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EFFICIENT PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION
PROBLEM WITH A MULTILEVEL SEQUENTIALLY SEMISEPARABLE

MATRIX STRUCTURE∗

YUE QIU†, MARTIN B. VAN GIJZEN‡, JAN-WILLEM VAN WINGERDEN†, MICHEL VERHAEGEN†,
AND CORNELIS VUIK‡

Abstract. PDE-constrained optimization problems yield a linear saddle-point system that has to be solved.
We propose a preconditioner that makes use of the global MSSS structure and a preconditioner that exploits the
block MSSS structure of the saddle-point system. For the computation of preconditioners based on MSSS matrix
computations, model order reduction algorithms are essential to obtain a low computational complexity. We study
two different model order reduction approaches, one is the new approximate balanced truncation with low-rank
approximated Gramians for SSS matrices and the other is the standard Hankel blocks approximation algorithm.
We test our preconditioners on the problems of optimal control of the convection-diffusion equation in 2D and
of the Poisson equation in 3D. For 2D problems, numerical experiments illustrate that both preconditioners have
linear computational complexity and the global MSSS preconditioner reduces the number of iterations significantly
and needs less computation time. Moreover, the approximate balanced truncation algorithm is computationally
cheaper than the Hankel blocks approximation algorithm. Besides the mesh size independent convergence, the
global MSSS preconditioner also gives the regularization parameter independent convergence, while the block MSSS
preconditioner just gives mesh size independent convergence. For 3D problems, both the block MSSS preconditioner
and global MSSS preconditioner give virtually mesh size independent convergence. Furthermore, the global MSSS
preonconditioner reduces the number of iterations dramatically compared with the block MSSS preconditioner.

Key words. PDE-constrained optimization, saddle-point problem, preconditioners, multilevel sequentially
semiseparable matrix, model order reduction, low-rank approximation
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1. Introduction. PDE-constrained optimization problems have a wide application such
as optimal flow control [6, 7], diffuse optical tomography [1], and linear (nonlinear) model
predictive control [5]. The solution of these problems is obtained by solving a large-scale
linear system of saddle-point type. Much effort has been dedicated to finding efficient iterative
solution methods for such systems. Some of the most popular techniques are the conjugate
gradient (CG) [21], minimal residual (MINRES) [27], generalized minimal residual (GMRES)
and induced dimension reduction (IDR(s)) [38] methods. Their performance highly depends
on the choice of preconditioners. In this paper, we study a class of preconditioners that exploit
the multilevel sequentially semiseparable (MSSS) structure of the blocks of the saddle-point
system.

Semiseparable matrices appear in many applications, e.g., integral equations [23], Gauss-
Markov processes [25], boundary value problems [24], rational interpolation [39] and Kalman
filtering [29]. Semiseparable matrices are matrices of which all the sub-matrices taken from
the lower-triangular or the upper-triangular part are of rank at most 1, as defined in [42].
Sequentially semiseparable (SSS) matrices of which the off-diagonal blocks are of low-rank,
not limited to 1, introduced by Dewilde et al. in [12] generalize the semiseparable matrices.
Multilevel sequentially semiseparable matrices generalize the sequentially semiseparable
matrices to the multi-dimensional cases. Systems that arise from the discretization of 1D partial
differential equations typically have an SSS structure. Discretization of higher dimensional (2D
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or 3D) partial differential equations gives rise to matrices that have an MSSS structure [15, 22].
Under the multilevel paradigm, generators that are used to represent a matrix of a higher
hierarchy are themselves multilevel sequentially semiseparable of a lower hierarchy. The usual
one-level sequentially semiseparable matrix is the one of the lowest hierarchy. Operations like
matrix inversion and matrix-matrix multiplication are closed under this structure. The LU
factorization can also be performed in a structure preserving way. This factorization results in
a growth of the rank of the off-diagonal blocks. Consequently, the LU factorization is not of
linear computational complexity. Model order reduction can be used to reduce the rank of the
off-diagonal blocks, which yields an inexact LU decomposition of an MSSS matrix that can
be used as a preconditioner.

In [22], Gondzio et al. first introduced the MSSS matrix computations for preconditioning
of PDE-constrained optimization problems. They exploited the MSSS matrix structure of the
blocks of the saddle-point system and performed an LU factorization for MSSS matrices to
approximate the Schur complement of the saddle-point system. With this approximated Schur
complement as a preconditioner, conjugate gradient iterations were performed to solve the
saddle-point system block-by-block. As aforementioned, the model order reduction plays a
vital role in obtaining a linear computational complexity of the LU factorization for MSSS
matrices. In [22], Gondzio et al. used a standard model order reduction algorithm [12, 19] to
reduce the computational complexity.

This paper extends [22] in the following ways: 1) We propose a new model order reduction
algorithm for SSS matrix computations based on the correspondence between linear time-
varying (LTV) systems and blocks of SSS matrices. This new model order reduction algorithm
is motivated by the work in [9, 11]. In [9], the approximate balanced truncation was addressed
for the model order reduction of linear time invariant (LTI) systems, while in [11] the recursive
low-rank approximation was performed to compute the approximation of the Gramians of LTV
systems. In this paper, we use the low-rank approximation method in [11] and the approximate
balanced truncation in [9] for the model order reduction for the SSS matrices. Compared
with the model order reduction algorithms discussed in [12, 19], the approximate balanced
truncation method for SSS matrices in this paper is computationally cheaper. 2) With these
model order reduction algorithms, we can compute an inexact LU factorization for the MSSS
matrix blocks of the saddle-point system in linear computational complexity (O(N)). This
yields a block preconditioner for the saddle-point systems. Exploiting the block structure of
the saddle-point system is a standard preconditioning technique, which is described in [4].
However, only the single preconditioner for the last block of the saddle-point system is studied
in [22]. 3) By permuting the blocks of the saddle-point system, we can also compute an inexact
LU factorization of the global system with MSSS matrix computations in linear computational
complexity. This gives a global MSSS preconditioner and this novel MSSS preconditioner
gives mesh size and regularization parameter independent convergence. This is a big advantage
over the block MSSS preconditioner. 4) Besides the problem of optimal control of the Poisson
equation, we also study the problem of optimal control of the convection-diffusion equation.
5) Moreover, we extend these preconditioning techniques to 3D saddle-point systems.

Note that the convergence of using block preconditioners depends on the regularization
parameter β for the PDE-constrained optimization problems [32]. For small β, block pre-
conditioners do not give satisfactory performance. Since all the blocks of the saddle-point
matrix are MSSS matrices, we can permute the saddle-point matrix into a single MSSS ma-
trix. Then we can compute an approximate LU factorization for the permuted saddle-point
system using MSSS matrix computations in linear computational complexity. We call this
approximate factorization for the permuted global matrix the global MSSS preconditioner.

Block preconditioners often neglect the regularization term
1

2β
M , and as a result give poor
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convergence for small enough regularization parameter β. Our Global MSSS preconditioner
does not neglect the regularization term, which in turn gives β independent convergence as
well as mesh size independent convergence. Numerical experiments in this paper demonstrate
such performance.

The outline of this manuscript is as follows: Section 2 formulates a distributed optimal
control problem constrained by PDEs. This problem yields a linear saddle-point system. In
Section 3, we give some definitions and algorithms for MSSS matrices to introduce the MSSS
preconditioning technique. The new model order reduction algorithm for SSS matrices is
also described. With MSSS matrix computations, we propose two types of preconditioners
for saddle-point problem: the global MSSS preconditioner, and the block-diagonal MSSS
preconditioner. In Section 4, we use the distributed optimal control of the convection-diffusion
equation to illustrate the performance of these two preconditioners and the new model order
reduction algorithm. Section 5 presents how to extend such preconditioning techniques to 3D
saddle-point problems. Section 6 draws conclusions and describes future work.

A companion technical report [30] is also available on-line and studies a wider class of
PDE-constrained optimization problems. It contains more numerical experiments to illustrate
the performance of this preconditioning technique. In [31], we study the preconditioning tech-
nique proposed in this manuscript applied to computational fluid dynamics (CFD) problems
and evaluate their performance on CFD benchmark problems using the Incompressible Flow
and Iterative Solver Software (IFISS) [37].

2. Problem formulation.

2.1. PDE-constrained optimization problem. Consider the following PDE-constrained
optimization problem

min
u, f

1

2
‖u− û‖2 + β‖f‖2,

s.t. Lu = f, in Ω,

u = uD, on ∂Ω,

(2.1)

where L is an operator, u the system state, f the system input, û the desired state of the system,
Ω the domain, ∂Ω the corresponding boundary, β the weight of the system input in the cost
function or regularization parameter and satisfies β > 0. In this paper, we consider L = −∇2

for optimal control of the Poisson equation and L = −ε∇2 +−→w · ∇ for optimal control of the
convection-diffusion equation. Here −→w is a vector in Ω, ∇ is the gradient operator, and ε is
a positive scalar. If we want to solve such a problem numerically, it is clear that we need to
discretize these quantities involved at some point. There are two kinds of approaches. One is
to derive the optimality conditions first and then discretize (optimize-then-discretize), and the
other is to discretize the cost function and the PDE first and then optimize (discretize-then-
optimize). For the problem of optimal control of the Poisson equation, both approaches lead to
the same solution while different answers are reached for the problem of optimal control of
the convection-diffusion equation; see [32]. Since our focus is on preconditioning for such
problems, the discretize-then-optimize approach is chosen in this paper.

By introducing the weak formulation and discretizing (2.1) using the Galerkin method,
the discrete analogue of the minimization problem (2.1) is

min
u, f

1

2
uTMu− uT b+ c+ βfTMf,

s.t. Ku = Mf + d,

(2.2)
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whereK = [Ki,j ] ∈ RN×N is the stiffness matrix,M = [Mi,j ] ∈ RN×N , Mij =
∫

Ω
φiφjdΩ

is the mass matrix and is symmetric positive definite, b = [bi] ∈ RN , bi =

∫
Ω

ûiφidΩ,

c ∈ R, c =

∫
Ω

û2dΩ, d = [di] ∈ RN , di = −
N+∂N∑
j=N+1

uj

∫
Ω

∇φj · ∇φidΩ. Here φi

(i = 1, 2, . . . N) and φj (j = 1, 2, . . . N, N + 1, . . . N + ∂N) form a basis of V h0 and
V hg , respectively. V h0 and V g0 represent the finite dimensional test space and solution space,
respectively.

Considering the minimization problem (2.2), we introduce the Lagrangian function

J (u, f, λ) =
1

2
uTMu− uT b+ c+ βfTMf + λT (Ku−Mf − d),

where λ is the Lagrange multiplier. Then it is well-known that the optimal solution is given by
finding u, f and λ, such that

∇uJ (u, f, λ) = Mu− b+KTλ = 0,

∇fJ (u, f, λ) = 2βMf −Mλ = 0,

∇λJ (u, f, λ) = Ku−Mf − d = 0.

This yields the linear system

(2.3)

2βM 0 −M
0 M KT

−M K 0


︸ ︷︷ ︸

A

fu
λ


︸︷︷︸
x

=

0
b
d


︸︷︷︸
g

.

The system (2.3) is of the saddle-point system type [4], i.e., the system matrix A is symmetric
and indefinite. It has the following structure

(2.4) A =

[
A BT

B 0

]
,

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n has full rank.
The system matrix of the saddle-point system (2.3) is large and sparse. Preconditioned

Krylov subspace methods, such as MINRES [27] and IDR(s) [38], are quite efficient for
solving such systems.

2.2. Preconditioning of saddle-point systems. The performance of iterative solution
methods highly depends on the choice of the preconditioners [33]. For numerical methods to
solve saddle-point system (2.3) and the construction of preconditioners, we refer to [4, 26] for
an extensive survey. In this paper, we study two types of preconditioners. The first exploits the
MSSS structure of the blocks of the saddle-point system, whereas the second type exploits the
global MSSS structure of the saddle-point system.

2.2.1. Block preconditioners. Recall from (2.4), if A is nonsingular, then A admits the
following LDLT factorization given by2βM 0 −M

0 M KT

−M K 0

 =

 I
0 I
− 1

2β I KM−1 I

2βM
M

S

I 0 − 1
2β I

I M−1KT

I

 ,



ETNA
Kent State University

http://etna.math.kent.edu

MSSS PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION 371

where S = −
(

1

2β
M +KM−1KT

)
is the Schur complement.

The most difficult part for this factorization is to compute the Schur complement S
because computing the inverse of a large sparse matrix is expensive both in time and memory.
Meanwhile, solving the system Sx = b is also expensive since S is a large and full matrix. Note
that all the blocks of (2.3) have a structure that is called multilevel sequentially semiseparable
(MSSS), which will be introduced in a later section. Then the Schur complement S also has
the MSSS structure but with a larger semiseparable order. If we exploit the MSSS structure of
(2.3), we can compute S in linear computational complexity.

In this paper, we first study the block-diagonal preconditioner P1 for the saddle-point
system (2.3), where

(2.5) P1 =

2βM̂

M̂

−Ŝ

 ,
and where M̂ is an approximation of the mass matrix M and Ŝ is an approximation of the
Schur complement S. For M̂ and Ŝ without approximation, i.e., M̂ = M and Ŝ = S, the
preconditioned system P−1

1 A has three distinct eigenvalues and GMRES computes the solution
of the preconditioned system using at most three iterations.

To approximate S = −
(

1

2β
M +KM−1KT

)
, Ŝ = −KM−1KT can be used for

big to middle range of β while Ŝ = − 1

2β
M could be chosen for small β [32]. The block

lower-triangular preconditioner P2, which has the following form

(2.6) P2 =

2βM̂

0 M̂

−M K Ŝ

 ,
is studied in the technical report [30] and the performance comparison with the block-diagonal
preconditioner P1 is also discussed.

2.2.2. Global preconditioners. Since all the blocks of the saddle-point system (2.3)
have the MSSS structure, there exists a permutation matrix Ψ that permutes the saddle-point
matrix with MSSS blocks into a single MSSS matrix. This gives

Ãx̃ = g̃,

where Ã = ΨAΨT , x̃ = Ψx, and g̃ = Ψg are permutations of A,
[
fT uT λT

]T
, and[

0T bT dT
]T

in (2.3), respectively. This permutation will be introduced in the next section.
After this permutation, the system matrix Ã is an MSSS matrix. We can compute an inexact
LU factorization of Ã in linear computational complexity using MSSS matrix computations.
This gives

(2.7) Ã ≈ L̃Ũ ,

which can be used as a preconditioner. We call the factorization (2.7) the global preconditioner.
Since no information of β is neglected during the permutation and factorization, the global
preconditioner gives β-independent convergence, while this property for the standard block
preconditioners P1 in (2.5) or P2 in (2.6) does not hold. This is a big advantage of the global
preconditioner over the standard block preconditioners, which is illustrated by numerical
experiments in Section 4.
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3. Preconditioning using multilevel sequentially semiseparable matrix computations.
Matrices in this paper will always be real and their dimensions are compatible for the matrix-
matrix operations and the matrix-vector operations when their sizes are not mentioned.

3.1. Multilevel sequentially semiseparable matrices. The generator representation of
the sequentially semiseparable matrices are defined by Definition 3.1.

DEFINITION 3.1 ([13]). Let A be an N ×N matrix with SSS matrix structure and let
n positive integers m1, m2, · · · mn satisfy N = m1 +m2 + · · ·+mn, such that A can be
written in the following block-partitioned form

Aij =


UiWi+1 · · ·Wj−1V

T
j , if i < j;

Di, if i = j;
PiRi−1 · · ·Rj+1Q

T
j , if i > j,

where the superscript ‘ T ’ denotes the transpose of a matrix.
The sequences {Ui}n−1

i=1 , {Wi}n−1
i=2 , {Vi}ni=2, {Di}ni=1, {Pi}ni=2, {Ri}n−1

i=2 , {Qi}n−1
i=1 are

matrices whose sizes are listed in Table 3.1 and they are called generators of the SSS matrix A.
With the generator representation defined in Definition 3.1, A can be denoted by

A = SSS(Ps, Rs, Qs, Ds, Us,Ws, Vs).

TABLE 3.1
Generator sizes for the SSS matrix A in Definition 3.1.

Generators Ui Wi Vi Di Pi Ri Qi

Sizes mi × ki ki−1 × ki mi × ki−1 mi ×mi mi × li li−1 × li mi × li+1

REMARK 3.2. The generators of an SSS matrix are not unique. There exist a series of
nonsingular transformations between two different sets of generators for the same SSS matrix
A.

REMARK 3.3. For an SSS matrix, only its generators are stored. If li and ki are bounded
by a small constant, then the memory consumption for storing such a matrix is linear with
respect to the matrix size. This property is also introduced in [13].

Take n = 4, for example. The SSS matrix A is given by

(3.1) A =


D1 U1V

T
2 U1W2V

T
3 U1W2W3V

T
4

P2Q
T
1 D2 U2V

T
3 U2W3V

T
4

P3R2Q
T
1 P3Q

T
2 D3 U3V

T
4

P4R3R2Q
T
1 P4R3Q

T
2 P4Q

T
3 D4

 .
With the generator representation of SSS matrices, basic operations such as addition,

multiplication and inversion are closed under the SSS matrix structure and can be performed
in linear computational complexity. Moreover, decompositions/factorizations such as the QR
factorization [18, 20], the LU decomposition [22, 42], and the ULV decomposition [40] can
also be computed in linear computational complexity and in a structure preserving way.

Similar to Definition 3.1 for SSS matrices, the generator representation for MSSS matrices,
specifically the k-level SSS matrices, is defined as following.

DEFINITION 3.4. The matrix A is said to be a k-level SSS matrix if all its generators are
(k−1)-level SSS matrices. The 1-level SSS matrix is the SSS matrix that satisfies Definition 3.1.

Most operations for SSS matrices can be extended to MSSS matrices, which yields linear
computational complexity for MSSS matrices. MSSS matrices have many applications, one of
them is the discretized partial differential equations (PDEs) [28].
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Note that for a saddle-point system arising from the PDE-constrained optimization prob-
lem, all its blocks are MSSS matrices. This enables us to compute an LU factorization of all
its blocks with MSSS matrix computations in linear computational complexity. However, the
saddle-point matrix is not an MSSS matrix itself but just has MSSS blocks. It fails to compute
an approximate LU factorization of the saddle-point system matrix by using MSSS matrix
computations.

Lemma 3.5 explains how to permute a matrix with SSS blocks into a single SSS matrix.
This property can be extended to matrices with MSSS blocks. This enables us to compute an
LU factorization of the global saddle point matrix by using MSSS matrix computations in
linear computational complexity.

LEMMA 3.5 ([34]). Let A, B, C and D be SSS matrices with the following generator
representations

A = SSS(P as , R
a
s , Q

a
s , D

a
s , U

a
s ,W

a
s , V

a
s ),

B = SSS(P bs , R
b
s, Q

b
s, D

b
s, U

b
s ,W

b
s , V

b
s ),

C = SSS(P cs , R
c
s, Q

c
s, D

c
s, U

c
s ,W

c
s , V

c
s ),

D = SSS(P ds , R
d
s , Q

d
s , D

d
s , U

d
s ,W

d
s , V

d
s ).

Then there exists a permutation matrix Ψ with ΨΨT = ΨTΨ = I , such that

T = Ψ

[
A B
C D

]
ΨT

and the matrix T is an SSS matrix. Its generator representation is

T = SSS(P ts , R
t
s, Q

t
s, D

t
s, U

t
s ,W

t
s , V

t
s ),

where

P ts =

[
P as P bs 0 0
0 0 P cs P ds

]
, Qts =

[
Qas 0 Qcs 0
0 Qbs 0 Qds

]
, Dt

s =

[
Da
s Db

s

Dc
s Dd

s

]
,

U ts =

[
Uas U bs 0 0
0 0 U cs Uds

]
, V ts =

[
V as 0 V cs 0
0 V bs 0 V ds

]
,

W t
s =


W a
s

W b
s

W c
s

W d
s

 , Rts =


Ras

Rbs
Rcs

Rds

 .
Proof. For the case that all the diagonal blocks of A have the same size, and all the

diagonal blocks of D also have the same size, i.e., ma
i = ma and md

i = md, the permutation
matrix Ψ has the following representation

(3.2) Ψ =

[[
Ima

0

]
⊗ In

[
0
Imd

]
⊗ In

]
,

where ⊗ denotes the Kronecker product and I is the identify matrix with a proper size.
With the permutation matrix Ψ given by (3.2), the permuted matrix is

(3.3) T = Ψ

[
A B
C D

]
ΨT .
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It is not difficult to verify that the matrix T is an SSS matrix and its generators are given in
Lemma 3.5.

For the case that sizes of diagonal blocksA andD are varying, let {ma
i }
n
i=1 and

{
md
i

}n
i=1

represent the diagonal blocks sizes of A and D, respectively. The permutation matrix Ψ is

(3.4) Ψ =

[
blkdiag

({[
Ima

i

0

]})
blkdiag

({[
0
Imd

i

]})]
,

where blkdiag
({[

Ima
i

0

]})
represents the block diagonal matrix with its diagonal blocks

given by
{[
Ima

i

0

]}n
i=1

, and blkdiag
({[

0
Imd

i

]})
by
{[

0
Imd

i

]}n
i=1

.

With the permutation matrix Ψ in (3.4), it is not difficult to show that the permuted matrix
T given by (3.3) is an SSS matrix and its generators are given in Lemma 3.5.

REMARK 3.6. Given a matrix with SSS blocks, one can apply Lemma 3.5 to permute it
into a single SSS matrix by using a permutation matrix Ψ. However, this permutation matrix
is not explicitly multiplied on both sides of the matrix to be permuted. The generators of the
permuted matrix are combinations of the generators of its SSS blocks. This is illustrated by
the generators representation of the permuted matrix in Lemma 3.5. Such permutations are
cheaper to compute due to the fact that there is no matrix-matrix multiplication.

REMARK 3.7. Lemma 3.5 is for a 2× 2 block matrix. It can be generalized to the case of
matrices with a larger number of blocks.

REMARK 3.8. Extending Lemma 3.5 to the k-level SSS matrix case is also possible.
If A, B, C, and D are k-level SSS matrices, then their generators are (k − 1)-level SSS
matrices. For the permuted k-level SSS matrix T , its (k − 1)-level SSS matrix generators
with (k − 1)-level SSS matrix blocks are permuted into a single (k − 1)-level SSS matrix by
applying Lemma 3.5 recursively.

The saddle-point system (2.3) derived from the optimal control of the convection-diffusion
equation in 2D, discretized by using the Q1 finite element method, has MSSS (2-level SSS)
matrix blocks. The structure of the saddle-point matrix before and after permutation for mesh
size h = 2−3 are shown in Figure 3.1.
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(a) Before permutation.
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(b) After permutation.

FIG. 3.1. Structure of system matrix of (2.3) before and after permutation for h = 2−3.

3.2. Multilevel sequentially semiseparable preconditioners. The most important part
of the PDE-constrained optimization problem is to solve a linear system of the saddle-point
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type. In the following, we first introduce the LU factorization of MSSS matrices and then give
a new model order reduction algorithm for SSS matrices, which is necessary for computing
the LU factorization in linear computational complexity. For comparison, the conventional
model order reduction algorithm [12] is also discussed.

3.2.1. LU Factorization of multilevel sequentially semiseparable matrices. The semi-
separable order to be defined in Definition 3.9 plays an important rule in the MSSS matrix
computations. Note that this type of structured matrices were studied by Dewilde et al. [13]
and by Eidelman et al. [17] independently, and were called sequentially semiseparable matrices
and quasiseparable matrices there, respectively. In this paper, we use the MATLAB style of
notation for matrices, i.e., for a matrix A, A(i : j, s : t) selects rows of blocks from i to j and
columns of blocks from s to t of A.

DEFINITION 3.9 ([19]). Let

rank A(k + 1 : n, 1 : k) = lk, rank A(1 : k, k + 1 : n) = uk, k = 1, 2, · · · , n− 1,

where lk and uk, k = 1, 2, · · · , N − 1, are called the lower order numbers and upper order
numbers of the matrix A, respectively. Let rl = max lk, ru = maxuk, and call rl and ru the
lower quasi-separable order and the upper quasi-separable order of A, respectively.

DEFINITION 3.10 ([34]). The SSS matrix A with lower and upper semiseparable order
rl and ru is called block (rl, ru) semiseparable.

The semiseparable order for 1-level SSS matrices defined in Definition 3.9 can be directly
extended to the multilevel cases, which leads to Definition 3.11.

DEFINITION 3.11. Let A be a N ×N block k-level SSS matrix with its generators be
M ×M block (k − 1)-level SSS matrices. Let

rank A(k + 1 : N, 1 : k) = lk, rank A(1 : k, k + 1 : N) = uk, k = 1, 2, · · · , N − 1,

where lk and uk, k = 1, 2, · · · , N − 1, are called the k-level lower order numbers and
the k-level upper order numbers of the k-level SSS matrix A, respectively. Let rl = max lk,
ru = maxuk, and call rl and ru the k-level lower semiseparable order and the k-level upper
semiseparable order of the k-level SSS matrix A, respectively.

DEFINITION 3.12. The k-level SSS matrix A with k-level lower and upper semiseparable
order rl and ru is called k-level block (rl, ru) semiseparable.

By using these definitions, we can apply the following lemma to compute the LU factor-
ization of a k-level SSS matrix.

LEMMA 3.13 ([22, 42]). Let A be a strongly regular N ×N block k-level sequentially
semiseparable matrix of k-level block (rl, ru) semiseparable and denoted by its generator
representation A =MSSS(Ps, Rs, Qs, Ds, Us, Ws, Vs). Here we say that a matrix is
strongly regular if its leading principal minors are nonsingular. Let A = LU be its block LU
factorization, then,

1. The block lower-triangular factor L is a k-level sequentially semiseparable matrix
of k-level block (rL, 0) semiseparable and the block upper-triangular factor U is
a k-level sequentially semiseparable matrix of k-level block (0, rU ) semiseparable.
Moreover, rL = rl and rU = ru.

2. The factors L and U can be denoted by the generator representation

L =MSSS(Ps, Rs, Q̂s, D
L
s , 0, 0, 0),

U =MSSS(0, 0, 0, DU
s , Ûs, Ws, Vs).

where Q̂s, DL
s , DU

s and Ûs are (k − 1)-level sequentially semiseparable matrices.
They are computed by the following algorithm:
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Algorithm 1 LU factorization of a k-level SSS matrix A.

Input: {Ps}Ns=2, {Rs}N−1
s=2 , {Qs}N−1

s=1 , {Ds}Ns=1, {Us}N−1
s=1 , {Ws}N−1

s=2 , {Qs}Ns=2

1: D1 = DL
1 D

U
1 (LU factorization of (k − 1)-level SSS matrix)

2: Let Û1 = (DL
1 )−1U1 and Q̂1 = (DL

1 )−TQ1

3: for i = 2 : N − 1 do
4: if i == 2 then
5: Mi = Q̂Ti−1Ûi−1

6: else
7: Mi = Q̂Ti−1Ûi−1 +Ri−1Mi−1Wi−1

8: end if
9:

(
Di − PiMiV

T
i

)
= DL

i D
U
i (LU factorization of (k − 1)-level SSS matrix)

10: Let Ûi = (DL
i )−1(Ui − PiMiWi), Q̂i = (DU

i )−T (Qi − ViMT
i R

T
i ).

11: end for
12: MN = Q̂TN−1ÛN−1 +RN−1MN−1WN−1

13:
(
DN − PNMNV

T
N

)
= DL

ND
U
N (LU factorization of (k − 1)-level SSS matrix)

Output:
{
DL
s

}N
s=1

,
{
DU
s

}N
s=1

,
{
Q̂s

}N−1

s=1
,
{
Ûs

}N−1

s=1

Proof. For the proof of this lemma, we refer to [22, 42].
REMARK 3.14. In Algorithm 1, the LU factorization of a 0-level SSS matrix is just the

LU factorization of an ordinary matrix without SSS structure.
In Algorithm 1, for computing the LU factorization of a k-level SSS matrix, the matrix-

matrix operations are performed on its (k − 1)-level SSS generators, such as computing the
recurrence of Mi in line 7 of Algorithm 1. Such operations lead to the growth of the (k − 1)-
level semiseparable order, which increases the computational complexity. This can be verified
from the matrix-matrix operations introduced in [13, 17]. Take the 1-level SSS matrix A for
example. The flops needed for computing A2 is O(n3N), where n is the semiseparable order
and N is the number of blocks of A [13]. To be specific, the following lemma is introduced.

LEMMA 3.15 ([17]). Let A1, A2 be SSS matrices of lower semiseparable order m1 and
n1, respectively. Then the product A1A2 is of lower semiseparable order at most m1 + n1.
Let A1, A2 be SSS matrices of upper semiseparable order m2 and n2, respectively. Then the
product A1A2 is upper semiseparable of order at most m2 + n2.

REMARK 3.16. For a k-level SSS matrix, since the semiseparable order varies at different
levels, results of Lemma 3.15 also hold for the k-level semiseparable order. But we do not
know the exact upper bound of the (k − 1)-level semiseparable order. We just know the
(k − 1)-level semiseparable order will increase.

Lemma 3.15 states that the semiseparable order grows by multiplying two SSS ma-
trices, which also holds for adding two SSS matrices. There are similar results for mul-
tilevel SSS matrix multiplication and addition. Model order reduction is necessary to
compute an LU factorization of the k-level SSS matrix A using Algorithm 1. The aim
of model order reduction for a k-level SSS matrix A with its generator representation
A = MSSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) is to find (k − 1)-level SSS matrices P̂s,
R̂s, Q̂s, Ûs, Ŵs, V̂s of smaller order compared with Ps, Rs, Qs, Us, Ws, Vs, respectively,
such that Â = MSSS(P̂s, R̂s, Q̂s, Ds, Ûs, Ŵs, V̂s) is of k-level semiseparable order
smaller than or equal to the minimal k-level semiseparable order of A. Meanwhile, Â is an
approximation of A up to a small tolerance ε, i. e., ‖Â−A‖ < ε.

REMARK 3.17. Since the LU factorization of a k-level SSS matrix needs the model
order reduction for (k − 1)-level SSS matrices, the LU factorization in Lemma 3.13 is an
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exact factorization for SSS matrices because no model order reduction is needed for ordinary
matrices (0-level SSS matrices). It is an inexact factorization for the k-level (k ≥ 2) SSS
matrices.

For discretized one-dimensional PDEs on a regular grid, the system matrix has a certain
SSS structure. The LU factorization introduced in Lemma 3.13 could be performed as a direct
solver. For discretized higher dimensional PDEs on regular grids, this LU factorization can be
used as an efficient preconditioner.

3.2.2. Approximate balanced truncation for SSS matrices. As introduced in the last
section, the model order reduction plays a key role in the LU factorization of an MSSS matrix.
In this subsection, we design a new model order reduction algorithm for SSS matrices. This
new method exploits the correspondence between SSS matrices and linear time-varying (LTV)
systems.

The SSS matrices have a realization of linear time-varying systems, which is studied by
Dewilde et al. in [16]. Consider a mixed-causal system that is described by the following
state-space model [

xci+1

xai−1

]
=

[
Ri

Wi

] [
xci
xai

]
+

[
Qi
Vi

]
ui,

yi =
[
Pi Ui

] [ xci
xai

]
+Diui,

where xc is the causal system state, xa represents the anti-causal system state, ui is the system
input, and yi is the system output. With zero initial system states and stacking all the input
and output as ū =

(
uT1 , uT2 , . . . uTN

)T
, ȳ =

(
yT1 , yT2 , . . . yTN

)T
, the matrixH that

describes the input-output behavior of this mixed-causal system, i.e., y = Hu, induces an SSS
matrix structure. Take N = 4 for example, the matrixH is

H =


Di U1V2 U1W2V3 U1W2W3V4

P2Q1 D2 U2V3 U2W3V4

P3R2Q1 P3Q2 D3 U3V4

P4R3R2Q1 P4R3Q2 P4Q3 D4

 .
Using the LTV systems realization for SSS matrices, we have the following lemma that

gives a direct link between LTV systems order and the semiseparable order.
LEMMA 3.18 ([35]). The lower and upper semiseparable order for an SSS matrix

with minimal LTV system realization are max {li}Ni=2 and max {ki}M−1
i=1 , respectively. Here

{li}Mi=2 and {ki}M−1
i=1 are defined in Table 3.1.

We describe the lemma in [35] more exactly by restricting the realization of an SSS matrix
to be minimal in Lemma 3.18. It is not difficult to set an example of an SSS matrix with small
semiseparable order, but its LTV systems realization is of larger order. Lemma 3.18 states that
the order of the causal LTV system is equal to the lower semiseparable order of an SSS matrix,
while the order of the anti-causal LTV system is equal to the upper semiseparable order. Thus,
to reduce the semiseparable order of an SSS matrix is the same as reducing the order of its
realization by mixed-causal LTV systems.

Model order reduction for LTV systems is studied in [10, 36]. In [36], a linear matrix
inequality (LMI) approach was introduced to solve the Lyapunov inequalities to compute the
controllability and observability Gramians. In [10], the low-rank Smith method was presented
to approximate the square-root of the controllability and observability Gramians of LTV
systems.
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Since the causal LTV system and the anti-causal LTV system have similar structures that
correspond to the strictly lower-triangular part and the strictly upper-triangular part of the
matrixH, respectively, we only consider the causal LTV system described by the following
state-space model,

(3.5)

{
xk+1 = Rkxk +Qkuk,

yk = Pkxk,

over the time interval [ko, kf ] with zero initial states. The controllability Gramian Gc(k) and
observability Gramian Go(k) are computed by the following Stein recurrence formulas:

Gc(k + 1) = RkGc(k)RTk +QkQ
T
k ,

Go(k) = RTk Go(k + 1)Rk + PTk Pk,
(3.6)

with initial conditions Gc(ko) = 0 and Go(kf + 1) = 0.

Note that the controllability Gramian Gc(k) and observability Gramian Go(k) are positive
definite if the system is completely controllable and observable or semi-definite if the system
is partly controllable and observable. Thus their eigenvalues are non-negative and often have
a large jump at an early stage [2, 3]. This suggests to approximate these two Gramians at
each step by a low-rank approximation. In this paper, we just consider the case that the LTV
systems are uniformly completely controllable and observable over the time interval, which
means that both Gc and Go are positive definite. This is reasonable because the SSS matrices
considered in this paper correspond to uniformly completely controllable and observable LTV
systems.

Since the controllability Gramian Gc(k) and observability Gramian Go(k) have similar
structure, we will only use the controllability Gramian Gc(k) to introduce the basic idea. The
key point of the low-rank approximation is to substitute the factorization of the controllability
Gramian Gc(k)

Gc(k) = Lc(k)LTc (k),

where Lc(k) ∈ RM×M , by its low-rank factorization

(3.7) G̃c(k) = L̃c(k)L̃Tc (k),

at each step k, where L̃c(k) ∈ RM×mk with mk as the ε-rank of Gc(k), and mk < M .
Typically, mk is set to be constant, i.e., mk = m at each step. It can be also chosen adaptively
by setting a threshold ε for the truncated singular values. If Gc(k) is of low numerical rank, it
is reasonable to use the rank mk approximation (3.7) to approximate Gc(k).

The low-rank approximation of the controllability and observability Gramians for LTV
systems is introduced in Algorithm 2.
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Algorithm 2 Low-Rank Approximation of the Gramians for LTV Systems.

Input: LTV system {Pk}Nk=2, {Rk}N−1
k=2 , {Qk}N−1

k=1 , reduced LTV system order m
1: for k = 2 : N do
2: if k == 2 then
3:

[
Qk−1

]
= UcΣcV

T
c (singular value decomposition)

4: else
5:

[
Qk−1 Rk−1L̃c(k − 1)

]
= UcΣcV

T
c (singular value decomposition)

6: end if
7: Partition Uc =

[
Uc1 Uc2

]
, Σc =

[
Σc1

Σc2

]
, Uc1 ∈ RM×m, Σc1 ∈ Rm×m.

8: Let L̃c(k) = Uc1Σc1 ∈ RM×m
9: end for

10: for k = N : 2 do
11: if k==N then
12:

[
PTk

]
= UoΣoV

T
o (singular value decomposition)

13: else
14:
15:

[
PTk RTk L̃o(k + 1)

]
= UoΣoV

T
o (singular value decomposition)

16: end if
17: Partition Uo =

[
Uo1 Uo2

]
, Σo =

[
Σo1

Σo2

]
, Uo1 ∈ RM×m, Σo1 ∈ Rm×m.

18: Let L̃o(k) = Uo1Σo1 ∈ RM×m
19: end for
Output: Approximated factors

{
L̃c(k)

}N
k=2

,
{
L̃o(k)

}N
k=2

In [9], the recursive low-rank Gramians method was used to approximate the Gramians of
the linear time-invariant (LTI) systems. Such methods can also be applied to approximate the
Gramians of the LTV systems. This is studied by the same author in an earlier reference [11]. In
this manuscript, we study the connections between LTV systems and SSS matrices. Meanwhile,
we extend the model order reduction algorithm for LTV systems to the model order reduction
for SSS matrices. The low-rank approximation method in [9, 11] was used to approximate
the Gramians of the LTV systems that the SSS matrix corresponds to and the approximate
balanced truncation method was applied for the model order reduction. Even the low-rank
approximation method in this manuscript and the one in [11] are quite similar, the novelty
is that this algorithm has never been applied to reduce the rank of the off-diagonal blocks of
structured matrices.

The balanced truncation approximates the LTV systems in the following way. The Hankel
map, which maps the input from past to the output in the future, has the following definition
for the LTV systems,

(3.8) Hk = OkCk,

where Ok and Ck are the state to outputs map, and input to state map at time instant k,
respectively. Meanwhile, the following relation holds

Gc(k) = CkCTk ,
Go(k) = OTkOk,

(3.9)

where Gc(k) and Go(k) are the controllability Gramian and observability Gramian defined in
(3.6), respectively.
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The Hankel singular values σH are the singular values of the Hankel map, and it was
computed via the following equations in the finite dimensional spaces.

σ2
Hk

= λ(HTkHk) = λ(CTk OTkOkCk) = λ(CkCTk OTkOk) = λ(Gc(k)Go(k)).

It was shown in [43] that for any two positive definite matrices, there always exits a so-called
contragredient transformation such that

Λk = T−1
k Gc(k)T−Tk = TTk Go(k)Tk,

where Λk = diag(λk1 , λk2 , · · · , λkM ) is a diagonal matrix. With this contragredient
transformation, we have

T−1
k Gc(k)Go(k)Tk = Λ2

k.

This states that {λki}
M
i=1 are the Hankel singular values at time instant k. Such contragredient

transformation brings the systems into a “balanced” form, which means that the controllability
Gramian and observability Gramian of the system are equal to a diagonal matrix. For the LTV
system (3.5), after such a transformation, the balanced LTV system is

(3.10)

{
x̄k+1 = T−1

k+1RkTkx̄k + T−1
k+1Qkuk,

yk = PkTkx̄k.

Since for system (3.10), the controllability and observability Gramians are balanced, truncation
can be performed to truncate the Hankel singular values that are below a set threshold. This
could be done by using the left and right multipliers Ll and Lr that are defined by

Ll =
[
Im 0

]
, Lr =

[
Im
0

]
,

where Im is an m×m identity matrix and m is the reduced system dimension size. Then the
reduced LTV system is

(3.11)

{
x̃k+1 = Πl(k + 1)RkΠr(k)x̃k + Πl(k + 1)Qkuk,

yk = PkΠr(k)x̃k,

where x̃k = Llx̄k, πl(k + 1) = LlT
−1
k+1 and πr(k) = TkLr.

The reduced LTV system (3.11) is computed via a projection method with the projector
defined by π(k) = πr(k)πl(k). This is because

πl(k)πr(k) = LlT
−1
k TkLr = Im

and

π(k)2 = πr(k)πl(k)πr(k)πl(k) = π(k).

For the approximated Gramians G̃c(k) and G̃o(k), which are positive semi-definite, we
have the following lemma, which states that there also exists a contragredient transformation
such that

Λ′k = T̄−1
k G̃c(k)T̄−Tk = T̄Tk G̃o(k)T̄k,
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where Λ′k is a diagonal matrix and

(3.12) Λ′k = diag(λ′k1 , λ
′
k2 , · · · , λ

′
km , 0, · · · , 0).

LEMMA 3.19 ([43], Theorem 3). Let Q, P ∈ RM×M be symmetric positive semidefinite
and satisfy

rank Q = rank P = rank QP = m,

where m ≤ M . Then there exists a nonsingular matrix W ∈ RM×M (contragredient
transformation) and a positive definite diagonal matrix Σ ∈ Rm×m, such that

Q = W

[
Σ 0
0 0

]
WT , P = W−T

[
Σ 0
0 0

]
W−1.

Proof. For the proof of this lemma, we refer to [43].
We have already explained that the diagonal entries of the matrix Λ′k in (3.12) are the

Hankel singular values of the approximate Hankel map in (3.8). If the controllability Gramian
Gc(k) and the observability Gramian Go(k) are well approximated by G̃c(k) and G̃o(k) sepa-
rately, then G̃c(k)G̃o(k) also approximates Gc(k)Go(k) well. This means that the approximate
Hankel singular values

{
λ′ki
}m
i=1

are close to the original Hankel singular values {λki}
m
i=1. In

Algorithm 3, we show how to use the approximated Gramians G̃c(k) and G̃o(k) to compute the
reduced system. By using the approximated Gramians, this method is called the approximate
balanced truncation.

Algorithm 3 Approximate Balanced Truncation for LTV systems.

Input: LTV system {Pk}Nk=2, {Rk}N−1
k=2 , {Qk}N−1

k=1 , reduced system order m

1: Apply Algorithm 2 to compute the approximated Gramian factors
{
L̃c(k)

}N
k=2

and{
L̃o(k)

}N
k=2

2: for k=2 : N do
3: Compute the singular value decomposition L̃Tc (k)L̃o(k) = UkΣkV

T
k .

4: Let Πl(k) = Σ
− 1

2

k V Tk L̃
T
o (k), and Πr(k) = L̃c(k)UkΣ

− 1
2

k

5: end for
6: for k=1 : N do
7: if k == 1 then
8: Q̃k = Πl(k + 1)Qk
9: else if k == N then

10: P̃k = PkΠr(k)
11: else
12: Q̃k = Πl(k + 1)Qk, R̃k = Πl(k + 1)RkΠr(k), P̃k = PkΠr(k)
13: end if
14: end for
Output: Reduced LTV system

{
P̃k

}N
k=2

,
{
R̃k

}N−1

k=2
,
{
Q̃k

}N−1

k=1

We can prove the following lemma.
LEMMA 3.20. Algorithm 3 is an approximate balanced truncation method for the LTV

system (3.5).
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Proof. According to Lemma 3.19, there exists a contragredient transformation T̄k ∈
RM×M such that

Λ′k = T̄−1
k G̃c(k)T̄−Tk = T̄Tk G̃o(k)T̄k,

where Λ′k is a diagonal matrix and

Λ′k =

[
Σk 0
0 0

]
.

Here

Σk = diag(λ′k1 , λ
′
k2 , · · · , λ

′
km),

and
{
λ′ki
}m
i=1

are the singular values of L̃Tc (K)L̃o(k), i.e.,

L̃Tc (K)L̃o(k) = UkΣkV
T
k .

According to the proof of Lemma 3.19, the contragredient transformation T̄k is computed via

T̄k =
[
L̃c(k) No(k)

] [Uk 0
0 V̄k

] [
Σk 0
0 Σ̄k

]− 1
2

,

and the inverse of such transformation is computed by

T̄−1
k =

[
Σk 0
0 Σ̄k

]− 1
2
[
V Tk 0
0 ŪTk

] [
L̃o(k)T

Nc(k)T

]
,

where the columns of No(k) ∈ RM×(M−m) span the null space of G̃o(k), the columns
of Nc(k) ∈ RM×(M−m) span the null space of G̃c(k), and the following singular value
decomposition holds

ÑT
c (k)Ño(k) = ŪkΣ̄kV̄

T
k .

With this contragredient transformation T̄k, the left and right multipliers are computed via

Πl(k) =
[
Im 0

]
T−1
k =

[
Im 0

] [Σk 0
0 Σ̄k

]− 1
2
[
V Tk 0
0 ŪTk

] [
L̃o(k)T

Nc(k)T

]
= Σ

− 1
2

k V Tk L̃
T
o (k),

Πr(k) = Tk

[
Im
0

]
=
[
L̃c(k) No(k)

] [Uk 0
0 V̄k

] [
Σk 0
0 Σ̄k

]− 1
2
[
Im
0

]
= L̃c(k)UkΣ

− 1
2

k .

And the projection is defined via

Πk = Πr(k)Πl(k),

since Πl(k)Πr(k) = Im and Π2
k = Πk.

Note that the low-rank approximation together with the approximate balanced truncation
for linear time-invariant (LTI) system is studied in [8, 9]. Only balanced truncation for linear
time-varying (LTV) system is studied in [11].

For an SSS matrix A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) with lower semiseparable
order M , we have already explained its LTV system realization. Thus, Algorithm 2 and
Algorithm 3 can be performed to reduce the order of the causal LTV system (3.5), which
corresponds to reduce the lower semiseparable order. This yields the approximated SSS matrix
Ã = SSS(P̃s, R̃s, Q̃s, Ds, Us, Ws, Vs). For the strictly upper-triangular part ofA, we first
transpose it to the strictly lower-triangular form then perform Algorithm 2 and Algorithm 3.
After this reduction, we transpose the reduced strictly lower-triangular part to the strictly
upper-triangular form.
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3.2.3. Hankel blocks approximation. To compare with our model order reduction
method for SSS matrices, we describe the standard model order reduction algorithm in this
part. It is called the Hankel blocks approximation in [12, 13]. The Hankel blocks of an SSS
matrix are defined as following.

DEFINITION 3.21 ([12]). Hankel blocks denote the off-diagonal blocks that extend from
the diagonal to the northeast corner (for the upper case) or to the southwest corner (for the
lower case).

Take a 4 × 4 block SSS matrix A for example. The Hankel blocks for the strictly
lower-triangular part are shown in Figure 3.2 by H2, H3 and H4.

FIG. 3.2. Hankel blocks of a 4× 4 block SSS matrix.

It is easy to verify that for the Hankel blocks Hi, i = 2, . . . , N , the following relation
holds

(3.13) Hi = OiCi, i = 2, , . . . , N,

where Oi and Ci are the current state to the current and future output map and the past input to
the current state map for system (3.5), respectively. Moreover, the following relations hold for
Oi and Ci.

(3.14) Oi−1 =

[
Pi−1

OiRi−1

]
, for i = 2, , . . . , N − 1, and ON = PN ,

(3.15) Ci+1 =
[
RiCi Qi

]
, for i = 2, , . . . , N − 1, and C2 = Q1.

The two maps Ci and Oi also satisfy

Gc(i) = CiCTi , Go(i) = OTi Oi,

where Gc(i) and Go(i) are the controllability Gramian and observability Gramian that sat-
isfy (3.6).

The rank of the Hankel map Hi at time step i, i.e., the rank of the i-th Hankel block is the
order of the states xi of system (3.5); see [40]. The standard way to reduce the semiseparable
order is given in [12, 13]. This standard approach is based on the realization theory of a
given Hankel map for LTV systems that is introduced in [16, 40], i.e., according to the given
Hankel map {Hi}Ni=2, find a triple {Pk, Rk, Qk} that satisfy (3.13)–(3.15). By using the

realization theory, it is also possible to get the reduced triple
{
P̂k, R̂k, Q̂k

}
that approximates

the Hankel map Hi in (3.13).
To do this approximation, first we need to transform the map Oi to the form that has

orthonormal columns and transform the map Ci to the form that has orthonormal rows. These
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two forms are called the left proper form and the right proper form [13, 12], respectively.
We use the change of Ci to introduce the basic idea. The first step is to do a singular value
decomposition (SVD) of the starting point C2, which gives

C2 = U2Σ2V
T
2 ,

and let C̄2 = V T2 . At this step, the map C2 is transformed to the form C̄2 that has orthonormal
rows. Due to the change of C2, to keep the Hankel map Hi = OiCi unchanged, the map O2 is
changed to

Ō2 = O2U2Σ2.

Then the Hankel map satisfies

H̄2 = Ō2C̄2 = O2U2Σ2V
T
2 = O2C2 = H2.

Since all these transformations have to be done on the triple {Pk, Rk, Qk}, not on the maps,
we have

Q̄1 = C̄2 = V T2 ,

and

Ō2 = O2U2Σ2 =

[
P2

O3R2

]
U2Σ2,

which gives P̄2 = P2U2Σ2 and R̄2 = R2U2Σ2.
Now, suppose at step i, the map C̄i already has orthonormal rows, then for Ci+1, we have

(3.16) Ci+1 =
[
R̄iC̄i Qi

]
=
[
R̄i Qi

] [C̄i
I

]
.

By performing a singular value decomposition on
[
R̄i Qi

]
, we have

(3.17)
[
R̄i Qi

]
= UiΣiV

T
i .

Let
[ ¯̄Ri Q̄i

]
= V Ti , and partition Vi such that V Ti =

[
V Ti1 V Ti2

]
to make the size of V Ti2

match the size of Qi. Then let

Q̄i = V Ti2 ,
¯̄Ri = V Ti1 .

To keep the use of notations consistent, we reuse R̄i to denote the transformed R̄i, i.e., ¯̄Ri,
this gives R̄i = V Ti1 . By doing this, we have the transformed map

(3.18) C̄i+1 =
[
R̄iC̄i Q̄i

]
=
[
R̄i Q̄i

] [C̄i
I

]
= V Ti

[
C̄i

I

]
,

which also has orthonormal rows. This is due to

C̄i+1C̄Ti+1 = V Ti

[
C̄i

I

] [
C̄Ti

I

]
Vi = V Ti

[
C̄iC̄Ti

I

]
Vi = V Ti Vi = I,

since C̄i also has orthonormal rows. Then the Hankel map at time step i+ 1 before and after
such transformation has the following relation,

(3.19) Ci+1 = UiΣiC̄i+1,
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which can be checked by associating (3.16) and (3.17) with (3.18).
To keep the Hankel map at time step i + 1 unchanged, the following relation needs to

hold,

(3.20) Ōi+1 = Oi+1UiΣi.

Since Oi+1 =

[
Pi+1

Oi+2Ri+1

]
, by letting P̄i+1 = Pi+1UiΣi and R̄i+1 = Ri+1UiΣi, we have

the transformed map

(3.21) Ōi+1 =

[
P̄i+1

Oi+2R̄i+1

]
.

By checking (3.19)–(3.21), it is easy to get the unchanged Hankel map at time step i + 1.
Similar procedure can be applied to transform the map Oi to the form that has orthonormal
columns. The procedure for transforming Ci and Oi is shown in Algorithm 4.

After transforming the map Oi and Ci into the form with orthogonal column basis and
row basis, we can truncate unimportant column spaces and row spaces of Oi and Ci, which
gives the approximated Hankel map Ĥi = ÔiĈi.

3.3. Operations count for the two model order reduction methods. Given an SSS
matrix A = SSS(PS , Rs, Qs, Ds, Us, Ws, Vs), to compare the operations count of
the approximate balanced truncation described by Algorithm 2-3 and the Hankel blocks
approximation introduced in Algorithm 4, we assume that the generator sizes in Table 3.1 are
uniform, i.e., mi = n and ki = li = M . Here N is the number of SSS blocks (LTV system
time steps), M is the unreduced LTV system order, and N � M � n. The reduced SSS
matrix is Ã = SSS(P̂s, R̂s, Q̂s, Ds, Ûs, Ŵs, V̂s), where k̂i = l̂i = m, m is the reduced
semiseparable order and m�M .

In this paper, we measure the operations count by the floating-point operations (flops).
To count the operations of the approximate balanced truncation, we first count the operations
for the low-rank approximation in Algorithm 2. In the forward recursion, the singular value
decomposition uses

(3.22) m2M + (m+ n)2M(N − 2)

flops. In this recursion, two matrix-matrix product are computed in each iteration. This
consumes

(3.23) mM2(N − 2) +m2M(N − 1)

flops. Adding (3.22) and (3.23) gives the total flop count for the forward low-rank approxima-
tion,

(3.24) m2M + (m+ n)2M(N − 2) +mM2(N − 2) +m2M(N − 1).

Since the forward low-rank approximation and the backward low-rank approximation are
symmetric in computing, the flop count for the backward low-rank approximation is equal to
(3.24). Then the flop count Fl for the low-rank approximation Algorithm 2 is

(3.25) Fl = 2mM2N + 4m2MN + 4mnMN + 2n2MN − 4(m+ n)2M − 4mM2.
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Algorithm 4 Hankel Blocks Approximation.

Input: LTV system {Pk}Nk=2, {Rk}N−1
k=2 , {Qk}N−1

k=1 , reduced system order m
1: for i = 2 : N do
2: if i == 2 then
3: Qi−1 = UiΣiV

T
i (singular value decomposition)

4: Let Qi−1 = V Ti , Pi = PiUiΣi, and Ri = RiUiΣi
5: else if i == N then
6:

[
Ri−1 Qi−1

]
= UiΣiV

T
i (singular value decomposition)

7: Partition V Ti =
[
V Ti1 V Ti2

]
such that the size of Qi−1 and V Ti2 match

8: Let Ri−1 = V Ti1 , Qi−1 = V Ti2 , Pi = PiUiΣi
9: else

10:
[
Ri−1 Qi−1

]
= UiΣiV

T
i (singular value decomposition)

11: Partition V Ti =
[
V Ti1 V Ti2

]
such that the size of Qi−1 and V Ti2 match

12: Let Ri−1 = V Ti1 , Qi−1 = V Ti2 , Pi = PiUiΣi and Ri = RiUiΣi
13: end if
14: end for
15: for i = N : 2 do
16: if i == N then
17: Pi = UiΣiV

T
i (singular value decomposition)

18: Let Pi = Ui, Ri−1 = ΣiV
T
i Ri−1, Qi−1 = ΣiV

T
i Qi−1

19: else if i == 2 then
20:

[
Pi
Ri

]
= UiΣiV

T
i (singular value decomposition)

21: Partition Ui =

[
Ui1
Ui2

]
such that the size of Ui2 and Ri match

22: Let Pi = Ui1 , Ri = Ui2 , Qi−1 = ΣiViQi−1

23: else
24:

[
Pi
Ri

]
= UiΣiV

T
i (singular value decomposition)

25: Partition Ui =

[
Ui1
Ui2

]
such that the size of Ui2 and Ri match

26: Let Pi = Ui1 , Ri = Ui2 , Qi = ΣiViQi
27: end if
28: end for
29: for i = 1 : N do
30: if i == 1 then
31: Partition Qi =

[
Qi1
(·)

]
with Qi1 ∈ Rm×(·), let Q̂i = Qi1

32: else if i==N then
33: Partition Pi =

[
Pi1
(·)

]
with Pi1 ∈ R(·)×m, let P̂i = Pi1

34: else
35: Partition Pi =

[
Pi1
(·)

]
with Pi1 ∈ R(·)×m, let P̂i = Pi1

36: Partition Ri =

[
Ri1 (·)
(·) (·)

]
with Ri1 ∈ Rm×m, let R̂i = Ri1

37: Partition Qi =

[
Qi1
(·)

]
with Qi1 ∈ Rm×(·), let Q̂i = Qi1

38: end if
39: end for
Output: Reduced LTV systems

{
P̂k

}N
k=2

,
{
R̂k

}N−1

k=2
,
{
Q̂k

}N−1

k=1
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Next we count the operations of the approximate balanced truncation Algorithm 3. First,
to compute Πl(k) and Πr(k), the flop count is

(3.26)
(
m2M +m3 + 2(m2 +m2M)

)
(N − 1),

and the flop count to compute the reduced LTV system is

(3.27) 2mnM(N − 1) + (mM2 +m2M)(N − 2).

Thus the total flop count Fa for the approximate balanced truncation is the summation of
(3.26) and (3.27), which gives

(3.28) Fa = (M2 +mM + 2nM)N − 2mn(M +m+ n).

Then we have the total flop count Fla of the approximate balanced truncation by adding (3.25)
to (3.28). Since we have N �M � m, n, we just use the O(·) to denote the total flop count.
Thus, we have

(3.29) Fla = O
(
(2m+ 1)M2N

)
.

Similarly, the operations count Fh for the Hankel blocks approximation in Algorithm 4 is

(3.30) Fh = 4M3N+6nM2N+2(n2 +2n)MN−8M3−12nM2 +2(n2−3n)M+2n2,

which can be written in the O(·) notation as

Fh = O(4M3N).

SinceN �M � m, by comparing the flop countFla for the approximate balanced truncation
in (3.29) with the flop count Fh for the Hankel blocks approximation in (3.30), we see that
the approximate balanced truncation algorithm is computationally cheaper than the Hankel
blocks approximation for the model order reduction of SSS matrices.

REMARK 3.22. We can see from Fla in (3.29) and Fh in (3.30), that the flop count is
linear with N for both method, where N denotes the number of blocks of an SSS matrix.
Moreover, the size of the SSS matrix equals to nN and n � N . Thus, both methods give
computational complexity that is linear with the matrix size.

3.4. Flowchart of preconditioning by using MSSS matrix computations. We have
already described the MSSS matrix computations and how to compute a preconditioner using
such matrix computations. The flowchart shown in Figure 3.3 illustrates how to compute a
preconditioner for the PDE-constrained optimization problem (2.1).

4. Numerical experiments. In this section, we study the problem of optimal control
of the convection-diffusion equation that is introduced in Example 4.1. First, we compare
the performance of our model order reduction algorithm with the conventional model order
reduction algorithm. Next we test the global MSSS preconditioner and the block diagonal
MSSS preconditioner. Numerical experiments in [30] also show the advantage of the global
MSSS preconditioner over the lower-triangular block MSSS preconditioner for the PDE-
constrained optimization problems. The superiority of the global MSSS preconditioner to the
block preconditioners that are computed by the multigrid methods for computational fluid
dynamics (CFD) problems is illustrated in [31].

EXAMPLE 4.1 ([32]). Let Ω = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and consider the problem

min
u,f

1

2
‖u− û‖+

β

2
‖f‖2,

s.t. − ε∇2u+−→ω .∇u = f in Ω,

u = uD on ΓD,
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FIG. 3.3. Flowchart for MSSS preconditioning of PDE-constrained optimization problem.

where ΓD = ∂Ω and

uD =

{
(2x− 1)2(2y − 1)2 if 0 ≤ x ≤ 1

2 , and 0 ≤ y ≤ 1
2 ,

0 otherwise.

ε is a positive scalar, −→ω = (cos(θ), sin(θ))
T is the unit directional vector and the prescribed

state û = 0.
The numerical experiments are performed on a laptop with Intel Core 2 Duo P8700 CPU

of 2.53 GHz and 8Gb memory in Matlab R2010b. The iterative solver is stopped by either
reducing the 2-norm of the residual by a factor of 10−6 or reaching the maximum number
of iterations that is set to be 100 in this manuscript. Note that there are three unknowns
on each grid point. The problem sizes 3.07e + 03,1.23e + 04, 4.92e + 04 and 1.97e + 05
correspond to the mesh sizes h = 2−5, 2−6, 2−7, and 2−8, respectively. In the following
tables, the maximum semiseparable order for the model order reduction is given in the brackets
following the problem size. The “preconditioning” columns report the time to compute the
preconditioner; the “MINRES” or “IDR(s)” columns give the time to solve the saddle point
problem by using such Krylov solver; the “total” columns show the summation of them. All
the times are measured in seconds.

4.1. Comparison of two model order reduction algorithms. Here we test the perfor-
mance of the two model order reduction algorithms. Consider the preconditioning of optimal
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control of the convection-diffusion equation described by Example 4.1. For the block-diagonal
preconditioner P1 that is computed by the approximate balanced truncation algorithm and
the Hankel blocks approximation method, the results for different ε and β are shown in
Tables 4.1–4.8, while θ is set to be π

5 for all the experiments.

TABLE 4.1
Results for approximate balanced truncation for β = 10−1, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (4) 10 0.43 0.88 1.31
1.23e+04 (6) 10 1.79 2.07 3.86
4.92e+04 (6) 10 4.11 5.95 10.06
1.97e+05 (7) 10 17.05 22.09 39.14

TABLE 4.2
Results for Hankel blocks approximation for β = 10−1, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (4) 10 0.69 1.32 2.01
1.23e+04 (6) 10 2.59 2.38 4.97
4.92e+04 (6) 10 6.14 5.94 12.08
1.97e+05 (7) 10 26.11 21.59 47.70

TABLE 4.3
Results for approximate balanced truncation for β = 10−1, ε = 10−2.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 16 0.29 1.46 1.75
1.23e+04 (4) 14 0.96 3.01 3.97
4.92e+04 (4) 14 2.49 8.17 10.66
1.97e+05 (5) 14 9.43 29.57 39.00

TABLE 4.4
Results for Hankel blocks approximation for β = 10−1, ε = 10−2.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 16 0.46 1.48 1.94
1.23e+04 (4) 14 1.40 2.98 4.38
4.92e+04 (4) 14 4.85 7.99 12.84
1.97e+05 (5) 14 20.48 28.24 48.72

TABLE 4.5
Results for approximate balanced truncation for β = 10−2, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 18 0.28 1.59 1.87
1.23e+04 (3) 18 0.85 4.02 4.87
4.92e+04 (3) 18 2.26 10.79 13.05
1.97e+05 (5) 18 9.67 35.32 44.99

TABLE 4.6
Results for Hankel blocks approximation for β = 10−2, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 18 0.47 1.65 2.12
1.23e+04 (3) 18 1.28 3.95 5.23
4.92e+04 (3) 18 4.41 10.38 14.79
1.97e+05 (5) 18 21.14 35.12 56.26
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TABLE 4.7
Results for approximate balanced truncation for β = 10−2, ε = 10−2.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 30 0.32 2.54 2.86
1.23e+04 (3) 30 0.81 6.04 6.85
4.92e+04 (3) 30 2.28 17.79 20.07
1.97e+05 (5) 30 9.42 58.01 67.43

TABLE 4.8
Results for Hankel blocks approximation for β = 10−2, ε = 10−2.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 30 0.49 2.62 3.11
1.23e+04 (3) 30 1.42 6.08 7.50
4.92e+04 (3) 30 4.46 17.43 21.89
1.97e+05 (5) 30 20.39 57.32 77.71

The results in Tables 4.1–4.8 show that the time to compute the preconditioner and
iteratively solve the saddle-point system is linear in the problem size, which illustrates that the
MSSS preconditioning technique has linear computational complexity. This shows that for the
same group of ε and β, the block MSSS preconditioners computed by the approximate balanced
truncation and Hankel blocks approximation methods give mesh size independent convergence.
Moreover, the number of iterations for the block MSSS preconditioners computed by both
model order reduction algorithms are the same.

REMARK 4.1. As shown by (3.29) and (3.30), the approximate balanced truncation is
computationally cheaper than the Hankel blocks approximation and both algorithms have
linear computational complexity. This is illustrated by the time to compute the preconditioners
by these two methods for the same group of β and ε in Tables 4.1–4.8.

The optimal solution of the system states and input for β = 10−2, ε = 10−1 and h = 2−5

are shown in Figure 4.1(a) and Figure 4.1(b).
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(a) Optimal system states u.
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(b) Optimal system input f .

FIG. 4.1. Solution of the system states and input for β = 10−2, ε = 10−1 and h = 2−5.

The block-diagonal and block lower-triangular MSSS preconditioners computed by these
two model order reduction algorithms are also tested on the problems of optimal control
of the Poisson equation and optimal control of the convection-diffusion equation in [30].
These results in [30] are consistent with the conclusions we draw here on the performance
of these two model order reduction algorithms and the performance of such block MSSS
preconditioners.
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4.2. Comparison of preconditioners. In this subsection, we test the performance of
the block-diagonal MSSS preconditioner and the global MSSS preconditioner. For the block
diagonal MSSS preconditioner, from Tables 4.1–4.8 we have seen that with the decrease of β,
the number of iterations increases slightly for the same problem size and ε. This is due to the
1

2β
M term, which plays an increasingly more important role with the decrease of β, while this

term is often neglected in the preconditioner P1 in (2.5) for large and medium value of β [32].
For smaller β, the computational results for the block-diagonal MSSS preconditioner are shown
in Tables 4.9-4.10. For the preconditioners tested here, the Hankel blocks approximation
method is chosen as the model order reduction algorithm. Results for the preconditioners
computed by the approximate balanced truncation can be found in [30].

TABLE 4.9
Results for the block-diagonal MSSS preconditioner (2.5) for β = 10−3, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 34 0.43 2.91 3.34
1.23e+04 (3) 34 1.31 7.61 8.92
4.92e+04 (3) 34 4.26 19.83 24.09
1.97e+05 (5) 34 17.39 61.82 79.21

TABLE 4.10
Results for the block-diagonal MSSS preconditioner (2.5) for β = 10−4, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) total (sec.)
3.07e+03 (3) 82 0.45 4.91 5.36
1.23e+04 (3) 82 1.31 11.91 13.22
4.92e+04 (3) 80 4.34 34.83 39.17
1.97e+05 (5) 80 17.89 133.28 141.17

As shown in Tables 4.9–4.10, with the decrease of β from 10−3 to 10−4, the number of
iterations at least doubled. Clearly if β is small, the block-diagonal MSSS preconditioner P1

cannot give satisfactory results. Alternatively, for small β, we can choose the block-diagonal
MSSS preconditioner as follows

(4.1) P1 =

2βM̂

M̂

− 1
2β M̂

 .
The computational results of this preconditioner for β = 10−4 are given in Table 4.11. The
maximum number of iterations is set to 100.

TABLE 4.11
Results for the block-diagonal MSSS preconditioner (4.1) for β = 10−4, ε = 10−1.

problem size iterations preconditioning (sec.) MINRES (sec.) convergence
3.07e+03 (5) 100 0.35 6.73 no convergence
1.23e+04 (5) 100 1.17 17.97 no convergence
4.92e+04 (5) 100 4.19 44.93 no convergence
1.97e+05 (5) 100 15.72 156.89 no convergence

The results in Tables 4.10–4.11 show that the block-diagonal MSSS preconditioner does
not give satisfactory performance when β becomes so small. In those tables, “no convergence”
means that the 2-norm of the residual does not converge to desired accuracy within 100
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iterations. This is due to the fact that the Schur complement is difficult to approximate for
small β.

Recall from Section 2 that we can permute the saddle-point system with MSSS blocks into
a global MSSS system. Due to the indefiniteness of the global MSSS preconditioner, MINRES
is not suitable to iteratively solve the preconditioned saddle-point system. Instead, the induced
dimension reduction (IDR(s)) method [41] is chosen as the Krylov solver. To compare with
the results for the block-diagonal MSSS preconditioner in Tables 4.9–4.11, we apply the global
MSSS preconditioner to the same test case. The results are given in Tables 4.12–4.13.

TABLE 4.12
Results for the global MSSS preconditioner for β = 10−3 and ε = 10−1.

problem size iterations preconditioning (sec.) IDR(4) (sec.) total (sec.)
3.07e+03 (4) 2 0.38 0.13 0.51
1.23e+04 (6) 2 1.16 0.24 1.40
4.92e+04 (8) 2 4.46 0.66 5.12
1.97e+05 (10) 2 18.29 2.21 20.50

TABLE 4.13
Results for the global MSSS preconditioner for β = 10−4 and ε = 10−1.

problem size iterations preconditioning (sec.) IDR(4) (sec.) total (sec.)
3.07e+03 (4) 2 0.38 0.13 0.51
1.23e+04 (6) 2 1.15 0.24 1.39
4.92e+04 (7) 2 4.23 0.64 4.87
1.97e+05 (9) 2 17.87 2.18 20.05

Even though it takes slightly more time to compute the global MSSS preconditioner than
to compute the block-diagonal MSSS preconditioner, much less time is needed for the IDR(s)
method to solve the preconditioned system by the global MSSS preconditioner. Meanwhile,
the total time in Tables 4.12–4.13 scales linearly with the problem size.

REMARK 4.2. By comparing the computational results of the global MSSS preconditioner
with that of the block-diagonal MSSS preconditioner, we find that for the same numerical test
with the same group of β and ε that the number of iterations is reduced significantly by the
global MSSS preconditioner. Meanwhile, the global MSSS preconditioner gives both mesh
size and β independent convergence. This makes the global MSSS preconditioner superior to
the block preconditioners.

5. Preconditioning for optimal control of 3D problems. As analyzed in Section 3.2.1,
to do an LU factorization of a k-level SSS matrix, the model order reduction of a (k− 1)-level
SSS matrix is needed. Therefore, to compute a preconditioner for 3D problems using MSSS
matrix computations, model order reduction for 2-level SSS matrices is needed. Since the
model order reduction for two and higher level SSS matrices is still an open problem, only
preliminary results are given in this section for solving the following problem of optimal
control of the 3D Poisson equation

min
u,f

1

2
‖u− û‖+

β

2
‖f‖2,

s.t.−∇2u = f in Ω,

u = uD on ∂Ω,

(5.1)
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where Ω = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and

uD =


sin(2πy), if x = 0, 0 ≤ y ≤ 1, z = 0;

− sin(2πy), if x = 1, 0 ≤ y ≤ 1, z = 0;

0, elsewhere.

The discretized analog of problem (5.1) is

min
u, f

1

2
‖u− û‖2 + β‖f‖2,

s.t. Ku = Mf + d,

where

K =


D −L
−L D −L

−L D
. . .

. . . . . . −L
−L D

 .(5.2)

Here the matrices D and L in K are 2-level SSS matrices, M is the 3D mass matrix that has
the same structure as K, d is a vector corresponding to the given boundary condition. To
compute the optimal solution of (5.1), a system of the form (2.3) needs to be solved. Here we
again study two types of preconditioners: the block-diagonal MSSS preconditioner and the
global MSSS preconditioner.

5.1. Block-diagonal preconditioner. In this subsection, we test the block-diagonal pre-
conditioner for large and medium β. The block-diagonal preconditioner P1 (2.5) is used. Here
the Schur complement is approximated by K̂M−1K̂T , where K̂ is an approximation of K by
MSSS matrix computations.

To approximate the symmetric positive definite matrix K, we compute its approximate
Cholesky factorization with MSSS matrix computations. At the k-th step of the Cholesky
factorization, the Schur complement is computed via

(5.3)

{
Sk = D, if k = 1,

Sk = D − LS−1
k−1L, if k ≥ 2.

SinceD andL are 2-level SSS matrices, Sk is also a 2-level SSS matrix. In the recurrence (5.3),
both the 2-level and 1-level semiseparable orders of Sk increase as k increases. Model order
reduction for 2-level and 1-level SSS matrices are necessary, of which the model order
reduction for 2-level SSS matrix is still an open problem. Here we use an alternative method
to approximate the Schur complement with lower 2-level semiseparable order.

As pointed out in [14], for a symmetric positive definite matrix obtained from the dis-
cretization of PDEs with constant coefficients, all its subsequent Schur complements are also
symmetric positive definite and converge to a fixed point matrix S∞ with a fast rate. In [15],
Dewilde et al. used a hierarchical partitioning of the 3D matrix K (5.2) and did computations
on 2D matrices using the 1-level SSS matrix computations to precondition the 3D Poisson
equation on an 8× 8× 8 regular grid. Due to the fact that 1-level SSS matrix computations
were performed on 2D matrices, the linear computational complexity is lost. Note that there is
no numerical experiment in [15] to study the performance of such preconditioning technique
for any Krylov solver.
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In this manuscript, we extend the method in [15] to the optimal control of 3D Poisson
equation in the following ways. Instead of using the hierarchical partitioning of a 3D matrix,
we use the 3-level SSS matrix formulation. This avoids cutting on “layers” that is introduced
in [15] to bound the 2-level semiseparable order. We exploit the fast convergence property of
the Schur complements of symmetric positive definite matrices to bound the 2-level semisepa-
rable order. As analyzed in Section 3.1, the 1-level and 2-level semiseparable order both grow
in computing the Schur complements in (5.3). To reduce the 1-level semiseparable order, we
can apply the approximate balanced truncation or the Hankel blocks approximation that are in-
troduced in Section 3.2. To bound the 2-level semiseparable order, we use a different approach.
We compute the Schur complements of the first kr steps using MSSS matrix computations.
Here kr is a small constant that can be chosen freely. By using the Schur complement at step
kr to replace the Schur complements, i.e., we have the following recursions for the Schur
complements


Sk = D, if k = 1,

Sk = D − LS−1
k−1L, if 2 ≤ k ≤ kr,

Sk = Skr , if k > kr.

Since only the Schur complements are computed in the first kr steps, the 2-level semisep-
arable order is bounded. This also bounds the computational complexity. Due to the fast
convergence property, the Schur complement at step kr gives an efficient approximation of the
Schur complements afterwards. We also extend the fast convergence property of the Schur
complements for the symmetric positive definite matrix to the symmetric indefinite matrix case.
This extension enables us to compute a good approximation of the 3D global saddle-point
matrix, which gives an efficient global MSSS preconditioner.

Here we apply the block-diagonal MSSS preconditioner (2.5) and the MINRES method to
iteratively solve the saddle-point system. The computational results are reported in Tables 5.1–
5.3. Note that if the mesh size h is halved, the problem size grows by a factor of 8. Besides,
there are three unknowns per grid point. The 1-level semiseparable order is set to be 6 for
all the numerical experiments in this part. The iterative solver is stopped if the 2-norm of the
residual is reduced by a factor of 10−6. The Hankel blocks approximation is chosen as the
model order reduction method. The “preconditioning”, “MINRES”, and “total” columns have
the same meanings as in the previous tables.

We can see from Tables 5.1–5.3 that for fixed h and β, the number of iterations decreases as
kr increases. A small kr is needed to compute the preconditioner efficiently. With the increase
of kr, the time to compute the preconditioner also increases. Since only the Schur complements
in the first kr steps are computed, the time to compute the preconditioner increases less than
linearly while halving the mesh size h. This is illustrated by the “preconditioning” columns in
Tables 5.1–5.3. Moreover, by choosing proper kr, the block MSSS preconditioner also gives
virtually mesh size independent convergence and regularization parameter almost independent
convergence while the computational complexity is less than linear, which can also be observed
from Tables 5.1–5.3.
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TABLE 5.1
Block MSSS preconditioner for optimal control of 3D Poisson equation with β = 10−1.

problem size h kr preconditioning (sec.) iterations MINRES (sec.) total (sec.)

1.54e+03 2−3

1 1.59 16 17.41 19.01
2 2.76 10 11.09 13.85
3 4.20 6 7.08 11.28
4 5.68 6 7.15 12.82

1.23e+04 2−4

1 3.35 30 139.81 143.16
2 6.47 18 86.77 93.24
3 9.88 12 59.30 69.18
4 13.36 10 50.42 63.77

9.83e+04 2−5

2 14.47 38 761.27 775.75
3 22.95 24 503.24 526.18
4 33.51 18 397.82 431.33
5 42.83 14 321.34 364.17

7.86e+05 2−6 7 215.42 20 2156.24 2371.66
8 315.62 18 2024.42 2340.04

TABLE 5.2
Block MSSS preconditioner for optimal control of 3D Poisson equation with β = 10−2.

problem size h kr preconditioning (sec.) iterations MINRES (sec.) total (sec.)

1.54e+03 2−3

1 1.48 14 15.49 16.97
2 2.93 8 9.31 12.24
3 4.29 8 9.22 13.51
4 6.07 6 7.17 13.24

1.23e+04 2−4

1 3.56 30 141.86 145.42
2 7.26 16 86.04 86.04
3 10.59 12 59.85 70.44
4 13.36 8 42.63 56.82

9.83e+04 2−5

2 15.86 36 726.65 742.51
3 27.34 24 504.29 531.63
4 35.72 18 408.10 443.82
5 50.33 14 356.48 406.80

7.86e+05 2−6 7 216.87 20 2154.61 2371.48
8 314.44 18 2050.43 2364.87

TABLE 5.3
Block MSSS preconditioner for optimal control of 3D Poisson equation with β = 10−3.

problem size h kr preconditioning (sec.) iterations MINRES (sec.) total (sec.)

1.54e+03 2−3

2 2.90 14 15.36 19.01
3 4.44 14 15.60 13.85
4 6.13 12 13.61 11.28
5 7.68 12 13.39 12.82

1.23e+04 2−4

2 6.80 14 70.27 143.16
3 13.04 10 53.51 93.24
4 20.34 10 53.79 69.18
5 17.22 10 52.10 63.77

9.83e+04 2−5

2 14.52 32 647.86 775.75
3 22.43 22 459.30 526.18
4 30.73 16 347.96 431.33
5 40.11 12 273.07 364.17

7.86e+05 2−6
6 183.13 22 2880.90 3064.03
7 214.31 20 2419.73 2634.04
8 315.58 16 1843.61 2159.19

5.2. Global preconditioners. In the previous subsection, we studied the performance
of the block MSSS preconditioner for the optimal control of 3D Poisson equation. Here we
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extend the technique to bound the 2-level semiseparable order of the Schur complements for
the symmetric indefinite system. While the analysis in [14] holds only for the symmetric
positive definite matrix case, our numerical experiments illustrate that the fast convergence
property of the Schur complements also holds for the symmetric indefinite case.

The saddle-point system obtained by using the discretize-then-optimize approach has the
following form,

(5.4) A =

2βM 0 −M
0 M KT

−M K 0

 ,
where K is the stiffness matrix as given in (5.2), and M is the mass matrix. Since all these
matrices are from the discretization of 3D PDEs,K andM have the same 3-level SSS structure
as shown in (5.2). Here we can apply Lemma 3.5 again to permute the global saddle-point
matrix A (5.4) into a global MSSS matrix Ā. The permuted global saddle-point matrix Ā has
the same MSSS structure as subblocks of A, i.e.,

Ā =


D̄ L̄
L̄ D̄ L̄

L̄ D̄
. . .

. . . . . . L̄
L̄ D̄

 ,

where D̄ and L̄ are obtained via Lemma 3.5. Since Ā is a symmetric indefinite matrix, its
Schur complements in computing the LU factorization are also indefinite. To compute an LU
factorization, the Schur complements are computed via the following recursions,

{
S̄k = D̄, if k = 1,

S̄k = D̄ − L̄S̄−1
k−1L̄, if k ≥ 2.

Due to the indefiniteness of D̄, the Schur complements are also indefinite. We apply the same
method as introduced in the previous section: we compute the Schur complements of the first
kr steps and use the Schur complement at step kr to approximate the Schur complements
afterwards. This gives,


S̄k = D̄, if k = 1,

S̄k = D̄ − L̄S̄−1
k−1L̄, if 2 ≤ k ≤ kr,

S̄k = S̄kr , if k > kr.

By using this approximation for the permuted global system, we can compute the global MSSS
preconditioner and apply it to iteratively solve the saddle-point system. The computational
results are given in Tables 5.4–5.6.
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TABLE 5.4
Global MSSS preconditioner for the optimal control of 3D Poisson equation for β = 10−1.

problem size h kr iterations preconditioning (sec.) IDR(4) (sec.) total (sec.)

1.54e+03 2−3
1 3 3.84 1.96 5.79
2 3 4.95 1.59 6.53
3 2 7.70 1.08 8.78

1.23e+04 2−4
2 6 13.37 15.19 28.56
3 4 22.39 10.79 33.17
4 3 33.67 8.75 42.42

9.83e+04 2−5
2 8 41.04 106.14 147.18
3 7 78.87 109.18 188.05
4 6 143.04 109.26 252.31

7.86e+05 2−6
2 14 153.60 1174.12 1327.72
3 9 245.24 1101.88 1347.12
4 8 1152.20 1841.57 2993.78

TABLE 5.5
Global MSSS preconditioner for the optimal control of 3D Poisson equation for β = 10−2.

problem size h kr iterations preconditioning (sec.) IDR(4) (sec.) total (sec.)

1.54e+03 2−3
1 4 3.39 2.69 6.09
2 3 4.92 1.61 6.53
3 2 8.13 1.09 9.22

1.23e+04 2−4
2 7 13.41 17.98 31.40
3 4 22.39 10.78 33.17
4 3 34.16 8.80 42.95

9.83e+04 2−5
2 8 38.71 103.94 142.65
3 6 77.30 111.30 188.61
4 4 155.59 103.77 259.36

7.86e+05 2−6
2 14 209.47 1362.70 1572.17
3 9 290.69 1132.86 1423.55
4 8 1181.81 2277.18 3458.99

TABLE 5.6
Global MSSS preconditioner for the optimal control of 3D Poisson equation for β = 10−3.

problem size h kr iterations preconditioning (sec.) IDR(4) (sec.) total (sec.)

1.54e+03 2−3
1 9 2.63 5.26 7.89
2 4 5.30 2.72 8.03
3 3 6.32 1.64 7.96

1.23e+04 2−4
2 6 10.54 15.25 25.79
3 4 19.41 14.26 33.68
4 4 31.65 17.67 49.32

9.83e+04 2−5
2 8 35.08 104.76 139.84
3 7 78.38 108.77 187.15
4 4 134.06 93.27 227.44

7.86e+05 2−6
2 16 162.84 1594.91 1757.75
3 9 322.00 1328.26 1650.26
4 8 1503.76 2218.80 3722.56

Since we just compute the first few steps of the Schur complements, the computational
complexity of constructing the global MSSS preconditioner is less than linear, which can be
observed from the “preconditioning” columns for the same kr in Tables 5.4–5.6. The number of
iterations decreases as kr increases for the same β and h. By using a small kr, we have already
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reduced the number of iterations significantly by the global MSSS preconditioner compared
with the block-diagonal MSSS preconditioner. Moreover, the global MSSS preconditioner
gives virtually both mesh size h and regularization parameter β independent convergence for
properly chosen kr.

REMARK 5.1. Compared with the results for the block-diagonal MSSS preconditioner in
Tables 5.1–5.3, the global MSSS preconditioner reduces the number of iterations significantly.
Even though more time is spent in computing the global MSSS preconditioner for the same
group of numerical experiment, the time to iteratively solve the preconditioned system is much
reduced due to the fact that fewer iterations are needed. Moreover, the total computation time
for the global MSSS preconditioner is less than that for the block MSSS preconditioner.

REMARK 5.2. Since there is no efficient model order reduction to reduce the 2-level
semiseparable order, the 2-level semiseparable order continues growing before kr is reached.
It is shown in Tables 5.4–5.6, when kr changes from 3 to 4 for h = 2−6, the time to compute
the global MSSS preconditioner increases dramatically. This is due to the fact that when
kr changes from 3 to 4, the 2-level semiseparable order is not bounded by a small number,
but by a moderate constant. However, the computational complexity increases only slightly
more than linear when h changes from 2−5 to 2−6 for kr = 4. Meanwhile, the global MSSS
preconditioner already gives satisfactory performance by choosing kr = 3 for h = 2−6.

6. Conclusions. In this paper, we have studied the multilevel sequentially semiseparable
(MSSS) preconditioners for saddle-point systems that arise from the PDE-constrained opti-
mization problems. By exploiting the MSSS structure of the blocks of the saddle-point system,
we are able to construct the preconditioners and solve the preconditioned system in linear
computational complexity for 2D problems and almost linear computational complexity for
3D problems. To reduce the computational complexity of computing the preconditioners, we
have proposed a new model order reduction algorithm based on the approximate balanced
truncation for SSS matrices. We evaluated the performance of the new model order reduction
algorithm by comparing it with the standard model order reduction algorithm (the Hankel
blocks approximation). Numerical experiments illustrate that our model order reduction
algorithm is computationally cheaper than the standard method. Besides, it shows that for
the optimal control of 2D PDEs, the global preconditioner reduced the number of iterations
significantly compared with the block preconditioners. Both preconditioners give mesh size
independent convergence and have linear computational complexity. Moreover, the global
MSSS preconditioner yields regularization parameter independent convergence while the block
MSSS preconditioner does not have this property.

For PDE-constrained optimization problem in 3D, since efficient model order reduction
algorithm for 2- or higher- level SSS matrices is still an open problem, we apply an alternative
approach to bound the 2-level semiseparable order. Numerical experiments also illustrate that
the global MSSS preconditioner gives virtually both mesh size and regularization parameter
independent convergence while the block MSSS preconditioner just yields mesh size almost
independent convergence.

The next step of this research will be focused on applying this preconditioning technique
to the optimal control of the Navier-Stokes equation. This has a wide range of applications
such as control a wind farm to optimize the output power.
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