturbation
can split up a discontinuity in two separate shocks.

– Natural requirements on the asymptotic behavior ofP(V)
are [10]:

lim
V→0

P(V)=∞, lim
P→0

V(P)=∞, (5)

since P(V) is obviously invertible under the demand of
thermodynamic stability.

3.2 The model equation of state

An equation of state is constructed, which has more param-
eters to control its behavior than the equation of state of [6]
and [11]. The equation of state has the following form:

ρ = ρ0+c1 p; p< p1

ρ = ρ0+c1 p+c2∗
n∑

i=1

anξ
n; p1≤ p≤ p2

ρ = c3+c4 (p− p2) ; p2< p (6)

where :

ξ = p− p1

p2− p1
(7)

The following parameters can be adjusted

1. Speed of sound in the vapor state:c−1/2
1 .

2. Speed of sound in the liquid state:c−1/2
4 .

3. Transit pressures :p1/p2.
4. Degree of continuityCn−1, by adjustment ofan, 1≤ n≤ 9.

Altough pure water is almost incompressible, a small
amount of undissolved gas, that is always present in industrial
applications, can lower the speed of sound considerably.

Unlike the equation of state in [6, 11], we also treat the va-
por phase as compressible, to match the thermodynamically
correct asymptotic behavior of the isotherm for the limit of
vanishing pressure.

Ensuring high differentiability of the equation of state
across the transition region diminishes the chance of shock
splitting.

4 Solution procedure

For the time-stepping procedure use is made of a nonlinear
variation of an isothermal version of the compressible pres-
sure correction method as described in [1] for the ideal gas
case:
First a prediction of the momentum(mα)∗ is made:

(mα)∗ − (mα)n

δt
+ ((mα)∗(Uβ)n

)
,β
=−(gαβ pn),β, (8)
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where

mα = ρUα. (9)

We are free to discretize the convection term in an upwind
manner to incorporate thermodynamic irreversibility in the
numerical model, whereas in the colocated case this would
require some form of flux-splitting, which is not trivially ex-
tended to the case of an arbitrary nonconvex equation of state.

A momentum correction of the following form is postu-
lated and substituted in the continuity equation:

δm=−δt (gαβδp
)
,β
, (10)

δm≡mn+1−m∗, (11)

δp≡ pn+1− pn. (12)

Combination with the continuity equation leads to the follow-
ing pressure correction equation:

δρ

δt
− δt (gαβδp

)
,αβ
= (mα)∗,α. (13)

This solution method has computational complexity al-
most uniform inM [1].

4.1 Nonlinear pressure correction

In the perfect gas case the discrete linearized pressure correc-
tion equation (13) is given by the following linear system:(

dρ

dp

)n

δp− δt2DGδp=−δtDm∗, (14)

where D and G are discretizations of the divergence and
gradient operators respectively. However, for our artificial
medium this linearisation will no longer be a good approxi-
mation of the nonlinear system in the case of phase transition
within one time step. Furthermore,ρ′(p) does not exist for the
case of a discontinuous equation of state modeling instanta-
neous phase transition.

To circumvent usage of this derivative, we have to solve
the discretised version of the nonlinear system (13):

ρ(pn+ δp)−ρ(pn)− δt2DGδp=−δtDm∗. (15)

Standard algorithms for nonlinear systems, e.g. Newton-
Raphson, fail to work in the case of a strongly varying Jaco-
bian.

Therefore we solve (15) with a nonlinear Gauss-Seidel
algorithm where we can choose a very robust method for
solving the individual nonlinear scalar equations. Application
of Gauss-Seidel gives a sequence of scalar equations of the
following form:

ρ(pn+ δp(k+1))− δt2Aδp(k+1) = ρ(pn)− δtDm∗− δt2Bδp(k),
(16)

whereA− B= DG is a Gauss-Seidel splitting ofDG. This
system can be solved recursively at a price of one scalar non-
linear solve per step. The most robust way to solve a nonlinear
scalar equation without using derivatives is by bisection. We
choose a more efficient Dekker-type algorithm formulated by

Brent [2], which also guarantees convergence if the function
values in the end points of the starting interval have oppo-
site sign, but gives superlinear convergence when the iterate
closely approaches the solution.

However, the Gauss-Seidel algorithm is known to con-
verge very slowly. To overcome this difficulty we accelerate
the algorithm by using intermediate linearized steps. Every
iterative step is split into a nonlinear Gauss-Seidel step fol-
lowed by a linearized step which can be solved by a more
efficient iterative linear solver. A more detailed description is
as follows:
First, compute a nonlinear Gauss-Seidel step to obtain a first
estimateδp1/2= p(k+1/2)− p(k):

ρ(p(k+1/2))− δt2A(p(k+1/2)− pn)=
ρ(pn)− δtDm∗− δt2B(p(k)− pn). (17)

Next, substitute our estimate forpn+1, namelyp(k+1), in (15)
and subtract the following known term in the left and right
hand side:

ρ(p(k+1/2))− δt2DG p(k+1/2) (18)

to find an equation forδp1= p(k+1)− p(k+1/2):

ρ(p(k+1))−ρ(p(k+1/2))− δt2DG(p(k+1)− p(k+1/2))=
ρ(pn)−ρ(p(k+1/2))− δtDm∗+ δt2DG(p(k+1/2)− pn). (19)

The nonlinear termρ(p(k+1))−ρ(p(k+1/2)) is replaced by
dρ
dpδp1. The exact derivativedρdp is replaced by an estimatẽρ′
in the following secant type of way:

ρ̃′ = ρ(p
(k+1/2))−ρ(p(k))
p(k+1/2)− p(k)

,
∣∣p(k+1/2)− p(k)

∣∣ ≥ µ ∣∣p(k)∣∣ ;
(20)

ρ̃′ = ρ((1+µ)p
(k))−ρ(p(k))

µp(k)
,

∣∣p(k+1/2)− p(k)
∣∣<µ ∣∣p(k)∣∣ .

(21)

whereµ is a parameter to be chosen in relation to|p1− p2|
in the equation of state. This results in the following linear
system for the second part of the pressure correctionδp1:

ρ̃′δp1− δt2DGδp1= ρ(pn)−ρ(pn+ δp1/2)

+δt2DGδp1/2− δtDm∗. (22)

This system is solved forδp1 by preconditioned GMRES.
Finally, the total pressure correctionδp(k) = δp1/2+δp1 is

computed and used as initial iterand for the next iteration step.
It is clear that in the case of convergence the right hand

side of the system (22) vanishes and the second part of the
pressure correction will tend to zero. When‖δp1‖∞ < ε the
iteration is terminated.

If the equation of state is fairly smooth, the algorithm
will not perform better than the linearized pressure correction
equation, but its superiority becomes clear whenp1 and p2
are brought closer together.
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5 Remarks on validation

Weak solutions of hyperbolic systems are made unique by
imposing the requirements, that shocks satisfy the jump con-
dition (Rankine-Hugoniot), and that characteristics converge
into and do not emanate from shocks (entropy condition). It is
well-known that numerical schemes easily violate one or both
of these conditions. Therefore convergence of the staggered
scheme needs to be validated. A theory of convergence is
lacking, as for many commonly used schemes. We will carry
out validation by comparison with exact solutions and with
another scheme. Standard finite volume schemes for the Euler
equations are of colocated type and use some form of flux-
splitting or approximate Riemann solution for the numerical
flux at cell boundaries. For two reasons we select the Osher
scheme [12] for comparison. First, it applies to general hyper-
bolic systems and is not restricted to the Euler equations for
a perfect gas. Second, there is a proof [12] that it gives numer-
ical solutions that satisfy the jump and entropy conditions, if
shocks are sufficiently weak.

5.1 The Riemann problem for the nonconvex case

For the following two different initial states the numerical
solution to the Riemann problem is compared to the exact
solution:

Problem 1: Uleft =Uright = 0, pleft > pright.
Problem 2: Uleft <Uright = 0, pleft > pright, ρUleft = ρUright.

For an isothermal perfect gas, the structure of the Rie-
mann problem always consists of two waves, namely one
right running and one left running shock or expansion fan.
In the case of a nonconvex equation of state either of the
two waves can be composed of a number of single expan-
sion fans and shocks, so-called compound waves. By a La-
grangian transformation the barotropic Euler equations are

Fig. 1. Construction of the exact solution

transformed to the p-system:

Vt+mx = 0, (23)

mt+ p(V)x = 0. (24)

For the p-system the solution of the Riemann problem
is found by construction of the backward and forward wave
curves, that is all states in the phase plane, that can be con-
nected by a combination of shocks and simple waves to the
left and right state [13]. The middle state, between the left and
right running wave is found as the intersection of the 1-wave
curve of the initial left state and the 2-backward wave curve
of the initial right state. Figure 1 shows the initial states in the
equation of state, the wave curves and the structure of the so-
lution in the x/t plane for the second test case (Lagrangian
frame).

The left running wave is composed of an expansion fan,
an expansion shock and another expansion fan, while the right
running wave is just a single compression fan. Although the
fundamental derivative changes sign in the domain, the wave
curves are still monotonous functions of V and therefore the
solution to the Riemann-problem is unique [10].

5.2 Results

Figures 2 and 3 show results for both testcases for the stag-
gered scheme (bottom) and the Osher scheme (top).

For both testcases the two schemes converge to the correct
solution with the same accuracy in the eyeball-norm. How-
ever, due to the fact that the Osher scheme requires calcula-
tion of the eigenvectors and numerical evaluation of integral
relations to obtain the Riemann-invariants, it is a few hundred
times slower than the staggered scheme. To avoid evaluation
of the integral relations, the Riemann invariants could be tab-
ularized, but even then the Osher scheme would still be more
costly to apply.
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Fig. 2. Riemann problem 1; 48 cells;τ/h= 0.4

Table 1. Properties of the mixture equation of state

cvapor state/cliquid state 1

cliquid state/cminimal 670

ρliquid state/ρvapor state 400

6 Unsteady sheet cavitation on NACA0012 hydrofoil

With the present method a simulation is made of an unsteady
sheet cavity on a NACA0012 hydrofoil at 5 degrees of attack
and a cavitation numberσ = 1.2, whereσ is defined as:

σ = p∞− pvapor
1
2ρ∞V2∞

. (25)

The properties of the mixture equation of state used are listed
in Table 1. A C-type grid was used with 164×20 cells.

From experiments [4] it is known that the cavity shows
a cyclic behavior. Initially a small bubble is formed, which
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Fig. 3. Riemann problem 2; 96 cells;τ/h= 0.4

will grow in time. After the cavity has attained its maximum
length a re-entrant jet starts to develop at the trailing edge of
the bubble. The jet will move towards the leading edge of the
cavity along the hydrofoil surface. When it meets the upper
part of the water/vapor interface, the aft part of the bubble
is detached and convected away from the surface. When the
detached bubble is sufficiently removed from the hydrofoil
the cavity length will increase again. The results displayed in
Fig. 4 show this behavior.

Figure 5 shows the pressure distribution on the hydrofoil
just before the re-entrant jet starts to develop. Note the plateau
of constant pressure underneath the cavity.

The maximum attained cavity length of 34 percent of the
chord length corresponds to the results of the interface track-
ing method of [7]. In [7] a cavity length of 30 percent is
found, but the method is reported to slightly underpredict the
length in most cases.

Compared to the methods in [8] and [6] our approach
is more efficient. The former uses the method of artificial
compressibility, while the latter uses a modified SIMPLE ap-
proach to handle the incompressible region. Especially when
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Fig. 4. Isodensity lines showing cyclic behavior of cavity

the cavitation number is sufficiently small and the cavity is
highly unsteady, both methods require a large number of it-
erations per time-step, as opposed to our single iteration per
time-step solution procedure.

7 Conclusions

We have shown the simplicity and efficiency of a staggered
scheme for the computation of solutions to a hyperbolic sys-
tem of conservation laws arising from instationary flow of an
inviscid fluid with a general equation of state. A nonlinear
compressible pressure correction, based on accelerated non-
linear Gauss-Seidel, is introduced, which is more robust than
a linearized formulation, in the case of a highly nonlinear or
nonsmooth equation of state. The method has been applied to
the calculation of unsteady sheet cavitation on a NACA0012
hydrofoil. Results agree well with those obtained with an in-
terface capturing method.

8 Future extensions

The aim is to apply the method to the modeling of cavita-
tion in cryogenic fluids, e.g. liquefiedH2 andO2. Cavitation
in cryogenic fluids is encountered in high performance cen-
trifugal pumps, that are used in rocket propulsion systems. In
this case the system has to be extended with a mixture en-
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Fig. 5. Pressure distribution

thalpy equation, because for cryogenic fluids the vapor pres-
sure strongly depends on the temperature.
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