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We present a simple and fast algorithm for computing the exact
holes in discrete two-dimensional manifolds embedded in a three-
dimensional Euclidean space. We deal with the intentionally
created “through holes” or “tunnel holes” in the geometry as
opposed to missing triangles. The algorithm detects the holes in
the geometry directly without any simplified geometry approxima-
tion. Discrete Gaussian curvature is used for approximating the
local curvature flow in the geometry and for removing outliers
from the collection of feature edges. We present an algorithm
with varying degrees of flexibility. The algorithm is demonstrated
separately for sheets and solid geometries. This article demon-
strates the algorithm on triangulated surfaces. However, the algo-
rithm and the underlying data structure are also applicable for
surfaces with mixed polygons. [DOI: 10.1115/1.4049030]
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1 Introduction
Theproblemofhole detection andholefillinghas beenaround for a

long time in geometry processing and repair. Many numerical simu-
lations use simplified geometries and require manual defeaturing. In
geometries with hundreds of thousands of holes, this can be a very
daunting task [1]. There is a great deal of necessity to detect these
holes in the geometry for applications such as automation of compu-
tationalfluiddynamic simulations. Since theholes in somecases form
the inlets and outlets of the geometry, it is also quite useful in appli-
cations such as volumetricmesh generationwhere it is undesirable to
have leaky geometries [2]. Doraiswamy et al. [3] proposed an algo-
rithm to compute Reeb graphs of a discrete surface by solving a
scalar-valued function to compute the critical points on a surface.
These algorithms are very robust in computing the genus of the
surface and work for a broad range of geometries. However, they
are also susceptible to minor disturbances in the surface and can
lead to far too many volumes. It is a very costly process and requires
a more substantial computational time compared to the algorithms
proposed in this article. Guillem Borrell et al. [4] proposed an algo-
rithm that relies on a voxelized mesh for computing the genus of
the surface. Hence, it is impossible to extract the original geometry
of the hole.The literature discussed earlier, albeit itsmarginal similar-
ity, do not aim to find the holes in the geometry.
Smereka et al. used a modified Hough transform for detection of

circular objects in point clouds [5]. They accomplish it by looking
for inliers and outliers of a circle using the parametric equation of a
circle. This algorithm can give an approximation of point clusters

that could be circles and cylinders. The only articles, as far as we
know, which attempts to solve the problem of detecting holes in dis-
crete surfaces are algorithms proposed by Wang et al. [6] and
Lozano-Durán and Borrell [4]. They rely on the coplanarity of the
triangles to merge triangles to form multiple planes. They group
adjacent planes into cluster groups of volumes for extracting con-
tours of holes. It works very well for simple and relatively
complex surfaces, which have some inherent planarity. For indus-
trial cases, they end up forming too many planes, and the authors
themselves suggest some surface segmentation-based approaches.
The present investigation highlights the application of algorithms
for multiple practical scenarios for sheet and solid geometries.
The algorithm only relies on the feature angle and discrete Gaussian
curvature for extracting the holes from the surface. We designed our
algorithm in such a way that it does not require any removal of topo-
logical elements from the data structure. Thus, it is possible to fully
parallelize all the steps of the algorithm except the loop formation
algorithm. It also does not require any voxelization or any statistical
approximation and is capable of extracting the accurate geometry of
the detected holes. Nevertheless, our algorithm is not a replacement
to above approaches. It complements these algorithms. Our
approach can detect most of the holes in complex geometries, but
they can also overpredict or underpredict them as shown later due
to their semi-heuristic nature. We aim to complement approaches
such as Reeb graphs since the Reeb graph-based approaches also
provide information about internal volumes.

2 Essential Definitions and Nomenclature
We start with the basic topological elements of a discrete surface.

The algorithms proposed are valid for any polygonal surface.
However, the discussion here is restricted to triangulated surfaces
due to their commonality. A triangulated surface hierarchy is as
follows.

surface
Triangle 1

Vertex 1
Vertex 2
Vertex 3

Triangle 2
Vertex 1
Vertex 2
Vertex 3

and so on…

The order of the edges determines the orientation of the surface,
and it is imperative to maintain consistency throughout the domain.
A well-known mesh data structure (half-edge [7]) forms the base of
all algorithms. The half-edge data structure from a robust open-
source library called OpenMesh [8] is used for all algorithms.
The choice of OpenMesh over more popular alternatives like
CGAL [9] is due to CGAL’s restriction on any nonmanifold ele-
ments (vertices, edges, or faces). OpenMesh allows the algorithmist
to deal with these nonmanifold elements how they see it fit. Open-
Mesh is also released under a more friendly open source license and
has zero dependencies.

2.1 Half-Edge Data Structure. In simple terms, half-edge
data structure splits every edge in a surface into two half-edges
with opposite orientation allowing every face of a polygon to
have its unique edges (as opposed to sharing an edge between
two faces). Traversal across the surface is very easy with this data
structure. The pictorial representation in Fig. 1 shows the different
components of a half-edge data structure. Each half-edge stores its
originating (or incoming vertex) and points to an outgoing vertex.
Since a half-edge is an edge split into two, each half-edge also
stores its pair allowing one to find the adjacent faces of a triangle

Manuscript received July 31, 2020; final manuscript received October 27, 2020;
published online February 11, 2021. Assoc. Editor: Charlie C. L. Wang.

Journal of Computing and Information Science in Engineering AUGUST 2021, Vol. 21 / 044502-1
Copyright © 2021 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/21/4/044502/6633437/jcise_21_4_044502.pdf by Bibliotheek Tu D
elft user on 03 April 2021

mailto:v.k.suriyababu@tudelft.nl
mailto:c.vuik@tudelft.nl
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4049030&domain=pdf&date_stamp=2021-02-11


with just a half-edge. Each vertex stores its incoming half-edge and
outgoing half-edge. However, this is not very strict, and the data
structure is adapted by algorithmists to store more/less information
based on their preference. There are also several iterators and circu-
lators written for iterating over all incident edges of a vertex, face,
and edge. Most implementations of half-edge data structures also
allow storing custom properties on mesh entities.

2.2 Discrete Gaussian Curvature. Curvature flow of a
surface, in general, can be computed only on continuous surfaces.
However, most of the practical applications in computer-aided
design and computer graphics deal with discrete surfaces. Hence,
it is important to define the curvature flow of a surface in a discrete
form [10]. The Gaussian curvature of a discrete edge for a vertex in
a surface can be computed by the following relation [10], where V
denotes a Vertex, i denotes the incident vertices, θ denotes the inci-
dent angle, and K denotes the discrete Gaussian curvature.

KV =
∑

V

[2π −
∑

i

θi] (1)

The algorithm for computing the same on a half-edge data structure
is shown below.

Algorithm 1 Computation of discrete Gaussian curvature (one
vertex)

Data: Vertex id (Unsigned Integer/Integer)
Result: Discrete Gaussian curvature of an input vertex (Double)
if Input vertex is deleted/does not exist then

return 0.0;
end
Initialize input vertex as Reference vertex;
Initialize GaussianCurvature as 2π;
Get a reference to an outgoing half-edge iterator for Input vertex as
voh_it;
if Outgoing half-edge iterator is invalid then

return 0.0;
end
Get a reference to next outgoing half-edge iterator for Input vertex as
n_voh_it;
forall Outgoing half-edges of an input vertex do

k = k − cos−1
�CurrentOutgoingHalfEdge− ReferenceVertex�
�NextOutgoingHalfEdge− ReferenceVertex�

end
return k;

The discrete Gaussian curvature allows to identify the curvature
of a surface locally (for a vertex/edge/face).

Gaussian curvature Local surface vertex classification

> 0 Elliptic
< 0 Hyperbolic
= 0 Parabolic

The discrete Gaussian curvature is used as an initial filtering
metric to improve and accelerate the convergence of the algorithm.
Only the vertices classified as possibly a hyperboloid or a cylinder
are kept, and rest of the vertices are filtered out from the search
space. The primary advantage of Gaussian curvature is that it
gives information about the planar areas in a surface so that they
can be removed from the search space. The choice of filtering

was based on experimental observation and also based on the fact
the Gaussian curvature helps identify the planar areas of the
mesh. This metric is also quite useful for parameterization and
remeshing algorithms.

2.3 Feature Angle. Feature angle is the primary and starting
filtering criterion for all the algorithms discussed in this article
(Fig. 2). The angle between any two polygons is the feature angle
of the shared edge connecting them. The choice of the angle is
the same (between 30 and 120 deg) throughout the article based
on experimental observation. Ideally, the edges forming the hole
should form an angle of 90 deg. Real-world meshes have distur-
bances. Hence, our choice is a bit more conservative to ensure a
higher success rate. However, this angle range can be expanded
depending on the mesh at hand. The increase in this range would
increase the size of the search space and slow down the algorithm
considerably. We have found out that a choice of 30–120 deg
worked in all of our test cases.

2.4 Hole. The term “hole” is more commonly used in the liter-
ature for missing polygons (triangles in this case) in a discrete
surface. There have been several algorithms proposed on the dis-
covery and closing of holes in discrete surfaces [11,12].
However, the missing triangles in geometry are far too easy to
detect. This article does not focus on the holes mentioned in the
context of these pieces of the literature. We focus on intentionally
created holes whose features are desired in a geometry. The algo-
rithm discussed here is more along the lines of detecting the
genus of a discrete surface. The algorithms proposed in this
article can be modified to identify the approximate genus of a
surface. It could also be reduced to a problem of detecting
closed-loop features in a geometry. The geometries created in
computer-aided design are quite complex and often contain many
holes, fillets, and chamfers among other sophisticated features.

3 Algorithm
The algorithm for the detection of holes is discussed in detail

here. These algorithms are created as a result of a top-down
approach. We started with a brute force approach that requires
searching the entire search space of the geometry for holes.
Then, the goal is to reduce the search space with suitable

Edge

Half Edge 

Vertex

Pair of
Half-

edges
belonging

to one
edge 

Fig. 1 Half-edge data structure represented on a polygonal
mesh
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geometric filters. We started adding additional filtering metrics
such as feature angle and Gaussian curvature to reduce the
search space. Hence, the algorithm is semi-heuristic in nature.
Experimental results shown in the subsequent sections are done
with real geometries used in finite element analysis (FEA)/com-
putational fluid dynamics simulations. In this article, we discuss
two different algorithms. The most important algorithm is the
fast algorithm for detection of holes accelerated with discrete
Gaussian computation. We also show a comparison of this algo-
rithm with a purely brute force approach in Appendix A of this
article.

(1) Fast algorithm for detection of holes accelerated with discrete
Gaussian computation

(2) Detection of holes in sheets

For a given mesh represented as triangulation, the triangles are
first loaded into the half-edge data structure. The mesh reader
fixes some of the topological issues in the mesh (such as nonmani-
fold elements). We compute its feature angle of every triangle with
its three neighbors. The triangles that satisfy our feature angle crite-
ria are marked accordingly. As a next step, Gaussian curvature is
computed on the mesh, and the planar areas are filtered out by
marking them with property traits. We start searching for looped
features in this reduced search space and then pair them up or
remove them depending on the requirements.

3.1 Fast Algorithm for Detection of Holes Accelerated With
Discrete Gaussian Computation. The first algorithm is the fastest
and most robust algorithm. It is very efficient at detecting most of
the holes in a geometry. It relies on the feature angle of the triangles
and the discrete Gaussian curvature for detecting the holes in the
geometry. It fails in case of very poorly meshed geometries with
bad feature angles. Examples of such cases are shown in Sec. 4
of this article. The algorithm listing is as follows.

Algorithm 2 Algorithm to detect holes in solids (Gaussian-
filtered search)

Result: Vector of Chains (Every chain is a closed loop of edges)
Initialize Surface into a half-edge data structure;
Create an Empty vector called possible_edges to store edges;
forall Faces of Surface do

Get the three surrounding faces;
Compute the feature angle between the current face and its
neighbors;
if The feature angle matches a specific feature angle criterion then

add them to possible_edges vector;
end

end
forall Edges in possible_edges vector do

Compute the discrete Gaussian curvature;
end
forall Edges in possible_edges vector do

if Edge is NOT possibly part of a hyperboloid or cylinder then
Remove the edge from possible_edges vector;

end
end
while All edges in possible_edges vector is equal to 2 do

Remove edges which do not have the matching valence;
end
Loop through possible_edges vector and form chains;

3.2 Hole Detection in Sheets. Detection of holes in sheets is
relatively trivial. It is very similar to the detection of missing trian-
gles (also known as holes) in solids. The half-edge data structure
takes care of most of the work in this case. Since a sheet geometry
has a clearly defined border, this reduces to a simple border edge
detection problem. The border edge or edges forming hole will
not have two pairs of half-edges. Instead, it will have the same half-
edge pointing to itself. The algorithm collects these half-edges and

Fig. 2 Feature angle (the angle between faces of cylinder and adjacent faces form the feature angle)
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forms loops. It requires a simple pruning process to remove unne-
cessary holes, especially the ones formed by a few missing trian-
gles. The same algorithm from solids can be used for the
formation of loops in sheet geometries.

Algorithm 3 Hole detection in sheet geometries

Data: Discrete surface
Result: Vector of Chains (Every chain is a closed loop of edges)
Initialize Surface into a half-edge data structure;
Create an Empty vector called boundary_edges to store edges;
forall Faces of Surface do

forall Half Edges in a Face do
if If pair of Half Edge is itself then
Add the edge to the boundary_edges vector;

end
end

end
Loop through boundary_edges vector and form chains;

3.3 Formation of Chains (or Closed Loops). The algorithm
starts with an edge from the reduced search space and chooses to
collect edges either in a clockwise or counterclockwise direction.
Since the algorithm relies on the half-edge data structure, complete
connectivity is already established and does not require any

complex algorithm to find the next edge. The chain formation algo-
rithm collects edges and adds them into a vector until it circles back
to the original edge. If there is a discontinuity somewhere in a loop,
then the entire sequence of edges is wholly removed (since the loop
is not closed anymore). The removal is only virtual (accomplished
by property traits and bookkeeping data structures).

3.4 Approximate Diameter and Removal. We compute the
approximate diameter of a hole with the help of the mini ball algo-
rithm [13]. This algorithm helps to match pairs of holes of the same
radius quickly. A hole can be removed in most cases quite merely
by the removal of the layer connecting the top and bottom hole
and by triangulating the hole using any simple triangulation
algorithm.

4 Experiments
We tested the hole detection algorithm for sheets and solids on

geometries with different degrees of complexity (Fig. 3).
C++11 and PYTHON were used for code implementation and visua-

lization, respectively. A laptop with Intel Core i7-8700K CPU @
3.70GHz CPU on a single core with 64 gigabytes of RAM is used
for benchmarks. All results are shown for the Gaussian-filtered
search algorithm, and the combined runtime for all geometries
listed here is less than 5 s. The algorithm scales linearly in time

Fig. 3 Holes detected by algorithm in different geometries (colored by hole faces—dark color indicates the faces
forming the hole and light color indicates the faces that are not part of a hole)
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with the number of triangles. We experimented for meshes with an
increasing number of triangles. Different components of the algo-
rithm such as edge pruning or Gaussian-filtered search could be
enabled or disabled to form own variants of the algorithm depending
on use cases. The Gaussian-filtered search algorithm (with and
without pruning) is compared against its brute force counterpart,
and their runtimes are shown in Fig. 4. It can be observed that for
the Gaussian-filtered search (with and without pruning) algorithm,
the runtime scales linearly with the number of triangles, whereas
for the brute force algorithm, the growth is exponential. In
complex cases, as shown in Fig. 4, the brute force approach either
gives erroneous results or is unable to handle the input altogether.
This analysis shows the feasibility of Gaussian-filtered search algo-
rithms for practical purposes. The runtime can further be improved
by parallelization of themajority of the code. Except for the loop for-
mation algorithm, the rest of the algorithm is embarrassingly parallel
and can obtain high speedup with libraries like OPENMP. We did not
perform any strong/weak scaling analysis since its a purely serial
algorithm. Our algorithm scales linearly in time with an increase in
the number of triangles.
In case our algorithm fails to detect any holes, the algorithm for

sheets is run on the geometry to check if it can find any holes before
termination.

5 Conclusion
We proposed a set of algorithms to detect holes in discrete sur-

faces. We showed with experiments and experimental run time
analysis that the usage of discrete Gaussian curvature as a filtering
metric outperforms the brute force search algorithm by simplifying
the search space. The local curvature information allows the algo-
rithm to remove sharp edges in the search space that can be easily
removed later during the pruning process. The exhaustive (or

brute force) search algorithm is also useful in cases where geometry
is simply of inferior quality, lacks good feature angles, or has many
disturbances near the holes. The algorithm was tested on a wide
variety of geometries and was proven to detect the holes in discrete
surfaces with excellent accuracy. These algorithms can also be
repurposed to compute the genus of discrete surfaces. In many
cases, the number of pairs of holes is the Surface’s genus.
However, this may not be true in scenarios where the algorithm
overpredicts the holes. The algorithm relies heavily on half-edge
data structure and feature angles and Gaussian curvature. For sur-
faces with connectivity, these are relatively easy metrics to
compute. However, discrete surfaces represented in terms of point
clouds do not have any pre-established connectivity, and hence,
these algorithms are not applicable to these groups of surfaces. In
the future, we plan on introducing a variant of the algorithm that
works for point clouds by taking advantage of the progress made
in point cloud processing.
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Fig. 4 Runtime analysis (brute force algorithm does not work/gives erroneous results for larger test cases)
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Nomenclature
V = vertex of a mesh
Kv = discrete Gaussian curvature
θi = incident angle for a given vertex

Appendix A: Exhaustive Brute Force Search Algorithm
for Solids
This algorithm searches across a very exhaustive search space

and is the most naive way to find holes in discrete surfaces. The
runtime of this algorithm is inferior and is very slow compared to
any other algorithm discussed in the article. It is not liable for any
practical CAD applications, and there is no way to improve its
runtime. Any tuning should be done by tweaking the feature
angle for search or with different curvature computation algorithms.
We are also exploring possibilities to compute curvature on noisy
surfaces by adding some additional threshold.

Algorithm 4 Algorithm to detect holes in solids (naive
exhaustive search algorithm)

Result: Vector of Chains (Every chain is a closed loop of edges)
Initialize Surface into a half-edge data structure;
Create an Empty vector called possible_edges to store edges;
forall Faces of Surface do

Get the three surrounding faces;
Compute the feature angle between the current face and its
neighbors;
if The feature angle matches a specific feature angle criterion then
add them to possible_edges vector;

end
end
Loop through possible_edges vector and form chains;

Appendix B: Additional Experiments
We mentioned in this article that our algorithm succeeds in

detecting most holes. Table 1 presents the number of holes detected
by the algorithm for different geometries.
There are some cases where Gaussian-filtered search or even

brute force algorithm would fail to detect holes due to poor triangu-
lation. Scanned geometries also lack continuity in curvature and
feature angles. Even sophisticated segmentation algorithms fail to
detect any holes in such cases. It can be seen that a simple geometry
in Fig. 5 has protruding triangles that are not planar. In such cases,
the feature angle range could be increased, or the geometry needs to
be repaired to avoid/remove such protrusions. In the case of indus-
trial geometries, these are quite common and are not easy to detect
and fix automatically. These geometries need to be preprocessed in
a commercial CAD clean up tool for removing such defects in the
geometry. There are also some cases where the algorithm overpre-
dicts holes due to their reliance on feature angles. The unnecessary
holes can be deleted interactively by the end-user.
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Fig. 5 A hole with protruding faces

Table 1 Comparison of actual holes in the geometry vs. holes
detected by the algorithm

Geometry Actual holes Detected holes

Cuboid with holes 2 2
Door Latch 24 31
Multiple cuboids with holes 124 124
Cylindrical sheet 2 2
Fidget spinner 10 10
L bracket 4 6
Camera mounting bracket 6 6
Geometry with cylindrical hole 2 2
Twin mounts 4 4
Cuboid with one hole 2 2
Gear with holes 3 3
Slab with multiple holes 112 112
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