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Abstract: For various applications, it is well-known that deflated ICCG is an efficient
method to solve linear systems iteratively. This deflated ICCG can also be used to solve
linear systems with a singular coefficient matrix arising from a discretization of the Pois-
son equation with Neumann boundary conditions and discontinuous coefficients. The use
of sparse subdomain deflation vectors in this method appears to be very effective. In
this paper, we explain this in more detail by applying a spectral analysis with perturbed
eigenvectors.

Moreover, we introduce new variants of the deflation technique, that can deal with the
pressure-correction equation for two-phase flow problems and in particular bubbly flow
problems. The first variant is the deflation technique with the so-called levelset deflation
vectors. In contrast to the standard subdomain deflation vectors, those vectors are related
to the location of the bubbles in the domain. Another deflation variant uses the so-called
levelset-subdomain deflation vectors and profits of the advantages of both subdomain and
levelset deflation vectors. Numerical experiments show the good performance of these new
deflation variants.
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1 Introduction

Computation of two-phase flows, and in particular bubbly flows, is a very active research topic in
computational fluid dynamics (CFD), see for instance [24, 28]. Bubbly flows are governed by the
Navier-Stokes equations, that can be solved using an operator splitting method. In many of these
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popular operator splitting methods, a linear system for the pressure correction has to be solved for
every time step, arising from a Poisson equation with discontinuous coefficients. This consumes
the bulk of the computing time, although the coefficient matrix of this linear system is elliptic.
The pressure correction equation is usually solved with the ICCG method, but this method shows
slow convergence for complex bubbly flows, due to the occurrence of strongly varying coefficients,
arising from the difference in density between bubbles and fluid. As an alternative for ICCG, we
apply a deflated variant of ICCG, called DICCG, see, e.g., [8, 10, 15, 17, 19, 20, 21, 25, 34, 35].
The extra deflation technique removes the components of the eigenmodes that causes the slow
convergence of ICCG.

For elliptic problems with large jumps in the coefficients (of which the pressure correction equa-
tion for bubbly flows is just one example), successful multigrid solvers and preconditioners can be
found in, e.g., [2, 4, 36], whereas appropriate domain decomposition methods and preconditioners
have been considered in, e.g., [7, 14, 27, 32]. However, here we restrict ourselves to DICCG-type
methods, because it appears that these multigrid and domain decomposition methods show com-
parable results relative to DICCG, in our bubbly flow applications. Furthermore, the approach
presented in this paper may be generalized to other preconditioners, which have comparable spec-
tral properties.

Recently, DICCG applied to bubbly flows has been studied by the authors in [29, 30]. In [29],
theoretical considerations of DICCG with subdomain deflation vectors are given, with respect to the
singularity of the linear system. Moreover, 3D numerical experiments are described, comparing the
number of iterations required for ICCG and DICCG. Furthermore, in [30], implementation issues
of DICCG have been discussed related to efficiency. In addition, efficient methods to solve coarse
linear systems within DICCG have been given, including a theoretical comparison of these methods.
Finally, in [30], it is shown by numerical experiments that the proposed DICCG methods are very
efficient. Compared with ICCG, DICCG decreased significantly the number of iterations and the
computing time for which are required for efficiently solving the Poisson equation in applications
to 2D and 3D bubbly flows.

However, in [29, 30], it has not been shown nor explained why the approach of DICCG with
subdomain deflation vectors is successful. We have only conjectured that the smallest eigenvalues
of the preconditioned coefficient matrix have been projected to zero, leading to fast convergence of
DICCG. In this paper, it will be shown that this is indeed the case, by applying a spectral analysis
with small perturbations in the eigenvectors associated with these smallest eigenvalues.

Furthermore, the subdomain deflation vectors are independent of the geometry of the bubbly
flow. Hence, this DICCG approach can be used as a black-box method and can be easily and
efficiently implemented in a computer code. But a drawback is that relevant physical information,
which might improve DICCG significantly, is not exploited. Therefore, in this paper, we will give
two new variants of DICCG, in which the deflation vectors are related to the bubble geometry.

The outline of this paper is as follows. Section 2 is devoted to the problem setting of the bubbly
flow and properties of the resulting linear system. The deflation technique with general deflation
vectors is introduced in Section 3. In Section 4, we investigate perturbations of the eigenvectors
and their consequences for the deflation technique. Subsequently, new variants of the deflation
method are introduced in Section 5. We describe some numerical experiments and a comparison is
made between various deflation variants in Section 6. Finally, conclusions are drawn in Section 7.

2 Problem Setting
We consider a symmetric and positive semi-definite (SPSD) linear system

Az =b, AeRY™, (1)
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where A is singular. The preconditioned variant (1) is given by
M™Azx =M~1'b, M eR™",

where M is a symmetric positive definite (SPD) preconditioner. In this paper, we restrict ourselves
to the Incomplete Cholesky (IC) preconditioner [16], and the resulting preconditioned CG is called
ICCG.

Assumption 1. M is the IC preconditioner based on A.

The linear system (1) is derived from a standard second-order finite-difference discretization of
the 1D, 2D or 3D Poisson equation with variable coefficients and Neumann boundary conditions,
that is

{ -V (péx)vap@) = J(x), x€Q, @
wmP(x) = g(x), x€09,

where p, p, x and n denote the pressure, density, spatial coordinates and the unit normal vector to
the boundary 0%, respectively. The problem is solved on a uniform Cartesian grid in a unit square
domain Q. Furthermore, we consider two-phase bubbly flows with for instance air (low density
phase) and water (high density phase). In this case, p is piecewise constant with a contrast, e,
which is the ratio of the two densities, i.e.,

_ PO:L XEAOa
P= p1 =€ X€A17

where A; is the low density phase, namely bubbles in Q, and Ag is the high density phase, namely
the fluid domain around these bubbles. Note that in the case of ¢ = 1, we deal with the standard
Poisson equation. For more details about the discretization and the above problem setting, see [23,
24].

The number of bubbles is denoted by w € N. Figure 1 shows the density field of a typical
example with w = 5. Furthermore, ®; C 2 denotes the domain corresponding to bubble ¢ including
its interface that may lie in Ag, for i = 1,2,...,w. Hence, we have

A1 g Uleq)i and ﬂ;’;l (I)l = @

Since we use a uniform Cartesian grid with n = n,n, cells in 2D, where n, and n, are the
number of cells in the respective spatial direction. The discretized domain and the corresponding
grid points are denoted by 2, and z;, respectively. Moreover, Ay, Aj, and ®;,, are the discretized
variants of Ag, A; and ®;, respectively. For each i = 1,...,w, we introduce the characteristic
vector ¢; € R™ associated with bubble i, where each entry, (¢;);, is defined as follows:

N 1, if :Uje@hi,
(¢:); _{ 0, elsewhere.

Notice that the set of vectors {¢;};=1,. . is linearly independent.
Define 1, and 0,, as the all-one and all-zero vector with p elements, respectively. Given the fact
that the solution of (2) is determined up to a constant, Assumption 2 is natural.

Assumption 2. A1, = 0, and bT 1,, = 0, and the algebraic multiplicity of the zero-eigenvalue of
A is one.

Eigenvalues of matrices will be sorted increasingly; that is, for each eigenvalue \; of M 1A we
have 0 = A\ < Ay < ... < A,. For i > 2, they appear to be of order 1, except for a few eigenvalues
that are of order e. The number of these O(e)—eigenvalues depends on the number of bubbles, w,
see Proposition 1.
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Figure 1: Density field p of a test problem with w = 5.

Proposition 1. Let 1 < w < n. Then, the eigenvalues \; of M~ A satisfy

0, for i=1;
A=< Oe), for i=2,...,w;
o), for i=w+1,...,n.

Moreover, for i =2,...,w each eigenvector v; corresponding to \; is constant in Ay.

Hence, matrix M~ A has exactly w — 1 eigenvalues of O(e), if there are w bubbles in Q. Note
that Proposition 1 still holds if bubbles meet the boundaries. Similar results have been proven
in literature, see, e.g., [35, Thm. 2.2], where matrices are invertible and applications are given to
steady porous media flows.

Obviously, if € < 1 and w > 1, then M~'A is ill-conditioned. Therefore, ICCG converges
slowly. The method should be adapted such that it gets rid of these O(¢)—eigenvalues, resulting
in a more efficient method. This can be realized by applying the deflation technique treated in the
next section.

3 Deflation Technique

Extension of ICCG with the deflation technique leads to the deflated ICCG method (DICCG). In
this section, we briefly describe this method.

Let the deflation subspace matrix Z € R™** with k < n be given, consisting of k deflation
vectors. The deflation matrix P is defined as follows:

Py :=1—-AZE ' ZT e R™", E .= 2T AZ e RF*¥,
where F' is assumed to be non-singular. We wish to solve the deflated system:
M~ 'P;Az = M~1Pgb,
which is obviously singular. A solution x can be found from z as follows ([19]):
r=Z2E"'Z"b+ PLz.

Let o(B) = {A1,As,..., Ay} denote the spectrum of matrix B with eigenvalues \; and let
A € R™" be invertible. If Z has full rank, then Theorem 1 ensures that M ~1P, A has a more
favorable spectrum than M 1 A.

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



New Variants of Deflation Techniques for Pressure Correction in Bubbly Flow Problems 231

Theorem 1. Let Ay < Ay < ... < A, be the eigenvalues of M‘lg, where A € R™™ js non-
singular. Let Z € R™F be of full rank. Then

O'(Milng) = {07 cee aohu‘k-‘rh o 7:LL’n,}?
with Ay <p; < Ay fori=k+1,...,n.
Proof. The result follows immediately from [33, Thm. 2.2]. O

It appears that a similar result holds for our singular matrix A:

e if 1, € Col(Z), then
U(M_1PZA):{07"'u07/1'k+17"'7lun}7 (3)

with A\; <p; <A, fori=k+1,...,n;

o if 1, ¢ Col(Z), then
U(M_1PZA>:{O?"'aoalu/kJr?w--a,U/nL (4)

with My < p; < A\ fori=k+2,...,n.

Note that the deflation subspace is larger for 1,, ¢ Col(Z), compared to the case 1, € Col(Z).
The above observations can be proven for specific choices of Z, see Theorem 5 in Section 5.2.

Of course, it depends on the deflation subspace matrix Z in which way the eigenvalues u; are
distributed exactly, and therefore, the success of DICCG is related to the choice of Z. In the next
section, we will discuss and analyze some appropriate choices for Z.

4 Analysis of Deflation with Perturbed Eigenvectors

In this section, we analyze the deflation technique, if we apply exact and perturbed eigenvectors
corresponding to the eigenvalues of O(e).

4.1 Deflation with Exact Eigenvectors

According to Proposition 1, the most straightforward choice for the columns of Z is the set of
eigenvectors corresponding to the O(e)—eigenvalues, so that they are eliminated from the spectrum
of M—'P;A. This statement can be proven for A, see Theorem 2.

Theorem 2 (Th. 2.5, [19]). Let A € R"™ " be non-singular. Let M~ A have eigenvalues Ay <
Ao <... <\, with corresponding eigenvectors v;. If V :=[vy vy -+ vg], then

c(M~'PyA) ={0,...,0, Ajg1s- > A}

Comparing Theorem 2 to Theorem 1, we see that p; = \;, and therefore, each p; lies in
[Agt1,An] for i = k+1,...,n. By observation, we note that, since 1,, € Col(V'), Theorem 2 also
holds for our singular matrix A by replacing A by A. Hence, applying eigenvectors associated with
O(e)—eigenvalues as deflation vectors is a good strategy to improve the convergence of the iterative
process. In this case, it is sufficient to take k = w, if one wants to eliminate all O(e)—eigenvalues.
Moreover, due to Assumption 2, v; is the constant eigenvector corresponding to the zero-eigenvalue.
As a consequence, v; may be omitted in V', so that & = w — 1 deflation vectors would even be
sufficient for the elimination of all O(e)—eigenvalues.

Note that, although deflation with exact eigenvectors of M ~! A leads to fast convergence, such a
choice will in practice eventually lead to inefficiency. This is because these eigenvectors are usually
dense and it is relatively expensive to compute and use them.
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4.2 Deflation with Inexact Eigenvectors

Instead of using exact eigenvectors as deflation vectors, we could also use perturbed or approxi-
mated eigenvectors, such as Ritz vectors. Define V := [ Uy --- Ux] where each ¥; is an approxi-
mation of the exact eigenvector v; of M 1A, i.e.,

U =v+0;, 6 €R™ i=1,2,....k, wherek <w. (5)

Of course, it would be convenient that deflation with V has the same favorable features as
deflation with V. If k = w, then the resulting spectrum of M ~!Py A should not contain any
eigenvalue of O(e) anymore. In this case, each §; has to be chosen in such a way that the eigenvalues
of the resulting matrix M ~1 Py A satisfy

Ole) <\ <\, fori=k+1,...,w, (6)

where ); is an eigenvalue of M~'PyA and 1,, € Col (V) is assumed. However, as far as we
know, in the literature no results are given concerning the way in which v; can be perturbed,
such that (6) is satisfied. In the remainder of this subsection, we will give some theoretical results
and observations, resulting in heuristic rules for choosing §;. These are partly based on numerical
experiments described in [31].

Define v; € R™ as the vector with the entries of o;, that correspond to the bubbles of phase
A; including the interfaces, and let the other entries be zero, i.e., for each i, the entries of v; are
defined by

(l/i)j _ { (”L_)i)j, if Z; G. Ah1 or x; € 8Ah1;
0, otherwise,

where 0Ap, denotes the interfaces corresponding to Ap,. Similar to v;, vector 1,, € R" is defined
as follows:
(i ), = 1, if SUjGAhl OI'ZL'jE@Ahl;
na 0, otherwise.

Moreover, the perturbations satisfy Assumption 3.

Assumption 3. Fach perturbation §; € R™, with i = 1,2,...,k, is chosen such that
1. ||Ad;||2 = O(e) for each &;;
2. entries corresponding to at least one bubble in A1 are nonzero in v;;
3. the set {1,,v1,...,v} is linearly independent.

The first condition of Assumption 3 means that the norm of the perturbation, after premultipli-
cation with A, is small. The second condition says that it is not allowed to choose a perturbation d;
in such a way that all elements of v; corresponding to the bubbles are all zero. The final condition
means that each §; should be chosen in such a way that all v; and 1,, do not depend on each other.

Example 1. In our bubbly flow applications, perturbations §; € R™ satisfy Assumption 3 in, for
instance, the following two cases:

e choose arbitrary elements for the vector §;, corresponding to the high density phase Ag;
e choose arbitrary but identical elements of §;, corresponding to a complete bubble including its

interface in the low density phase A1, such that each §; corresponds to a different bubble.
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Next, define V, € R"** with k < w—1 as a matrix consisting of columns, which are eigenvectors
of M~ A corresponding to O(e)—eigenvalues. In addition, define V, € R"** as a perturbation of
V., so that each §; fulfills Assumption 3, i.e., each column of V, is the sum of the corresponding
column of V, and §; satisfying Assumption 3 (cf. Eq. (5)). Then it appears that Assumption 4 is
always fulfilled in our experiments.

Assumption 4. Py A = Py A+ Q with [|Q||2 = O(e).

In addition, define @ € {0,1,...,w} as the maximum number of characteristic vectors, ¢p,,
such that )
¢n;, C span {1,,v1,..., Uk}
For instance, o = k means that the number of deflation vectors is equal to the number of vectors

corresponding to separate bubbles, that can be constructed from the deflation subspace. Now,
Theorem 3 follows easily.

Theorem 3. Suppose that a = k and let Assumption 4 holds. Then, for j =1,...,n, we have
A (Py, A) = A (P, A)l <7, v = O(e). (7

Proof. Since Py A = Py, A+ Q with |[Q]|]2 = O(e), the theorem follows immediately from Corol-
lary 8.1.6 of [11]. O

As a consequence of Theorem 3, perturbations §; that meet Assumption 3 do not significantly
influence the spectrum of the deflated system Py, A. If, for instance, Py. A does not contain
O(€)—eigenvalues, then neither does Py A.

Unfortunately, Theorem 3 can not be generalized to the preconditioned deflated systems; i.e.,
inequality (7) does not hold in general, if one substitutes M ~1Py A and M ~!Py A for Py A and
Py A, respectively. Counterexamples can be easily found using numerical experiments. It appears
that only an adapted variant of Theorem 3 holds for the preconditioned case, see Proposition 2.

Proposition 2. Let k € {1,2,...,w — 1} be given. Choose each §; € R™ such that Assumption 3
is fulfilled. Moreover, suppose that « =k and 1,, ¢ Col(Vz). Then,

(N (M Py A) = N (M Py A) <,y = Oe),
forallj=1,... w.

According to Proposition 2, the O(e)—eigenvalues of M~ Py; A are not significantly influenced
by these perturbations, if each perturbation §; is chosen such that Assumption 3 is satisfied. How-
ever, Proposition 2 does not say anything about the other eigenvalues of M~ Py. A. Fortunately,
it can be observed that the number of O(e)—eigenvalues is equal for M ~'Py, A and M~'Py, A, if
a = k. Moreover, a similar result follows for o < k. These results are stated in Conjecture 1.

Conjecture 1. Let k € {1,2,...,w—1} be given and suppose o = k. Choose each ¢; € R™ so that
Assumption 3 is fulfilled. Then, the number of O(e)—eigenvalues of M’lPVEA is equal to

w—a—1, if a<w-1;
0, if a>w-—1.
Moreover, if a > k, then the number of O(e)—eigenvalues of both M’1P‘7€A and M~ Py A is the

same.

As a special case of Conjecture 1, we have that both M ~'Py A and M ~'Py, A do not contain

any O(e)-eigenvalue, if & = w — 1 and each 6; has nonzero entries associated with at least one
bubble. Example 2 shows another application of the conjecture.

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Example 2. Consider a 2D bubbly flow problem with w = 5, see Figure 2. In this case, the
spectrum of M~YA contains four O(e)—eigenvalues. The corresponding eigenvectors are taken as
the deflation vectors. As seen in Figure 2, two situations are considered, where 0 has been divided
into four (deflation) subdomains €);, each corresponding to one perturbation vector §;, whose entries
are constant in this subdomain and zero elsewhere. In the case given in Figure 2(a), none of the
perturbations satisfy Assumption 3. Therefore, all four O(e)—eigenvalues of M ~*A remain in the
spectrum of M_IP‘ZA. However, in the case of Figure 2(b), all perturbations meet Assumption 3,
but obviously o = 3. According to Conjecture 1, the spectrum of M_lPV‘A consists of exactly one
O(e)-eigenvalue, which can be easily confirmed by numerical experiments.

O..0O| Q. O

(a) Wrong choice of subdomains, (b) Good choice of subdomains,
since the middle bubble is not since each bubble is in the inte-
captured by one subdomain. rior of a subdomain.

Figure 2: A 2D example of a bubbly flow problem with w = 5 and two different situations for the
perturbations d;.

Moreover, from Conjecture 1, we obtain the unexpected result that a good strategy for choosing
an appropriate deflation vector ¥; = v; + 6; is related to Ad;, rather than to M ~1AG;.

Finally, we refer to [26] for related results concerning the choice of deflation vectors. In that
paper, two-level overlapping domain decomposition preconditioners with coarse spaces have been
studied, by smoothed aggregation in iterative solvers for finite element discretizations of elliptic
problems. Furthermore, similar observations as made in this section have been proven using
functional analysis. It is a topic of current research to extend the theory given in [26] to the
deflation strategies here.

5 Variants of Deflation

In the previous section, we have seen that exact eigenvectors are not required to eliminate the
smallest eigenvalues from the spectrum of M ~'PzA. Conjecture 1 can serve as a guideline for
approximating eigenvectors corresponding to O(e)—eigenvalues. This leads to strategies for choos-
ing effective deflation vectors. In the next subsections, the resulting deflation variants will be
described.

5.1 Levelset Deflation

By combining the results obtained in Example 1 and Conjecture 1, it can be concluded that
eigenvectors v; associated with the O(e)—eigenvalues are still well-approximated, if

e all entries of v;, corresponding to a bubble of A; including its interface A1, are scaled by a
constant. Therefore, for convenience, the value 1 can be chosen for the associated entries of
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the perturbed eigenvector ¥;, since we know from Assumption 1 that all elements in a bubble
are constant;

e the entries of v; corresponding to the high density phase Ag can be perturbed arbitrarily. To
obtain sparse perturbed eigenvectors v;, it is convenient to perturb these elements of v;, such
that they become zero. In other words, (;); =0, if z; € Ay, and x; ¢ OAp,.

Hence, each v; can be approximated well by a sparse v; such that only the entries corresponding to
bubbles are nonzero. From Conjecture 1, we also find that if & > w — 1 then all O(e)—eigenvalues
of M~1A can be eliminated by choosing & = w — 1. The requirement o > w — 1 is automatically
fulfilled when we associate each v; to one unique bubble, so that only the entries corresponding to
a single bubble are nonzero. Note that one bubble of 2 is excluded, since k = w — 1. The resulting
deflation subspace matrix with vectors ; will be denoted by W, € R™**_and the resulting deflation
method is called L-DICCG—k, where k is always chosen to be w — 1. We define W, € R"*“ as
W, € R« extended with a column associated with the excluded bubble. Later on, W, will
be used to define the levelset-subdomain deflation variant.

Note that, if some bubbles in 2 are very close to each other, then some grid points z; might
belong to the same nonzero elements of several columns of Wy. In this case, row sums of W can
be larger than one, resulting in non-disjunct columns. This is, however, not a drawback of the
method. On the contrary, if one avoids the disjunction of the vectors, by choosing zero instead
of one at some entries associated with the bubble interface, then the corresponding eigenvectors
appear to be approximated badly. This results in slower convergence of the iterative process, see
also Section 6.5.2.

If the density field p is known explicitly, then L-DICCG—k can be simply applied by locating
the bubbles in A1, and choosing one for the corresponding entries of the columns of W,. However,
in many applications, p is only given implicitly. For example, the levelset approach [18, 22] has
been adopted to describe p implicitly in our applications, see e.g. [23, 24, 30]. In this approach,
the interfaces of the bubbles are defined by the zero level-set of a marker function ¥: ¥ = 0 at the
interface, ¥ > 0 inside the high density phase A; and ¥ < 0 elsewhere. The interface is implicitly
advected, by advecting ¥ as if it were a material property:

% +u- V¥ =0,
where u is the velocity vector in 2. Therefore, p can be determined at each time step, without
having the exact coordinates of each bubble. For choosing deflation vectors, an extra procedure
for determining the bubbles from ¥ should be carried out. For example, Algorithm 1 gives the
pseudo-code, that can be used for 2D problems on an equidistant grid 2. In this algorithm, &;
denotes an adjacent grid point corresponding to x;.

In Algorithm 1, three loops are needed to distinguish the bubbles from the rest of the domain
and to include their adjacent grid points, requiring O(n) flops. Note further that, in the case
of deciding whether a grid point is in a bubble, we simply look at the sign of the corresponding
element of W. If the value is positive, the grid point is in the interior of the bubble, if it is negative,
then it is outside the bubble, and otherwise, it is on the interface. In this way, it is straightforward
to determine the bubbles from the levelset function, and to obtain a code where each deflation
vector corresponds to exactly one bubble. The algorithm is further explained in Example 3.

Example 3. A 2D bubbly flow problem with w = 3 bubbles is considered, see Figure 3. In each of
the subplots, one can see the intermediate and final results of applying Algorithm 1 to determine
each bubble.

3If the computations would be applied to an unstructured grid, similar algorithms as Algorithm 1 can be used,
where for instance reordering strategies like Cuthill McKee’s algorithm [3] might be exploited.
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Algorithm 1 Determination of bubbles from the levelset function in 2D
set j =1 and f = 0,;
: for z1 to x, (from left to right and from bottom to top) do
if z; € Ah1 then
if left and/or bottom &; ¢ Aj, then
fi=17J;
J=J+L
else
fv’, = min.’fci f;
end if
10: end if
11: end for
12: for x, to z1(from right to the left and from top to bottom) do
13: if z; € Ah1 then

14: if right and/or top &; ¢ Ay, then
15: fi=17;

16: j=3+1

17: else

18: fi = ming, f;

19: end if

20:  end if

21: end for

22: Renumber all f; # 0;
23: for x7 to x,, do
24: if z; € Ahl and I; ¢ Ah1 then

25: fa, = fi3
26: end if
27: end for

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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. l. . . . . L] . l. l. l. . L] ° .
. ele o o R F T KR
(Line 11)

o e e
.
.
.
.

(c) After renumbering (Line 22). (d) After the algorithm (Line 27).

Figure 3: A 2D bubbly flow problem with w = 3, to show the application of Algorithm 1. The
numbers given in the plots are the corresponding values of vector f.

5.2 Subdomain Deflation

In bubbly flow problems, where ) contains many bubbles, or where the density field p is unknown
or too complex, it is more convenient to apply the deflation technique with the original subdomain
deflation vectors instead of levelset deflation vectors. These subdomain vectors are constructed
without any knowledge of p. For example, in [29, 30], we used squares and cubes as subdomains
in 2D and 3D applications, respectively. We denote the deflation method with subdomain vectors
as S-DICCG—Fk, where k is the number of subdomains minus one. Moreover, Wy € R™** denotes
the corresponding deflation subspace matrix, which will be defined in a more mathematical way
below.

Let Q be divided into open (equal) subdomains €2;, i = 1,2,...,m, such that Q = U™ ,Q; and
2, NQ; =0 for all ¢ # j. The discretized subdomains are denoted by €p,. For each Q,, we
introduce a deflation vector z; as follows:

N0,z e Qu\
(Zl)] o { 1, T; € th.

Then, Wy is defined by
WS = [Zl zZ9 - mel];

so that K = m — 1. Hence, Wy consists of disjunct and orthogonal piecewise-constant vectors,
which is generally not the case for W;,. Moreover, note that Wy is usually less sparse and consists
of more vectors than Wy, and the amount of work is O(n) for the construction of both Wy and
W..

We could also extend Wy with an extra column z,,, which results in

Ws = [21 22 <+ Zm].

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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The deflation subspace matrix Wy will be used later on. Note that each subdomain corresponds
to one deflation vector, and we have the identity

Wl = 1,,. (8)

It can be shown that Wy and Ws lead to the same deflation matrix, since 1,, € COI(WS). This is
stated in Theorem 4.

Theorem 4 (Th. 4.6, [30]). The following identity holds:
M~'Py, A= M~ Py A.

Note that Eq. (8) is a useful property with respect to the implementation and some proofs of
theoretical results. But recall that this may give rise to difficulties for approximating the eigenvalues
associated with the bubbles, especially if bubbles are very close to each other. To approximate the
corresponding eigenvectors appropriately, some row sums of Wy should be larger than one.

Because of Conjecture 1, we find that S-DICCG—k can only be efficient, if each subdomain €2
contains a part of at most one bubble. Otherwise, one or more O(e)—eigenvalues will remain in the
spectrum of M~ Py A. Hence, to ensure the efficiency of the method, the number of subdomains,
k, should be taken very large, compared with the number of bubbles.

We find that the subdomain deflation vectors also approximate other eigenvectors corresponding
to small eigenvalues of O(1), since they appear to vanish from the spectrum of M ~!Py A, for
sufficiently large k. In Section 6, we will illustrate this with numerical experiments, but we will
already state that in Proposition 3.

Proposition 3. For sufficiently large k, Col(Wy) consists of vectors that are good approximations
of the eigenvectors corresponding to the smallest O(1)-eigenvalues.

Hence, S-DICCG—F is able to eliminate both O(e)— and O(1)—eigenvalues from M ~1A. This
means that, although S-DICCG—k is usually more expensive per iteration than L-DICCG—k, the
total computational cost can be much less due to faster convergence.

Finally, we end with Theorem 5, that extends Theorem 1 to singular coefficient matrices for
specific choices of Z.

Theorem 5. Let 0 = A1 < A < ... <\, be the eigenvalues of M—'A. Then,
a(M™ PwyA) = {0, 0, tesr, - s fin (9)
with M < p; < Ay foralli=k+1,...,n.
Proof. By Theorem 2 of [29], we have that
M™'Py, A= M"'Py A,

for some invertible matrix A and corresponding deflation matrix ﬁﬁ/s' Then, (9) follows immedi-
ately from Theorem 1 and Theorem 4. O

5.3 Levelset Subdomain Deflation

For density fields p with a complex geometry, S-DICCG—Fk with large £ may have difficulties to
get rid of all O(e)—eigenvalues, although the smallest O(1)—eigenvalues can be eliminated. On
the other hand, L-DICCG—k with k = w — 1 easily deals with these O(e)—eigenvalues, while
the O(1)—eigenvalues are untouched. Therefore, it can be beneficial to combine both variants.

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



New Variants of Deflation Techniques for Pressure Correction in Bubbly Flow Problems 239

This new deflation variant is called LS-DICCG—k, while W, € R™*¥ denotes its corresponding
deflation subspace matrix. The exact form of Wi will be defined below.
First, we define some simple operations on matrices. The operation UY € R"*!, acting on
Y = [y; ;] € R"*°, means that a vector is created whose entries are the maximum elements of each
row of Y, i.e., we have (UY), = max; y, ; for each ¢, requiring O(r) flops. Moreover, for ¥; € R"**
and Yy € R"*%2 the operation Y3 NY2 € R™*% means that a new matrix (or vector) is created,
whose columns are equal to all possible componentwise multiplications between the columns of Y3
and Y5, that are non-zero. Note that s3 < s159 and the amount of work for this operation is at
most O(rs182).
Then, we define .
WLS = [W17W2], (].0)
with . . o
W1 = WS N (1n — UWL), W2 = WL N WS. (].1)

Hence, W; consists of all subdomain vectors of Wy, where the entries corresponding to A; are
zero. Moreover, Wy consists of columns, whose entries correspond to the bubbles, divided by the
subdomains of W.

The levelset subdomain deflation subspace matrix W, g is equal to

° WLS, if 1,, ¢ Col (WLS);
. NLS without its last column, if 1,, € Col (WL ).

Note again that that both W5 and WLS lead to the same deflation matrix. Example 4 is used to
illustrate the construction of Wig.

Example 4. Let

= 1

1110 0 0
Wb"oooo111

= O

o _for1o000007"
M= lo 00001 10
d

be the deflation subspace matrices, corresponding to S-DICCG—2 an
Then, this yields

L-DICCG-2, respectively.

Uv,=[0 1 1001 10], ,-uW,=[1001100 1],
resulting in

T
— —~ 1001 0O0O0TO0
Wy =Wsn (1, —UW,) = 0000100 1} ’

and i -
— 01 10000 0
WQ_WLOWS__OOOOOllO}'

This implies
1001000 07"
— 000O0T1TU0O01
Wis=Wi,Wal=1017 1 ¢ 00 0 0
(000000110

Finally, since 1, € Col (W), the levelset-subdomain deflation subspace matriz W is equal to

T

_ o O

10 1 00
Wws=10 0 0 1 0
0 1 0 0 0

o O O

0
1
0
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Note that

Col (Ws) c Col (WLS);
Col (W,) C Col (W),

which means that the deflation subspace of LS-DICCG—E consists of the deflation subspaces of
both L-DICCG—k and S-DICCG—k. In addition, observe that if W, consists of non-disjunct
deflation vectors, then W1y # 1,,.

Note that the construction of Wys requires at most O(nmw) flops, where m is the number of
subdomains chosen in the subdomain deflation variant. In addition, compared with L-DICCG—k
and S-DICCG—Fk, LS-DICCG—Fk requires more deflation vectors, so an iteration of this hybrid
method is more expensive due to the more sophisticated coarse solves. However, since the spec-
trum of M 1Py, A is more favorable, convergence can be much faster, resulting in a lower total
computational cost of LS-DICCG—k.

Furthermore, we remark that another variant of LS-DICCG—k can be used, where I/VLS is
defined by T/VLS = [WL, WS] with corresponding Wy s. This alternative saves some setup time and
a fewer number of deflation vectors is required, compared with the original LS-DICCG—k. The
drawback is that row sums larger than one are inevitable. This is left for further research.

We end this section with Example 5, that illustrates the deflation variants proposed in this
section.

Example 5. Consider a 2D bubbly flow problem with w = 5. The associated deflation vectors in
L-DICCG—-4, S-DICCG—-3 and the resulting LS-DICCG—11 are depicted graphically in Figure 4.

o OO0 Ollo"e
o D |——
ololieRRelNIoRRC

(a) L-DICCG—4 (k=w —1).  (b) S-DICCG—3 (m =4).  (c) LS-DICCG—11 (k < mw).

Figure 4: A 2D bubbly flow problem with w = 5, illustrating the levelset, subdomain and levelset
subdomain deflation technique.

6 Numerical Experiments

In this section, we perform some 2D numerical experiments to test the three deflation variants,
L-DICCG—k, S-DICCG—k and LS-DICCG—k. These variants will be compared with ICCG. The
computations are performed on a Pentium 4 (2.80 GHz) computer with a memory capacity of 1GB
using MATLAB.

First, we consider briefly the test problem without bubbles, that is the Poisson problem with a
contrast € = 1. Next, we treat the test problem with bubbles, where we vary grid sizes n, contrast
€ and the number of bubbles w. The employed geometry of the density field p with w = 5 can be
found in Figures 1 and 4.
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For the iterative solvers, a random starting vector xy will be used. The following termination

criterion is applied:
|M " Py (b — Aiy)|l2

HM_I(b — Al‘o)”z

for each variant of DICCG with corresponding deflation matrix Py.
standard termination criterion in ICCG, that is

[M7H(b — Aw)||2
[|IM=1(b = Azo) ]2

<1077,

This is equivalent to the

<1077,

6.1 Poisson Problem with ¢ =1 and n = 162

Since there are no bubbles in the domain, only S-DICCG—k can be applied to the Poisson problem
with € = 1. The results are presented in Table 1.

’ Method \ # It. ‘
ICCG 23
S-DICCG—-3 | 22
S-DICCG-15 | 15
S-DICCG—63 | 10

Table 1: Convergence results of the Poisson problem with € = 1 and n = 162. ‘# It’ means the
number of required iterations for convergence.

From Table 1, it can be noticed that S-DICCG—k reduces the number of iterations, compared
with ICCG. The corresponding eigenvalues of M~ A and M~ Py, A can be found in Figure 5.

1.2r P20 i
e TEo
0.8r 0.8r
§ f § -
o6t § o6l § 8
§a 8
o # o
0.4r0 0.4r°
8" 8
02 02
“l o eigenvalues M'A “lb o eigenvalues M'A
P o eigenvalues MPA P o eigenvalues MPA
50 100 150 200 250

50 100 150 200 250

(a) S-DICCG—15 (15 iterations).

(b) S-DICCG—63 (10 iterations).

Figure 5: Eigenvalues of M 1A and M ~! Py, A for S-DICCG—k, applied to the Poisson problem
with e =1 and n = 162.

From both subplots of Figure 5, we observe that small O(1)—eigenvalues of M ~! A have been
eliminated from the spectrum of M ~! Py A (see also Proposition 3), whereas the large eigenvalues
remain in the spectrum. Increasing the number of deflation vectors results in the elimination of
more small eigenvalues. This can be explained by the fact that the corresponding eigenvectors
are relatively smooth, so that they can be well-approximated by the subdomain deflation vectors.
Other eigenvectors corresponding to larger eigenvalues of M ~'A do not have a smooth behavior,
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and therefore, these are more difficult to approximate by using the subdomain deflation vectors,
see also [31, Sect. 10.1].

6.2 Poisson Problem with w =5, ¢ = 107% and Varying Grid Sizes

In this subsection, we will perform numerical experiments for the Poisson problem with w = 5,
€ = 107% and varying grid sizes. The convergence results, including the computational cost, can
be found in Table 2. The cost is given in terms of the computational time that is required for the

whole iteration process. *
n =162 n = 327 n = 647
Deflation Method | & | # It. CPU | #It. CPU | #It. CPU
1ICCG - 139 0.04 | 82 0.53 | 159 10.92
S-DICCG—k 3 |37 0.12 | 80 0.67 | 194 14.01
15| 36 0.07 | 97 0.80 | 193 13.82
63 | 19 0.11 | 16 0.20 | 26 2.14
L-DICCG—k 4 |17 0.09 | 37 0.37 | 75 6.17
LS-DICCG—k 11 | 14 0.07 | 30 0.29 | 54 4.08
35| 10 0.08 | 21 0.32 | 40 3.05
83 | — - 15 0.20 | 25 2.05

Table 2: Convergence results for the Poisson problem with w = 5, e = 10~% and varying grid sizes.
‘# It’ means the number of required iterations, and ‘CPU’ means the corresponding computational
time in seconds.

For all grid sizes, it can be observed that S-DICCG—63 is very efficient, compared with ICCG.
This is in contrast to S-DICCG—3 and S-DICCG—15, whose performance is comparable to ICCG.
The explanation is that Assumption 3 is fulfilled only for £ = 63, and according to Conjecture 1, the
spectrum associated with S-DICCG—63 does not contain O(e)—eigenvalues, see also Section 6.5.
For the other two cases, S-DICCG—3 and S-DICCG—15, some deflation subdomains consist of parts
of several bubbles, and therefore, the corresponding deflation vectors do not satisfy Assumption 3.
Hence, the number of O(e)—eigenvalues will not be reduced by the subdomain deflation vectors.
Furthermore, note that in the case of n = 642, ICCG requires significantly fewer iterations than
S-DICCG—3 and S-DICCG—15. This is caused by the fact that the corresponding residuals show
erratic behavior with relatively large bumps, so that a small rounding error during the iteration
process can lead to significant differences in convergence, see [31, Sect. 10.3] for more details.

Moreover, we see from Table 2 that L-DICCG—k reduces significantly the number of iterations.
It is an efficient method, since it requires only four deflation vectors.

We find that LS-DICCG—k performs very well in all cases, but S-DICCG—k and LS-DICCG—k
become comparable for sufficiently large k. Important to note is that, if there are some limitations
with respect to the number of deflation vectors due to memory capacity, then LS-DICCG—k
converges faster than S-DICCG—k. Suppose that only k& < 50 deflation vectors can be kept in
memory, than the fastest method is LS-DICCG-35.

Some related spectral analysis will be given in Section 6.5.

4This is including the computation of AZ and E, but excluding the construction of Z since it can not be done
efficiently in MATLAB. However, the comparison is still fair, since the computational cost to construct Z is negligible
by considering the flop counts given in Section 5.
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6.3 Poisson Problem with w =5, n = 642 and Varying Contrasts

In this subsection, we fix w = 5 and n = 642, whereas the contrast, ¢, is varied in the numerical
experiments. The results are given in Table 3.

e=1073 e=10"F
Deflation Method | k& | # It. CPU | #It. CPU
ICCG - | 118 8.12 | 159 10.92
S-DICCG—k 3 | 134 9.79 | 194 14.01

15 | 131 9.60 | 193 13.82
63 | 26 2.31 | 26 2.14
L-DICCG—k 4 | 74 5.98 | 75 6.17
LS-DICCG—k 11 | 54 4.05 | 54 4.08
35 | 40 3.08 | 40 3.05
83 | 25 2.46 | 25 2.41

Table 3: Convergence results for the Poisson problem with w = 5, n = 642 and varying contrast e.

From Table 3, we see that ICCG requires more iterations and CPU time for smaller e, due
to the presence of O(e)—eigenvalues in the corresponding spectrum. This observation does not
hold for L-DICCG—Fk and LS-DICCG—k, which is a favorable feature of these methods, and it
confirms the theory given in the previous section. For sufficiently large k, it can be noticed that
S-DICCG—k is also insensitive to €.

Again, it can be observed that S-DICCG—3 and S-DICCG—15 converge more slowly than
ICCG, whereas S-DICCG—63 is faster.

6.4 Poisson Problem with ¢ = 1075, n = 642 and Varying Number of Bubbles

We consider the Poisson problem with € = 107, n = 642 and a varying number of bubbles w. The
results can be found in Table 4.

One observes that ICCG needs more iterations, for larger w. This can be explained by Propo-
sition 1, which states that an increase of w leads to more O(¢)—eigenvalues. For L-DICCG—k,
LS-DICCG—Fk, and S-DICCG—Fk with sufficiently large k, we see that their performance depends
less on w, which is a favorable feature of these deflation variants.

Notice that L-DICCG—0 is undefined, so this method can not be applied for w = 1. Fur-
thermore, L-DICCG—k converges in fewer iterations for increasing w > 1. Finally, S-DICCG—k
converges again more slowly than ICCG, for k£ < 15.

All variants of the deflation method (except for S-DICCG—k with relatively small k) hardly
depend on w, in contrast to ICCG. This means that for problems with more bubbles, the deflation
method can even be more efficient.

6.5 Analysis of Small Eigenvalues for all Deflation Variants

In this subsection, we give some eigenvalue plots corresponding to the deflation variants. These
are based on the numerical experiment described in Section 6.2.

6.5.1 Subdomain Deflation

In Section 6.2, we have seen that S-DICCG—15 does not give any improvement of the convergence,
whereas S-DICCG—63 is very efficient, compared with ICCG. This can be understood by consid-
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w=1 w=2 w=5
Deflation Method || k& \ #It. CPU || k \ # It. CPU || k \ #It. CPU
ICCG - 89 6.13 — 104 7.20 - 159 10.92
S-DICCG—k 3 96 7.39 3 69 5.13 3 194 14.01

15 | 52 3.97 15 | 64 4.79 15 | 193 13.82
63 | 26 2.14 || 63 | 27 2.16 || 63 | 26 2.14
L-DICCG—k 0 |- - 1179 5.79 || 4 |75 6.17
LS-DICCG—k T |67 5.30 || 6 | 65 5.11 11 | 54 4.08
19 | 41 3.14 || 24 | 42 3.22 | 35 | 40 3.05
67 | 26 250 || 72 | 26 2.11 83 | 25 2.05

Table 4: Convergence results for the Poisson problem with € = 107, n = 642 and varying number
of bubbles.

ering their spectral plots, see Figure 6. Because we concentrate on small eigenvalues, only the 80
smallest eigenvalues of the corresponding spectra are presented.

From Figure 6, note that values below 10~2 can be interpreted as zero eigenvalues. Then, in the
case of S-DICCG—15 (Figure 6(b)), it can be observed that none of the O(10~¢)—eigenvalues of
M~1A is eliminated after deflation, because they remain in the spectrum of M ~! Py, A. Moreover,
S-DICCG—63 converges very fast, since the O(10~%)—eigenvalues vanish from the spectrum, as
can be seen in Figure 6(d). Apparently, only for sufficiently large k, each deflation subdomain
consists of a part of at most one bubble. Hence, the smallest eigenvalues can be eliminated, which
confirms Conjecture 1.

With respect to the small O(1)—eigenvalues, we observe in Figure 6(a) that they are approx-
imately the same for ICCG and S-DICCG—15. Moreover, for the case of S-DICCG—63 (Fig-
ure 6(c)), it can be seen that the smallest O(1)—eigenvalues do not appear in the spectrum of
M~1Py A. However, some other small eigenvalues around 0.1 can be noticed in Figure 6(c).
Roughly speaking, the eliminated O(107%)—eigenvalues are moved to small eigenvalues of or-
der 10~!. Apparently, the eigenvectors associated with O(10~¢)—eigenvalues are not approximated
accurately enough by the subdomain deflation vectors, even if we increase k. This may be caused
by the fact that, by definition, the subdomain deflation vectors have the unfavorable property
that they are disjunct (cf. Section 5.2). This can be remedied by using LS-DICCG—k instead of
S-DICCG—E, see Section 6.5.3.

6.5.2  Levelset Deflation

In Section 6.2, we have noticed that L-DICCG—4 reduces significantly the number of iterations,
compared with ICCG. Figure 7 shows the 80 smallest eigenvalues of the corresponding spectra.
First it can be noticed in Figure 7(a), that O(1)—eigenvalues are approximately the same for
ICCG and L-DICCG—4. In Figure 7(b), we see that all O(10~%)—eigenvalues are removed from
M ~! Py, A. However, they are moved to values in the vicinity of 0.2, see Figure 7(a). This is similar
to the case of S-DICCG—63 (cf. Figure 6(c)). The only difference is that the smallest eigenvalues,
associated with L-DICCG—4, are somewhat larger than those associated with S-DICCG—63.

As noticed in Sections 4.2 and 5.1, interfaces of bubbles should contribute to the deflation
vectors. If one omits Lines 23-27 of Algorithm 1, where these interfaces are included in the levelset
deflation vectors, then the convergence of L-DICCG—4 is significantly slower. In this case, it
appears that O(10~%)—eigenvalues are moved to eigenvalues between ¢ and 1.
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Figure 6: Eigenvalues of M ~'A and M ~!Py, A corresponding to S-DICCG—k, for the Poisson
problem with ¢ = 107% and n, = n, = 16.
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Figure 7: Eigenvalues of both M~'A4 and M~!Py, A, corresponding to L-DICCG-5, for the
Poisson problem with € = 107% and n, = n, = 16.
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6.5.3 Levelset Subdomain Deflation

As observed in Section 6.2, LS-DICCG—k performs very well for all k. The related spectral plots
can be found in Figure 8.
From Figure 8(a) and 8(b), we see that only O(10~5)—eigenvalues disappear and all O(1)—eigenvalues

remain in the spectrum in the case of LS-DICCG—11. In Figure 8(c) and 8(d), it can be observed

that both O(107%)— and the smallest O(1)—eigenvalues do not appear in the spectrum correspond-

ing to LS-DICCG—35. More importantly, in contrast to the cases of S-DICCG—k and L-DICCG—k,

the elimination of O(107%)—eigenvalues by LS-DICCG—k does not give rise to new eigenvalues
between € and 1. This is a favorable feature of levelset-subdomain deflation.
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Figure 8: Eigenvalues of both M ~1A and M ~!Py, A, corresponding to LS-DICCG—k, for the
Poisson problem with € = 1076 and n, = n, = 16.

7 Conclusions

In [29, 30], it has been shown that DICCG with subdomain deflation vectors is efficient to solve
linear systems coming from bubbly flow problems. In this paper, we have given more insight
into explaining the efficiency of DICCG. This has been done by applying a spectral analysis to
deflation with exact eigenvectors, and thereafter with perturbed eigenvectors. The main result
is that eigenvectors, corresponding to the smallest eigenvalues, can be perturbed in such a way
that they become sparse. In addition, based on this result, two new deflation variants have been
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introduced and discussed. The first variant is the levelset deflation method, where the sparse
deflation vectors are based on the geometry of the density field. The second variant, which is the
levelset-subdomain deflation method, combines original subdomain deflation and levelset deflation,
and has the advantages of both variants.

In the numerical experiments, we have compared the proposed deflation variants. It can be
observed in most test cases that all of them perform very well compared with ICCG. It appears
that subdomain deflation is only efficient for a sufficiently large number of subdomains. In this
case, not only the smallest eigenvalues corresponding to the bubbles are eliminated, but also other
small eigenvalues. Moreover, levelset deflation eliminates the smallest eigenvalues corresponding
to bubbles at low cost, but leaves the other eigenvalues more or less untouched. For both of
these methods, the elimination of the smallest eigenvalues may result in a spectrum that consists
of eigenvalues which are obviously smaller than those of the cluster. It appears that levelset-
subdomain deflation does not have this drawback. It is therefore an efficient method, although the
work per iteration and the work to create the deflation vectors are significantly larger than for the
other two variants. Moreover, all deflation variants (except for subdomain deflation with a small
number of deflation vectors) are insensitive to large contrasts between the phases and the number
of bubbles, and are efficient for all test cases with varying grid sizes.

It can be concluded that all deflation variants show good performance, and it depends on,
among others, the geometry of problem and the maximum number of allowed deflation vectors,
which of these variants is the most effective and efficient one.
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