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a b s t r a c t

Power flow computations are important for operation and planning of the electricity
grid, but are computationally expensive because of nonlinearities and the size of the
system of equations. Linearized methods reduce computational time but often have the
disadvantage that they are not applicable to general grids. In this paper we propose a
novel linearized power flow (LPF) technique that is able to handle PQ- and PV-buses,
and works on both transmission and distribution networks. This technique is based on
previous work on handling PQ-buses by connecting them to artificial-additional ground
buses. We extend this idea to PV-buses. Test-cases show that the novel LPF method
leads to similar accuracy as nonlinear power flow (NPF) methods while significantly
reducing computation time. Therefore, the general LPF methods is a good alternative to
NPF methods.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Transmission and distribution system operators use power flow simulations to ensure stability and safe operation of
he electricity grid. These simulations are computationally expensive because the power flow problem is formulated as a
onlinear system of equations, and they run on large problem sizes, i.e. grids with millions of lines and other elements.
terative methods such as the Gauss–Seidel, Newton power flow and Fast Decoupled Load Flow are widely used to solve
he nonlinear power flow (NPF) problem for transmission networks [1–4].

Another way to solve the power flow problem is by linearization. Numerous researchers developed methods to obtain
inear power flow equations using several approximations and assumptions. These computations are generally faster
han NPF computations, but might be less accurate due to simplifications of the nonlinear equations. Despite the loss
f accuracy, these linearized approaches can be more suitable than NPF computations when they are used to solve very
arge networks with millions of cables in real-time simulations. DC load flow [5] is a well-known linear method where
inear relations are determined between the active power injections P and the voltage angles δ, and between the reactive
ower injections Q and the deviations of the unknown voltage magnitudes ∆|V |. Another linear power flow formulation is
ntroduced in [6] and is based on a voltage-dependent load model and some numerical approximations on the imaginary
art of the nodal voltages. The linearized method of [7] is based on Taylor’s series expansion and works on low voltage DC
ower grids. It was extended to run on more advanced DC grids in [8], and to distribution networks including distributed
eneration in [9]. The authors of [10] propose a single-phase linear method that includes the handling of generator buses.
hree-phase linear power flow methods also exist, such as proposed in [11,12] and [13]. The first one can handle load
uses only, the latter uses the ZIP1-model to model load buses and generator buses.
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In this paper, we describe a modification of a linearized method that is based on the Zbus and Ybus method [3]. The
bus methods solve the linear equation between voltages and currents directly using the impedance-to-ground relation
or load buses. The Zbus methods have good convergence characteristics compared to other methods, but the non-sparse
-matrix required more storage, and with the computational power at that time, around 1970, it sacrificed speed. The
ise of other fast and robust methods, among which Newton–Raphson, put the developments of this method on hold.

Recently, the idea of using the impedance-to-ground loads was reintroduced in [14], using a Ybus method. The results
of this method are promising because the computational time is significantly lower than current non-linear methods.
However, this method only considers load buses.

In this paper, we extend this method to also handle generator buses. Since the extended method can handle both PQ-
and PV-buses, this linear method can be used for both transmission and distribution networks. Furthermore, we introduce
an iterative approach to solve the resulting linear power flow problem.

In the rest of this paper we describe the nonlinear power flow problem (Section 2) and its modification to our linear
power flow problem for both load and generator buses (Section 3). To solve the linearized problem, we propose two
approaches, a direct and an iterative approach (Section 4). We apply the linear power flow method to several transmission
and distribution test-cases, and compare the results with NPF computations on the same test-cases (Section 5). Finally,
we give some concluding remarks (Section 6).

2. Nonlinear power flow problem

For an AC steady-state approximation of a power grid, the power flow problem is formulated as follows (e.g [5]). First,
the power grid is represented as a network. Then in every bus i, Kirchhoff’s Current Law (KCL) holds:

Ii =

∑
j

Iij. (1)

Here, Ii is the total injected current, and Iij is the current through an edge between bus i and bus j, and is given by an
extension of Ohm’s law to the AC case:

Iij = Yij(Vi − Vj), (2)

with Yij the admittance, and Vi = |Vi|eδi the bus voltage. In every bus, the total injected complex power is determined by

Si = Pi + ıQi = ViI∗i , (3)

where Si, Pi, and Qi are the injected complex, active, and reactive power, and where [·]
∗ denotes the complex conjugate.

Combining KCL (1) with the extensions of Ohm’s law (2), and substituting it in the complex power equation (3), gives the
nonlinear power flow equation for every bus i:

Si = Vi (YV )∗i , (4)

with Y the admittance matrix of the power grid, and V to vector of bus voltages.

3. Linear power flow problem

The linear approach is based on the former Zbus method [3], and adjusted to a Ybus method [14]. Instead of solving the
nonlinear power flow Eqs. (4), we substitute Ohm’s law (2) into KCL (1) to obtain the following system of equations:

I = YV , (5)

with I the vector of injected currents. It is impossible to compute the voltage V directly from (5), because current I is
generally unknown. Therefore, we use an impedance-to-ground relation similar to one used in [14] and [15]. Moreover,
we extend this approach to include generator buses, also called PV-buses. First, we connect all nonzero load buses
n = 1, . . . ,N and all generator buses k = 1, . . . , K in the network to artificial ground buses g = 1, . . . ,G, with G = N+K .
These additional ground buses are then included in the network, as illustrated in Fig. 1. The injected power of nonzero
load n and generator k is shifted to the artificial-additional ground bus, such that the buses ñ and k̃ have zero injected
power and current. The connection between the artificial-additional ground bus and the new bus ñ or k̃ is modeled as a
short transmission line. We use one index i to denote either the nonzero load bus n or the generator bus k, and thus ι̃ for
either ñ or k̃. This results in the following expression of the new transmission line:

Pι̃g = Gι̃g |Vι̃|
2
− |Vι̃ ∥ Vg |

(
Gι̃g cos δι̃g + Bι̃g sin δι̃g

)
Qι̃g = −Bι̃g |Vι̃|

2
− |Vι̃ ∥ Vg |

(
Gι̃g sin δι̃g − Bι̃g cos δι̃g

) (6)

Here, Gι̃g and Bι̃g are the conductance and susceptance of the new line and δι̃g := δι̃ − δg is the voltage angle difference.
We require that bus ι̃ acts the same as bus i, as seen from the rest of the network. That is, we assume that:

|Vι̃| = |Vi|, δι̃ = δi, (7)

Pι̃g = Pi, Qι̃g = Qi.

2
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Fig. 1. Network representation of a load bus n and a generator bus k for standard NPF (a) and for LPF (b).

Furthermore, we set the voltage magnitude of the artificial-additional ground bus to zero, that is Vg = 0. Substituting
these assumptions in (6), the conductance and susceptance for the additional lines are given by:

Gι̃g =
Pi

|Vi|
2 ,

Bι̃g =
−Qi

|Vi|
2 .

(8)

Resistance Rι̃g and reactance Xι̃g for the additional lines are computed by substituting (8) into R + ıX =
1
Y =

G
|Y |2

−
B

|Y |2
ı:

Rι̃g =
|Vi|

2 Pi
P2
i + Q 2

i
,

Xι̃g =
|Vi|

2 Qi

P2
i + Q 2

i
.

(9)

For a nonzero load node n, the injected active Pn and reactive power Qn are known, while for a generator node k, the
voltage magnitude |Vk| and injected active power Pk are specified. Denoting unknown quantities by ˆ[·], the resistance Rñg
and reactance Xñg of the additional branches for nonzero load buses n become:

Rñg =
|V̂n|

2
Pn

P2
n + Q 2

n
,

Xñg =
|V̂n|

2
Qn

P2
n + Q 2

n
.

(10)

e know that the voltage is specified for the swing bus in the original network, which is called the reference voltage Vref.
or both the generator buses and the swing bus, we set the voltage magnitude to nominal voltage levels:

|Vref | = 1 p.u., |Vk| = 1 p.u.. (11)

n practice, the voltage magnitude of the generator buses can be different than 1 p.u., such as 1.06 p.u. or 1.045 p.u. Since
t is still a known value, the performance of the power flow computation is not affected. The resistance Rkg and reactance
kg of the additional branches for generator buses k are then given by:

Rk̃g =
Pk

P2
k + Q̂ 2

k

,

Xk̃g =
Q̂k

P2
k + Q̂ 2

k

.

(12)

As a result of the artificial-additional ground buses and additional lines, the number of buses and branches in the
network increases by N +K . Using the resistances and reactances (10) and (12), we can build the new admittance matrix
3



B. Sereeter, A.S. Markensteijn, M.E. Kootte et al. Journal of Computational and Applied Mathematics 394 (2021) 113572

w

H
Y

u
g
a

d

T
t

4

b
X
f
t

a

4

I
V

t
a
c
i

Ȳ including the additional branches. Thus, we obtain the following linear power flow equation:

Ī = Ȳ V̄ (13)

ith

Ī =

[
Ig
I

]
, Ȳ =

[
Ygg Y T

ig

Yig Y

]
, V̄ =

[
Vg

V

]
. (14)

ere I , V , and Y are the original current vector, voltage vector, and admittance matrix respectively, whereas Ig , Vg and
gg are the current vector, voltage vector, and admittance matrix with respect to the additional ground buses.
Note that (13) still cannot be solved directly because not all elements in vector Ī or V̄ are known. Due to the explicit

se of the impedance-to-ground connection of the load and generator nodes, and since the voltage at the swing bus is
iven, we can order (13) in such a way that the swing bus voltage Vref and all ground bus voltages Vg are placed in V1,
nd all unknown voltages of the remaining buses are placed in V2 as:[

I1
I2

]
=

[
Y11 Y T

21

Y21 Y22

][
V1

V2

]
. (15)

Due to the shift of the injected power from the original load and generator nodes to the additional ground buses, KCL
ictates that

∑
Iι̃j = 0 for every bus ι̃ in V2. Therefore, I2 = 0 and the power flow equations become:[

I1
0

]
=

[
Y11 Y T

21
Y21 Y22

][
V1
V2

]
. (16)

he second row of (16) is a linear system of equations for the unknown V2, since V1 is known. Then, the voltages V of
he original network can be assembled as

V =

[
Vref
V2

]
. (17)

. Linear power flow solution method

The resistances Rñg and reactances Xñg of the artificial-additional branches connecting nonzero load buses to ground
uses depend on the unknown voltage magnitudes |V̂n| of the nonzero load buses. Similarly, resistances Rk̃g and reactances

k̃g connecting generator buses to ground buses depend on the unknown reactive powers Q̂k of the generator buses. Hence,
or every nonzero load node n, a value for |V̂n| needs to be estimated, and for every generator node k, a value for Q̂k needs
o be estimated. The first option is to use some fixed value for |V̂n| and Q̂k for the LPF computation, which we call the
direct approach. A second option is to determine |V̂n| and Q̂k during the LPF computation, which we call the iterative
pproach. We use both approaches to solve the linear power flow problem (16).

.1. Direct approach

For the direct approach, a fixed value for |V̂n| and Q̂k have to be chosen. We assume 0 ≤ |V̂n| ≤ 1, as the power
flow computations are done in per unit normalization, and |Vk| = 1 for all generator buses. For example, we could take
|V̂n| = .9 for all load nodes. One way to estimate Q̂k could be to use a power factor and the specified active power Pk of
the generator buses. With the fixed values for |V̂n| and Q̂k, we can solve V2 directly from the second row of (16) as:

Y22V2 = −Y21V1, (18)

b = −Y21V1, (19)

V2 = Y−1
22 b. (20)

f we could initialize |V̂n| and Q̂k with good values, i.e. values which are not far from the actual solutions, then the solution
2 computed in (20) will be accurate to the actual solution V in (4). Thus, the solution of the direct approach stays within

the required accuracy for some power flow problems.

4.2. Iterative approach

If these good values are hard to choose for the resistance R and reactance X of the additional branches, we can still find
he solution V2 of (16) by solving (19) iteratively. For this iterative approach, we distinguish networks without PV-buses
nd networks with additional PV-buses. The process of the iterative LPF method is given in Algorithm 1. For a network
onsisting only of PQ-buses and one swing bus, steps 3, 5, and 16–20 must be skipped. Then, this algorithm starts with an

ˆ ˆ
nitial value for |Vn| and is updated in every iteration h. We start with a nominal initial value: |Vn| = 1. In our approach,

4
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Algorithm 1 Iterative LPF method for both PQ- and PV-buses
1: Set iteration counter to zero h := 0
2: Give initial |V̂ 0

n | for all nonzero load buses n with S > 0 (between 0.5 and 1)
3: Give initial Q̂ 0

k for all generator buses k
4: Compute initial R0

ñg and X0
ñg using (10)

5: Compute initial R0
k̃g

and X0
k̃g

using (12)
6: Compute Y including additional branches
7: Segment Y into Y11, Y21 and Y22, and compute b from (18)
8: while not converged do:
9: Solve (19) for V h

2
0: for PQ-buses n = 1, . . . ,N do:
1: Replace iterate |V̂ h+1

n |:= |V h
2 (S > 0)|

2: Compute Rh+1
ñg and Xh+1

ñg using (10) with |V̂ h+1
n |

13: Update elements of Y22 w.r.t Rh+1
ñg and Xh+1

ñg
14: end for
15: for PV-buses k = 1, . . . , K do:
16: Compute complex power Sh using computed V h

17: Compute ∆P as ∆P = Pk + ℜ{Shk }
18: Update iterate Q̂ h+1

k := Q̂ h
k + ∆P

19: Compute Rh+1
k̃g

and Xh+1
k̃g

using (12) with Q̂ h+1
k

20: Update elements of Y22 w.r.t Rh+1
k̃g

and Xh+1
k̃g

21: end for
22: h := h + 1
23: end while

we update |V̂ h
n | by replacing it with |V̂ h+1

n | := |V h
2 (S > 0)|, where V h

2 is computed from (19) with Y22 based on |V̂ h
n |, and

(S > 0) indicates all nonzero load buses.

The iteration process stops when the infinity norm of ∆|Vn| = |V̂ h+1
n | − |V̂ h

n | is smaller than some tolerance, that is,
hen ∥ ∆|Vn| ∥∞ ≤ 10−5.
In this approach, it is unnecessary to rebuild the full admittance matrix Y in every iteration. Instead, we build Y once

nd update only those elements of matrix Y22 related to nonzero loads, using new iterate |V̂ h+1
n |. The following steps show

ow we can update matrix Y22 without rebuilding it again:
1: Let u be the vector of locations of nonzero load buses (S > 0) and generator buses for Y22.
2: Compute the error e = yh+1

ig − yhig , where

yhig =
1

Rh
ι̃g + ıXh

ι̃g

.

3: Y22(u, u) = Y22(u, u) + diag(e), where diag(e) is a diagonal matrix with e on its main diagonal.
This modification is done in steps 13 and 20 of Algorithm 1.

If the network contains generators, or PV-buses, modifications are needed. The generators could be modeled as PQ-
buses, which requires a good estimate of Q . Another option is to use all the steps of Algorithm 1, to iteratively determine
both |V | for PQ-buses and Q for PV-buses. The process for |V | is unchanged. To determine Q for the generators, we start
with an initial reactive power Q̂ 0

k for all generator buses k and compute Rh+1
k̃g

and Xh+1
k̃g

using (12) with Q̂ h+1
k in every

iteration. The most challenging part is to properly update Q̂ h+1
k using other computed parameters, such as V h

2 . In our
approach, we update Q̂ h+1

k as Q̂ h+1
k := Q̂ h

k +∆P using the active power mismatch ∆P that is computed as ∆P = Pk+ℜ{Shk },
where ℜ{·} denotes the real part. The iteration process is stopped when the infinity norm of ∆|Vn| = |V̂ h+1

n | − |V̂ h
n |, or

the infinity norm of ∆P , is smaller than some tolerance. That is, when ∥ ∆|Vn| ∥∞ ≤ 10−5 or ∥ ∆P ∥∞ ≤ 10−5.

5. Numerical results

We validate our direct and iterative linear approach by comparing its accuracy and efficiency with the NPF compu-
tations on various transmission and distribution networks. We compare our iterative LPF method with DC power flow,
which is the most commonly used linearized method. Lastly, we also combine the direct LPF with the NPF method, to

investigate this combination as an additional use of the LPF approach, and again compare it with NPF.

5
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Table 1
Matpower test-cases. Each test-case is either a transmission or distribution network,
consisting of the given number of buses, generators, and branches.
Test-case Buses Generators Branches

Transmission networks

Tcase9 9 3 9
Tcase30 30 6 41
Tcase57 57 7 80
Tcase89 89 12 210
Tcase118 118 54 186

Distribution networks

Dcase22 22 1 21
Dcase33 [17] 33 1 32
Dcase69 [18] 69 1 68
Dcase85 85 1 84
Dcase141 141 1 140

Table 2
The CPU time and the relative difference between NPF and direct LPF (|V̂n| = |VN

n | & Q̂k = Q N
k ) computations. The CPU

time also includes data processing time.

Test-case LPF NPF
Time (NPF)
Time (LPF)

||VN
− V L

||2

||VN ||2

Time(s) Time(s) & Iter

Transmission networks

Tcase89 0.0032 0.0233 & 4 it 7.25 8.88 × 10−11

Tcase118 0.0029 0.0206 & 3 it 7.04 3.06 × 10−7

Distribution networks

Dcase85 0.0027 0.0204 & 3 it 7.61 4.65 × 10−8

Dcase141 0.0026 0.0206 & 3 it 7.76 2.36 × 10−10

We use the Newton power flow algorithm [16] for the NPF computations. The computations are done in Matlab, and we
use five balanced transmission and five balanced distribution test-cases from Matpower, given in Table 1. Each method
is tested on a set of these test-cases. The relative convergence tolerance is set to 10−5 for both the NPF method and
the iterative LPF algorithm. We set the maximum number of iterations to 10 for NPF and to 100 for the iterative LPF
computations. All numerical experiments are performed on an Intel computer i5-6500 3.2 GHz CPU with four cores and
64 GB memory.

5.1. Direct approach

In the direct approach, we have to choose the parameters |V̂n| and Q̂k before the computations. As a first option, we
use the actual values of |V̂n| and Q̂k to solve (10), to show that our method gives the correct solution of (3). As actual
values we take the solution of NPF computations.

Table 2 shows the numerical results for several test-cases. The output of the LPF computations are compared with
NPF on CPU time and on the relative difference ∥VN

−V L
∥2

∥VN∥2
, where VN and V L are the computed voltages of NPF and LPF

computations respectively.
Table 2 shows that our LPF method indeed gives the same solution as NPF, when the solution of NPF is used to

determine the resistance and reactance of the additional lines. However, |V̂n| of nonzero load buses, and Q̂k of generator
buses are unknown until we solve the power flow problem. Fortunately, it is possible to make reasonable estimates for
|V̂n| and Q̂k using information of the physical network and of the mathematical model (see Section 4.1). Furthermore, the
CPU time of our direct LPF method will be the same for any value of |V̂n| and Q̂k since it is a direct (non-iterative) method.

To investigate the accuracy of our method, we use various values for |V̂n| and Q̂k. The results are shown in Table 3. It
shows the relative difference between NPF and LPF computations when we set the same value |V̂n| for all nonzero load
buses n, and when we take Q̂k for all generator buses k as Q̂k = Q N

k − ϵ. Here ϵ is a small constant, for which we take
ϵ = 0.001. We can observe that the LPF solution is close to the NPF solution for both test-cases, even though |V̂n| is chosen
the same for all nonzero load buses n. For test-case Tcase89, |V̂n| = 1 gives more accurate results, whereas |V̂n| = 0.9 is
the better choice for Dcase85. Moreover, the accuracy can be further improved by choosing a non-flat value for |V̂n|.

Fig. 2 shows the voltage profile of test-case Dcase85 for both NPF and LPF with various flat inputs for |V̂n|.
This shows more clearly that our LPF method can be as accurate as NPF methods, when the initial |V̂n| is chosen

correctly. In addition, as we have seen in Table 2, our direct LPF approach is around seven times faster than the NPF
computation. Thus, this direct linear power flow approach can be a very powerful tool for electrical grid operators to
6
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Table 3
Relative difference between NPF and direct LPF (|V̂n| = {0.9; 0.95; 1} and Q̂k = Q N

k − ϵ).

Test-case Relative difference
||VN

− V L
||2

||VN ||2

|V̂n| = 0.9 |V̂n| = 0.95 |V̂n| = 1

Transmission network
Tcase89 9.01 × 10−2 4.04 × 10−2 6.58 × 10−3

Distribution network
Dcase85 1.36 × 10−3 1.33 × 10−2 2.02 × 10−2

Table 4
The CPU time and the relative difference between NPF and iterative LPF for distribution networks.

Test-case NPF with V 0
= 1 LPF with |V̂ 0

n | = 1
Time (NPF)
Time (LPF)

||VN
− V L

||2

||VN ||2

Iter Time(s) Iter Time(s)

Distribution networks

Dcase22 2 0.0201 4 0.0030 6.72 2.27 × 10−7

Dcase33 3 0.0194 6 0.0033 5.96 4.36 × 10−7

Dcase69 4 0.0205 6 0.0036 5.76 5.76 × 10−7

Dcase85 3 0.0218 7 0.0040 5.52 1.70 × 10−6

Dcase141 3 0.0237 6 0.0043 5.50 1.34 × 10−7

Table 5
Computed active P and reactive Q powers of the reference bus.
Test-case Pref Qref

NPF LPF NPF LPF

Dcase22 68.0133 68.0141 66.6574 66.6577
Dcase33 391.7677 391.7659 243.5141 243.5128
Dcase69 402.7100 402.7062 279.6764 279.6739
Dcase85 288.6937 288.6898 282.0313 282.0277
Dcase141 1253.1961 1253.1933 784.0055 784.0038

control very large networks in real time. The authors of [14] apply the direct LPF approach to very large networks. They
have used the MV/LV network of Alliander DNO in the Netherlands that consists of 100,000 cable segments, over 24
million buses, three million customers (load buses), several thousands of generators and around 250 substations. Their
research shows the obtained speed reduction for very large networks: The linear power flow computations using a direct
approach are around seven times faster than regular NPF computations. It was shown that the computation time can be
further improved by applying numerical analysis techniques to the final linear system (20) for a very large power flow
problem.

5.2. Iterative approach

We use Algorithm 1 for the iterative LPF computation. First, we study only distribution network cases, since those
etworks do not contain PV-buses. Table 4 shows the numerical results of NPF and iterative LPF computations for the
PU time and the relative difference. Both NPF and LPF algorithms start with a flat initial guess |V |

0
= 1.

We can see that, the LPF computation is five to six times faster than the NPF computation, even though the LPF method
needs more iterations than the NPF algorithm. Additionally, the relative difference ∥VN

−V L
∥2

∥VN∥2
is very small for all test-cases.

In the NPF computation, the stopping condition is determined by the active ∆P and reactive ∆Q mismatches which are
computed by using the nonlinear power flow equations given in (4). It is obvious that the active ∆P and reactive ∆Q
ismatches computed for our LPF method using V L, will be also small since Eq. (4) depends on the complex voltage V
nd ∥VN

−V L
∥2

∥VN∥2
is very small as shown in Table 4. Table 5 shows that the computed active P and reactive Q powers of the

reference bus found with the LPF method are indeed close to the ones found by NPF.
In Fig. 3, we show the scaled residual norm ∥ ∆|Vn| ∥∞ for various test-cases in order to present that our iterative LPF

method has linear convergence.
We can conclude that the iterative LPF method has the same accuracy as NPF algorithms, for networks consisting of

only PQ-buses. Moreover, it is much faster than NPF computations. Therefore, our LPF method with this iterative approach
7
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c
b

Fig. 2. Voltage magnitude (a) and angle (b) profile for the test-case DCase85, using NPF and LPF with different estimates for |V̂n|.

Fig. 3. Convergence of the iterative LPF method for test-cases Dcase22, Dcase69, and Dcase85.

an be used for power flow simulations on any transmission or distribution networks if generator buses can accurately
e modeled as PQ-buses.
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Fig. 4. Convergence of the iterative LPF method on two test-cases.

Table 6
The CPU time and the relative difference between NPF and iterative LPF for transmission networks.

Test-case NPF(V 0
= 1) LPF(|V̂ 0

n | = 1, Q̂ 0
k = C)

Time (NPF)
Time (LPF)

||VN
− V L

||2

||VN ||2

Iter Time(s) Iter Time(s)

Transmission networks

Tcase9 3 0.0226 14 0.0053 4.22 3.18 × 10−5

Tcase30 3 0.0209 91 0.0216 0.96 1.73 × 10−4

Table 7
The relative difference for voltage angles, with δN the voltage angle of NPF, δDC the voltage
angle of DC, and δL the voltage angle of iterative LPF.

Test-case
||δN − δDC ||2

||δN ||2

||δN − δL||2

||δN ||2

Distribution networks

Dcase22 0.1407 1.48 × 10−5

Dcase33 5.5710 8.08 × 10−6

Dcase69 0.5982 1.50 × 10−5

Dcase85 0.4246 1.56 × 10−5

Dcase141 4.7221 2.11 × 10−6

Second, we apply the iterative LPF method to networks with PV-buses. We use two transmission networks with a
couple of generators. Both NPF and LPF algorithms start with a flat initial guess |V |

0
= 1. For the LPF algorithm, we

start with an initial guess Q̂ 0
k = C for all PV-buses. We take C = 0, if there are no loads connected to the generator

bus, or C = Q load
k , if there are loads connected to the generator bus, with Q load the total injected reactive power of the

oads. Table 6 gives the numerical results of NPF and iterative LPF computations in terms of the CPU time and the relative
ifference. Table 6 shows that Algorithm 1 finds a solution close to the solution of the NPF computation. However, the
PF requires a large number of iterations.
In Fig. 4, we show the scaled residual norms ∥ ∆|Vn| ∥∞ and ∥∆Pk∥∞ for two test-cases. We can see that Algorithm 1

as non-smooth convergence, meaning that Q̂ h+1
k := Q̂ h

k + ∆P might not be the best update for the reactive power Q̂ h+1
k

f generator buses.

.3. Comparison to DC load flow

We compare our iterative LPF method with the DC load flow method, which solves the linear power flow problem for
oltage angles δ. In Table 7, we present the relative difference for voltage angles δ computed by DC load flow, NPF, and
ur iterative LPF method, on various distribution networks.
We see that the relative difference in voltage angle between our iterative LPF method and NPF is much smaller than

he error between DC load flow and NPF. In addition, Fig. 5 shows the voltage angle profile for the test-case DCase22. The
PU times of both methods are comparable: 0.0050 s for DC load flow and 0.0064 s for iterative LPF for test-case DCase22.
9
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Fig. 5. Voltage angle profile for DCase22 using NPF, DC load flow, and iterative LPF.

Table 8
Number of iterations for NPF computations using different initial guesses.

Test-case NPF with V 0
= 1 NPF with V 0

= LPF(|V̂n| = 0.95)

Number of iterations

Transmission networks

Tcase9 3 2
Tcase30 3 2
Tcase57 3 2
Tcase89 4 2 (|V̂n| = 0.99)
Tcase118 3 2

Distribution networks

Dcase22 2 1
Dcase33 3 2
Dcase69 4 2
Dcase85 3 2
Dcase141 3 1

From Table 7 and Fig. 5, we can conclude that our iterative LPF method is more accurate than DC load flow for
distribution power flow computations.

5.4. Direct approach combined with NPF

Usually, a flat start of |V | = 1 is used as an initial guess for Newton-based power flow methods. However, it is known
hat the Newton process has a local quadratic convergence characteristics, meaning that if the initial iterate is far from
he solution, it might diverge. Since our LPF method is much faster than NPF algorithms, and provides acceptable voltage
rofiles using a flat estimate for |V̂n|, we can perform the LPF computation first, and use the result as an initial guess for
PF methods. Table 8 presents the result of NPF computations with the initial guess V 0

= 1 and with V 0 taken as the
esult of the direct LPF computation with |V̂n| = 0.95. The convergence of the NPF computation is improved by one to
two iterations on all test-cases when the result of the LPF computation is used as an initial guess. This could be another
application of our direct LPF method in power flow simulations.

6. Conclusion

In this paper, we introduce a linear formulation of the original nonlinear power flow problem. We created this linear
formulation by modifying generator and load buses in the original nonlinear problem by adding artificial-additional
ground buses. This results in a novel linearized method that can be solved with a direct and an iterative approach.
We validate the accuracy and efficiency of the direct and iterative linear approaches by comparing their output with
the conventional Newton power flow solution on various transmission and distribution networks. CPU time and relative
difference are used for the comparison reasons between our LPF methods and NPF methods.

The direct LPF approach is around seven times faster than the NPF computation and can be as accurate as NPF methods
if the input |V̂n| and Q̂k are given within a reasonable scale. It is also concluded that if the PV-buses are modeled as
PQ-buses in the network then our direct LPF approach results in very good accuracy. The main reason is that in this
case, we have to approximate only |V̂ | from the range between 0 and 1 because the PF computation is done in per unit
n

10



B. Sereeter, A.S. Markensteijn, M.E. Kootte et al. Journal of Computational and Applied Mathematics 394 (2021) 113572
normalization. We also know that our actual solution will be in the same range as our initial guess is selected. Therefore,
the difference between our initial guess and actual solution will always be small, and the solution of the direct LPF method
will be even more accurate to the actual solution.

The iterative method has the same accuracy as NPF algorithms and is five to six times faster than NPF computations.
When it is difficult to find a reasonable initial guess of V for NPF, the outcome of the direct LPF method can also be

used as an initial guess for NPF computations to speed up the NPF computations while maintaining high accuracy.
Overall, the direct and iterative LPF approaches are good alternatives for the computationally expensive NPF com-

putations, making it a powerful tool for electrical grid operators that need to do real-time power system simulations
of very large networks. In addition, the linear power flow Eqs. (16) can be used as equality constraints for the Optimal
Power Flow (OPF) problem instead of the default nonlinear power flow equations. As a result, we can avoid the nonlinear
equality constraints in the OPF formulation, reducing the computational time of OPF, since the original nonlinear power
flow equations do not need to be linearized.

Further research includes improving the iterative LPF method for networks with PV-buses by investigating different
ways to update the unknown reactive power of the PV-buses.
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