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The analysis of electromagnetic scattering by electrically large one-side open–ended
cavities remains a challenge. Finite element discretisation of the vector wave equation to
solve for the electric field inside the cavity leads to ill-conditioned indefinite linear systems
of large dimension, a result of the requirement of a fine nearly uniform discrete sampling
in the computational domain. Direct methods based on frontal solution techniques to
solve the resulting linear system have been used because efficient iterative methods were
not available. With the arrival of the shifted-Laplace preconditioner of Erlangga, iterative
solution of the indefinite system becomes tractable. This paper discusses the modifications
required for application of the shifted-Laplace preconditioner to cavity scattering and some
preliminary results of this approach. The shifted-Laplace preconditioner is shown to be very
effective for improving the convergence rate of the iterative solution algorithm. However,
to be able to handle problems with larger number of degrees of freedom, it is necessary
to include a multigrid algorithm to solve the preconditioner system, as this will allow the
use of short recurrence Krylov subspace methods, as opposed to the currently employed
long-recurrence method, for which the storage requirements of the Krylov basis become
unpractically large.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The radar signature of a military platform remains one of the key parameters that determines its deployment envelope.
For jet powered fighter aircraft at near nose on observation angles the contribution to the radar signature of the jet engine
is generally dominant. The jet engine air intake duct, together with the compressor fan form a large and deep one-side open
cavity that scatters the incident electromagnetic waves over a large cone of observation angles. Therefore, the modelling and
analysis of the electromagnetic scattering properties of large open–ended cavities remains a challenging task of continuing
interest to the military aerospace engineering community.

When the characteristic dimensions of a scattering body are many times larger than the wavelength of the incident
electromagnetic waves, such bodies are referred to as electrically large, as is the case for a fullsize jet engine air intake duct.
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For convex scattering bodies, the interaction between the electric current distribution induced on different regions of the
scattering body, weakens and eventually nearly vanishes with increasing electrical size. This phenomenon is the basis for
the use of so-called high-frequency asymptotic analysis methods that, to a certain extend, discard this interaction, and will
give an accurate description of the first order scattering phenomena for electrically large convex scattering bodies. How-
ever, the concave shape of an electrically large cavity retains a strong interaction between the electric current distribution
induced on different parts of the cavity interior, which means that beforementioned asymptotic methods cannot be used
to perform an accurate analysis. Although a number of dedicated analysis techniques are available, these are not univer-
sally applicable because of the underlying assumptions and/or limitations on the geometry of the cavity (consult the review
paper of Anastassiu [1] for more details). Only so-called full-wave methods, that are based on direct discretisation of the
Maxwell equations can by used to analyse large, noncylindrical curved cavities. In the current application the response to a
monochromatic excitation is analysed, using a formulation in the frequency domain. Frequency domain full-wave methods
fall in two distinct categories:

• Methods based on a finite element discretisation of the Combined Field Integral Equation (CFIE), essentially an integral
form of the Maxwell equations.

• Methods based on a finite element discretisation of the vector wave equation, essentially a differential form of the
Maxwell equations.

With the introduction of Multi Level Fast Multipole Algorithm (MLFMA) based acceleration techniques (see e.g. Ref. [2]),
the former approach has established a position as a standard workhorse for electromagnetic analysis. However, because of
the strong interaction inside the concave domain, application of MLFMA for the analysis of a jet engine air intake is not
completely straightforward. Additionally, it is often desirable to be able to analyse the contribution of the isolated engine air
intake and combine it with a separate (possibly asymptotic) analysis of the other components of the aircraft that comprise
it’s outer mould shape. In this case only the contribution of the inside of the air intake is required. Although integral
equation formulations for the contribution of the inside of the jet engine air intake do exist, this formulation is not present
in a standard MLFMA solver. In the second approach based on discretisation of the vector wave equation inside the jet
engine air intake cavity the contribution of the exterior is excluded automatically in the formulation.

In modern fighters extensive use is made of Radar Absorbing Coatings (RAC) and Radar Absorbing Materials (RAM) to
absorb and dissipate the incident electromagnetic energy and thereby reduce the aircraft radar signature. Because of the
multiple reflections that occur inside the cavity, this application of RAC can be very effective. Whereas within the integral
equation formulation the RAC have to be approximated by imposing an impedance boundary condition on the surface, the
differential formulation also allows discretisation of the volume occupied by the RAC, imposing the appropriate material
interface conditions through properly chosen basis functions for the electromagnetic fields.

1.1. A jet engine air intake scattering model based on a finite element discretisation of the vector wave equation

For these reasons the National Aerospace Laboratory NLR has started development of a jet engine air intake scattering
model based on a finite element discretisation of the vector wave equation. The initial approach was based on the work
of Jin et al. [10,9,11,14]. They combined a higher order finite element discretisation with an efficient (direct) frontal solver
that takes full advantage of the special geometry of the air intake, where the typical diameter-to-depth ratio is 6–10. The
latter fact combined with an optimised ordering of the elements limits the memory requirements of the solution algorithm
to just more than is required to store a complex valued matrix of dimension equal to the number of degrees of freedom
within a cross section of the cavity. An additional reason to choose a direct method is that the system typically has to
be solved for a couple of hundred right-hand sides, corresponding to the many different directions of excitation and two
different field polarisations. However, it was found that the computational work involved in the direct solver prohibits it’s
practical application for problems with very large number of degrees of freedom (> 109). Initially iterative solution methods
had been considered but our experiences with Krylov subspace methods accelerated with ‘classic’ preconditioners, e.g. ILU,
showed that either the preconditioner was not very effective or required excessive memory storage. With the introduction of
the shifted-Laplace preconditioner by Erlangga [6] for the discretised Helmholtz equation, the question arose if this approach
is equally effective for iterative solution of the discretised vector wave equation, as both equations are obviously very
similar. In this paper our first experiences with this approach are discussed. Our aim was to make an initial evaluation
of the algorithm, investing a limited effort. Now the value of the algorithm for this application has been established it is
currently further developed by including algebraic multigrid to solve the preconditioner system and adapting the continuous
formulation to improve the convergence rate of the solution algorithm.

1.2. Outline

Both the continuous formulation and the finite element discretisation of the cavity scattering problem are briefly dis-
cussed. Next the solution procedure of the linear system using the original direct solver is reviewed. This is followed by
a description of how the shifted-Laplace preconditioner is integrated in a block-preconditioner, to efficiently handle the
fully populated submatrix that results from discretisation of the imposed global radiation boundary condition on the cavity
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Fig. 1. Definition of the observation angles θ and φ.

aperture. Some numerical experiments have been performed to explore the sensitivity to the parameters that define the
preconditioners. Finally, a number of recommendations are made to further improve the algorithm.

2. Continuous formulation

Because the excitation by the electromagnetic waves is assumed to be time-harmonic and monochromatic, the problem
can be formulated in the frequency domain, by considering the phasor E or complex valued amplitude of the electric field
E with rotational frequency ω, defined in the following way:

E(x, t) = �(
E(x)eiωt). (1)

The quantity E will from hereon be referred to as the electric field, because the actual electric field E will not be introduced
in the problem formulation. The contribution to the radar cross section of the deep one-side open–ended cavity formed
by the jet engine air intake and the compressor is quantified by the radar cross section σ , that is dependent on the two
observation angles (φ, θ) (defined in Fig. 1) and the polarisation of the incident and scattered time-harmonic electric field:

σÊinÊsc
(φ, θ) = lim

r→∞ 4πr2 |Esc(xobs)|
|Ein| , r = |xobs|, (2)

where xobs is the point of observation and Ein and Esc are the incident electric field on the cavity and the electric field
scattered by the cavity, respectively. In turn the scattered electric field observed at a location sufficiently far removed from
the cavity can be accurately approximated by:

Esc(x) = ik0eik0|x|

2π |x|
∫ ∫

Sap

M
(
x′)e−k0(x·x′)/|x| dS ′, (3)

where k0 = ω
√

μ0ε0, with μ0, ε0 the permeability and permittivity in vacuum, respectively and the magnetic current M(x)

defined as:

M(x) ≡ −n̂ × E(x), (4)

where n̂ is the unit normal vector directed outward on the aperture surface Sap.
Inside the volume V cv defined by the exterior surface Scv + Sap (Fig. 2) the electric field phasor E(x) obeys the homoge-

neous vector wave equation

∇ × ∇ × E(x) − k2
0εrE(x) = 0, (5)

where εr is the relative permittivity of the material (vacuum or RAM). To define a well-posed problem, it suffices to prescribe
either the tangential electric field or the tangential magnetic field on the boundary surface of the domain. The former is
prescribed on the cavity surface Scv and the latter on the aperture surface Sap by imposing a homogeneous Dirichlet
boundary condition and a global radiation boundary condition, respectively:

Et(x) = 0, x ∈ Scv, (6)

Ht(x) = i
Z0

k0

[
k2

0

∫ ∫
S

M
(
x′)g

(
x,x′)dS ′ + ∇

∫ ∫
S

∇′ · M
(
x′)g

(
x,x′)dS ′

]
, x ∈ Sap, g

(
x,x′) = eik0|x−x′|

2π |x − x′| . (7)
ap ap
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Fig. 2. Schematic layout of the cavity scattering problem.

In formulating the global radiation boundary condition it is assumed the cavity aperture is located in a perfectly conducting
groundplane of infinite extend (Fig. 2), which eliminates the electric current distribution on the aperture surface. Using (5),
(6) and (7), the following functional can be defined:

F = 1

2

∫ ∫ ∫
Vc

[(∇ × E(x)
)(∇ × E(x)

) − k2
0εrE(x) · E(x)

]
dV − k2

0

∫ ∫
S

M(x) ·
[∫ ∫

Sa

M(x)g
(
r, r′)dS ′

]
dS

+
∫ ∫

Saperture

∇ · M(x)

[ ∫ ∫
Saperture

g
(
x, x′)∇′ · M

(
x′)dS ′

]
dS − 2ik0 Z0

∫ ∫
Saperture

M(x) · Hi(x)dS. (8)

The electric field inside the cavity E(r) can now be found by locating the stationary point of the functional (8).

3. Finite element discretisation

The weak formulation of the vector wave equation is discretised using higher order edge-based test functions on tetrahe-
dral elements, following the approach of Graglia et al. [7], who combined standard Nedelec basis functions with polynomial
interpolation functions. Tetrahedral elements are chosen because of the straightforward definition of curl conforming basis
functions and the possibility of accurately boundary conforming automatic grid generation. The higher order formulation
leads to a significant reduction of the number of degrees of freedom in the problem, while the edge-based formulation will
guarantee the correct field behavior across material interfaces with discontinuous permittivity (continuous tangential and
discontinuous normal component of the field) and suppresses the occurrence of spurious solutions generally encountered
when using node-based test functions. Because the computational domain in this application does not have highly curved
boundaries, rectilinear elements are used as opposed to the curvilinear elements of Graglia et al. [7]. This allows a more
efficient evaluation of the element matrices. The zeroth-order curl conforming test functions are given by:

Ωγ β(r) = ξn∇ξm − ξm∇ξn, (9)

where {γ ,β,m,n} are the six even permutations of {1,2,3,4} such that γ < β . Ωγ β(r) is associated to the edge that
connects face γ to face β of the tetrahedron. The curl conforming higher order basis functions of order p can be expressed
as:

Ω
γ β

i jkl = Nγ β

i jkl

(p + 2)2ξγ ξβα̂i jkl(ξ)

iγ iβ
Ωγ β(r), (10)

where iγ ,β is taken to be i, j,k, l for γ ,β = 1,2,3,4 respectively. The Silvester–Lagrange interpolation polynomial α̂i jkl(ξ)

is defined as:

α̂i jkl(ξ) = R̂ i(p + 2, ξ1)R̂ j(p + 2, ξ2)R̂k(p + 2, ξ3)R̂l(p + 2, ξ4), (11)

where the shifted Sylvester polynomials R̂ i of order p are defined as
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R̂ i(p, ξ) =

⎧⎪⎨
⎪⎩

1
(i−1)!

∏i−1
k=1(pξ − k), 2 � i � p + 1,

1, i = 1,

limi→0
R̂ i(p,ξ)

i ≡ 1
pξ

.

(12)

The normalization factor Nγ β

i jkl is defined as:

Nγ β

i jkl = p + 2

p + 2 − iγ − iβ
|lγ β |, (13)

where

lγ β = J (∇ξ j × ∇ξk), J = li · l j × lk, li = ∂r

∂ξi
. (14)

Following the approach of Graglia et al. [7] test functions of arbitrary order can be defined. As a fair balance between
complexity and efficiency, second order test functions (cubic polynomials) have been chosen. Because of the uniform dis-
cretisation of the computational domain, even the use of higher order basis functions still leads to problems with very large
number of degrees of freedom: > 107.

The electric field E(r) and the magnetic current are expanded in a series of these test functions:

E(x) =
Ndof int∑

i=1

EiΩ i(x) +
Ndof int+Ndof ap∑

i=Ndof int+1

EiΩ i(x),

M(x) =
Ndof ap∑

i=1

EiΛi(x)|x ∈ Sap,

Λi(x) = −n̂ × Ω i+Ndof int(x), i = 1, . . . ,Ndof ap, (15)

where Ndof int and Ndof ap are the number of internal degrees of freedom and the number of degrees of freedom located
on the aperture, respectively. Substitution of the expansion (15) in the functional (8) and application of the Rayleigh–Ritz
procedure leads to a system of linear equations for the unknown complex coefficients Ei in the expansion. The dimension
of the linear system will be Ndof, the total number of degrees of freedom.

4. Properties of the linear system

The linear system that results from discretisation of the weak form of the vector wave equation for our frequency band
of interest, combined with the beforementioned global radiation boundary condition on the aperture has the following
properties, that should be considered when choosing a solution method:

• The system is complex valued through the contribution of the radiation boundary condition. Furthermore, when a radar
absorbing liner is fitted in the air intake, the complex value of the permittivity of the liner material will result in
additional complex valued coefficients.

• The system is nearly symmetric (non-Hermitian). Although the Galerkin FE discretisation of the vector wave equation
results in a symmetric system, this does not hold for the discretisation of the radiation boundary condition. More
specifically, the ‘inner’ and ‘outer’ integrals of the operator are handled differently for the (nearly) singular case of two
triangular elements that (nearly) coincide. This is common practice in the discretisation of boundary integral equa-
tions. Although max(|Aij − A ji |/|Aij|) ≈ 10−4–10−5 this is sufficient to stall convergence of linear solvers that assume
symmetry.

• For the frequency band of interest the high wave number k0 will make the matrix highly indefinite.
• Within the system matrix three unique submatrices can be identified, where for future reference the explicit depen-

dence of the (sub)matrices on the wavenumber k0 is introduced:

A(k0) =
(

A11(k0) A12(k0)

(A12(k0))
T A22(k0)

)
, (16)

where
· A11(k0) ∈ C

Ndof int×Ndof int, sparsely populated,
· A12(k0) ∈ C

Ndof int×Ndof ap, sparsely populated,
· A22(k0) ∈ C

Ndof ap×Ndof ap, fully populated.
The discretisation of the global radiation boundary condition on the aperture results in the matrix being partially
sparsely and partially fully populated, as indicated in Fig. 3.
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Fig. 3. Typical sparsity pattern for the system of equations derived from discretisation of the vector wave equation with a global radiation boundary
condition imposed on the aperture. The length-diameter ratio of the cavity L/d ≈ 0.4, with 723 degrees of freedom.

5. Direct solution of linear system

Jin et al. [10,9,11,14] use a direct solution method to solve the system of linear equations that result from the finite
element discretisation of the vector wave equation. There are multiple reasons for choosing a direct solution method for
this application:

• The geometry of the problem allows formulation of a relatively efficient frontal solution method with limited memory
requirements.

• The system has to be solved repeatedly, for many different right-hand sides, corresponding to different angles of exci-
tation.

• ‘Standard’ preconditioners as e.g. ILU() or AI, are either not effective in improving the convergence rate of Krylov sub-
space methods for this application or require nearly as much work as is involved in factorisation of the matrix for direct
solution of the system.

• ‘Standard’ multigrid algorithms are not easily set up to handle high frequency wave equations.

Because of the specific geometry of the computational domain, characterized by one dominant principal dimension, the
degrees of freedom can be ordered (starting from the bottom of the cavity to the aperture) such that a relatively small
bandwith is achieved when the system matrix would be assembled. Clearly, the theoretically possible minimal bandwith is
equal to the number of degrees of freedom in a typical cross section of the cavity. Instead of first assembling the system
matrix, a so-called frontal solution algorithm can be designed that simultaneously assembles the finite element matrices
into the frontal matrix and eliminates only those degrees of freedom for which all element matrices they belong to are
fully assembled. This simultaneous approach limits the storage requirements of the algorithm to roughly only (Ndof ap)2,
as opposed to Ndof · Ndof ap when the system would be assembled. Using a subdivided prismatic grid, an ordering of the
elements can be achieved that is indeed close to the optimal value, see Van der Heul et al. [17]. Jin et al. [10] used the
classical method of Irons [8] while in the current algorithm use was originally made of a state-of-the-art frontal solver
MA42, developed by Duff and Scott [3].

However, in using the direct solution algorithm it became clear that computational work becomes unacceptably high
for problems with a very large number of degrees of freedom (106–107). Therefore, an alternative solution algorithm was
required.
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Fig. 4. Spectrum of the preconditioned system for the discretisation of the vector wave equation on a small cavity geometry, using the shifted-Laplace
preconditioner of Erlangga and Erlangga’s optimal shift parameters for the discretised Helmholtz equation. The eigenvalues are contained within a circle,
and removed from the origin.

6. Iterative solution of the linear system

As mentioned in the introductory section our aim is to evaluate the use of the shifted-Laplace preconditioner of Erlangga,
that has established a very good reputation for improving the convergence rate for iterative solution of the discretised
Helmholtz equation, to solve the system resulting from discretisation of the vector wave equation. The vector wave equa-
tion (5) can be explicitly expressed as a vector form of the Helmholtz equation by using the vector identity:

∇ × ∇ × A = ∇(∇ · A) − ∇2A, (17)

and Gauß’ electric field law to give:

∇ ×
(

1

μr
∇ × E

)
− k2

0εrE = − 1

μr
∇2E − k2

0εrE. (18)

The basic idea of the shifted-Laplace preconditioner of Erlangga is to use as a preconditioner the original operator A(),
but evaluated for a shifted value of the wavenumber: βk0 = k̃0; β, k̃0 ∈ C, where the complex valued shift β = β1 + iβ2 is
chosen in such a way the preconditioner system A(k̃0) now is positive definite and can be (approximately) solved efficiently,
preferably using multigrid. To reduce the effort involved, we will start by using a Krylov subspace method for solution of
the preconditioner system A(k̃0) and postpone the realisation of multigrid for the preconditioner solve. This means that
the choice for the iterative method to solve the original system A(k0) is limited to those methods that allow a variable
preconditioner, e.g. flexible GMRES or GCR [15,4,18], which is chosen here to solve both the original and the preconditioner
systems. A similar approach was taken by Turkel and Erlangga for the 2D Helmholtz equation [16]. Fig. 4 shows the spectrum
of the linear system resulting from discretisation of the small cavity test problem (2nd order discretisation using 5976
degrees of freedom), preconditioned with Erlangga’s shifted-Laplace preconditioner, where the shift parameters (β1, β2) are
chosen equal to the optimal values for the Helmholtz equation, i.e. such that (β1 + iβ2)

2 = 1 − 0.5i.

7. Handling the global radiation boundary condition

One difference between the system matrix in Erlangga et al. [6] and the present matrix is the presence of the fully
populated submatrix A22(k0), as Erlangga et al. [6] used a local radiation boundary condition, the discretisation of which
leads to a completely sparsely populated system. In order to use a preconditioner like the shifted-Laplace preconditioner [6],
we have to get rid of the fully populated block. Once this is achieved, we can use the shifted-Laplace preconditioner denoted
by A11(k̃0) for the block A11(k0). Hence, to solve the system(

A11(k0) A12(k0)

A21(k0) A22(k0)

)
x = b (19)

we proceed as follows:
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Fig. 5. Spectrum of the preconditioned system for the discretisation of the vector wave equation in a small cavity geometry, using the preconditioner given
by (20).

(1) Apply the Krylov method GCR [18] with preconditioner M (see Algorithm 1):

M =
(

A11(k0) A12(k0)

0 A22(k0)

)
. (20)

In the GCR method the system Msk = rk−1 has to be solved.
(a) Solve A22(k0)sk

2 = rk
2 by using a precomputed and stored LU decomposition of A22(k0).

(b) Solve sk
1 from

A11(k0)sk
1 = rk

1 − A12(k0)sk
2 = ξ1 (21)

using GCR again with the shifted-Laplace preconditioner A11(k̃0). Now the system A11(k̃0)z j = y j has to be solved
within GCR and this is done using the GCR method for the third time.

The pseudo code of the algorithm is included in Appendix A as Algorithm 2.
Solving the system (19) with this approach leads to a nested iterative method consisting of three GCR loops. In the

outer loop (k), the system Ax = b is solved using preconditioner M (see Algorithm 1) hence, iterates xk are computed. The
middle loop ( j) computes the search direction sk for xk by solving Msk = rk−1 iteratively, where rk−1 is the residual given
by rk−1 = b − Axk−1. In the j-loop, the two steps (a) and (b) are performed and the system A11(k0)sk

1 = ξ1 is solved using

preconditioned GCR with the shifted-Laplace preconditioner A11(k̃0). Finally, the system A11(k̃0)z j = y j is solved iteratively
with unpreconditioned GCR: the (i) loop.

Algorithm 1. GCR algorithm for Ax = b with preconditioner M.

Input: A, b and M
Output: x

Calculate initial residual r0 = b − Ax0

for k = 1,2 do
Solve Msk = rk−1

vk = Ask

Orthogonalize sk (vk) w.r.t. s1, . . . , sk−1 (v1, . . . ,vk−1)

xk = xk−1 + (vk)�rk−1sk

rk = rk−1 − (vk)�rk−1vk

end for

From inspection of the spectrum (Fig. 5) it becomes clear, that omitting the single lower block matrix (A12(k0))
� from

the preconditioner has a significant impact on the distribution of the eigenvalues. However, we still use the shifted-Laplace
preconditioner for fast solution of (21).

This method is tested for a series of problems with a rectangular cavity of dimensions 1.5λ × 1.5λ × L, where L ∈
{λ,2λ,4λ,8λ}. The results of these experiments are given in Table 1. The number of iterations performed in each loop is



P.B. Hooghiemstra et al. / Applied Numerical Mathematics 60 (2010) 1157–1170 1165
Table 1
Performance of GCR using the nested preconditioner M (Algorithm 2 in Appendix A). Ndof is the number of degrees
of freedom in the problem, Iti is the average number of inner iterations. The CPU time is normalized with respect
to the first experiment (top row). The value of the shift parameters (β1, β2) = (1.0,2.5).

Dimensions Ndof Itk , It j , Iti CPU

1.5λ × 1.5λ × λ 19 614 584, 10, 34 1
1.5λ × 1.5λ × 2λ 39 840 832, 10, 35 3.1
1.5λ × 1.5λ × 4λ 80 283 1898, 10, 36 13.9
1.5λ × 1.5λ × 8λ 160 599 4000, 10, 44 142.7

Fig. 6. The number of outer loop (k) iterations as a function of the number of degrees of freedom (Ndof ) for a series of testproblems given in Table 1 (left
panel) and Table 2 (right panel).

given in the third column. For the inner loop (i) the average number of iterations per middle loop ( j) iteration is given to
reach the preset tolerance εi = 10−1. The number of middle loop ( j) iterations is constant here to test the dependence of
the number of outer loop (k) iterations. It is observed that the average number of inner loop (i) iterations increases slightly
with the size of the matrix (Ndof ). However, the number of outer loop (k) iterations increases linearly with Ndof leading to
very high CPU times as can be seen in the fourth column and Fig. 6 (left panel). Here the CPU times are normalized to the
time needed to perform the top-row experiment.

Since the iterative method with three nested loops gives unfeasible high CPU times for deep cavities (L � 8λ), a new
preconditioner is proposed to accelerate the rate of convergence for solving Ax = b. This preconditioner is constructed by
coupling the former upper diagonal block matrix M with the shifted-Laplace preconditioner A11(k̃0):

Mnew =
(

A11(k̃0) A12(k0)

0 A22(k0)

)
. (22)

Using this new preconditioner reduces the amount of work involved in solving Ax = b, because the middle loop ( j) is
not executed anymore. The solution of Ax = b is now iteratively computed using preconditioned GCR with only two nested
loops: In the outer loop (k) iteration we solve Ax = b. In the inner loop (i) iteration, we solve the system Mnewsk = rk−1.
Again this system is solved in two steps. First the precomputed LU decomposition of the fully populated block A22(k0) is
used to compute sk

2. The remaining system A11(k̃0)sk
1 = rk

1 − A12(k0)sk
2 is solved with unpreconditioned GCR. The pseudo

code of the algorithm is included in Appendix A as Algorithm 3.
To compare the performance of the new preconditioner with the first one, almost the same experiments are performed

although the cavity size is increased a little since the new preconditioner yields much better convergence as can be seen in
Table 2. The first two columns show the dimensions of the cavities used and the corresponding matrix size. The number of
outer loop (k) iterations is given and the average number of inner loop (i) iterations to reach a tolerance level εi . Since the
preconditioned system Mnewsk = rk−1 does not need to be solved exactly (because the solution is the search direction for
iterates xk) we use εi = 10−1 in first instance. However, for larger cavities with increasing depth (L � 8λ) it turns out that
the number of outer loop (k) iterations increases fast as we keep the inner loop (i) tolerance to this value of 10−1. Therefore,
εi = 10−2 for L = 8λ and L = 16λ. With these settings of the inner loop (i) tolerance it is observed that the number of outer
loop (k) iterations increases linearly with Ndof , but the slope of the curve is far less steep compared to the former method
(Fig. 6). The fourth column of the table summarizes the CPU times used by the method, again normalized with respect to
the first experiment in Table 1. It is observed that for relatively small cavities we gain a factor of 10 in CPU time. However,
for cavities with increasing depth, this factor increases to 25 or more.
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Table 2
Performance of GCR using preconditioner Mnew (Algorithm 3 in Appendix A). Ndof is the number of degrees of
freedom in the problem, Iti is the average number of inner iterations. The CPU time is normalized with respect to
the first experiment in Table 1 (top row). The value of the shift parameters (β1, β2) = (1.0,2.5).

Dimensions Ndof Itk , Iti CPU

1.5λ × 1.5λ × 2λ 39 840 938, 28 0.33
1.5λ × 1.5λ × 4λ 80 283 1500, 28 0.81
1.5λ × 1.5λ × 8λ 160 599 1812, 68 5.24
1.5λ × 1.5λ × 16λ 321 066 3500, 75 23.61

Table 3
The average number of inner iterations Iti , the number of outer iterations Itk and the CPU time (min) for various values of the shift pair (β1, β2).

β1, β2 Iti Itk CPU β1, β2 Iti Itk CPU

(1.0,2.5) 57 412 51 (1.0,0.5) 293 201 168
(1.0,2.25) 63 416 60 (1.0,0.25) 496 175 226
(1.0,2.0) 70 394 61 (1.0,0.1) � 500 217 304
(1.0,1.75) 80 380 59.5 (−1.0,2.5) 57 459 50
(1.0,1.5) 91 343 63 (−0.5,2.5) 53 459 53
(1.0,1.25) 107 288 66 (0.0,2.5) 52 553 61
(1.0,1.0) 139 260 83.5 (0.75,2.5) 55 432 51
(1.0,0.75) 187 224 107 (0.5,2.5) 53 424 49

Fig. 7. The amount of work (approximated by Work = Itk · Iti ) as a function of the shift parameters (β1, β2).

8. Tuning parameters

In the previous section the preconditioned GCR method has been introduced. The performance of this method depends
strongly on a set of parameters. In this section the sensitivity of the method to these parameters is investigated. First, the
shift pair (β1, β2) is considered, followed by the inner tolerance parameter εi also affecting the average number of inner
iterations Iti .

8.1. Tuning shift pair

According to Erlangga et al. [6], the optimal value for the shift pair (β1, β2) = (1.0,0.5) resulting in a robust precondi-
tioner for the (scalar) Helmholtz equation. Using these values, the innerloop is only executed a few times using a multigrid
approach. At the same time the preconditioner is close enough to the original matrix to reduce the number of outer itera-
tions significantly. To investigate if this is also the case for the preconditioner Mnew considered here, the effect on both the
number of inner and outer iterations for a cavity of (1.5λ × 1.5λ × 1.0λ) and Ndof = 22 407 is investigated for a range of
alternative values of (β1, β2).

At first the complex shift β2 is tuned while β1 is fixed. Then we use the most promising value for β2 to tune the real
shift β1. The results of this experiment are summarized in Table 3 and visualized in Fig. 7.
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According to Table 3 the average number of inner iterations Iti depends heavily on the complex shift β2. While Iti
increases rapidly when β2 → 0, the corresponding number of outer iterations Itk decreases slowly resulting in an increase
in CPU time (column 4). This increment in CPU time is easily explained by considering the amount of work for the method
approximated by the formula

Work ≈ Iti · Itk. (23)

Using this estimate for the work involved in the method, it is clear that the couple (β1, β2) = (1.0,2.5) (work = 23 484)
results in less work (and hence lower CPU) than for example the couple (β1, β2) = (1.0,0.5) (work = 49 224), see Fig. 7.

Considering Table 3 once more it is observed that a much larger value for β2 is found here in comparison with the
optimal value found by Erlangga et al. [6,5,19]. By applying a multigrid method to solve the preconditioned system, only
a few iterations are necessary to solve this system accurately with β2 = 0.5. Our preconditioned system is much harder to
solve as can be seen by the value of Iti . From Table 3 it is clear that we have to reduce the amount of inner iterations
(even) more to decrease the amount of work and eventually CPU. Also it is clear from the table that the tuning of β1 does
not have a great influence on the performance of the method.

8.2. Tuning inner loop tolerance

In the last section we tuned the shift parameters (β1, β2) in order to reduce the CPU time. The CPU time does not
depend on these two parameters solely, since the tolerance in the inner loop is also very important. In this section we will
investigate the dependence of the inner loop tolerance εi on the number of outer iterations and hence on the dependence
of the CPU time.

The expectation is that solving the preconditioner system A(k̃0)z1 = v1 very accurately is necessary nor efficient to reduce
the number of outer iterations. This is justified by the fact that the matrix A(k̃0)11 in Eq. (22) is only an approximation of the
submatrix A(k0)11 of the original matrix A. To check whether this is really the case, the following experiment is performed.
Using a model problem of dimensions 1.5λ × 1.5λ × 4.0λ with 80 283 degrees of freedom, the inner loop tolerance εi is
decreased from 10−1 to 10−8 and the effect on the number of inner and outer iterations is investigated. The results are
summarized in Table 4 and Fig. 8.

From Table 4 and Fig. 8 it is clear that the number of outer loop (k) iterations does not decrease significantly if we
solve the preconditioned system with high accuracy whereas the average number of inner loop (i) iterations increases
dramatically. However, a significant difference in the number of outer loop (k) iterations is observed for εi = 10−1 and
εi = 10−2 (see Fig. 8). Up to 600 outer loop (k) iterations the convergence rate is comparable. If more outer loop (k)
iterations are needed, it turns out solving the system A(k̃0)z1 = v1 should be done more accurate for a better convergence.
Note here also that the average number of inner loop (i) iterations and hence the total amount of work involved increases
rapidly when going from εi = 10−1 to εi = 10−2. Therefore, as a rule of thumb the system can be solved with a tolerance
of εi = 10−1 for shallow cavities with a depth up to 4λ. For cavities with L � 8λ it is advised to use an inner loop tolerance
εi = 10−2.

9. Limitations of the current approach

As mentioned before, the use of GCR to solve the preconditioner system, dictates the original system be solved with a
Krylov method that allows the preconditioner to be nonconstant. In practice this means a long-recurrence method has to be
used, requiring storage of the Krylov base vectors for all iterations. We found this to be unpractical for problems with a very
large number of degrees of freedom. Although many restarting and truncating strategies have been tried, none of these had
satisfactory convergence properties, most likely a result of the indefiniteness of the original system. Therefore, it is necessary
to use multigrid to solve the preconditioner system. Currently, an algebraic multigrid algorithm is being incorporated in the
algorithm to perform this task.

10. Recommendations for future research

A slightly more complicated problem that is strongly related to cavity scattering is the scattering by dielectric bodies.
Inside the dielectric body the vector wave equation is discretised, like it is done inside the cavity. However, on the surface
of a dielectric body both an electric and a magnetic current are induced, and both have to be taken into account in the
radiation boundary condition. Generally, like in the cavity scattering problem this boundary condition has a formulation
based on the Electric Field Integral Equation (EFIE). For the dielectric body scattering problem an alternative formulation has
been derived by Liu and Jin [12], where the radiation boundary condition is based on the Combined Field Integral Equation
(CFIE). For the latter problem it can be shown that the eigenvalue spectrum of the CFIE formulation is significantly more
favourable than the original EFIE based formulation. This is not that surprising as similar behavior is commonly encountered
for integral equation solvers for perfectly electrically conducting scatterers based on either of the two formulations. On top
of that the new formulation allows a preconditioner system to be formulated based on a local instead of a global radiation
boundary condition (see Liu and Jin [13]). The reduced accuracy of the local boundary condition in the preconditioner
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Table 4
The influence of a high accuracy in the inner loop on the average number of inner (Iti) and outer
iterations (Itk). For these experiments we have used an upper limit of 1000 outer iterations. For
εi = 10−1 the relative residual norm is not converged to the outer tolerance εo = 10−4. The model
problem has dimensions 1.5λ × 1.5λ × 4.0λ and 80 283 degrees of freedom.

εi CPU Iti Itk

10−1 22 28.18 > 1000
10−2 41 59.81 ≈ 1000
10−3 69 97.18 896
10−4 104 137.13 891
10−8 247 298.73 880

Fig. 8. The number of outer iterations for a decreasing inner loop tolerance ε j . For this experiment a rectangular cavity of dimensions 1.5λ × 1.5λ × 4.0λ

and 80 283 degrees of freedom.

system does not affect the solution of the original system, but will make the preconditioner solve more efficient, because
the block triangular formulation of the preconditioner is no longer required.

Furthermore, to be applicable for problems with large number of degrees of freedom the algorithm has to be modified
to be able to handle multiple right-hand sides simultaneously.

11. Conclusions

The shifted-Laplace preconditioner of Erlangga et al. [6,5,19] provides an effective means to improve the convergence
rate of iterative solution of linear systems derived from the discretised vector wave equation. A start has been made with
exploring the sensitivity of the computational work to the parameters that define the preconditioner. However, to be able
to solve problems with a large number of degrees of freedom it is found to be essential to use multigrid to solve the
preconditioner system. Not only will this reduce the computational work involved in the preconditioner solve, but it will
also allow the use of short recurrence Krylov methods to solve the original system, as the preconditioner then has become
constant. Currently, an algebraic multigrid solver is being incorporated in the algorithm. Two additional propositions are
made to improve the efficiency of the method: an alternative formulation of the radiation boundary condition on the
aperture that will improve the condition number of the original system and the use of a Krylov method that is able to
simultaneously solve for multiple right-hand sides.

Appendix A. Algorithm pseudo code

In this paper we discuss two algorithms to solve a large linear system Ax = b. The main difference between Algorithm 2
and Algorithm 3 is that in the latter we have only 2 loops. This is due to the fact that we use only 1 preconditioner instead
of 2 in the former. In this way a reduction of the work compared to the 3-loop GCR is obtained. The loop in Algorithm 2 is
not executed in Algorithm 3 anymore.
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Algorithm 2. Nested GCR algorithm for Ax = b with preconditioner M from Eq. (20) and the shifted-Laplace preconditioner A11(k̃0).

Input: A, b and preconditioners M and A11(k̃0)

Output: x
Start GCR-1 for solving Ax = b
Calculate initial residual r0 = b − Ax0

for k = 1,2 do
Solve A22(k0)sk

2 = rk−1
2 using stored LU composition

Start GCR-2 for solving A11(k0)sk
1 = rk−1

1 − A12(k0)sk−1
2 = ξ1

Calculate initial residual r̃0 = ξ1 − A11(k0)s̃0

for j = 1,2 do
Start GCR-3 for solving A11(k̃0)s̃ j = r̃ j−1

Calculate initial residual r̄0 = r̃ j−1 − A11(k̃0)s̄0

for i = 1,2 do
s̄i = r̄i−1

v̄i = A11(k̃0)s̄i

Orthogonalize s̄i (v̄i) w.r.t. s̄1, . . . , s̄i−1 (v̄1, . . . , v̄i−1)

wi = wi−1 + (v̄i)� r̄i−1 s̄i

r̄i = r̄i−1 − (v̄i)� r̄i−1 v̄i

end for
s̃ j = wi

ṽ j = A11(k0)s̃ j

Orthogonalize s̃ j (ṽ j) w.r.t. s̃1, . . . , s̃ j−1 (ṽ1, . . . , ṽ j−1)

y j = y j−1 + (ṽ j)� r̃ j−1 s̃ j

r̃ j = r̃ j−1 − (ṽ j)� r̃ j−1 ṽ j

end for
sk

1 = y j

sk = (sk
1, sk

2)�
vk = Ask

Orthogonalize sk (vk) w.r.t. s1, . . . , sk−1 (v1, . . . ,vk−1)

xk = xk−1 + (vk)�rk−1 sk

rk = rk−1 − (vk)�rk−1 vk

end for

Algorithm 3. Nested GCR algorithm for Ax = b with preconditioner Mnew from Eq. (22).

Input: A, b and preconditioner Mnew

Output: x
Start GCR-1 for solving Ax = b
Calculate initial residual r0 = b − Ax0

for k = 1,2 do
Solve A22(k0)sk

2 = rk−1
2 using stored LU composition

Start GCR-2 for solving A11(k̃0)sk
1 = rk−1

1 − A12(k0)sk−1
2 = ξ1

Calculate initial residual r̄0 = ξ1 − A11(k̃0)s̄0

for i = 1,2 do
s̄i = r̄i−1

v̄i = A11(k̃0)s̄i

Orthogonalize s̄i (v̄i) w.r.t. s̄1, . . . , s̄i−1 (v̄1, . . . , v̄i−1)

wi = wi−1 + (v̄i)� r̄i−1 s̄i

r̄i = r̄i−1 − (v̄i)� r̄i−1 v̄i

end for
sk

1 = wi

sk = (sk
1, sk

2)�
vk = Ask

Orthogonalize sk (vk) w.r.t. s1, . . . , sk−1 (v1, . . . ,vk−1)

xk = xk−1 + (vk)�rk−1 sk

rk = rk−1 − (vk)�rk−1 vk

end for
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