
Received: 3 May 2019 Revised: 6 October 2020 Accepted: 13 October 2020

DOI: 10.1002/nla.2349

R E S E A R C H A R T I C L E

Preconditioning Navier–Stokes control using multilevel
sequentially semiseparable matrix computations

Yue Qiu1 Martin B. van Gijzen2 Jan-Willem van Wingerden3

Michel Verhaegen3 Cornelis Vuik2

1School of Information Science and
Technology, ShanghaiTech University,
Shanghai, China
2Delft Institute of Applied Mathematics,
Delft University of Technology, Delft, The
Netherlands
3Delft Center for Systems and Control,
Delft University of Technology, Delft, The
Netherlands

Correspondence
Cornelis Vuik, Numerical Analysis Group,
Delft University of Technology, Van
Mourik Broekmanweg 6, Delft, The
Netherlands.
Email: c.vuik@tudelft.nl

Abstract
In this article, we study preconditioning techniques for the control of the
Navier–Stokes equation, where the control only acts on a few parts of the
domain. Optimization, discretization, and linearization of the control problem
results in a generalized linear saddle-point system. The Schur complement
for the generalized saddle-point system is very difficult or even impossible to
approximate, which prohibits satisfactory performance of the standard block
preconditioners. We apply the multilevel sequentially semiseparable (MSSS)
preconditioner to the underlying system. Compared with standard block pre-
conditioning techniques, the MSSS preconditioner computes an approximate
factorization of the global generalized saddle-point matrix up to a prescribed
accuracy in linear computational complexity. This in turn gives parameter
independent convergence for MSSS preconditioned Krylov solvers. We use a
simplified wind farm control example to illustrate the performance of the MSSS
preconditioner. We also compare the performance of the MSSS preconditioner
with the performance of the state-of-the-art preconditioning techniques. Our
results show the superiority of the MSSS preconditioning techniques to standard
block preconditioning techniques for the control of the Navier–Stokes equation.

K E Y W O R D S

generalized saddle-point systems, MSSS preconditioners, Navier–Stokes control

1 INTRODUCTION

Nowadays, optimal control problems in practice are mostly solved with nonlinear programming (NLP) methods based
on some discretization strategies of the original continuous problems in the functional space.1 Once the optimization
problem is discretized, the variables to be optimized are reduced to a finite-dimensional space. This results in a parameter
optimization problem.2 Simultaneous strategies, explicitly perform a discretization of the partial differential equations
(PDEs) that prescribe the dynamics of the system as well as the cost function, that is, PDE simulation and the optimization
procedure proceed simultaneously, cf. References 3-5. Sequential strategies, on the other hand, just parameterize the
control input and employ numerical schemes in a black-box manner by utilizing the implicit function theorem (IFT).2,6,7

The later approach turns out to be very efficient when the dimension of the control variable is much smaller than the
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.

Numer Linear Algebra Appl. 2020;e2349. wileyonlinelibrary.com/journal/nla 1 of 21
https://doi.org/10.1002/nla.2349

https://orcid.org/0000-0003-0360-0442
https://orcid.org/0000-0002-5988-9153
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnla.2349&domain=pdf&date_stamp=2020-11-12

2 of 21 QIU et al.

system states which are described by the PDEs,2,7 where the optimal shape design,8 boundary control of fluid dynamics9,10

are applications for this type of optimization approaches. For the simultaneous approach, its high potential in terms of
efficiency and robustness turns out to be very difficult to be realized when the sizes of the states and inputs are both very
large. This yields a very large-scale optimization problem, where the equality constraints by PDEs are appended to the
augmented cost function. The Lagrangian multipliers, the number of which is the same as the state variables of PDEs,
make the size of the optimization problem even bigger.

Just like many problems in science and engineering, the most time-consuming part for the optimal control of PDEs
is to solve a series of linear systems arising from the PDE discretization.3 With increasing improvement of computa-
tional resources and the advancement of numerical techniques, larger problems can be taken into consideration.11 An
important building block for the optimal control of PDEs is the preconditioning techniques to accelerate the simulation
of PDEs. Many efforts have been dedicated to the development of efficient and robust preconditioning techniques for
the distributed control problems where the control is distributed throughout the domain,12-21 or the boundary control
problems where only boundary conditions can be regulated.22-24 For the in-domain control problems where the control
only acts on a few parts of the domain, preconditioning techniques developed for the distributed control problems do not
give satisfactory performance. This is because the developed preconditioning techniques highly depend on an efficient
approximation of the Schur complement of the block linear system arising from the discretized optimality condition.20,25

Research on in-domain control problems in engineering focuses on specific objective1,22,26 without considering efficient
preconditioning techniques.

In this article, we focus on efficient and robust preconditioning techniques for the in-domain control of the
Navier–Stokes equation, which is to the best of our knowledge the first devoted effort. We use a simplified wind
farm control example to illustrate the performance of our preconditioning technique, that is, the so-called multilevel
sequentially semiseparable (MSSS) preconditioner. The MSSS preconditioner is proposed for PDE-constrained optimiza-
tion problems27 and later studied for some benchmark problems of computational fluid dynamics (CFD).28 Applying
the implicit function theorem (IFT) at the optimization step, we can reuse the preconditioners for the linearized
Navier–Stokes equation to solve the forward sensitivity equations for the computations of the gradient and Hessian
matrix. This reduces the computational cost significantly. We then study the MSSS preconditioner for the resulting
generalized saddle-point system from optimization. In contrast to the standard block preconditioners that require to
approximate the Schur complement of the block linear system, the MSSS preconditioner computes an approximate fac-
torization of the global system matrix up to a prescribed accuracy in linear computational complexity. This is a big
advantage over the standard block preconditioners. We evaluate the performance of the MSSS preconditioner using
incompressible flow and fast iterative solver software (IFISS)29,301 and compare with the state-of-the-art preconditioning
techniques.

The advantage of MSSS matrix computations is their simplicity and low computational cost, which is (r3
kN). Here, N

is the matrix size, rk is the rank of the off-diagonal blocks which is usually much smaller than N.31,32 Related structured
matrices include hierarchical matrices (-matrix),33 2-matrices,34,35 hierarchically semiseparable (HSS) matrices,36,37

with computational complexity (Nlog𝛼N) for some moderate 𝛼. -matrices originate from approximating the kernel
of integral equations and have been extended to elliptic PDEs.38,39 2-matrices and HSS matrices are specific subsets of
-matrices and HSS matrices have been successfully applied in multifrontal solvers.37 Efforts have been devoted to pre-
conditioning symmetric positive definite systems by exploiting the HSS matrix structure40 and unsymmetric systems by
-matrix computations.39,41 To have a comprehensive summary of different hierarchical structures and techniques, as
well as their applicability and limitations, we refer to.42 For interested readers to gain more insight on the latest devel-
opment in hierarchical matrices by leveraging machine learning techniques, we recommend.43 To keep a clear structure
of this article, we only focus on the MSSS preconditioning techniques. For related work on exploiting the low-rank
property of the subblocks in the hierarchical factorization of the system matrix for preconditioning or direct solution, we
refer to.44-48

The structure of this article is organized as follows. In Section 2, we use a simple wind farm control example to formu-
late an in-domain Navier–Stokes control problem. Applying numerical approaches to solve this optimization problem,
we obtain a generalized saddle-point system in Section 3. To preconditioning this generalized saddle-point system, we
study the MSSS preconditioning technique in Section 4. In Section 5, we perform numerical experiments to illustrate

1IFISS is a computational laboratory for experimenting with state-of-the-art preconditioned iterative solvers for the discrete linear equation systems
that arise in incompressible flow modeling

QIU et al. 3 of 21

the performance of the MSSS preconditioning techniques for this type of problems. We also study the state-of-the-art
preconditioning techniques in Section 5 as a comparison. Conclusions are drawn in Section 6.

2 PROBLEM FORMULATION

In this section, we use wind farm control as an example to formulate the in-domain Navier–Stokes control problem. Many
research activities illustrate that operating all the turbines in a wind farm at their own optimal state gives suboptimal
performance of the overall wind farm.49 Wind farm control aims to optimize the total power captured from the wind
by taking coordinating control strategies to the turbines in the wind farm. By appropriately choosing the computational
domain for the flow, the wind farm control can be formulated as an optimal flow control problem where the dynamics
of the flow are described by the incompressible Navier–Stokes equation. For the wind farm control, the control only acts
on a few parts of the domain where the turbines are located. This in turn gives an in-domain flow control problem. In
the next part, we aim to build a simple wind farm model and use this model to formulate the in-domain Navier–Stokes
control problem.

2.1 Fluid dynamics

Some efforts have been devoted to develop a suitable model to simulate the wake effect in the wind farm, cf. References
50,51 for a general survey and49 for recent developments. In general there exist two approaches for modeling of the wake.
One is the heuristic approach that does not solve a flow equation but uses some rules of thumb,49 a typical example is the
Park model.52 The second approach is solving an incompressible Navier–Stokes or Euler equation, cf. References 11. In
this article, we use the second approach to model the flow in the wind farm. Moreover, some recent research try to take
the boundary layer and some physical behavior into account. This in turn requires a more complicated turbulent flow
model for the wind farm simulation study.11,51,53 However, these research activities do not take efficient preconditioning
techniques into account but focus on physical properties of the flow for the wind farm simulation. In this article, we focus
on designing efficient and robust preconditioning techniques and we evaluate the performance of our preconditioning
techniques by IFISS. We only consider flow problems that can be addressed within the framework of IFISS.

Consider the stationary incompressible Navier–Stokes equation in Ω ∈ R2 that is given by

−𝜈Δu + (u ⋅ ∇)u + ∇p = f,
∇ ⋅ u = 0, (1)

where 𝜈 is the kinematic viscosity, u is the velocity field, p denotes the pressure, and f is a source term. Here Ω is a
bounded domain with its boundary given by Γ = 𝜕Ω = 𝜕ΩD ∪ 𝜕ΩN , where 𝜕ΩD denotes the boundary where Dirichlet
boundary conditions are prescribed and 𝜕ΩN represents the boundary where Neumann boundary conditions are imposed.
The Reynolds number Re ∈ R+ describes the ratio of the inertial and viscous forces within the fluid54 and is defined by

Re ≜
urLr

𝜈
,

where ur ∈ R+ is the reference velocity, Lr ∈ R+ is the reference distance that the flow travels. The Reynolds number plays
an important role in the flow equation that describes whether the flow under consideration is laminar or turbulent. In
many engineering problems, turbulent flow happens when the Reynolds number Re> 2000.54 In the case of flow through
a straight pipe with a circular cross-section, at a Reynolds number below a critical value of approximately 2040, fluid
motion will ultimately be laminar, whereas at larger Reynolds numbers, the flow can be turbulent.55 Since we focus on
efficient preconditioning techniques for the in-domain flow control using IFISS in this article and no turbulent flow model
is included in IFISS, we consider a flow with Reynolds number Re= 2000, although this does not correspond to practical
flow for wind farm control.

To study the aerodynamics of the wind farm, we cannot set an infinite dimensional computational domain. We can
prescribe suitable boundary conditions for the flow that in turn gives a finite domain. We set a standard reference domain
Ω = [−1, 1] × [−1, 1] for the wind farm simulation study. The reference velocity ur is set to 1.

4 of 21 QIU et al.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y
F I G U R E 1 Resolved velocity without outer source

The turbines in the wind farm are located in a line that follows the stream direction, and the leftmost turbine is
placed at the center of the domain. Such configurations are widely used in the wind farm simulation studies.11,52 Here
the diameter of the turbine is set to be 1

64
of the reference computational domain. The distance between turbines is set to

be five times of the diameter of the turbines.56 Constant inflow is imposed on the left boundary and is given by

ux = uc, uy = 0,

or equivalently

u = −ucn, (2)

where n is the unit normal vector of the boundary that points outwards. For top, right, and bottom boundary that are far
away from the turbines, the flow is considered to be free stream and the zero stress boundary condition for outflow given
by (3) is prescribed,

𝜈
𝜕u
𝜕n

− pn = 0. (3)

Here, 𝜕u
𝜕n

is the Gâteaux derivative at 𝜕ΩN in the direction of n. This boundary condition states that the flow can move
freely across the boundary by resolving the Navier–Stokes equation (1).

Associated with the prescribed boundary condition (2)–(3), the resolved velocity without outer source for the
Navier–Stokes equation (1) is shown in Figure 1.

2.2 Wind turbines

Wind turbines can be modeled as outer sources that interact with the flow. Two widely used methods for wind turbine
modeling are the actuator disk method (ADM)57 and the actuator line method.58 In this article, we use the ADM method
for wind turbines, where the thrust force is denoted by,

f = −CT𝜌Aû2
d. (4)

Here ûd is the average axial flow velocity at the turbine disk, CT is the disk based thrust coefficient, 𝜌 is the density of
the flow, and A is the area that is swept by the turbine blades.

2.3 Objective function

The wind farm control aims to maximize the total power captured by all the wind turbines in the wind farm, which can
be represented as

Pt =
Nt∑
j=1

− fjûj = 𝜌A
Nt∑
j=1

CTj û
3
j ,

where Nt is the number of turbines in the wind farm and ûj is the uniform disk averaged axial flow speed of the jth turbine.

QIU et al. 5 of 21

To summarize, the in-domain Navier–Stokes control problem can be formulated as the following optimization
problem,

min
CT ,u

−
Nt∑
j=1

CTj û
3
j

s.t. − 𝜈Δu + (u ⋅ ∇)u + ∇p = f(CT ,u),
∇ ⋅ u = 0,
0 ≤ CTj ≤ 1, (j = 1, … ,Nt). (5)

Here CTj varies from 0 to 1 based on individual pitch control and yaw control of the turbine j, f(CT , u)
is a nonlinear function and it is of value (4) at the position where turbines are placed and 0 elsewhere, and
CT =

[
CT1 CT2 … CTNt

]T .

3 REDUCED NONLINEAR PROGRAMMING

In the previous section, we formulated an in-domain control problem (5) by using a wind farm control example. The size
of the control variable Nt, which is the number of turbines, is much smaller than the size of the state variables (number
of velocity and pressure grid unknowns). Therefore, we use the sequential approach that is based on the implicit function
theorem to solve a reduced optimization problem.

3.1 Reduced optimization problem

Denote the equality constraints in (5) for the flow equation by h(CT , 𝜙) = 0 where 𝜙 = (u, p), and the objective function
by g(CT , 𝜙), then the optimization problem (5) can be written as

min
CT ,𝜙

g(CT , 𝜙)

s.t. h(CT , 𝜙) = 0,
0 ≤ CT ≤ 1. (6)

The equality constraint in (5) implies that the velocity and pressure 𝜙 is a function of f. For the existence of this
function, cf. References 7 for a proof. Since f is an explicit function of CT , 𝜙 is a function of CT and denote this function by
𝜙 = s(CT). The function s(CT) is not explicitly computed but is obtained implicitly by solving the flow equation (1) using
given CT .

By using the implicit function theorem, we can rewrite the optimization problem in a reduced form,

min
CT

g(CT , s(CT))

s.t. 0 ≤ CT ≤ 1. (7)

Newton-type methods, which are second-order methods, are well-suited to solve this type of nonlinear programming
(NLP) problems. An alternative approach to solve this type of problem is the (reduced) sequentially quadratic program-
ming ((R)SQP).59 For the reduced optimization problem (7), these two types of methods are quite similar and we refer to7

for a detailed discussion.
In this section, we apply Newton’s method to solve the reduced NLP problem (7). The reason to choose the

Newton’s method is that the Hessian matrix for this problem is of small size and can be computed explicitly. More-
over, we can reuse the information from the last Newton step of solving the nonlinear flow equation to compute
the gradient and the Hessian matrix, which makes Newton’s method computationally competitive for this optimiza-
tion problem. This will be explained in the following part. The Newton’s method for this problem is described
by Algorithm 1.

6 of 21 QIU et al.

Algorithm 1. Reduced Newton’s algorithm for (6)
1:

Input: Initial guess C(0)
T , maximal optimization steps itmax, stop tolerance 𝜀0, k = 0

2: while ‖𝛻gk‖>𝜀0 ςς k ≤ itmax do ⊳ optimization loop
3: solve h(C(k)

T , 𝜙) = 0 to compute 𝜙(k) ⊳ cf. Section 3.2
4: compute the gradient 𝛻gk at (C(k)

T , 𝜙(k)) ⊳ cf. Section 3.3
5: compute the Hessian matrix Hk at (C(k)

T , 𝜙(k)) ⊳ cf. Section 3.3
6: compute the update ΔC(k)

T = arg minΔCT
T HkΔCT + 𝛻gT

k ΔCT

7: C(k+1)
T ← C(k)

T + ΔC(k)
T

8: Check inequality constraints by projection
9: if CTj>1 then

10: CTj = 1 ⊳ project on boundary
11: else if CTj<0 then
12: CTj = 0 ⊳ project on boundary
13: end if
14: k ← k + 1
15: end while
16:

Output: Optimal control variable CT and corresponding solution of u

In Algorithm 1, we denote the optimization step as the outer iteration, and at each outer iteration, we need to
solve a Navier–Stokes equation with nonlinear right-hand side. This step is denoted by the inner iteration in line 3 of
the algorithm. From the description of Algorithm 1, it is clear that the most time-consuming part for this optimiza-
tion problem is the solution of the nonlinear flow equation and the computations of the gradient and Hessian matrix.
Therefore, efficient numerical methods need to be developed.

We should emphasize that Algorithm 1 has the advantage when the dimension of the control is much smaller
than the dimension of the system states. For such cases, the work to solve the forward sensitivity equation to com-
pute the gradient and the Hessian matrix at lines 4 and 5 of the Algorithm 1 is not big since the system matrices
for such linear systems in lines 4 and 5 are the same with the system matrix of the last nonlinear step to solve the
Navier–Stokes equation in line 3. Once we have efficient preconditioning technique to solve the generalized saddle-point
system resulting from the Navier–Stokes equation with nonlinear right-hand side in line 3, we can also compute
the gradient and Hessian matrix easily in lines 4 and 5 of Algorithm 1. For the case when the dimension of the
control variables is comparable with the dimension of the systems states, we refer to7,60 for the adjoint equation
approach.

We would like to point out here that for the time-dependent in-domain control problems, our preconditioning tech-
nique also fits for such cases when we apply the widely used adjoint equation approach to compute the gradient and the
Hessian matrix. For the adjoint equation approach, we need to solve the Navier–Stokes equation forward in time and the
adjoint equation backward in time. At each time step to compute the solution of the forward and the adjoint PDE, we
need to solve a linear equation with generalized saddle-point system structure. The MSSS preconditioning technique fits
well for such a framework.

3.2 Computations of the flow equation

At each outer iteration of Algorithm 1, we need to solve a nonlinear flow equation at line 3 of Algorithm 1. We explicitly
write this equation in decomposed form as

−𝜈
(

𝜕2

𝜕x2 + 𝜕2

𝜕y2

)
ux +

(
ux

𝜕

𝜕x
+ uy

𝜕

𝜕y

)
ux +

𝜕

𝜕x
p = fx(CT ,ux,uy),

QIU et al. 7 of 21

−𝜈
(

𝜕2

𝜕x2 + 𝜕2

𝜕y2

)
uy +

(
ux

𝜕

𝜕x
+ uy

𝜕

𝜕y

)
uy +

𝜕

𝜕y
p = fy(CT ,ux,uy),

𝜕

𝜕x
ux +

𝜕

𝜕y
uy = 0. (8)

Equation (8) is a nonlinear equation where the nonlinearity is caused by both the velocity convection operator and
the nonlinear right-hand side. To solve such a nonlinear equation (8), we apply the Newton’s method. At each Newton
iteration of step 3 in Algorithm 1, we need to solve a linear system of the following type,

⎡⎢⎢⎢⎣
𝜈K + N + Jn

xx + Jf
xx Jn

xy + Jf
xy BT

x

Jn
yx + Jf

yx 𝜈K + N + Jn
yy + Jf

yy BT
y

Bx By 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Δux

Δuy

Δp

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
a
b
c

⎤⎥⎥⎥⎦ , (9)

after discretizing the nonlinear partial differential equation (8) using mixed finite element method. Here N is the convec-
tion matrix, Jn

(⋅) denote the Jacobian matrices from the nonlinear velocity convection term, and Jf
(⋅) represent the Jacobian

matrices from the nonlinear right-hand side. Since only a small part of the domain is controlled, f x and f y are zero almost
everywhere in the domain except in the vicinity where the turbines are placed. This in turn gives singular Jacobian
matrices Jf

(⋅).
Comparing system (9) with the standard linearized Navier–Stokes equation by the Newton’s method given by

⎡⎢⎢⎢⎣
𝜈K + N + Jn

xx Jn
xy BT

x

Jn
yx 𝜈K + N + Jn

yy BT
y

Bx By 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Δux

Δuy

Δp

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
a
b
c

⎤⎥⎥⎥⎦ , (10)

we see that the linearized flow equation (9) is a perturbed linearized Navier–Stokes equation with singular perturbation
in the matrix blocks that correspond to the velocity.

Rewrite Equation (10) in a compact form as [
A BT

B 0

][
Δu
Δp

]
=

[
f
g

]
, (11)

and Equation (9) is given by a perturbed form[
A + Jf BT

B 0

][
Δu
Δp

]
=

[
f
g

]
. (12)

The linear system (12) is large, sparse, and highly indefinite. It belongs to the type of generalized saddle-point system.61

Efficient preconditioning techniques are needed to solve such systems using Krylov methods.
The standard approach for preconditioning (12) are given by the following block preconditioners,

P1 =

[
A + Jf

−S

]
, P2 =

[
A + Jf

B S

]
,

where S=−B(A+ Jf)−1BT is the Schur complement. It is shown in Reference 61 that the preconditioned spectrum by
using P1 has three distinct eigenvalues and one eigenvalue using P2 with minimal polynomial of degree 2. Therefore,
Krylov methods such as GMRES or IDR(s) compute the solution in at most three steps by using P1 and two steps with
P2. The key in applying the block preconditioners P1 or P2 lies in an efficient approximation of the Schur complement
S̃ ≈ S and

|𝜆(S̃−1S)| ≤ 𝛾,

8 of 21 QIU et al.

where 𝛾 is a constant that is independent of the mesh sizes and Reynolds number.
In the past decades, efforts for efficient approximation of the Schur complement of the Navier–Stokes equation,

that is, Ŝ ≈ Sns = −BA−1BT have been made, which have resulted in the SIMPLE method,62 the augmented Lagrangian
preconditioner,63 the pressure convection-diffusion (PCD) preconditioner64 among others. However, the aforementioned
preconditioners do not perform well to solve the perturbed linear system (12) due to the presence of the perturbed term
Jf . The matrix Jf comes from the discretization and linearization of the nonlinear source term f given by (4) and is sin-
gular since f only acts on part of the computational domain. In general, the singular matrix Jf does not have a low-rank
factorized form, which makes the Schur complement even more difficult to approximate. Numerical experiments in
Section 5 illustrate the performance of block preconditioner P2 for (12) where we approximate the Schur complement
S=−B(A+ Jf)−1BT using the PCD preconditioner, that is, SPCD ≈−BA−1BT ≈−B(A+ Jf)−1BT .

As we will see in Section 4, all the blocks of the matrix in (9) have an MSSS structure, it is therefore natural to permute
the matrix with MSSS blocks into a global MSSS matrix. With this permutation, we can compute an approximate fac-
torization. This factorization gives a global MSSS preconditioner for the system (9). This global preconditioner does not
require to approximate the Schur complement of the generalized saddle-point system (12). Details of this preconditioning
technique will be introduced in Section 4.

3.3 Computations of partial derivatives

Denote the reduced gradient of the cost function in (7) by

∇g =
[

𝜕

𝜕CT1
g 𝜕

𝜕CT2
g … 𝜕

𝜕CTNt

g
]T

.

The gradient can be computed using

𝜕

𝜕CTj

g =
𝜕g
𝜕CTj

+
𝜕g
𝜕ux

𝜕ux

𝜕CTj

+
𝜕g
𝜕uy

𝜕uy

𝜕CTj

, (j = 1, 2, … ,Nt).

Since the cost function g is an analytic function of CT , ux, and uy, the partial derivatives 𝜕g
𝜕CTj

, 𝜕g
𝜕ux

, and 𝜕g
𝜕uy

are trivial to

compute. Next, we show how to compute the partial derivatives 𝜕ux
𝜕CTj

and 𝜕uy

𝜕CTj
.

Assume that ux, uy, and p are twice differentiable with respect to CTj(j = 1, 2, … ,Nt), and that the first- and
second-order derivatives have continuous second-order derivative in Ω, that is,

𝜕ux

𝜕CTj

,
𝜕uy

𝜕CTj

,
𝜕p
𝜕CTj

∈ C2(Ω),

and
𝜕2ux

𝜕CTi𝜕CTj

,
𝜕2uy

𝜕CTi𝜕CTj

,
𝜕2p

𝜕CTi𝜕CTj

∈ C2(Ω),

for (i, j= 1, 2, … , Nt). Then we can compute the first-order derivative by solving

− 𝜈

diffusion operator
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

𝜕2

𝜕x2 + 𝜕2

𝜕y2

)(
𝜕ux

𝜕CTj

)
+

convection operator
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

ux
𝜕

𝜕x
+ uy

𝜕

𝜕y

)(
𝜕ux

𝜕CTj

)

+

linear term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
𝜕ux

𝜕x
𝜕ux

𝜕CTj

+ 𝜕ux

𝜕y
𝜕uy

𝜕CTj

)

QIU et al. 9 of 21

+ 𝜕

𝜕x

(
𝜕p
𝜕CTj

)
= 𝜕

𝜕CTj

fx(CT ,ux,uy),

− 𝜈

(
𝜕2

𝜕x2 + 𝜕2

𝜕y2

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
diffusion operator

(
𝜕uy

𝜕CTj

)
+
(

ux
𝜕

𝜕x
+ uy

𝜕

𝜕y

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

convection operator

(
𝜕uy

𝜕CTj

)
+

(
𝜕uy

𝜕x
𝜕ux

𝜕CTj

+
𝜕uy

𝜕y
𝜕uy

𝜕CTj

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

linear term

+ 𝜕

𝜕y

(
𝜕p
𝜕CTj

)
= 𝜕

𝜕CTj

fy(CT ,ux,uy),

𝜕

𝜕x

(
𝜕ux

𝜕CTj

)
+ 𝜕

𝜕y

(
𝜕uy

𝜕CTj

)
= 0. (13)

Here the partial differential equation (13) is obtained by computing the first-order derivative with respect to CTj(j =
1, 2, … ,Nt) for the flow equation (8) and making use of the linearity of the diffusion operator and the divergence
operator.

Note that Equation (13) is a linear partial differential equation. It is often called the forward sensitivity equation
of (8).65 Homogeneous Dirichlet boundary conditions are imposed on the constant inflow boundary and natural boundary
conditions are prescribed for the outflow boundary for the sensitivity equation (13). We use a mixed-finite element method
to discretize (13) and use the following notations

𝜒j =
[(

𝜕ux
𝜕CTj

)T (
𝜕uy

𝜕CTj

)T (
𝜕p
𝜕CTj

)T]T

.

We reuse the same notation to denote its discrete analog to get a linear system given by

⎡⎢⎢⎢⎣
𝜈K + Nl + Jnl

xx + Jf
xx Jnl

xy + Jf
xy BT

x

Jnl
yx + Jf

yx 𝜈K + Nl + Jnl
yy + Jf

yy BT
y

Bx By 0

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜒j = 𝜁j, (14)

where Nl is the convection matrix, Jnl
xx, Jnl

xy, Jnl
yx, and Jnl

yy are the corresponding Jacobian matrices by linearizing the nonlinear
velocity convection operator, respectively. Jf

xx, Jf
xy, Jf

yx, and Jf
yy are the associating Jacobian matrices that linearize the

nonlinear right-hand side f with respect to CTj . It is easy to verify that the matrix in (14) is just the same system matrix
from the last Newton step of the linearized flow equation (9). The right-hand side vector 𝜁j is obtained by discretizing
known variables in (13). Therefore, the computed preconditioner for the last Newton step to solve the flow equation can
be reused, and the computational work is much reduced.

By stacking 𝜒j, and 𝜁j (j = 1, 2, … , Nt) as

𝜒 =
[
𝜒1 𝜒2 … 𝜒Nt

]
, and 𝜁 =

[
𝜁1 𝜁2 … 𝜁Nt

]
,

we obtain the following linear equations with multiple left-hand sides and multiple right-hand sides

𝜒 = 𝜁. (15)

Here the size of unknowns Nt, is much smaller than the problem size. Block Krylov subspace meth-
ods, such as block IDR(s),66,67 are well-suited to solve all the unknowns simultaneously for this type of
problems.

Next, we can use similar approaches as above for gradient computations to compute the Hessian matrix H, which is
given by

10 of 21 QIU et al.

H =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕2

𝜕C2
T1

g … … 𝜕2

𝜕CT1 𝜕CTNt

g

⋮ ⋱ ⋮

⋮ ⋱ ⋮
𝜕2

𝜕CTNt
𝜕CT1

g … … 𝜕2

𝜕C2
TNt

g

⎤⎥⎥⎥⎥⎥⎥⎦
.

According to second equation in section 3.3, we have
𝜕2

𝜕CTj𝜕CTk

g =
𝜕2g

𝜕CTj𝜕CTk

+
𝜕2g
𝜕u2

x

𝜕ux

𝜕CTk

𝜕ux

𝜕CTj

+
𝜕g
𝜕ux

𝜕2ux

𝜕CTj𝜕CTk

+
𝜕2g
𝜕u2

y

𝜕uy

𝜕CTk

𝜕uy

𝜕CTj

+
𝜕g
𝜕uy

𝜕2uy

𝜕CTj𝜕CTk

. (16)

Since g is an analytic function of CT , ux, uy and we have already computed the first-order derivative 𝜕ux
𝜕CTi

, and 𝜕uy

𝜕CTi
by

solving the sensitivity equation (13). Here we just need to compute the second-order derivatives 𝜕2ux
𝜕CTj

𝜕CTk

, and 𝜕2uy

𝜕CTj
𝜕CTk

for

the computations of the Hessian matrix. We can apply the same technique to the sensitivity equation (13), and we get

− 𝜈

diffusion operator
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

𝜕2

𝜕x2 + 𝜕2

𝜕y2

)(
𝜕2ux

𝜕CTj𝜕CTk

)
+

convection operator
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(

ux
𝜕

𝜕x
+ uy

𝜕

𝜕y

)(
𝜕2ux

𝜕CTj𝜕CTk

)

+

linear term
⏞⏞⏞(
𝜕ux

𝜕x
𝜕2ux

𝜕CTj𝜕CTk

+ 𝜕ux

𝜕y
𝜕2uy

𝜕CTj𝜕CTk

)
+ 𝜕

𝜕x

(
𝜕2p

𝜕CTj𝜕CTk

)

+

known
⏞⏞⏞(

𝜕ux

𝜕CTk

𝜕

𝜕x

(
𝜕ux

𝜕CTj

)
+

𝜕uy

𝜕CTk

𝜕

𝜕y

(
𝜕ux

𝜕CTj

))

+

known
⏞⏞⏞(

𝜕ux

𝜕CTj

𝜕

𝜕x

(
𝜕ux

𝜕CTk

)
+

𝜕uy

𝜕CTj

𝜕

𝜕y

(
𝜕ux

𝜕CTk

))
= 𝜕2

𝜕CTj𝜕CTk

fx(CT ,ux,uy), (17)

− 𝜈

(
𝜕2

𝜕x2 + 𝜕2

𝜕y2

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
diffusion operator

(
𝜕2uy

𝜕CTj𝜕CTk

)
+
(

ux
𝜕

𝜕x
+ uy

𝜕

𝜕y

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

convection operator

(
𝜕2uy

𝜕CTj𝜕CTk

)

+

(
𝜕uy

𝜕x
𝜕2ux

𝜕CTj𝜕CTk

+
𝜕uy

𝜕y
𝜕2uy

𝜕CTj𝜕CTk

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

linear term

+ 𝜕

𝜕x

(
𝜕2p

𝜕CTj𝜕CTk

)

+

(
𝜕ux

𝜕CTk

𝜕

𝜕x

(
𝜕uy

𝜕CTj

)
+

𝜕uy

𝜕CTk

𝜕

𝜕y

(
𝜕uy

𝜕CTj

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

known

+

(
𝜕ux

𝜕CTj

𝜕

𝜕x

(
𝜕uy

𝜕CTk

)
+

𝜕uy

𝜕CTj

𝜕

𝜕y

(
𝜕uy

𝜕CTk

))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

known

= 𝜕2

𝜕CTj𝜕CTk

fy(CT ,ux,uy),

𝜕

𝜕x

(
𝜕2ux

𝜕CTj𝜕CTk

)
+ 𝜕

𝜕y

(
𝜕2uy

𝜕CTj𝜕CTk

)
= 0. (18)

QIU et al. 11 of 21

Equations (17) and (18) are again linear partial differential equations and they are the same equation with
the sensitivity equation (13) but with different right-hand sides. Boundary conditions for (17)–(18) are set by pre-
scribing homogeneous Dirichlet boundary conditions on the constant inflow boundary and natural boundary con-
ditions on the outflow boundary. By using mixed finite element method to discretize the equations (17)–(18),
we have

⎡⎢⎢⎢⎣
𝜈K + Nl + Jnl

xx + Jf ′
xx Jnl

xy + Jf ′
xy BT

x

Jnl
yx + Jf ′

yx 𝜈K + Nl + Jnl
yy + Jf ′

yy BT
y

Bx By 0

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

′

𝛾jk = 𝜉jk. (19)

Here we reuse 𝜕2

𝜕CTj
𝜕CTk

ux, 𝜕2

𝜕CTj
𝜕CTk

uy, 𝜕2

𝜕CTj
𝜕CTk

p to represent their discrete analog, respectively, and 𝛾jk =[
𝜕2

𝜕CTj
𝜕CTk

uT
x

𝜕2

𝜕CTj
𝜕CTk

uT
y

𝜕2

𝜕CTj
𝜕CTk

pT
]T

.

For the linear system (19), Jnl
xx, Jnl

xy, Jnl
yx, and Jnl

yy are the corresponding Jacobian matrices as introduced in (14). The
Jacobian matrices Jf ′

(⋅) is obtained by computing the second-order derivatives of f x, f y with respect to CT and using partial
differentiation rules. Since Equations (17)–(18) are the same with the sensitivity equation (13) but only with different
right-hand sides, the linear system (19) has the same system matrix as the linear system (14), that is, ′ = . Moreover,
is just the system matrix from the last Newton step to solve the nonlinear flow equation (8). The preconditioners computed
for the last Newton step to solve the Navier–Stokes equation can also be reused here.

The right-hand side vector 𝜉jk is obtained by discretizing known variables in (17)–(18). By stacking the unknowns in
the following way,

𝛾 =
[
𝛾11 𝛾12 … 𝛾NtNt

]
and 𝜉 =

[
𝜉11 𝜉12 … 𝜉NtNt

]
.

We get the following linear system with multiple left-hand and right-hand sides,

𝛾 = 𝜉. (20)

Here the size of unknowns N2
t is also much more smaller than the problem size, block Krylov methods are still

well-suited to this type of problems.
Note that to compute the Hessian matrix, we need to compute the second-order derivatives by solving the lin-

ear equation (20), while the unknowns are matrices of Nx × N2
t . Here Nx is the size of spatial dimension, and Nt

is the total number of variables to be optimized. This can be efficiently computed by using block Krylov subspace
methods when Nt ≪Nx. For the other cases, quasi-Newton methods such as the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm59,60 can be applied without computing the real Hessian matrix but just to compute an
approximation.

4 MULTILEVEL SEQUENTIALLY SEMISEPARABLE PRECONDITIONERS

The multilevel sequentially semiseparable (MSSS) preconditioning technique was first studied for PDE-constrained opti-
mization problems in Reference 27 and some benchmark problems of computational fluid dynamics problems,28 and
later extended to computational geoscience problems.68 The global MSSS preconditioner computes an approximate fac-
torization of the global (generalized) saddle-point matrix up to a prescribed accuracy in linear computational complexity
using MSSS matrix computations. To start with, we first introduce the sequentially semiseparable matrices and the block
matrix definition for such matrices is given by Definition 1.

Definition 1 (31). Let A be a p× p block matrix with SSS structure such that A can be written in the following
block-partitioned form

12 of 21 QIU et al.

Aij =
⎧⎪⎨⎪⎩

UiWi+1 … Wj−1Vj, if i < j;
Di, if i = j;

PiRi−1 … Rj+1Qj, if i > j.

(21)

The matrices Ui, W i, V i, Di, Pi, Ri, Qi are matrices whose sizes are compatible for matrix–matrix product when their
sizes are not mentioned. They are called generators for an SSS matrix.

Take a 4× 4 SSS matrix for example, its generators representation is given by

⎡⎢⎢⎢⎢⎢⎣

D1 U1V2 U1W2V3 U1W2W3V4

P2Q1 D2 U2V3 U2W3V4

P3R2Q1 P3Q2 D3 U3V4

P4R3R2Q1 P4R3Q2 P4Q3 D4

⎤⎥⎥⎥⎥⎥⎦
.

Basic operations such as addition, multiplication, and inversion are closed under the SSS matrix structure and can be
performed in linear computational complexity as long as the off-diagonal rank which is defined by the maximum sizes of
{W i} and {Ri} is much smaller compared with the matrix size. The SSS matrix structure can be derived from 1D intercon-
nected systems.69 While considering the grid points as interconnected systems, an SSS structured can be inferred from
the discretization of 1D PDEs. Multilevel sequentially semiseparable matrices generalize the SSS matrices to the multi-
dimensional case. Similar to Definition 1 for SSS matrices, the generators representation for MSSS matrices, specifically
for k-level SSS matrices, is defined in Definition 2.

Definition 2 (27). The matrix A is said to be a k-level SSS matrix if it has a form like (21) and all its generators are
(k− 1)-level SSS matrices. The one-level SSS matrix is the SSS matrix that satisfies Definition 1.

Just like SSS structure for 1D discretized PDEs, we obtain an MSSS structure for high-dimensional PDEs when we
lump the grid points that are one dimension lower. Take 2D PDEs for example, first we lump the grid points in one
dimension and consider the lumped grid points as a single grid point, we obtain a 1D interconnected system again. This
in turn gives us a two-level MSSS matrix for the discretized 2D PDEs. Similarly, we obtain a three-level MSSS matrix for
3D PDEs with the number of blocks equals the number of the grid points in the corresponding dimension.

Take the 2D Navier–Stokes equation on a square domain for example. We apply mixed finite element methods such
as the Q1 −P0 method with uniform grid given by Figure 2 to discretize the Navier–Stokes equation. Here, the circles
represent the grid points for velocity unknowns, while the stars are the grid points for pressure unknowns. We use the
matrix K in (9) as an example to show the two-level MSSS structure of the matrix blocks in (9). The matrix K has a block
tridiagonal form which is a specific MSSS structure (W i = 0, Ri = 0), therefore, can be represented by a two-level MSSS
matrix. This is shown by Figure 3. For higher order FEM discretization, the MSSS structure can also be obtained, we refer
to Reference 68 for more details.

Following the relations between interconnected systems and MSSS matrices, it can be verified that all matrix blocks
in (9) have a block tridiagonal structure for a uniform mesh discretization. Therefore, we can apply the MSSS permutation
operations introduced in Reference 27 to permute the block system (9) with MSSS blocks into a global MSSS matrix (block
tridiagonal) form given by

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1,1 A1,2

A2,1 A2,2 A2,3

A3,2 A3,3 ⋱

⋱ ⋱ ⋱

⋱ AN,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Here all the matrix blocks Aij are MSSS matrices again and are one- level lower than the matrix Ā. For 2D problems,
Ā is a two-level MSSS matrix and all Ai, j are one-level MSSS, that is, SSS matrices while Ā is a three-level MSSS matrix
and all Ai, j are two-level MSSS matrices for 3D problems. For details of the MSSS permutations, we refer to lemma 3.5 in
Reference 27.

QIU et al. 13 of 21

F I G U R E 2 The grid for the 2D Navier–Stokes discretization

0 10 20 30 40 50 60 70 80
nz = 625

0

10

20

30

40

50

60

70

80

(A) Structure pattern of the upper level

0 2 4 6 8 10
nz = 25

0

1

2

3

4

5

6

7

8

9

10

(B) Structure pattern of the lower level (the labeled
block on the left)

F I G U R E 3 Two-level MSSS structure of K in (9)

After MSSS permutation, we can compute an block LDU factorization Ā = LDU where

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
A2,1S−1

1 I
A3,2S−1

2 I
⋱

⋱

AN,N−1S−1
N−1 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎣

S1

S2

⋱

SN

⎤⎥⎥⎥⎥⎥⎦
, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I S−1
1 A1,2

I S−1
2 A2,3

⋱

⋱ S−1
N−1AN−1,N

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

14 of 21 QIU et al.

Here Si is the Schur complement at the ith factorization step and satisfies the recursion given by

Si =

{
Ai,i if i = 1
Ai,i − Ai,i−1S−1

i−1Ai−1,i if 2 ≤ i ≤ N
.

Note that the Schur complement Si is a dense matrix and one dimension lower than the original problem. Under the
MSSS framework, we apply MSSS matrix computations to approximate the Schur complement Si, which yields an MSSS
preconditioner. Related work in applying rank structured matrix computations for the Schur complement approximation
in the block triangular factorization are studied in References 38,70.

Compared with block preconditioners for the generalized saddle-point system (9) that need an efficient approximation
of the Schur complement S=−B(A+ J)−1BT , the permutation operation is a highlight for MSSS preconditioners, which
enables us to compute a global factorization of the system matrix without approximation of S.

The block LDU factorization can be computed in linear computational complexity, that is, (r3Ns), where r is the
off-diagonal rank of the Schur complement Si and bounded by a small constant, Ns is the problem/matrix size. This
is achieved by performing the model order reduction operations for the MSSS matrices. In this article, we focus on 2D
problems where the Schur complement is 1D and can be approximated by one-level MSSS matrix computations. For the
application of MSSS preconditioners for 3D problems, we refer to References 27,68. Moreover, we have the following
theorem that gives the bound of the MSSS preconditioned spectrum for 2D problems.

Theorem 1. For a nonsingular two-level MSSS matrix Ā, we can compute an approximate block factorization given by
̃̄A = L̃D̃Ũ with L̃, D̃, Ũ of the form in (22) that satisfies

||Ā − ̃̄A||2 ≤ 𝜀, and ||I − ̃̄A
−1

Ā||2 ≤
𝜀

𝜀0 − 𝜀
,

where 𝜀0 is the smallest singular value of Ā, I denotes the identity matrix, and 𝜀 satisfies

𝜀 ≤ 2
√

p(p − 1)𝜏.

Here p is the number of blocks in the one-level SSS blocks of ̃̄A, which is smaller than the number of the Schur complements,
that is, N, and 𝜏 is a freely chosen parameter to compute the MSSS preconditioner.

Proof. For the proof of this theorem, we refer to lemma 3.2, theorem 3.6, and theorem 5.3 of Reference 71. ▪

Theorem 1 states that the MSSS preconditioner can be computed up to arbitrary accuracy, this in turn makes the MSSS
preconditioned spectrum cluster around (1, 0) and the radius of the circle that contains the preconditioned spectrum can
be made arbitrarily small. This results in a robust preconditioner and makes the convergence of the MSSS preconditioned
Krylov solver independent of the mesh size and Reynolds number for the generalized saddle-point system (12).

In practice, 𝜀 is usually of the same order as 𝜏, which shows that the bound given by Theorem 1 is pessimistic in prac-
tice. Choosing 𝜏 between 10−2 and 10−4 usually gives satisfactory performance for MSSS preconditioned Krylov solvers.
This in turn yields a small r that is bounded by a constant independent of Ns and r ≪Ns, which means that the MSSS
preconditioner can be computed in linear computational complexity. Numerical results in Section 5 verify this statement.

To analyze the storage costs of MSSS preconditioners, we take an N ×N grid for example. Under the MSSS framework,
we approximate the off-diagonal blocks of the dense Schur complements with low-rank patterns. To simplify the analysis,
we assume that all p diagonal blocks of the SSS matrix are of uniform size and the off-diagonal rank is bounded by r ≪N.
The storage costs for each Schur complements is

p
(

N
p

)2

+ 4r N
p
(p − 1) + 2r2(p − 2).

Theoretically, we set the number of blocks p=N for smaller computational complexity and storage costs while in practice
the sizes of the diagonal blocks are often set to a small number, say 8 for making use of level 3 BLAS implementations,
that is, p = N

8
∼ (N). This in turn gives (N) storage costs for each Schur complement and (N2) storage costs for all the

Schur complements for MSSS preconditioners, which is linear with respect to the problem size N2. This is advantageous

QIU et al. 15 of 21

over storing all full dense Si that results in (N3) storage costs and (N4) computational complexity which is square with
respect to the problem size compared with linear computational complexity for MSSS preconditioners. For the storage
costs of MSSS preconditioners for 3D problems, we refer to section 4.4 of Reference 68.

5 NUMERICAL EXPERIMENTS

In the previous sections, we formulate an in-domain control problem. It is shown that this in-domain control problem can
be solved by the reduced Newton method described by Algorithm 1. The biggest computational issue is to solve a nonlinear
flow equation (8) by using the Newton’s method and two linear equations (14)–(19) with generalized saddle-point struc-
ture to compute the gradient and the Hessian matrix. At each optimization step, we solve the nonlinear flow equation (8)
with inner iterations. A preconditioned Krylov solver is performed at each inner iteration.

In Section 3, we showed that the linearized flow equation (9) is a perturbed linearized Navier–Stokes equation (10)
with singular perturbation on the (1, 1) block of the linearized Navier–Stokes system matrix. Standard preconditioning
techniques for the Navier–Stokes equation, which highly depend on efficient approximation of the Schur complement,
fail to give satisfactory performance for this problem due to this perturbation. This will be illustrated by numerical results
later. In this section, we evaluate the performance of the MSSS preconditioning techniques for the in-domain control
problem and compare with the pressure convection diffusion (PCD) preconditioner72 that is implemented in IFISS. All
the numerical experiments are implemented in MATLAB 2015a on a desktop of Intel Core i5 CPU of 3.10 GHz and 16
GB memory with the Debian GNU/Linux 8.0 system.

5.1 Preconditioning techniques

In this part, we report the performance of the MSSS preconditioner and the PCD preconditioner for the second Newton
iteration in solving the Navier–Stokes equation with external source terms at the first optimization step of Algorithm 1.
We use the IDR(s) method73 to solve the preconditioned system. The preconditioned IDR(s) solver is stopped if the
2-norm of the residual at step k, which is denoted by ||rk||2, satisfies ||rk||2 ≤ 10−4||r0||2.

To compute an MSSS preconditioner for a linear system of the generalized saddle-point-type (9), we first convert all
the matrix blocks to the MSSS format, which is illustrated by Figure 3. The cost for this part is little since no computations
are performed and only memory allocations are needed. Second, we permute the matrix with MSSS blocks into a global
MSSS matrix. In this step, all the operations are performed to concatenate generators of MSSS matrices and no computa-
tions are needed. The final step is to compute an approximate LDU factorization of the global matrix using MSSS matrix
computations. This is the most computational intensive part for the MSSS preconditioners and the computational com-
plexity is linear with respect to the problem size as we have analyzed in Section 4, which is also illustrated by numerical
results in this section.

We also compare the performance of MSSS preconditioners with that of the PCD preconditioner p for the linear
system (12) given by,

p =

[
A + Jf BT

−Sp

]
, (23)

where Sp = LpA−1
p Mp is the approximation of the Schur complement B(A+ Jf)−1BT . Here, Ap and Lp are the

convection–diffusion operator and Laplace operator in the finite dimensional solution space of the pressure with pre-
scribed boundary conditions, Mp is the pressure mass matrix. For this PCD preconditioner, both A+ Jf and Sp are
approximated by the algebraic multigrid (AMG) method that is implemented in IFISS.

We set the Reynolds number Re= 2000 as discussed in the previous section. We report the performance of both pre-
conditioners in Tables 1 and 2. Here the column “precon.” represents the time for MSSS permutations and the block LDU
factorization using MSSS matrix computations or the time for the setup of the AMG method, and the column “IDR(4)”
denotes the time of the preconditioned IDR(4) solver to compute the solution up to prescribed accuracy. Both time are
measured in seconds. Since we focus on 2D problems, the MSSS matrices are two-level MSSS matrices and for making
use of level 3 BLAS implementations, we set the size of the SSS blocks to 8 for all test cases.

16 of 21 QIU et al.

Grid Problem size #Iter. Precon. (s) IDR(4) (s) Total (sec.)

64× 64 1.25e+ 04 2 4.36 0.64 5.00

128× 128 4.97e+ 04 3 18.43 2.53 20.96

256× 256 1.98e+ 05 5 65.09 9.25 74.34

512× 512 7.88e+ 05 3 272.63 24.62 297.25

T A B L E 1 Computational
results of the MSSS
preconditioner for Re= 2000

Grid Problem size #Iter. Precon. (s) IDR(4) (s) Total (s)

64× 64 1.25e+ 04 400 8.56 no convergence –

128× 128 4.97e+ 04 400 70.74 no convergence –

256× 256 1.98e+ 05 266 237.68 42.93 280.61

512× 512 7.88e+ 05 203 1386.98 101.72 1488.70

T A B L E 2 Computational
results of the PCD
preconditioner for Re= 2000

(A) (B)

F I G U R E 4 Maximum off-diagonal
rank of MSSS preconditioner

Table 1 shows the time to compute the MSSS preconditioner scales linearly with the problem size. The number of
iterations remains virtually constant with the refinement of the mesh. The time of the preconditioned IDR(4) solver
also scales linearly with the problem size. For PCD preconditioner, the preconditioned IDR(4) solver fails to converge
to the solution of prescribed accuracy within 400 iterations for relatively bigger mesh size. For a very fine mesh, the
preconditioned IDR(4) solver computes the solution up to the prescribed accuracy within 300 iterations. This is because
the entries of perturbation by the matrix Jf in (23), which is introduced by the nonlinear right-hand side, is of (h2). As
h→ 0, this perturbation by the Jacobian matrix becomes smaller compared with A in the (1, 1) block of (23). Therefore, Sp
approximates the perturbed Schur complement that corresponds to smaller mesh sizes better than that for bigger mesh
sizes.

The computational results by the MSSS preconditioner in Table 2 show that the time for the setup of AMG does
not scale linearly with the problem size. The reason may be that the AMG implemented in IFISS is not optimized,
or the AMG algorithm in IFISS does not have linear computational complexity. To compute the MSSS preconditioner,
we set 𝜏 = 10−5 for the 512× 512 grid and 10−4 for the rest grids. Here 𝜏 is the upper bound of the discarded singu-
lar values for the model order reduction that is performed to compute the approximate factorization. The maximum
off-diagonal rank for the lower and upper part for this set up are plotted in Figure 4. For details of this approximate fac-
torization, we refer to Reference 71. The maximum off-diagonal rank in Figure 4 is bounded by a small constant around
10 for all the computations of MSSS preconditioners, which is much smaller than the size of the systems to be solved.
This in turn gives the linear computational complexity of the MSSS preconditioning techniques, which is illustrated
by Table 1.

QIU et al. 17 of 21

F I G U R E 5 Total output power
(scaled)

(A) (B)

F I G U R E 6 Optimized CT1
, CT2

with different initial guesses

(A) (B)

5.2 Optimization algorithm

We test Algorithm 1 for the optimization problem (6) by using a 256× 256 grid. At each outer iteration, we need to solve
a series of linear equations of size 197, 634× 197, 634 to compute the solution of the nonlinear flow equation (8) by the
Newton’s method. We also need to solve two linear equations (14) and (19) of the same size to compute the gradient and
the Hessian matrix.

We use the wind farm configuration as introduced in Section 2.1. With this problem settings, the rightmost turbine
just operates in the maximum power tracking mode, that is, CT3 = 1. Therefore, we just need to optimize CT1 and CT2

for the first two turbines. Without optimization, the turbines are operated in the mode that corresponds to the maximal
power extraction for each single turbine, that is, CT1 = CT2 = 1. We start with C(0)

T1
= C(0)

T2
= 1 as an initial start for this

optimization problem. Then the (scaled) total extracted power by the wind farm at each optimization step is given in
Figure 5(a).

Results in Figure 5(a) show that the total power is increased by around 5.5% when applying optimal control scheme.
To show the performance of Algorithm 1, we also solve the optimization problem with an initial start C(0)

T1
= C(0)

T2
= 0,

although this corresponds to an impractical operation status. The scaled total power is given in Figure 5(b). For those two
cases with different initial guesses, the corresponding optimized variables CT1 and CT2 at each optimization step are given
in Figure 6. Figure 6(a,b) show that with different initial guesses, the optimized variables (CT1 , CT2) converge to the same
point (0.729, 0.862), which corresponds to a local optimum of the optimization problem.

Note that there is an overshoot after a few optimization steps for both cases as illustrated by Figure 5, which makes
the optimization problem to converge to a local optimum. This may be primarily because of the nonconvexity and highly
nonlinearity of this optimization problem. The convexity of this optimization problem is still an open problem. Another
reason that contributes to this behavior is the sensitivity of this optimization problem. Here we measure the sensitivity of
the change of the velocity in the flow direction with respect to CTj by 𝜕ux

𝜕CTj
. We plot the magnitude of 𝜕ux

𝜕CT1
and 𝜕ux

𝜕CT2
at the

local optimum of CT1 and CT2 in Figure 7.

18 of 21 QIU et al.

(A) (B)

F I G U R E 7 𝜕ux
𝜕CT1

and 𝜕ux
𝜕CT2

in
magnitude

Figure 7 show that there is a big gradient in the vicinity of the places where the turbines are located. This in turn tells us
that the velocity in the vicinity of the turbines is very sensitive to the changes of CTj . This makes this optimization problem
very sensitive. Another reason may be the robustness and the efficiency of the Newton’s method given by Algorithm 1.
To overcome such an overshot, instead of the fixed step size of the Newton’s method, some line search methods such as
the Armijo linear search algorithm60 could be applied to adaptively choose the step size.

6 CONCLUSIONS AND REMARKS

In this article, we studied preconditioning in-domain Navier–Stokes control problem using multilevel sequentially
semiseparable (MSSS) matrix computations. For the in-domain Navier–Stokes control problem, the control input only acts
on part of the domain, which results in a problem even more difficult to solve. The optimization problem was solved by
a reduced Newton’s method while the most time consuming part for this problem was solving a nonlinear flow equation
and computations of the gradient and the Hessian matrix. We showed that the gradient and the Hessian matrix can
be computed by solving a linear equation that is exactly the same as the last nonlinear iteration of the Navier–Stokes
equation. Therefore, the preconditioner for the solution of the flow equation can be reused. This in turn reduces the
computational complexity dramatically. We evaluated the performance of the MSSS preconditioning technique by using
IFISS. Numerical results show the superiority of the MSSS preconditioning technique to the standard preconditioning
technique.

Since we focused on preconditioning in-domain Navier–Stokes control problem, we used a laminar flow model in
IFISS to study the performance of the MSSS preconditioning technique. The next step to extend this research shall focus
on applying the turbulent flow model for the real-world wind farm control applications, while some recent development
in optimal control of unsteady Reynolds-averaged Navier–Stokes equations (RANS)74 is a good starting point to extend
our preconditioning technique.

The MSSS structure can be inferred from a topologically uniform mesh discretization of a regular domain. When
general domains can be parameterized using topologically uniform mesh, such as in the isogeometric analysis, applying
MSSS is direct. Extending MSSS to unstructured meshes is also possible, one can first compute the solution of the original
problem on a structured mesh and then interpolate on the unstructured mesh since MSSS is often used as a preconditioner
but not a direct solver. By following this procedure, the convergence of the Krylov solver for problems with unstructured
mesh discretization can be improved.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees that greatly help to improve the quality of the work presented
in this paper. This work does not have any conflicts of interest.

ORCID
Yue Qiu https://orcid.org/0000-0003-0360-0442
Cornelis Vuik https://orcid.org/0000-0002-5988-9153

REFERENCES
1. Leineweber DB, Bauer I, Bock HG, Schlöder JP. An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process

optimization. Part I: theoretical aspects. Comput Chem Eng. 2003;27(2):157–166.
2. Borzi A, Schulz V. Multigrid methods for PDE optimization. SIAM Rev. 2009;51(2):361–395.

https://orcid.org/0000-0003-0360-0442
https://orcid.org/0000-0003-0360-0442
https://orcid.org/0000-0002-5988-9153
https://orcid.org/0000-0002-5988-9153

QIU et al. 19 of 21

3. Biegler LT, Ghattas O, Heinkenschloss M, van Bloemen WB. Large-scale PDE-constrained optimization: an Introduction. In: Biegler LT,
Ghattas O, Heinkenschloss M, van Bloemen WB, editors. Large-scale PDE-constrained optimization. New York, NY: Springer, 2003; p.
3–13.

4. Gill PE, Murray W, Ponceleón DB, Saunders MA. Preconditioners for indefinite systems arising in optimization. SIAM J Matrix Anal
Appl. 1992;13(1):292–311.

5. Schöberl J, Zulehner W. Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimiza-
tion problems. SIAM J Matrix Anal Appl. 2007;29(3):752–773.

6. Badreddine H, Vandewalle S, Meyers J. Sequential Quadratic Programming (SQP) for optimal control in direct numerical simulation of
turbulent flow. J Comput Phys. 2014;256:1–16.

7. Hinze M, Kunisch K. Second order methods for optimal control of time-dependent fluid flow. SIAM J Control Optim. 2001;40(3):925–946.
8. Laumen M. Newton’s method for a class of optimal shape design problems. SIAM J Optim. 2000;10(2):503–533.
9. Berggren M. Numerical solution of a flow-control problem: vorticity reduction by dynamic boundary action. SIAM J Sci Comput.

1998;19(3):829–860.
10. Fursikov AV, Gunzburger MD, Hou LS. Boundary value problems and optimal boundary control for the Navier-Stokes system: the

two-dimensional case. SIAM J Control Optim. 1998;36(3):852–894.
11. Goit JP, Meyers J. Optimal control of energy extraction in wind-farm boundary layers. J Fluid Mech. 2015;768:5–50.
12. Adavani SS, Biros G. Multigrid algorithms for inverse problems with linear parabolic PDE constraints. SIAM J Sci Comput.

2008;31(1):369–397.
13. Axelsson O, Neytcheva M. Preconditioning methods for linear systems arising in constrained optimization problems. Numer Linear

Algebra Appl. 2003;10(1-2):3–31.
14. Axelsson O, Farouq S, Neytcheva M. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization

problems: Poisson and convection-diffusion control. Numer Algorithms. 2016;73(3):631–663.
15. Axelsson O, Farouq S, Neytcheva M. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization

problems: Stokes control. Numer Algorithms. 2017;74(3):19–37.
16. Bai ZZ, Wang ZQ. On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl.

2008;428(11):2900–2932.
17. Pearson JW, Gondzio J. Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization.

Numerische Mathematik. 2017;137(4):959–999.
18. Pearson JW, Pestana J, Silvester DJ. Refined saddle-point preconditioners for discretized Stokes problems. Numerische Mathematik.

2018;138(2):331–363.
19. Potschka A, Mommer MS, Schlöder JP, Bock HG. Newton-picard-based preconditioning for linear-quadratic optimization problems with

time-periodic parabolic PDE constraints. SIAM J Sci Comput. 2012;34(2):A1214–A1239.
20. Rees T, Wathen AJ. Preconditioning iterative methods for the optimal control of the Stokes equations. SIAM J Sci Comput.

2011;33(5):2903–2926.
21. Stoll M, Breiten T. A low-rank in time approach to PDE-constrained optimization. SIAM J Sci Comput. 2015;37(1):B1–B29.
22. Bánsch E, Benner P, Saak J, Weichelt H. Riccati-based boundary feedback stabilization of incompressible Navier–Stokes flows. SIAM J Sci

Comput. 2015;37(2):A832–A858.
23. Mardal KA, Nielsen BF, Nordaas M. Robust preconditioners for PDE-constrained optimization with limited observations. BIT Numer

Math. 2017;57(2):405–431.
24. Heidel G, Wathen A. Preconditioning for boundary control problems in incompressible fluid dynamics. Numer Linear Algebra Appl.

2019;26(1):e2218.
25. Pearson JW. Preconditioned iterative methods for Navier-Stokes control problems. J Comput Phys. 2015;292(0):194–207.
26. Meyers J, Meneveau C. Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy. 2012;15(2):305–317.
27. Qiu Y, van Gijzen MB, van Wingerden JW, Verhaegen M, Vuik C. Efficient preconditioners for PDE-constrained optimization problems

with a multilevel sequentially semiseparable matrix structure. Electr Trans Numer Anal. 2015;44:367–400.
28. Qiu Y, van Gijzen MB, van Wingerden JW, Verhaegen M, Vuik C. Evaluation of multilevel sequentially semiseparable preconditioners

on CFD benchmark problems using incompressible flow and iterative solver software. Math Methods Appl Sci. 2018;41(3):888–903.
29. Elman H, Ramage A, Silvester D. IFISS: a computational laboratory for investigating incompressible flow problems. SIAM Rev.

2014;56(2):261–273.
30. Silvester DJ, Elman HC, Ramage A. Incompressible flow and iterative solver software (IFISS) version 3.2; 2012. Http://www.manchester.

ac.uk/ifiss/.
31. Chandrasekaran S, Dewilde P, Gu M, et al. Some fast algorithms for sequentially semiseparable representations. SIAM J Matrix Anal

Appl. 2005;27(2):341–364.
32. Vandebril R, Van Barel M, Mastronardi N. Matrix computations and semiseparable matrices: linear systems. Baltimore: Johns Hopkins

University Press, 2007.
33. Hackbusch WA. Sparse matrix arithmetic based on ℋ -matrices. Part I: introduction to ℋ -Matrices. Computing. 1999;62(2):89–108.
34. Börm S. 2-matrices–Multilevel methods for the approximation of integral operators. Comput Vis Sci C. 2004;7(3-4):173–181.
35. Hackbusch W, Börm S. Data-sparse approximation by adaptive ℋ 2-matrices. Computing. 2002;69(1):1–35.
36. Chandrasekaran S, Dewilde P, Gu M, Lyons W, Pals T. A fast solver for HSS representations via sparse matrices. SIAM J Matrix Anal

Appl. 2006;29(1):67–81.

http://www.manchester.ac.uk/ifiss/;
http://www.manchester.ac.uk/ifiss/;

20 of 21 QIU et al.

37. Xia J, Chandrasekaran S, Gu M, Li XS. Superfast multifrontal method for large structured linear systems of equations. SIAM J Matrix
Anal Appl. 2010;31(3):1382–1411.

38. Bebendorf M. Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J Numer Anal.
2007;45(4):1472–1494.

39. Le Borne S, Grasedyck L. matrix preconditioners in convection-dominated problems. SIAM J Matrix Anal Appl. 2006;27(4):1172–1183.
40. Xia J. A robust inner-outer hierarchically semi-separable preconditioner. Numer Linear Algebra Appl. 2012;19(6):992–1016.
41. Börm S, and Le Borne S. LU factorization in pre-conditioners for augmented Lagrangian and grad-div stabilized saddle point systems.

Int J Numer Methods Fluids 2012;68(1):83–98.
42. Cai D, Chow E, Erlandson L, Saad Y, Xi Y. SMASH: structured matrix approximation by separation and hierarchy. Numer Linear Algebra

Appl. 2018;25(6):e2204. https://doi.org/10.1002/nla.2204.
43. Erlandson L, Cai D, Xi Y, Chow E. Accelerating parallel hierarchical matrix-vector products via data-driven sampling. Proceedings of the

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). New Orleans: IEEE; 2020. p. 749–758.
44. Amestoy P, Ashcraft C, Boiteau O, Buttari A, L’Excellent JY, Weisbecker C. Improving multifrontal methods by means of block low-rank

representations. SIAM J Sci Compu. 2015;37(3):A1451–A1474.
45. Aminfar A, Darve E. A fast, memory efficient and robust sparse preconditioner based on a multifrontal approach with applications to

finite-element matrices. Int J Numer Meth Eng. 2016;107(6):520–540.
46. Gillman A, Martinsson PG. An 𝒪(N) algorithm for constructing the solution operator to 2D elliptic boundary value problems in the

absence of body loads. Adv Comput Math. 2014;40(4):773–796.
47. Grasedyck L, Kriemann R, Le Borne S. Domain decomposition based ℋ -LU preconditioning. Numer Math. 2009;112(4):565–600.
48. Schmitz PG, Ying L. A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J Comput Phys.

2014;258:227–245.
49. Annoni J, Gebraad PMO, Scholbrock AK, Fleming PA, van Wingerden JW. Analysis of axial-induction-based wind plant control using an

engineering and a high-order wind plant model. Wind Energy. 2015;19(6):1135–1150.
50. Crespo A, Hernández FJR, Frandsen S. Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy.

1999;2(1):1–24.
51. Sanderse B, van der Pijl SP, Koren B. Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy.

2011;14(7):799–819.
52. Annoni J, Seiler P, Johnson K, Fleming P, Gebraad P. Evaluating wake models for wind farm control. Portland: Proceedings of American

Control Conference; 2014. p. 2517–2523.
53. Abkar M, Porté-Agel F. The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms.

Energies. 2013;6(5):2338–2361.
54. White FM, Corfield I. Viscous fluid flow. New York, NY: McGraw-Hill, 2006.
55. Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B. The onset of turbulence in pipe flow. Science. 2011;333(6039):192–196.
56. Torres P, Van Wingerden JW, Verhaegen M. Modeling of the flow in wind farms for total power optimization. Santiego Chile: Proceedings

of the 9th IEEE International Conference on Control and Automation; 2011. p. 963–968.
57. Mikkelsen R. Actuator Disc Methods Applied to Wind Turbines [PhD Thesis]. Technical University of Denmark; 2003.
58. Troldborg N. Actuator Line Modeling of Wind Turbine Wakes [PhD Thesis]. Technical University of Denmark; 2008.
59. Nocedal J, Wright S. Numerical optimization. New York, NY: Springer Science & Business Media, 2006.
60. Heinkenschloss M. Numerical solution of implicitly constrained optimization problems. CAAM Technical Report TR08-05. Houston:

Department of Computational and Applied Mathematics, Rice University, 2008.
61. Benzi M, Golub GH, Liesen J. Numerical solution of saddle point problems. Acta Numer. 2005;14:1–137.
62. Li C, Vuik C. Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow. Numer Linear Algebra Appl.

2004;11(5-6):511–523.
63. Benzi M, Olshanskii MA, Wang Z. Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations. Int

J Numer Methods Fluids. 2011;66(4):486–508.
64. Kay D, Loghin D, Wathen A. A preconditioner for the steady-state Navier-Stokes equations. SIAM J Sci Comput. 2002;24(1):237–256.
65. Borzí A, Schulz V. Computational optimization of systems governed by partial differential equations. Philadelphia: SIAM, 2011.
66. Abe K, Sleijpen GLG. Hybrid Bi-CG methods with a Bi-CG formulation closer to the IDR approach. Appl Math Comput.

2012;218(22):10889–10899.
67. Du L, Sogabe T, Yu B, Yamamoto Y, Zhang S. A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides.

J Comput Appl Math. 2011;235(14):4095–4106.
68. Baumann M, Astudillo R, Qiu Y, Ang EY, van Gijzen MB, Plessix RÉ. An MSSS-preconditioned matrix equation approach for the

time-harmonic elastic wave equation at multiple frequencies. Comput Geosci. 2018;22(1):43–61.
69. Rice JK, Verhaegen M. Efficient system identification of heterogeneous distributed systems via a structure exploiting extended Kalman

filter. IEEE Trans Automat Control. 2011;56(7):1713–1718.
70. Baǧcl H, Pasciak JE, Sirenko KY. A convergence analysis for a sweeping preconditioner for block tridiagonal systems of linear equations.

Numer Linear Algebra Appl. 2014;22(2):371–392.
71. Qiu Y, van Gijzen MB, van Wingerden JW, Verhaegen M, Vuik C. Convergence analysis of the multilevel sequentially semiseparable

preconditioners. Technical Report 15-01. Delft, The Netherlands: Delft Institution of Applied Mathematics, 2015.

https://doi.org/10.1002/nla.2204

QIU et al. 21 of 21

72. Elman HC, Silvester DJ, WAJ. Finite elements fast iterative solvers: with applications in incompressible fluid dynamics. New York, NY:
Oxford University Press, 2005.

73. van Gijzen MB, Sonneveld P. Algorithm 913: an elegant IDR(s) variant that efficiently exploits biorthogonality properties. ACM Trans
Math Softw. 2011;38(1):5:1–5:19.

74. Günther S, Gauger NR, Wang Q. Simultaneous single-step one-shot optimization with unsteady PDEs. J Comput Appl Math.
2016;294:12–22.

How to cite this article: Qiu Y, van Gijzen MB, van Wingerden J-W, Verhaegen M, Vuik C. Preconditioning
Navier–Stokes control using multilevel sequentially semiseparable matrix computations. Numer Linear Algebra
Appl. 2020;e2349. https://doi.org/10.1002/nla.2349

https://doi.org/10.1002/nla.2349
https://doi.org/10.1002/nla.2349
https://doi.org/10.1002/nla.2349

