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SUMMARY

This paper contains a comparison of four SIMPLE-type methods used as solver and as preconditioner for
the iterative solution of the (Reynolds-averaged) Navier—Stokes equations, discretized with a finite volume
method for cell-centered, colocated variables on unstructured grids. A matrix-free implementation is pre-
sented, and special attention is given to the treatment of the stabilization matrix to maintain a compact stencil
suitable for unstructured grids. We find SIMPLER preconditioning to be robust and efficient for academic
test cases and industrial test cases. Compared with the classical SIMPLE solver, SIMPLER preconditioning
reduces the number of nonlinear iterations by a factor 5-20 and the CPU time by a factor 2-5 depending on
the case. The flow around a ship hull at Reynolds number 2E9, for example, on a grid with cell aspect ratio
up to 1:1E6, can be computed in 3 instead of 15 h. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Starting point of this work is an existing finite volume RaNS code with SIMPLE-type solver and
the desire to improve its iterative convergence.

The code, a MARIN in-house code named REFRESCO [1], solves flow problems encountered in
the maritime industry, among others the flow around ship hulls. These RaNS simulations com-
plement model testing by providing flow field details for diagnosing problems and improving
designs. Besides, RaNS simulations at full scale give insight into scale effects and help to translate
experimental results from model scale to full scale.

To be industrially applicable, the code must be sufficiently accurate, efficient, and robust. Accu-
racy is achieved by grid refinement and grid contraction to capture the thin boundary layers. This
quickly leads to millions of cells and very high cell aspect ratio near the hull. In such cases, the
efficiency and robustness of the iterative method are insufficient: careful tuning of the relaxation
parameters is needed to obtain convergence, and the convergence rate is often disappointing. Our
aim, therefore, is to improve the convergence rate of the iterative method and to reduce its sensitivity
to relaxation parameters. This would not only reduce the computational time but also the amount of
user input and thereby facilitate routine application of the code in an industrial design process.
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The flow problems are characterized by high Reynolds numbers and complex geometries that
challenge both discretization and iterative methods. The flow physics are modeled by the steady
Reynolds-averaged Navier—Stokes equations combined with one-equation or two-equation turbu-
lence models. The discretization method for these equations is based on a cell-centered, colocated
finite volume method for unstructured grids of cells with arbitrary number of faces. The equa-
tions are linearized with Picard’s method and solved in a segregated manner by using the classical
SIMPLE method.

We aim at improving the iterative convergence by coupling the mass and momentum equations
while keeping the turbulence model equations segregated. The coupled Navier—Stokes system is
solved with a Krylov subspace method that requires a good preconditioner. Recent developments
in the context of finite element methods have yielded a number of suitable preconditioners, see the
overview in [2,3]. Among the possible choices are block preconditioners based on LDU decomposi-
tion [4-7], block preconditioners based on SIMPLE-type methods [2, 3,8, 9], and saddle point ILU
preconditioners [3, 8, 10]. Another possibility would be nonlinear multigrid with coupled Gauss—
Seidel smoothing [11, 12]. Our interest goes to SIMPLE-type preconditioners because these methods
allow a matrix-free implementation and because large parts of the existing code can be reused.

SIMPLE(R) was first applied as preconditioner in the context of finite volume methods for
structured grids with staggered variables in [9]; here, we present the extension to cell-centered,
unstructured grids with colocated variables. This extension is nontrivial because of the additional
stabilization term, needed to prevent spurious pressure oscillations. The stabilization term leads to
a matrix with a wide stencil involving not only a cell’s neighbors but also the neighbors of the
neighbors. We do not wish to form this matrix as a compact stencil is crucial for simplicity and effi-
ciency on unstructured grids. This constraint prevents a straightforward application of SIMPLE-type
preconditioning. Therefore, we propose two modifications of SIMPLE(R) that avoid the construc-
tion of the stabilization matrix. The classical usage of SIMPLE-type methods as solver is then
compared with the modern usage as preconditioner for a number of academic and industrial test
cases. Four variants are considered: SIMPLE and SIMPLER [13, 14] and the recently proposed
MSIMPLE and MSIMPLER (3,8, 15]. The comparison focuses on how the solver choice affects the
nonlinear convergence and the computional effort for a series of increasingly challenging test cases.

The layout of this paper is as follows. The discretization of the Navier—Stokes equations, includ-
ing linearization and stabilization is treated in Section 2. We then discuss the usage of SIMPLE-type
methods as solver in the first part of Section 3 and their usage as preconditioner in the second part,
including the necessary modifications related to the stabilization term. We compare the performance
of the different methods for academic test cases in Section 4 and for maritime test cases in Section 5
before drawing conclusions in Section 6.

2. DISCRETIZATION

Picard linearization of the steady, incompressible Navier—Stokes equations in two-dimensions and
finite volume discretization with colocated variables leads to a linear system of the form:

01 0 Gy Ui N
0 0, G, u, [ =1 f2 (1
Dy D, C )4 g

with u = (u1,u,) the velocity and p the pressure. In this section, we specify the discretization
choices that define the matrices Q, D, G, and C. The tensor notation of Wesseling [16] will be used
whenever possible. The methods presented in this paper are designed for—and applied to—complex
three-dimensional cases, but rectangular cells are assumed here to illustrate the main points of the
discretization method.

2.1. Pressure-weighted interpolation method
The pressure-weighted interpolation method (PWIM) is used to avoid checkerboard oscillations

on grids with colocated variables [16, 17]. The pressure-weighting term consists of a second-order
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derivative of the pressure gradient, scaled with a grid-dependent factor eh? with h as the cell size.
This term is added to the velocity

i =u® + eh*(pa) pp. )

and it is this pressure-weighted velocity that is used in Reynolds’ transport theorem [18] to derive
the conservation laws for momentum and mass

/Q (puaﬁﬂ),ﬂ - /Q (/”L (uﬁj? + "%) _P‘saﬁ),ﬂ’ (3a)

f 7% =0 (3b)
Q

with p as the density, u the dynamic viscosity coefficient, and § the Kronecker delta. The comma
denotes differentiation, and the summation convention applies to repeated indices. The PWIM thus
adds a fourth-order pressure derivative to the left-hand side of the momentum equations and of the
mass equation. Because & — 0 upon grid refinement, the original equations are recovered. The fac-
tor € is chosen such that Equation (2) is dimensionally correct and such that the pressure weighting
does not interfere with the second-order accuracy of the finite volume discretization. The expression
for € will be given later on. We do not consider the time derivative as the equations will be solved
directly in their stationary form without (pseudo) time-stepping techniques.

2.2. Discretization of the momentum equations

Partial integration of steady momentum equation (3a) over a cell 2; gives

[, )08 = [ (0l )<

1
with n as the unit normal vector pointing outwards with respect to ;. The cell boundary 0€2; is
divided into faces such that 0Q2; = U;S;; with S;; = ; N Q. With the unknowns (-); and (-);
colocated in the cell centers of €2; and €2 ;, the values (-);; at the faces S;; must be obtained through
interpolation. The discretization is uniquely defined once all the interpolation choices are stated.
With Picard linearization, the pressure-weighted mass flux at the faces
mij = (Pﬁﬁnﬂ)..
ij

is assumed to be known from the previous iteration. Many choices are possible for the advection
term m u®, but only the first-order upwind difference scheme is relevant to the construction of Q,
because higher-order advection schemes are implemented in defect correction form [16]. Thus,

1 1
mijug; = 5 (mij + |mij Dui + 5 (mij — |mi Duf.

For the diffusion term u‘;‘g, the first-order central difference is taken,

with xl'.3 the B component of the coordinates of the center of cell ;. The term uf,, is assumed to

be known from the previous iteration. Without this assumption or with Newton linearization instead
of Picard linearization, system (1) would not have a block diagonal part. The construction of the
matrices Q, in system (1) follows by substitution of these interpolation choices in discrete momen-
tum equation (4). Note that Q; = @, because of Picard linearization and because of the explicit
treatment of u/i

The pressure at face S;; is interpolated as

pij=vypi+(—y)p; ©)
with y a grid-dependent interpolation factor (y = 1/2 on uniform grids); the construction of the
matrices G in system (1) follows.
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2.3. Discretization of the mass equation

Partial integration of mass equation (3b) over a cell 2; gives

/a . 7%n® = 0. (©6)

The interpolation of the velocity at face S;; is the same as the interpolation of the pressure:
u‘l?; = yuf + (1 — )/)u‘;. The construction of the matrices Dy in system (1) follows from
this choice.

The interpolation choice for the pressure-weighting term in Equation (2) is more involved.
The second-order derivative of the pressure gradient is approximated with the second-order finite

difference:

€h?*(Pij.a) pp = €i Pia — (€i + €/)Pija + € Pja- (N
The term p; o can be obtained with Gauss’ theorem
1 1 o
Pia = m o, Pa = m /mi pijn ®)

using the same interpolation (5) for p;; as in the momentum equation. The central difference is used
for the interpolation of the pressure gradient at the face S;;,

e DD
ija — .
x‘J’-‘ —x}
The coefficients € are chosen as
[€2;] €2
a=y—2l_ ooy ©)
b diag(Qa)i ’ diag(Qa),

Together, these choices lead to the matrix C in system (1). Note that the stencil of the matrix C is
wide: it involves not only the neighbors of the cell but also the neighbors of the neighbors.

With these choices, we can now compute the pressure-weighted mass flux that was assumed to
be known in the discrete momentum equations, thereby closing the discretization of the Navier—
Stokes equations.

2.4. Discrete Laplacian
As we will see in the next section, SIMPLE-type preconditioners require the matrix R defined as
=-Ddiag(Q)"'G (= —%:D; diag(0:))”' Gy). (10)

It is a Laplacian matrix obtained by applying the divergence operator to the gradient of p, scaled
with the diagonal of Q. In practice, constructing R does not require matrix—matrix multiplications
as Equation (10) suggests. An approximation that can be directly constructed on unstructured grids
is given in [17]; this matrix arises from the integral

_/ €Paa-

Q;

—/ €pan®.
9%;

For the interpolation of p, at a face S;;, we choose

Partial integration of this term gives

Pj— Di
€pija = (€ +6j)ﬁ- (11)

jo
Note that this interpolation choice is the same as the one used for the middle term in the second-order
difference on the right-hand side of Equation (7).
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2.5. Remarks on the pressure-weighted interpolation method

e The choice of the coefficient ¢ is directly related to the SIMPLE approximation Q™! ~
diag(Q)~! presented in the next section. When this approximation is used in the discrete
momentum equation Q4 u* = f — G, p and when f is disregarded, we obtain

o120
i — N i.00

' diag(Qq);

which allows the velocity in a cell ©; to be ‘interchanged’ with the pressure gradient.
This expression is only used here to illustrate the choice of €, and it is obviously not used
when solving the momentum equations. The interpolation of u at face S;; is now (trivially)
written as

ug; =yui + (1 —y)uf
—yui — (1= y)u§ +uj;.

The first part on the right-hand side is maintained, but the velocity u® in the second part is
interchanged for the pressure gradient

uy; =yu; + (1 —y)uf

il 20 2] 2,1 )
Y G0, Pie T (1= V) Gag@y; Pia — (V w00 T (=) G, ) Pija-

We now recognize the second-order derivative of the pressure gradient from Equation (7) with
the coefficients € from Equation (9). This observation is inspired by [19]; it clearly shows the
origin of the interpolation choices in the PWIM. It also shows that this choice of € makes the
PWIM dimensionally correct.

e The implementation of the advection scheme in defect correction form is essential to have the
same diag(Q) in the PWIM and hence the same matrix C, regardless of the user’s choice for
the advection scheme.

e Implicit time discretization and/or implicit relaxation (see Section 3.4) adds a diagonal term to
Q that depends on the time-step and/or implicit relaxation factor. Because diag(Q) affects
the discretization of the mass and momentum equation through the PWIM, this leads to
the unwanted situation that the converged steady-state solution depends on the user’s choice
of time-step and/or implicit relaxation factor (although the effect vanishes with grid refine-
ment). Therefore, in the pressure-weighted interpolation only, we omit these contributions from

diag(Q).
3. ITERATIVE METHOD
In the first part of this section, the derivation of SIMPLE-type methods is discussed to prepare for

their usage as preconditioner in the second part. Two modifications are proposed to avoid the con-
struction of the stabilization matrix C. The velocity components in system (1) are grouped, so we

can continue with the notation
O Gllu|_|f
[D Cllpl |g 2

for sake of clarity and brevity.

3.1. SIMPLE-type methods

In this section, we derive the SIMPLE method, discuss the difference between prediction and
correction form, and derive the additional pressure equation needed for SIMPLER.
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3.1.1. Derivation of SIMPLE. Suppose that ¥ and p are known at iteration k and define a prediction
u™ and corrections 1’ and p’ such that

A =y ' pFH = pF 4 p (13)

The pressure at iteration k is used to obtain the velocity prediction u* (which does not satisfy the
mass equation) by solving

Qu* = f — Gp~. (14)
At iteration k + 1, we must have
Ouktt = £ — GpF+1, (15)
and we must satisfy the mass equation
Duk 1 f cpFtl = g (16)

Subtracting Equation (14) from Equation (15) and multiplying by Q! give the velocity correction
equation

u'=-07'Gp’. (17)
The pressure correction equation follows from Equation (16),
DuF Tl 4 CpF Tl =g & DW* +u )+ CPF +p))=¢
& (C—=DO7'G)p’ = g— Du* — CpF. (18)

The term C — DQ ™! G is the Schur complement. Because Q™! is not available, the approximation
used in the SIMPLE method is

0~ ~ diag(Q)~", (19)

where diag(Q) denotes the diagonal matrix where the diagonal entries are those of Q . The method
thus becomes the following:

1. Solve Equation (14) for the velocity prediction u*.

2. Solve Equation (18) for the pressure correction p’.

3. Compute the velocity correction u’ by using Equation (17)
4. Update the pressure and velocity by using Equation (13).

Note that p’ is zero, where p has a Dirichlet boundary condition, and that dp’/dn = 0, where p has
a Neumann boundary condition.

Another derivation of SIMPLE is given in [2]: the matrix of Equation (12) is first factorized in
block LDU form; the Schur complement then appears in the diagonal block of the factorization. A
wide range of iterative methods can be derived by making different approximation choices for the
Schur complement, from physics-based methods such as SIMPLE to purely algebraic methods.

3.1.2. Prediction versus correction. The SIMPLE method is traditionally presented with a velocity
prediction and relaxation with parameter w,,:

Solve Qu* = f — ka with initial condition u*,

k+1 — (1

Relax u — w ) + wyu”*.

However, to keep in line with the stationary iteration discussed later on, we always use the
(equivalent) velocity correction form

Solve Qu’ = r,]f with initial condition 0,
Relax u*t! = u* + w,t/,

where r,’j = f — Qu¥k — GpF is the residual of the momentum equation. The relation here is
u* = uk 41/, not to be confused with the velocity correction from Equation (17). The pressure
equation is already in correction form and is usually relaxed with parameter w,.
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836 C. M. KLAIJ AND C. VUIK

3.1.3. Derivation of pressure prediction in SIMPLER. To derive the equation for the pressure
prediction p* in SIMPLER, one assumes that ¥ is known so that the momentum equation becomes

Gp* = f — QuF (20)
and the mass equation becomes
Cp* = g — Du. (2D
Multiplying Equation (20) by —D diag(Q)~! and subtracting from (21) give
(C — D diag(Q)™'G)p* = g — Du* — D diag(Q) ™' (f — Qu¥) (22)
This is the prediction form used in [9]. The equivalent correction form reads
(C — D diag(Q)~'G)p' = ry — D diag(Q) 'y (23)

with residuals r,’j =f- Quk — Gp* and r’lj = g — Du* — Cp*. This is the form used in [8, 15].
Now that the derivation of SIMPLE-type methods is completed, we move on to the second part
where these methods are used as preconditioners in a stationary iteration.

3.2. Nonlinear stationary iteration

The iterative method presented in this section solves the nonlinear system of discrete equations by
a stationary iteration

= XK w AT (b — Apxb), (24)

R A 1 P
|: p

and A~! denotes an approximation of A~!. The relaxation parameters w, and w, are applied to
the corrections for u and p, respectively. Thus, at every nonlinear iteration k, a linear system of
the form

where

Ax ' =r

with residual r = b — Ax must be solved (approximately) for correction x’. We do so by solving the
right preconditioned system

AP 'y =r, x' =P 1y

with a Krylov subspace method. We use the Flexible GMRES method [20] as implemented in PETSc
[21] because it allows a variable preconditioner. This property is essential [9] as the inverse of P is
computed approximately, making P! a different operator in every linear iteration.

Krylov subspace methods only require the action of A, not the matrix itself. Neither is the matrix
required to construct the preconditioner because the preconditioner is already known. Therefore,
we can follow a matrix-free approach: with the ‘shell’” matrix type in PETSc, it is sufficient to
provide, for a given input vector y, a matrix multiplication routine with output vector Ay and
a preconditioning routine with output vector P~!y. The algorithms corresponding to SIMPLE-
type preconditioning routines are given next, including the two modifications proposed to avoid the
construction of the stabilization matrix C.

The matrix-free approach only requires the storage of Q and R. Because, for our discretization,
Q is a block diagonal matrix with three equal blocks Q;, we only have to store two n-by-n sparse
matrices with n as the number of cells, instead of storing the nine matrices Q;, D;, and G; and the
matrix C. Not storing C is particularly advantageous because it is much less sparse than the other
matrices because of its wide stencil.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 17:830-849
DOI: 10.1002/fid



SIMPLE-TYPE PRECONDITIONERS FOR COLOCATED FVM 837

Algorithm 1 Action z = P~'y of SIMPLE preconditioner
Given y,, and y,

1. Solve Qz!, =y,
2. Solve Rx,, =y, — Dz,
3. Update z,, = 2}, — diag(Q) Gz,

3.3. SIMPLE-type preconditioners

The preconditioner P that corresponds to SIMPLE is given in Algorithm 1.

The derivation of SIMPLE (see Section 3.1.1) leads to the matrix C + R on the left-hand side of
the pressure correction equation in Step 2 of Algorithm 1. However, because C has a wide stencil,
its construction is not straightforward on unstructured grids where the neighbors of a cell’s neigh-
bors are not readily available. One approach would be to take into account only the part of C that
matches the compact stencil of R, but here, we choose to remove C altogether from the left-hand
side of the pressure correction equation. Using R instead of C + R in SIMPLE is our first modi-
fication to avoid the construction of C. This approximation is not as bad as it seems because Cp
represents a fourth-order pressure derivative scaled with eh2, which is likely to be small compared
with the second-order derivative represented by Rp, at least for a smooth enough pressure field and
a fine enough grid.

The action of P! implies the approximate solution of the velocity equation at Step 1 and of the
pressure equation at Step 2. Therefore, only the construction (and storage) of Q and R is required;
for D, G, and C, the action suffices. To solve the linear system associated with Q and R, we use the
solvers and preconditioners from PETSc with a relative tolerance of 0.01. For Q, we use GMRES
with Jacobi preconditioning, and for R, we use CG with IC (in parallel, the domain is decomposed
into blocks, and we use CG with IC inside each block and Jacobi between the blocks).

The preconditioner P that corresponds to SIMPLER is given in Algorithm 2.

Instead of the usual pressure prediction at Step 1 of SIMPLER (see Section 3.1.3), we propose
an alternative that does not include C on the left-hand side. Consider u* to be known and write the
pressure prediction as p¥ + p” so that

QU + GO  +p" =1
Multiplying by —D diag(Q)~! then gives

—D diag(Q)™'Gp" = —D diag(Q)"'(f — QuF —=Gp*) &  Rp”=—D diag(Q)"'r}.

The difference with the usual pressure prediction is that we do not involve the mass equation. Using
this alternative in SIMPLER is our second modification to avoid the construction of C. Note that in
SIMPLER, the relaxation factor w, in Equation (24) should only affect the pressure correction p’
and not the pressure prediction pk + p”, which explains the division by w, in Step 4 of Algorithm 2.

We will also consider the variation proposed in the context of finite element methods in [3, 8, 15]
where the MSIMPLE approximation Q~! ~ M ™! replaces the SIMPLE approximation Q! ~

Algorithm 2 Action = P~ !y of SIMPLER preconditioner
Given y,, and y,

1. Solve Ral = —D diag(Q) 'y,

2. Solve Qa!, = y, — Ga]

3. Solve Ra), =y, — Dz}, — Ca)

4. Update z,, = =/, — diag(Q)‘lGx; and x,, =z}, + ], /w,
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DOI: 10.1002/fld



838 C. M. KLAIJ AND C. VUIK

diag(Q)~'. Note that in finite volume methods, the mass-matrix M is the diagonal matrix of cell
volumes. Because M does not depend on the nonlinear iteration, the main advantage of this
approach is that R = —DM ~!'G does not need to be recomputed at every nonlinear iteration. It
can be computed once and reused throughout the simulation. Obviously, we keep diag(Q) in the
PWIM; otherwise, we would be modifying the discretization as well as the iterative method.

3.4. Remarks on the iterative method

e As pointed out in Section 2, to construct Q at iteration k, the mass flux is assumed to be known
from iteration k — 1. Because of the PWIM, the mass flux depends on diag(Q*~!), which,
at iteration k = 1, is not available. Therefore, the simulation must start with a constant pres-
sure field: the pressure gradient is then zero so that the pressure-weighting term drops out of
Equation (2). To restart a simulation, it is important to have saved u, p, and diag(Q) so that the
mass flux can be exactly recomputed before constructing Q.

e Implicit relaxation [17] of the velocity is common when SIMPLE-type methods are applied
to steady-state problems. If the velocity equation is written as QuX*! = f, then implicit
relaxation with factor w; is given by

L= O ag (0. (25)
w;

l—w; ..

(Q +— ‘dmg(Q)) =1+
4

Implicit relaxation is supplementary, it does not replace the explicit relaxation with parameters

wy and w,, in Equation (24). Thus, the velocity equation becomes Q,u = fu, and Q, and f

are overwritten by O, and f,, in the implementation. Upon convergence, uk+1 = % and

the original equation is solved. Note that implicit relaxation does not affect the residual

r,’f =f- Quk—ka = fo, — Qwiuk—ka

so that Step 1 of Algorithm 1 simply becomes Q,,; X;, = yu (see also Section 3.1.2). However,
when using SIMPLE as preconditioner, we also need the matrix—vector multiplication Ay that
involves the matrix—vector multiplication Qy,,, not Q, y,. Therefore, O should either not be
overwritten or the contribution from w; should be removed from Q,; yy.

e The success of SIMPLE hinges upon the existence of diag(Q)~! because this term is used in
the pressure-weighted interpolation, in the implicit relaxation, Laplace operator, and velocity
correction. We found that, at high Reynolds numbers, diag(Q) can become very small in certain
cells leading to sudden divergence. Therefore, the SIMPLE approximation Q! ~ diag(Q)~!
is replaced by the more robust SIMPLEC approximation

1
Iylor

where > | Q] indicates the row sum of absolute values of Q. The factor 1/2 is motivated by
the observation that for a constant mass flux m, we have % > 10| = diag(Q). In the context of
finite elements, the row sum of absolute values is also recommended in [2].

0!

4. ACADEMIC TEST CASES

This section presents three popular test cases for Navier—Stokes solvers. These cases, being steady,
two-dimensional laminar flows and restricted to Cartesian grids, can be reproduced with the dis-
cretization as presented in Section 2. The Reynolds number pU,.¢L /p varies from 102 to 10°. In all
cases, the unstructured QUICK scheme [22,23] without limiter is used in defect correction form.

4.1. Flow over backward facing step (Re = 100)

This case simulates the flow over a backward facing step at very low Reynolds number. The domain
is a rectangle of size 6L x 2L from which a square of size L has been removed. The grid with
n x m cells corresponds to a uniform distribution along the top and right boundary. The inflow

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 17:830-849
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condition is a parabolic velocity profile. The velocity is zero on the walls, and at the outflow, the
pressure is zero.

4.2. Lid-driven cavity flow (Re = 5000)

This case simulates enclosed flow driven by a moving wall [24]. The domain is a square of size L.
The grid with n x n cells is generated by applying the stretching function given by Equation (5.220)
in [25] in both directions with parameters a = 1/2 and b = 1.1:

_(b+2a)c—b+2a _(b+1

()
o ¥=0,L/n,2L/n,...,L.
Qa+(1+c) b—l) » X=0.L/n.2L/n,

The velocity on the top boundary is (Us, 0) and zero on the other boundaries.

4.3. Flow over finite flat plate (Re = 100000)

This case is taken from [26]; it simulates the flow over the second half of a flat plate of finite length
L and its wake. The domain is a rectangle of size L x 0.25L. The grid with n x n cells is generated
by applying the stretching function given by Equation (5.216) in [25] in y-direction with parameter
b = 1.01 and domain height H = 0.25L:

x:H(b+1)_(b_1)C,
(c+1)

At the inflow, (an approximation to) the Blasius velocity profile [27] is prescribed. The no-slip con-
dition is imposed on the plate (0.5 < x/L < 1), and the free-slip condition is imposed in the wake
(1 < x/L < 1.5). On the top boundary, the pressure is set to zero, and Neumann conditions are
applied at the outflow boundary. Because this case is less common, an impression of the grid and
flow field is given in Figure 1, including a comparison with triple deck theory from [28].

b+ 1\
C:(%) . £=0,H/n2H/n,... H.

025 T

yiL
/

0002 — ~ / -

0004 ooz

0006
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Figure 1. Grid and flow field impression of the flow over flat plate. (a) 32 x 32 grid; (b) C isolines on
128 x 128 grid; (c) C)p, profile at y = 0; (d) u profile at y = 0.
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4.4. Numerical results

SIMPLE-type methods are more often used as solver than as preconditioner; in which case,
P! replaces A™! in Equation (24), and a single SIMPLE step is used per nonlinear iteration.
Here, we compare both approaches for the four variants (M)SIMPLE(R). We call these variants
KRYLOV-(M)SIMPLE(R) when used as preconditioner.

The influence of the relaxation parameters is considered first. The equations are solved in station-
ary form; no (pseudo) time derivative is used. The implicit relaxation parameter is fixed (w; = 0.9),
and the explicit relaxation parameters for the velocity (w,) and for the pressure (w,) are varied
manually (see [29] for an automatic variation of wj). The relative tolerance for solving the linear
subsystems in P! is set to 0.01 in accordance with [3]. The results for (M)SIMPLE(R) as solver are
shown in Table I and for (M)SIMPLE(R) as preconditioner in Table II. We compare the number of
nonlinear iterations needed to converge the test cases to machine precision, starting from uniform
flow. In the KRYLOV-(M)SIMPLE(R) cases, we also show the average number of linear iterations per
nonlinear iteration needed to solve the linear system Ax’ = r up to a relative tolerance of 0.1.

Table I shows that, as expected, SIMPLE is highly sensitive to the relaxation parameters, notably
wp. The only choice that gives convergence is w, = 0.2. SIMPLER is much less sensitive to the relax-
ation parameter: it does not diverge for any of the parameter choices. The choice of w, is almost
irrelevant, but the choice of w, still influences the convergence. However, SIMPLER does not reduce
the number of nonlinear iterations, except for the lid-driven cavity. MSIMPLE and MSIMPLER are
clearly poor solvers. Table II shows that the use of (M)SIMPLE(R) as preconditioner greatly reduces
the number of nonlinear iterations compared with their use as solver. The reduction in nonlinear
iterations should outweigh the additional cost of using the SIMPLE-type methods as preconditioner
instead of solver; this issue will be addressed for the maritime test cases in Section 5 because the
academic test cases are too small to give meaningful CPU time measurements. Table II also shows
that the choice of relaxation parameters still has a significant effect; the optimal choice seems to be
wy = 1.0 and w, = 0.5. We also notice that the MSIMPLE(R) variants perform remarkably well as
preconditioner given their poor performance as solvers. The (M)SIMPLER variants require much less
linear iterations per nonlinear iteration than the (M)SIMPLE variants. Clearly, the most promising
variants are KRYLOV-(M)SIMPLER, so we continue by studying these in more detail.

The effect of grid refinement is shown in Table III. The trend is that the number of linear iterations
per nonlinear iteration increases with grid refinement. The largest increase is observed between the

Table I. Number of nonlinear iterations needed to converge the academic cases to machine precision,
starting from uniform flow.

Case Wy wp SIMPLE SIMPLER MSIMPLE MSIMPLER
1.0 1.0 — 470 796 508
1.0 05 — 468 1608 948
10 02 475 471 4040 2170
BES (96 x 48) 0.7 1.0 — 672 789 701
0.7 05 — 670 1602 958
0.7 02 666 670 4033 2194
1.0 1.0 — 2516 ~10000 4158
10 05 — 3394 10000 4079
10 02 5241 3374 ~10000 4769
LDCF (128 x 128) 0.7 1.0 — 5433 ~10000 5208
0.7 05 _ 5105 10000 5296
0.7 02 7011 4862 10000 5393
1.0 1.0 — 690 2089 741
1.0 05 _ 690 4662 1011
10 02 687 688 10000 1590
FP (128 x 128) 0.7 1.0 — 990 2203 1065
0.7 05 _ 990 4536 1577
0.7 02 987 088 ~10000 8392
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 17:830-849
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Table II. Number of nonlinear iterations needed to converge the academic cases to machine
precision, starting from uniform flow. Between brackets is the average number of linear iterations per
nonlinear iteration.

KRYLOV KRYLOV KRYLOV KRYLOV
Case Wy a)p SIMPLE SIMPLER MSIMPLE MSIMPLER
10 10 60 (20.3) 63 (5.5) 41 (13.0) 52 (10.6)
10 05 51(25.4) 50 (9.7) 42 (14.0) 42 (10.7)
10 02 108 (14.3) 111 (6.9) 110 (13.2) 109 (16.2)
BFS (96 x 48) 0.7 1.0 66 (28.1) 61 (10.0) 62 (12.5) 64 (12.2)
07 05 68 (28.1) 67 (11.3) 60 (14.7) 50 (14.4)
07 02 111 (16.3) 114 (1.5 109 (13.7) 112 (15.2)
10 10 371 (28.8) 176 (164)  134(21.9) 155 (16.3)
10 05 462 (22.1) 381 (8.4) 121(28.7) 347 (9.0)
10 02  1052(113) 1026 (52) 233(288)  311(15.8)
LDCF (128> 128) 5 1.0 374 (28.8) 193(22.5) 137 (26.0) 151 (16.2)
07 05 456 (28.7) 365(11.1)  169(232)  312(11.9)
07 02  1012(143) 914 (5.7) 168 (28.6)  712(7.9)
10 10 150 (15.6) 202 (3.5) 278 (9.0) 144 (4.1)
10 05 53 (26.8) 46 (13.1) 47 (24.3) 62 (8.6)
10 02 113 (19.5) 106 (9.9) 99 (24.9) —
FP (128 x 128) 0.7 1.0 120 (18.7) 106 (8.3) 66 (14.1) 82 (8.2)
07 05 59 (28.2) 50 (16.4) 52 (24.0) 50 (14.1)
07 02 104 (26.2) 104 (10.7) 99 (24.9) 182 (9.2)

Table III. Number of nonlinear iterations needed to converge the academic
cases to machine precision, starting from uniform flow. Between brackets
is the average number of linear iterations per nonlinear iteration.

Case grid KRYLOV-SIMPLER KRYLOV-MSIMPLER
24 x 12 73 (3.1) 54 (4.0)
BFS 48 x 24 56 (4.7) 48 (5.9)
96 x 48 50 (9.7) 42 (10.7)
16 x 16 140 (3.9) 152 (5.2)
32x32 344 (4.2) 346 (5.7)
LDCF 64 x 64 383 (5.0 323 (6.3)
128 x 128 381 (8.4) 347 (9.0)
32x32 45 (3.3) 80 (2.5)
FP 64 x 64 46 (6.2) 88 (3.9)
128 x 128 46 (13.1) 62 (8.6)

two finest grids: quadrupling the number of cells roughly doubles the number of linear iterations per
nonlinear iteration.

The effect of the relative tolerance for the solution of the coupled linear system is shown in
Table IV. The number of nonlinear iterations drops as the tolerance is tightened, notably for the
lid-driven cavity case, but the decrease in nonlinear iterations is modest while the number of linear
iterations per nonlinear iterations roughly doubles each time the relative tolerance is decreased by a
factor 10. Therefore, it may not pay-off to solve the linear system very accurately.

The overall behavior is as expected: the SIMPLE-type methods are less sensitive to relaxation
parameters when used as preconditioner and converge ten times faster in terms of nonlinear iter-
ations. One effectively ‘trades’ nonlinear iterations for linear iterations. Our alternative pressure
prediction further reduces the number of linear iterations without increasing the number of nonlin-
ear iterations. In the next section, we will see whether such trade-offs lead to significant gain in
CPU time. For the time being, the main conclusion is that the two modifications needed to avoid the
construction of the stabilization matrix are not detrimental to the performance.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 17:830-849
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Table IV. Number of nonlinear iterations needed to converge the academic
cases to machine precision, starting from uniform flow. Between brackets
is the average number of linear iterations per nonlinear iteration.

Case tol. system KRYLOV-SIMPLER KRYLOV-MSIMPLER
0.100 50 (9.7) 42 (10.7)

BFS (96 x 48) 0.010 44 (16.8) 44 (24.6)
0.001 44 (23.0) 44 (36.3)
0.100 381 (8.4) 347 (9.0)

LDCF (128 x 128)  0.010 136 (39.2) 129 (37.2)
0.001 105 (74.8) 103 (72.0)
0.100 46 (13.1) 62 (8.6)

FP (128 x 128) 0.010 41 (22.5) 42(21.2)
0.001 44 (50.6) 45 (42.8)

5. MARITIME TEST CASES

In this section, we consider the prediction of the viscous resistance of ship hulls. An impression of
the flow field around a ship hull in the vicinity of the stern (aft end) is given in Figure 2. It shows
streamlines around the stern and the axial velocity field in the wake.

The block-structured or unstructured hexahedral grids used in this section require eccentricity
and nonorthogonality corrections for which we refer to [17]. Furthermore, the k-omega SST turbu-
lence model [30] is added. The turbulence model equations are solved in a segregated manner: the
eddy viscosity is assumed to be known when solving the mass and momentum equations, whereas
the velocity and pressure are assumed to be known when solving the turbulence kinetic energy and
turbulence dissipation equations.

While experimenting with maritime test cases, we encountered two problems:

1. The MSIMPLE-type methods did not converge; the reason being that the pressure equation
could not be solved at all, not even when using the converged solution as initial condition
instead of uniform flow.

2. The relative tolerance of 0.1 for the solution of the coupled linear system could not be reached.
Figure 3 shows a typical example of the linear convergence using a maximum number of 30
linear iterations (without restart) per nonlinear iteration. Most of the reduction is reached in the
first 5-10 iterations; the linear convergence stagnates after 15 linear iterations. Decreasing the
relative tolerance for the linear susbsystems from 0.1 to 0.01 did not improve the convergence
of the coupled linear system.

Figure 2. Impression of the flow field at the stern of the full-scale tanker.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 17:830-849
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linear residual

01 1 1 1 1 1 1
0 5 10 15 20 25 30 35

linear iterations

Figure 3. Linear convergence with FGMRES of the coupled system at nonlinear iteration 100 for the
model-scale tanker on the medium grid.

Both problems are probably linked to the grid stretching near the hull that gives very small cells
with very large aspect ratio; this issue remains to be investigated. Because of these two problems,
we only compare SIMPLE to KRYLOV-SIMPLER with a fixed number of 5 linear iterations per non-
linear iteration. As we will see, the nonlinear iterations do converge with this fixed number of linear
iterations instead of a relative tolerance.

5.1. Model-scale container vessel (Re = 1.35 x 107)

This case simulates the flow around a container vessel hull at towing tank scale 1/50 on an unstruc-
tured hexahedral grid, generated with Hexpress [31]. The grid has 13.3 m cells. The clustering

(a) water plane

(b) symmetry plane
Figure 4. Impression of the grid (13.3 m cells) around the container vessel. (a) water plane;
(b) symmetry plane.
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towards the wall is such that the maximum cell aspect ratio is 1:1600 and the maximum y* is 0.95,
so wall-functions are not needed. An impression of the grid is given in Figure 4.

For both solvers, the implicit relaxation parameter is w; = 0.9, and the relative tolerance for the
solution of the linear systems is 0.01. For SIMPLE as solver, the explicit relaxation parameters are
wy = 0.2 for momentum and turbulence and w, = 0.1 for the pressure. For KRYLOV-SIMPLER, the
explicit relaxation parameters are w, = 0.8 for momentum and turbulence and w, = 0.3 for the
pressure. The chosen relaxation parameters are sharp: slightly higher values lead to divergence for
SIMPLE and stagnation for KRYLOV-SIMPLER.

The convergence results are shown in Table V and in Figure 5. In this case, KRYLOV-SIMPLER
requires seven times fewer nonlinear iterations to convergence than SIMPLE. Such a reduction agrees
with the results obtained for the academic cases; it gives a modest saving in CPU time.

5.2. Model-scale tanker (Re = 4.6 x 10°)

This case simulates the flow around a tanker hull at towing tank scale 1/50 on a series of grids. The
block-structured grids were generated with GridPro [32]. Four grids are considered: a very coarse
grid with 250 k cells, a coarse grid with 500 k cells, a medium grid with 1 m cells and a fine grid
with 2 m cells. The maximum y ¥ is 1.8 on the very coarse grid and goes down to 0.9 on the fine
grid. The maximum cell aspect ratio is 1 : 7000. An impression of the fine grid is given in Figure 6.
The relaxation parameters are the same as for the container vessel. Usually, one would take the
coarse grid solution as initial condition on the finer grid, but here, we choose to start from uniform
flow on all grids to illustrate the robustness of the solvers. The results are given in Table VI and
Figure 7. Again, we find a significant reduction of the number of nonlinear iterations when using
KRYLOV-SIMPLER. We also see that the convergence rate is not grid independent (as expected),
but the increase in nonlinear iterations is modest: for KRYLOV-SIMPLER, the first three grids give
similar counts, and only the finest grid requires significantly more iterations. We also find that
KRYLOV-SIMPLER reduces the required CPU time roughly by half on the finest grids.

Table V. Number of nonlinear iterations and wall clock time needed to
converge the container vessel case, starting from uniform flow.

SIMPLE KRYLOV-SIMPLER
Grid CPU cores #its Wall clock #its ‘Wall clock
13.3m 128 3187 5 h 26 min 427 3 h 27 min

1 1 .
001 | - . 001k " momwv - .
£ 0.0001 B © 0.0001 [-* e
© L © L
> ] =)
S 1e-06 — S 1e-06 [+ T
7} 3 [%]
g I o ro
o 1e-08 E o 1e-08 -
= i 2 I
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non-linear iterations non-linear iterations

bare hull (13.3 m cells)

Figure 5. Convergence of the container vessel case with SIMPLE (left column) and KRYLOV-SIMPLER (right
column). Notice the factor 5 in the scaling of the x-axis. (a) bare hull (13.3 m cells).
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(a) water plane

(b) symmetry plane

Figure 6. Impression of the fine grid (2 m cells) around the tanker hull. (a) water plane; (b) symmetry plane.

Table VI. Number of nonlinear iterations and wall clock time needed to
convergence the model-scale tanker case to machine precision, each case
starting from uniform flow.

SIMPLE KRYLOV-SIMPLER
Grid CPU cores #its Wall clock #its Wall clock
0.25m 8 1379 25 min 316 29 min
0.5m 16 1690 37 min 271 25 min
1m 32 2442 57 min 303 35 min
2m 64 3534 1 h 29 min 519 51 min

5.3. Full-scale tanker (Re =2 x 10°)

Here, we consider the same tanker hull but now at full scale. The fine grid from the model-scale
case was adjusted to full scale. This gives a grid of 2.7 m cells with a maximum y* of 1.2 and a
maximum cell aspect ratio of 1 : 930 000.

Unfortunately, we could not obtain good convergence with the QUICK scheme: the QUICK
scheme without limiter that was used in all previous calculations diverges, with limiter it stagnates.
Therefore, in this case only, advection is treated with a blending between the upwind scheme (25%)
and the central scheme (75%). This is also the only case where we cannot start from uniform flow;
instead, the upwind scheme was used to generate an initial condition.

For both solvers, the implicit relaxation parameter is @ = 0.8, and the relative tolerance for the
solution of the linear systems is 0.01. For SIMPLE as solver, the explicit relaxation parameters are
wy = 0.1 for momentum and turbulence and w, = 0.05 for the pressure. For KRYLOV-SIMPLER,
the explicit relaxation parameters are w, = 0.7 for momentum and turbulence and w, = 0.3 for
the pressure.
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Figure 7. Convergence of the model-scale tanker case with SIMPLE (left column) and KRYLOV-SIMPLER
(right column). Notice the factor 5 in the scaling of the x-axis. (a) very coarse grid (0.25 m cells); (b) coarse
grid (0.5 m cells); (c) medium grid (1 m cells); (d) fine grid (2 m cells).
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Table VII. Number of nonlinear iterations and wall clock time needed to con-
verge the full-scale tanker case, starting from an initial flow field obtained with
the upwind scheme.

SIMPLE KRYLOV-SIMPLER
Grid CPU cores #its Wall clock #its Wall clock
2.7m 64 29578 16 h 37 min 1330 3 h 05 min
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Figure 8. Convergence of the full-scale tanker with SIMPLE (left column) and KRYLOV-SIMPLER (right
column). Notice the factor 10 in the scaling of the x-axis. (a) bare hull (2.7 m cells).

The results are given in Table VII and Figure 8. The benefit of KRYLOV-SIMPLER is most pro-
nounced in this case: 20 times less nonlinear iterations and 5 times less CPU time. Clearly, for high
Reynolds number and cell aspect ratio, the advantage of KRYLOV-SIMPLER is beyond question.

6. CONCLUSION

In this paper, we compared the convergence of four SIMPLE-type methods, applied as solver and
as preconditioner to a number of academic and industrial test cases. Using the methods as precondi-
tioner is not as straightforward, but the additional complexity pays off: the methods are less sensitive
to relaxation parameters and converge faster, both in terms of nonlinear iterations and in terms of
CPU time.

To apply these methods in the context of cell-centered, colocated variables, we proposed two
modifications to avoid the construction of the stabilization matrix. We thereby maintain the compact
stencil needed for applications on unstructured grids.

For the academic test cases, we found that the additional pressure prediction in SIMPLER-type
preconditioners is worthwhile. It does not reduce the number of nonlinear iterations, but it sig-
nificantly reduces the average number of linear iterations per nonlinear iteration. Furthermore, we
found MSIMPLER to be a poor solver but a good preconditioner; its performance is comparable
with SIMPLER but with the benefit that the Schur complement approximation is built only once
instead of every nonlinear iteration.

There is a large gap between the well-behaved academic test cases and the maritime test
cases. For the latter, we did not obtain any convergence with MSIMPLER preconditioners. With
SIMPLER preconditioners, we could not solve the linear system up to the desired relative tolerance
of 0.1. These problems are probably related to the very small cells with very high aspect ratio found
in maritime applications. We did not address this issue but instead compared the classical SIMPLE
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solver with SIMPLER as preconditioner with a fixed number of 5 linear iterations per nonlinear
iteration. Depending on the case, we found that SIMPLER as preconditioner can reduce the non-
linear iterations by a factor 5-20 and the CPU time by a factor 2-5. Most importantly, the speedup
increases with the complexity. The factor five reduction in CPU time is found for the most challeng-
ing test case—the flow around a ship hull at Reynolds number 2 x 10° on a grid with maximum cell
aspect ratio of 1 : 930 000.
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