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Abstract. It is well known that two-level and multilevel preconditioned conjugate gradient
(PCG) methods provide efficient techniques for solving large and sparse linear systems whose coeffi-
cient matrices are symmetric and positive definite. A two-level PCG method combines a traditional
(one-level) preconditioner, such as incomplete Cholesky, with a projection-type preconditioner to get
rid of the effect of both small and large eigenvalues of the coefficient matrix; multilevel approaches
arise by recursively applying the two-level technique within the projection step. In the literature,
various such preconditioners are known, coming from the fields of deflation, domain decomposition,
and multigrid (MG). At first glance, these methods seem to be quite distinct; however, from an
abstract point of view, they are closely related. The aim of this paper is to relate two-level PCG
methods with symmetric two-grid (V(1,1)-cycle) preconditioners (derived from MG approaches), in
their abstract form, to deflation methods and a two-level domain-decomposition approach inspired
by the balancing Neumann–Neumann method. The MG-based preconditioner is often expected to
be more effective than these other two-level preconditioners, but this is shown to be not always true.
For common choices of the parameters, MG leads to larger error reductions in each iteration, but
the work per iteration is more expensive, which makes this comparison unfair. We show that, for
special choices of the underlying one-level preconditioners in the deflation or domain-decomposition
methods, the work per iteration of these preconditioners is approximately the same as that for the
MG preconditioner, and the convergence properties of the resulting two-level PCG methods will also
be (approximately) the same. This means that, in this respect, the particular choice of the two-
level preconditioner is less important than the choice of the parameters. Numerical experiments are
presented to emphasize the theoretical results.
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1. Introduction. The conjugate gradient (CG) method is a well-known iterative
method for solving large linear systems of equations,

(1.1) Ax = b, A ∈ R
n×n,
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whose coefficient matrix, A, is sparse, symmetric, and positive definite (SPD). Matrix
A usually comes from a discretization of elliptic PDEs. The convergence rate of CG
is naturally bounded in terms of the condition number of A, denoted by κ = κ(A) :=
λmax(A)
λmin(A) , where λmax(A) and λmin(A) are the largest and smallest nonzero eigenvalues

of A, respectively. If κ is large, it is often more favorable to solve a preconditioned
system instead of (1.1). This preconditioned system can be represented as Âx̂ = b̂,

with Â = M1/2AM1/2, x̂ = M−1/2x, and b̂ = M1/2b, and M ∈ R
n×n is an SPD

preconditioner. This is equivalent to solving the system

(1.2) MAx = Mb.

To be effective, the preconditioner, M , should be chosen such that MA has a smaller
condition number or more clustered spectrum than A and so that the matrix-vector
product My is cheap to compute, relative to the improvement that such precondi-
tioners provide to the convergence rate. Traditional one-level preconditioners, such as
diagonal scaling, basic iterative methods, approximate inverse preconditioning, and
incomplete Cholesky preconditioners, are widely used. These preconditioners, how-
ever, are well known to not lead to scalable solution algorithms for applications with
highly refined grids or large coefficient ratios [23]. In these applications, precondi-
tioned CG (PCG), with these one-level preconditioners, suffers from slow convergence
due to the presence of relatively small or large eigenvalues, which have a harmful
influence on the condition number of the coefficient matrix. In what follows, we shall
refer to such preconditioners as “one-level” preconditioners, to distinguish them from
their “two-level” counterparts introduced next.

An alternative to these preconditioners is to incorporate a second matrix within
the preconditioner to improve the performance of PCG, so that the resulting approach
gets rid of the effect of both small and large eigenvalues. This combined precondition-
ing is also known as “two-level preconditioning,” and the resulting iterative method
is called a “two-level PCG method,” abbreviated as “2L-PCG.” The term “two-level”
arises because the second preconditioner involves the solution of an auxiliary problem
that can, in some cases, be associated with a second, coarser discretization of the
continuum operator. Examples of 2L-PCG methods include preconditioners based on
multigrid (MG), domain decomposition, or deflation techniques, where these methods
explicitly rely on preconditioning on two levels; see [21] and the references therein.
Generalizing (1.2), the linear system that is the basis of any PCG method can be
expressed as

(1.3) PAx = Pb, P ∈ R
n×n,

where P is either a one-level or a two-level preconditioner. If P = M for a traditional
(one-level) choice of M , we simply recover the standard PCG method in (1.2). When
P is derived from deflation, domain decomposition, or multigrid approaches, the re-
sulting preconditioners appear, at first glance, to be quite different. However, it has
been shown in [21] that some of these methods are closely related, or even equivalent,
in their abstract forms.

In this paper, we focus on the comparison between two-level preconditioners in-
spired by the balancing Neumann–Neumann (BNN) [13], deflation (DEF) [18], and
MG [3, 10, 23, 28] approaches. In [16, 21], it was shown that the preconditioned co-
efficient matrices based on BNN and DEF have almost the same spectral properties;
i.e., all eigenvalues are the same, except a few that differ by the shift from 0 to 1. In
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addition, it was shown that these properties are quite similar to those of the multigrid
V(0,1)- and V(1,0)-cycle preconditioners, even though these are typically not consid-
ered as allowable preconditioners for CG. Here, we will compare preconditioners based
on deflation and BNN to the 2L-PCG method that mimics a multigrid V(1,1)-cycle
preconditioner, denoted as the MG method. This MG method is not compared with
the other methods in [21], since it has very different spectral properties and requires
a different theoretical treatment, because of the more general choice of one-level pre-
conditioner allowed within MG. The aim of the current research is to fill this gap and
compare the abstract versions of MG, DEF, and BNN.

Of course, the MG method [3, 10, 23, 28] and its properties [1, 6, 9, 14, 17, 26] are
well known. Our intention is not to reproduce these results (although some known re-
sults needed for the comparison are briefly reviewed) but to compare and connect MG
to other well-known 2L-PCG methods. A well-known comparison of multigrid and
domain-decomposition preconditioners is that of Xu [29], based on subspace correc-
tions. In [29], it is shown that certain multigrid and domain-decomposition algorithms
fall into the same mathematical framework, and, consequently, certain choices of the
components within the domain-decomposition framework lead, in fact, to a multigrid
algorithm. Here, we consider a more abstract formulation than in [29] and, as a result,
derive a more general result, based on a spectral analysis. A similar spectral analysis
for a two-level preconditioner based on multigrid principles has been carried out in [4].
In that paper, a specific choice of the two-level preconditioner based on exact eigenvec-
tors of MA is analyzed, allowing for more pre- and postsmoothing steps per iteration.
The resulting two-level preconditioner is called a “multiplicative two-grid spectral
preconditioner” and is shown to be effective for many practical applications, partic-
ularly when sequences of linear systems must be solved. In this paper, we consider
a somewhat more general preconditioner, based on a standard multigrid approach
(but considering only one pre- and one postsmoothing step), although eigenvectors
of MA are sometimes used to illustrate the theoretical results. A consequence of our
main result is that any analysis of multigrid methods, such as that in [1, 2, 6, 11, 14],
can be directly applied to the corresponding domain-decomposition or deflation-based
preconditioner.

An important feature of the analysis considered here is that it is based on the
assumption that the same algorithmic components are used in all three approaches.
Because of their distinct origins, each of the deflation, domain-decomposition, and
multigrid algorithms has primarily been analyzed based on typical choices of M and a
corresponding coarse-grid correction process appropriate for a particular approach. In
contrast, we compare the 2L-PCG methods by adopting fixed algorithmic components
for all approaches. Intuitively, we might expect the multigrid-based approach to
yield better convergence properties than the other 2L-PCG methods, since it alone
relies on the use of two applications of the fine-level preconditioner (in the pre- and
postsmoothing steps), in addition to a single coarse-grid correction step per iteration.
DEF, on the other hand, has optimal convergence properties in terms of its spectral
properties compared with certain other 2L-PCG methods (although not MG); see [21].
Therefore, our comparison focuses on the relationship between the spectral properties
of MG and DEF. However, the comparison between MG and BNN is, in some cases,
easier to perform, so BNN is also used in the analysis. A numerical comparison of DEF
andMG, using components typical of each approach, for problems related to two-phase
fluid flow was recently presented in [12]. In that comparison, the performance of a
robust multigrid technique is clearly superior to that of deflation; the current research
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was motivated by our desire to understand whether these results were because of some
fundamental difference between the multigrid and deflation frameworks, or because
of the differences in the choices made for the components within each algorithm’s
individual framework.

Several important practical issues are ignored in the analysis that follows. Most
significantly, we consider only two-level PCG algorithms. In practice, the multilevel
extensions of these algorithms are necessary to ensure the efficiency needed to solve
problems with the millions and billions of degrees of freedom currently required in
the field of computational science and engineering. Analysis of these approaches,
however, is much more technical than their two-level counterparts and is beyond the
scope of this paper. Furthermore, we do not aim to address several questions about
the sensitivities of these algorithms to the perturbations that naturally arise in their
multilevel extensions, such as to that of starting guesses or inexact solves on the coarse
level. For some analysis of these questions, see the discussion in [21].

This paper is organized as follows. In section 2, the two-level preconditioners
denoted by DEF, BNN, and MG are described in detail. Some spectral properties
of MG are presented in section 3. Thereafter, in section 4, the spectral properties
of MG and DEF are compared for special choices of parameters; it is shown there
that MG can be less effective than DEF. In section 5, we show that MG is always
superior to DEF for more sophisticated preconditioners. Subsequently, section 6 is
devoted to the comparison of the MG, BNN, and DEF preconditioners when their
parameters are chosen to yield the same cost per iteration. For special choices of
preconditioners, we show that they are almost spectrally equivalent. Section 7 is
devoted to some numerical experiments in order to illustrate the theoretical results.
Conclusions are presented in section 8. An extended version of a previous draft of
this paper is available as a technical report [20].

2. Two-level preconditioned CG methods. In this section, we describe in
detail the 2L-PCG algorithms that will be examined. The following definition is
assumed to hold throughout this paper.

Definition 2.1. Let A ∈ R
n×n be a symmetric and positive-definite matrix,

and let Z ∈ R
n×k and k < n be a deflation-subspace matrix with full rank. Define

the invertible Galerkin matrix, E ∈ R
k×k, the correction matrix, Q ∈ R

n×n, and the
deflation matrix, P ∈ R

n×n, as follows:

P := I −AQ, Q := ZE−1ZT , E := ZTAZ.

In addition, let M ∈ R
n×n be a given preconditioning matrix.

Note that we make no explicit assumptions here on the form of M . In some
cases, we will additionally assume that M is nonsingular, symmetric, and/or positive
definite. However, M may also, in some cases, be nonsymmetric, singular, or even
indefinite. We will, in all cases, specify when further assumptions are needed.

The following lemma will be frequently used; see [21, 27] for more details.
Lemma 2.2. Suppose that A ∈ R

n×n and Z ∈ R
n×k are given. Let Q and P be

as in Definition 2.1, and let Ax = b. Then,
• Q = QT ,
• (I − PT )x = Qb,
• APT = PA,
• QAQ = Q,
• PTZ = PAZ = 0, and
• QAZ = Z.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A COMPARISON OF TWO-LEVEL PRECONDITIONERS 1719

Proof. See, e.g., [21, 27].
The deflation method (DEF) can be described as follows. In order to solve (1.1),

we first decompose x as

(2.1) x = (I − PT )x+ PTx.

The first part, (I − PT )x, can be computed directly since (I − PT )x = QAx = Qb.
The second part, PTx, can be computed by solving the deflated system,

(2.2) PAx̃ = Pb,

where the nonunique solution can be written as x̃ = x + y with y ∈ N (PA). From
Lemma 2.2, it can be shown that PT x̃ = PTx so that (2.1) becomes

(2.3) x = PT x̃+Qb.

Hence, the unique solution of (1.1) can be obtained via (2.2) and (2.3). Moreover,
it is possible to solve the deflated system (2.2) by using an SPD preconditioner, M .
This deflated system can be written as (cf. (1.2))

(2.4) MPAx̃ = MPb;

see [15, 27] for details. Hence, the two-level preconditioner corresponding to DEF is

(2.5) PDEF = MP.

In order to derive the BNN and MG preconditioners, we consider the multiplica-
tive combination of preconditioners. This combination can be explained by consider-
ing the stationary iterative methods induced by the preconditioner. Assuming that
C1 and C2 are given matrices (preconditioners), we combine xj+ 1

2
:= xj+C1(b−Axj)

and xj+1 := xj+ 1
2
+ C2(b −Axj+ 1

2
) to obtain xj+1 = xj + Pm2(b−Axj), with

(2.6) Pm2 := C1 + C2 − C2AC1,

which is the multiplicative operator consisting of two preconditioners. In addition, C1

and C2 could be combined with another preconditioner, C3, in a multiplicative way,
yielding

Pm3 = C1 + C2 + C3 − C2AC1 − C3AC2 − C3AC1 + C3AC2AC1.(2.7)

If one chooses C1 = Q, C2 = M , and C3 = Q in (2.7), we obtain

(2.8) PBNN = PTMP +Q,

which is the two-level preconditioner corresponding to the abstract balancing Neu-
mann-Neumann (BNN) method when M is SPD. In [21], it was shown that BNN
has the same spectral properties as the 2L-PCG methods based on multigrid V(0,1)-
and V(1,0)-cycle preconditioners. In this respect, multigrid V(0,1)- and V(1,0)-cycle
preconditioners can be interpreted as “reduced” BNN preconditioners, since they use
one fewer projection than the preconditioners in (2.8). In practice, BNN is always
implemented based on these “reduced” preconditioners, so that the amount of work
per iteration is comparable to that of DEF; see also [13, 22].
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On the other hand, we could also use M twice instead of Q, i.e., C1 = M,C2 = Q,
and C3 = MT in (2.7). The resulting two-level preconditioner, well known as the
multigrid V(1,1)-cycle preconditioner, is then explicitly given by

(2.9) PMG = MTP + PTM +Q−MTPAM.

The latter expression for PMG also follows from the error-propagation operator

(2.10) V := (I − PMGA) = (I −MTA)PT (I −MA),

which is often written as

(2.11) V := S∗PTS, S := I −MA,

where S∗ denotes the adjoint of S with respect to the A-inner product. Matrices S and
S∗ are known as the pre- and postsmoothers, respectively, and PT is the MG coarse-
grid correction operation. While the multigrid literature often distinguishes between
this “two-grid” algorithm and true multigrid algorithms, as well as between standalone
multigrid and multigrid used as a preconditioner, we will not; the resulting two-level
PCG method with PMG is simply called MG in this paper. Here, no assumption on
the symmetry of M is needed to guarantee that PMG is symmetric; definiteness will
be examined in section 3.2. Moreover, notice that (2.9) is used only for the analysis
of MG, but that the algorithm is never implemented using this explicit form, as the
action of PMG can be computed using only a single multiplication with each of M ,
MT , and Q.

It can be observed that the two-level preconditioner corresponding to DEF is
included as a term in the two-level MG preconditioner when the same choice of a
symmetric M is used in both algorithms (cf. (2.5) and (2.9)). Hence, we might expect
that MG is always more effective than DEF. For common choices of M and Z, this is
indeed the case; see, e.g., section 7.2. However, it is not true in all cases; see section 4.

To summarize, the abbreviations and the two-level preconditioners corresponding
to the proposed 2L-PCG methods are presented in Table 2.1.

Table 2.1

List of two-level PCG methods which are compared in this paper.

Name Method Two-level preconditioner, P
PREC Traditional Preconditioned CG M
DEF Deflation MP
BNN Abstract Balancing PTMP +Q
MG Multigrid V(1,1)-cycle MTP + PTM +Q−MTPAM

Remark 2.3. We emphasize that the parameters of the two-level PCG methods
that will be compared can be arbitrary, so the comparison between these methods
is based on their abstract versions. This means that the results of the comparison
are valid for any SPD matrix A, full-rank matrix Z, and matrix M that satisfies the
appropriate assumptions.

3. Spectral properties of MG. In this section, we present some results related
to the spectral properties of the MG method. We first prove a result analogous
to [16, Thm. 2.5], demonstrating that the MG preconditioner also clusters a number
of eigenvalues at 1. Thereafter, we discuss necessary and sufficient conditions for the
MG preconditioner to be SPD. Note that while these are natural concerns from a
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preconditioning point of view, these questions are not commonly considered for MG
methods, which are often applied as stationary iterations, in contrast to DEF, which
is always used as a preconditioner.

First, we present some notation in Definition 3.1.
Definition 3.1. Let B ∈ R

n×n be an arbitrary matrix and S be a subspace of
R

n. Then,
• the null space and column space of B are denoted by N (B) and R(B), re-
spectively;

• the spectrum of B is denoted by σ(B);
• dimS denotes the dimension of S;
• if B is SPD, then the SPD square root of B is denoted by B1/2; and
• B is called convergent in the A-norm (or A-norm convergent) if ||B||A < 1.

3.1. Unit eigenvalues of PMGA. We recall that k is the dimension of the
deflation subspace. In [16, 21], it was shown that DEF corresponds to a coefficient
matrix that has exactly k zero eigenvalues, whereas the matrix associated with BNN
has at least k unit eigenvalues. Theorem 3.2 shows that the matrix corresponding to
MG also has at least k unit eigenvalues.

Theorem 3.2. Let PMG and S be as given in (2.9) and (2.11), respectively. Let
m ≥ 0 be an integer satisfying

(3.1) dimN (S) = m.

Then, PMGA has one as an eigenvalue, with geometric multiplicity at least k and at
most k + 2m.

Proof. In the following, we use the factorization of I − PMGA = S∗PTS as given
in (2.10) and (2.11). Note first that dimN (S∗) = dimN (S) = m; see also [20,
Lemma 3.2].

Considering (2.11), there are three ways for a vector, v �= 0, to be in N (I−PMGA):
(i) v ∈ N (S), so that Sv = 0;
(ii) Sv ∈ N (PT ), yielding PTSv = 0;
(iii) PTSv ∈ N (S∗), so that S∗PTSv = 0.

We treat each case separately.
(i) The geometric multiplicity of the zero eigenvalue of I−PMGA must be at least

m, due to (3.1). This accounts exactly for all contributions to N (I−PMGA) from null
space vectors of the first type.

(ii) Counting the geometric multiplicity of vectors of the second type is only
slightly more complicated. The fundamental theorem of linear algebra (see, e.g., [19])
gives an orthogonal decomposition of Rn as

(3.2) R
n = R (S)⊕N (

ST
)
.

Since dimR (S) = n−m, it must be the case that

(3.3) dimN (
ST

)
= m.

Now, consider the intersection of R (Z) with subspaces R (S) and N (
ST

)
:

Z1 := R (Z) ∩R (S) , Z2 := R (Z) ∩ N (
ST

)
,

and let dimZ1 = k1 and dimZ2 = k2. Note that necessarily k1 + k2 = k since Z ∈
R

n×k, and that k2 is no bigger than m, because of (3.3). Since N (PT ) = R (Z), we
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haveN (PTS)\N (S) = R (Z)∩R (S) = Z1. This results in dimN (PTS)\N (S) = k1,
which is the contribution to the dimension of the null space by vectors of the second
type. Since k1 + k2 = k for k2 ≤ m, the total dimension of the null space arising from
vectors of the first and second types must satisfy k ≤ k1 +m ≤ k +m.

(iii) Similarly, we can determine the dimension of the null space of the third type.
Note first that (cf. (3.2))

R
n = R (

PTS
)⊕N (

STP
)
.

Let M := N (S∗) and M1 = M∩R (
PTS

)
. Then, the number of unit eigenvalues of

the third type is

m1 = dimM1 ≤ dimM = m.

Thus, dimN (PMGA) = m+ k1 +m1, which can be bounded by

k ≤ m+ k1 +m1 ≤ k + 2m.

Since counting the geometric multiplicity of zero eigenvalues of I − PMGA is trivially
equal to counting the geometric multiplicity of unit eigenvalues of PMGA, the proof is
complete.

Remark 3.3.

• PMGA has at least k unit eigenvalues, even if S is singular.
• If zero is not an eigenvalue of S, then it is also not an eigenvalue of S∗ (which
is similar to ST ). Thus, Theorem 3.2 then says that PMGA has exactly k unit
eigenvalues in this case.

• Since M may be nonsymmetric, the geometric and algebraic multiplicities of
the zero eigenvalue of S (or, equivalently, the unit eigenvalues of MA) should
be distinguished, since they might differ.1

• In a manner similar to that in Theorem 3.2, it can be shown that PBNNA has
at least k and at most 2k +m unit eigenvalues.

3.2. Positive definiteness of PMG. A 2L-PCG method is guaranteed to con-
verge if P , as given in (1.3), is SPD or can be transformed into an SPD matrix; see,
e.g., [5] for more details. This is certainly satisfied for BNN and DEF when M is
SPD; see [21]. Here, we examine this issue for MG. It is obvious that, while PMG is
always symmetric, it (and, therefore, also PMGA) is not positive definite for all choices
of Z and M , as in the next example.

Example 3.4. Suppose that M = I and Z = [v1 · · · vk], where {vi} is the set of
orthonormal eigenvectors corresponding to eigenvalues {λi} of A. We assume that all
λi (and, correspondingly, the vi) are ordered so that λk+1 ≤ λj ≤ λn for all j such
that k < j ≤ n. Eigenvalues λ1 to λk are not assumed to be ordered and are not
necessarily the smallest eigenvalues of A. Then,

(3.4) PMG = P + PT +Q− PA = 2I − 2ZZT + ZΛ−1ZT −A+ ZZTA,

where Λ = diag(λ1, . . . , λk). Multiplying (3.4) by vi gives us

PMGvi = 2vi − 2ZZTvi + ZΛ−1ZT vi − λivi + λiZZTvi.

1A simple example is Gauss–Seidel for the one-dimensional (1D) Poisson problem with homo-
geneous Dirichlet boundary conditions. Take A = tridiag(−1, 2,−1) and M−1 to be the lower-
triangular part of A. Then, S has eigenvalue 0 with algebraic multiplicity n

2
, assuming that n is

even. Since there is only one eigenvector corresponding to this eigenvalue, the geometric multiplicity
is 1.
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This implies

(3.5) PMGvi =

{
1
λi
vi for i = 1, . . . , k,

(2 − λi)vi for i = k + 1, . . . , n.

Hence, if A has eigenvalues {λi}, then the spectrum of PMG is given by{
1

λ1
, . . . ,

1

λk
, 2− λk+1, . . . , 2− λn

}
.

In this case, PMG is positive definite if and only if λn < 2. Furthermore, since PMG is
always symmetric by construction, PMG is SPD if and only if λn < 2.

Example 3.4 shows that PMG can be indefinite for some choices of Z and M . This
highlights an important difference between MG and DEF. Indeed, many precondi-
tioners, M , that make sense with DEF lead to indefinite PMG, while choices of M
that lead to SPD PMG might give nonsymmetric operators for PDEF.

Theorem 3.5. Let M ∈ R
n×n and Z ∈ R

n×k be as defined in Definition 2.1.
Let PMG be as given in (2.9). A necessary and sufficient condition for PMG to be SPD
is that Z and M satisfy

(3.6) min
w: w⊥AZy ∀y

w �=0

wT
(
M +MT −MAMT

)
w > 0.

Proof. By definition, PMG is positive definite if and only if uTPMGu > 0 for
all vectors u �= 0. Taking u := A1/2y, this means that PMG is SPD if and only if
yTA1/2PMGA

1/2y > 0 for all y, or that A1/2PMGA
1/2 is positive definite. Moreover,

A1/2PMGA
1/2 is symmetric, and, so, it is SPD if and only if its smallest eigenvalue is

greater than 0. This, in turn, is equivalent to requiring that I − A1/2PMGA
1/2 has

largest eigenvalue less than 1. But I−A1/2PMGA
1/2 is a similarity transformation of V

(see (2.10)), A1/2V A−1/2 = I−A1/2PMGA
1/2, which can be written as A1/2V A−1/2 =

(RS̃)T (RS̃), for

R := I −A1/2QA1/2, S̃ := I −A1/2MA1/2.

Note that the eigenvalues of (RS̃)T (RS̃) are the singular values squared of RS̃ (see,

e.g., [8]), which are also the eigenvalues of (RS̃)(RS̃)T = RS̃S̃TR. So, the largest

eigenvalue of A1/2V A−1/2 is less than 1 if and only if the largest eigenvalue of RS̃S̃TR
is less than 1. This happens if and only if

(3.7)
uTR(S̃S̃T )Ru

uTu
< 1 ∀u �= 0.

To maximize this ratio, we write u = A1/2Zy1 + Ry2 and note that R is the L2-
orthogonal projection onto the orthogonal complement of the range of A1/2Z. Then,

uTR(S̃S̃T )Ru = yT2 R(S̃S̃T )Ry2, uTu = yT1 Z
TAZy1 + yT2 R

2y2.

So, maximizing the ratio over all choices of y1 means choosing y1 = 0 so that the
denominator of (3.7) is as small as possible. Therefore,

(3.8)
uTRS̃S̃TRu

uTu
< 1 ∀u �= 0 ⇔ yT2 RS̃S̃TRy2

yT2 R
2y2

< 1 ∀y2 �= 0.
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Thus, if the ratio on the right of (3.8) is bounded below 1 for all y2, so must be the
ratio in (3.7). But, if the ratio in (3.7) is bounded below 1 for all u, then it is bounded
for u = Ry2, since R is a projection, and thus R2 = R. This gives the bound at the
right-hand side of (3.8).

Equivalently, we can maximize the ratio over R(R) = R(A1/2Z)⊥ (i.e., the or-

thogonal complement of the range of A1/2Z). So, the largest eigenvalue of RS̃S̃TR is
less than 1 if and only if

(3.9) max
x:x⊥A1/2Zy∀y

x �=0

xT S̃S̃Tx

xTx
< 1.

By computation, we have S̃S̃T = I −A1/2
(
M +MT −MAMT

)
A1/2. Therefore, the

bound (3.9) is equivalent to requiring

min
x:x⊥A1/2Zy∀y

x �=0

xTA1/2
(
M +MT −MAMT

)
A1/2x

xTx
> 0.

Taking w = A1/2x, this is, in turn, equivalent to

min
w:w⊥AZy∀y

w �=0

wT
(
M +MT −MAMT

)
w > 0,

because wTA−1w > 0 for all w.
Intuitively, we expect the spectral properties of PMG to reflect those of M , with

some account for the effect of the coarse-grid correction. Inequality (3.6) is partic-
ularly interesting in comparison with Theorem 3.6. This theorem gives a necessary
and sufficient condition for M to define a convergent smoother; see also [7, 30].

Theorem 3.6. Let M ∈ R
n×n, and let S be as given in (2.11). A necessary and

sufficient condition for S to be convergent in the A-norm is

(3.10) min
w �=0

wT (M +MT −MAMT )w > 0.

Proof. See [7, 30].
Note that when M is invertible, Theorem 3.6 amounts to the condition

‖S‖A < 1 ⇔ λmin(M
−1 +M−T −A) > 0,

which can also be found, for example, in [30, Thm. 5.3]. On the other hand, Theo-
rem 3.5 gives

min
w:w⊥AZy∀y

w �=0

wT M̃w > 0 ⇔ min
v:v=MT w,w⊥AZy∀y

v �=0

vT (M−1 +M−T −A)v > 0,

where

(3.11) M̃ := M +MT −MAMT .

Necessarily,

min
w:w⊥AZy∀y

w �=0

wT M̃w ≥ min
w �=0

wT M̃w,

so the condition for PMG to be SPD is weaker than the condition for a convergent S in
the A-norm. In other words, the A-norm convergence of S implies both convergence
of I − PMGA and that PMG is SPD. However, PMG can be SPD even if ||S||A ≥ 1, as
long as coarse-grid correction effectively treats amplified modes.
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4. Comparing MG and DEF for a particular choice of M and Z. In this
section, we show that abstract preconditioners in the MG framework do not always
lead to better conditioned systems than DEF (although our example does not reflect a
practical parameter choice, particularly from the point of view of MG). Such problems
can even be found in the case of M = I; see [20, sect. 4]. Here, we show that this can
be generalized for an arbitrary SPD M used in both DEF and MG when Z consists of
eigenvectors ofMA. We start with some spectral bounds on MG and DEF under these
assumptions. Thereafter, we perform a comparison between the condition numbers
for MG and DEF. Note that there is no assumption on the ordering of eigenvalue and
eigenvector sets presented below.

Theorem 4.1. Suppose that M is given and {λi} is the set of eigenvalues of MA
with corresponding eigenvectors {vi}. Let the columns of Z be given by v1, . . . , vk. Let
PDEF and PMG be as given in (2.5) and (2.9), respectively. Then,

(i) PMGA has the following eigenvalues:

(4.1)

{
1 for i = 1, . . . , k,
λi(2 − λi) for i = k + 1, . . . , n;

(ii) PDEFA has the following eigenvalues:

(4.2)

{
0 for i = 1, . . . , k,
λi for i = k + 1, . . . , n.

Proof. The proof follows from [4, Prop. 2] and [27, sect. 4].
If we make the added assumption that M is SPD (so that PDEF is also SPD) and

that 0 < λj < 2 for k < j ≤ n (so that PMG is SPD), then we can compare DEF and
MG based on their condition numbers, denoted by κDEF and κMG, respectively. If we
order the remaining eigenvalues so that λk+1 ≤ λj ≤ λn for k < j ≤ n, the resulting
expressions for κMG and κDEF depend only on eigenvalues λk+1 and λn of MA:

(4.3) κMG =
1

min{λk+1(2− λk+1), λn(2− λn)} , κDEF =
λn

λk+1

(under the assumption that Z consists of eigenvectors of MA). So, for some choices of
Z and M , MG yields a larger condition number than DEF; see [20] for some concrete
examples.

Using this result, we can graph the region of space parametrized by λk+1 and λn

where each method is preferable; see Figure 4.1. Note first that if λk+1 = λn, then
σ(PMGA) consists of at most two different eigenvalues, 1 and λn(2 − λn). Also, if

λk+1 = 2−λn, then κMG = [λk+1(2− λk+1)]
−1 = [λn(2− λn)]

−1, while κDEF = λn

2−λn
.

In general, the region 0 < λk+1 ≤ λn ≤ 2 is naturally partitioned into two subdomains
along the line where λk+1(2−λk+1) = λn(2−λn), which occurs when λk+1 = 2−λn:

• if λk+1(2 − λk+1) ≤ λn(2 − λn), then κMG = [λk+1(2− λk+1)]
−1

. Thus,
κMG < κDEF if and only if

λk+1 < 2− 1

λn
;

• if λk+1(2−λk+1) ≥ λn(2−λn), then κMG = [λn(2− λn)]
−1 . Thus, κMG < κDEF

if and only if

λk+1 < λ2
n(2− λn).
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Fig. 4.1. Partitioning of region 0 < λk+1 ≤ λn < 2. In regions A1 and A2, κMG < κDEF,
while in regions B1 and B2, κDEF < κMG. Here, we assume that M is SPD and that Z consists
of k eigenvectors of MA. The two condition numbers are equal (i.e., κMG = κDEF) along the red
(dotted) and green (dotted-dashed) lines.

Figure 4.1 depicts these regions graphically. For any given λk+1 and λn, the method
with smallest condition number follows immediately from this figure. Example 4.2
gives some consequences of Figure 4.1.

Example 4.2.

(a) If σ(MA) ⊆ (0, 0.5], then (λk+1, λn) falls within Region B1 and, hence,
κDEF < κMG.

(b) If σ(MA) ⊆ (0, 2) with λk+1 ≈ 2 − λn, then (λk+1, λn) falls within either
Region A1 or Region A2 and κDEF > κMG holds.

Case (a) says that if M is a “bad” smoother (no eigenvalues of S are less than 1
2 ), then

MG is expected to require more iterations to converge than DEF does. On the other
hand, case (b) implies that if M is a “good” smoother (all eigenvalues that need to be
handled by relaxation are done so with eigenvalues of S bounded in a neighborhood
of the origin), then MG should converge in fewer iterations than DEF.

5. Effect of relaxation parameters. While DEF may have a smaller condition
number than MG for some choices of M and Z, MG methods often make use of an
added, relaxation, parameter that can be very important in leading to an efficient
algorithm. We illustrate this here by considering M = αI for an optimized choice of
α. Such a choice of relaxation scheme within MG is commonly known as Richardson
relaxation.

5.1. Analysis of scaling relaxation. Instead of considering the original linear
system (1.1), we could consider preconditioning for the scaled linear system

(5.1) αAx = αb, α > 0,

for a given choice of M . A subscript, α, will be added to the notation for operators
and matrices, if they are for (5.1). So, PDEF,α and PMG,α denote the deflation matrix
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and MG-preconditioner based on (5.1), respectively:

PDEF,αA = M(I − αAZ(ZT (αA)Z)−1ZT )(αA)

= αM(I −AZ(ZTAZ)−1ZT )A;

PMG,αA = I − (I −MT (αA))(I − Z(ZT (αA)Z)−1ZT (αA))(I −M(αA))(5.2)

= I − (I − αMTA)(I − Z(ZTAZ)−1ZTA)(I − αMA).

Solving the scaled linear system (5.1) for a given choice of M is, then, equivalent
to solving the preconditioned linear system (1.2) with preconditioner αM , as (I −
αAZ(ZT (αA)Z)−1ZT ) = (I − AZ(ZTAZ)−1ZT ). The parameter, α, can then be
regarded as a parameter of the relaxation only instead of the linear system (i.e., the
relaxation processes are rescaled, but there is no net effect on coarse-grid correction).
Therefore, DEF is scaling invariant:

κDEF,α =
λn(MPαA)

λk+1(MPαA)
=

λn(MPA)

λk+1(MPA)
= κDEF.

In contrast, MG is not scaling invariant, and the positive-definiteness property of
PMG,α depends strongly on α; it is well known that Richardson relaxation (where
M = αI) is convergent if

(5.3) 0 < α <
2

||A||2 ;

see, e.g., [30]. For multigrid, a typical choice of α is close to 1
||A||2 , which guarantees

that the slow-to-converge modes of relaxation are only those associated with the small
eigenvalues of A [2, 11]. A better choice of α is possible if we make further assumptions
on how the eigenvectors of A associated with small eigenvalues are treated by coarse-
grid correction. Indeed, it is possible to get an explicit expression for the optimal α
under such assumptions; see the next subsection.

5.2. Optimal choice of α. The best value of α depends on M and Z, so the
optimal α, denoted as αopt, can be determined only if these are fixed. In this case, the
job of relaxation is specifically to reduce errors that are conjugate to the range of Z.
In this section, we consider M = αI and the columns of Z to be given by eigenvectors
of A. The best choice of α is then the one that minimizes the “spectral radius” of
relaxation over the complement of the range of interpolation, i.e.,

min
x,yTZTAx=0 ∀y

x �=0

|xT (I − αA)x|
xTx

.

This α is determined explicitly in Theorem 5.1. In this theorem, we make only a weak
assumption on the ordering of the eigenvalue and eigenvector sets; any combination of
eigenvectors may be used to define the deflation-subspace matrix, Z, and the remain-
ing eigenvalues and eigenvectors are assumed to be ordered so that λk+1 ≤ λj ≤ λn

for k < j ≤ n.

Theorem 5.1. Suppose that M = αI and Z = [v1 · · · vk], where {vi} is the set
of orthonormal eigenvectors corresponding to eigenvalues {λi} of A. We assume that
all λi (and, correspondingly, the vi) are ordered so that λk+1 ≤ λj ≤ λn for all j such
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that k < j ≤ n. Moreover, let PMG,α be as given in (5.2) such that PMG,αA is SPD.
Then, κ(PMG,αA) is minimized for

(5.4) αopt =
2

λk+1 + λn
.

Proof. Note first that, by choosing M = αI, the error-propagation operator for
MG, V , can be written as (cf. (3.4))

V = I−PMGA = (I−αA)PT (I−αA) = 2αI+ZΛ−1ZT − 2αZZT −α2A+α2ZΛZT .

So, applying PMG to an eigenvector, vi, of A gives (cf. (3.5))

PMGvi =

{
1
λi
vi for i = 1, . . . , k,

α(2 − αλi)vi for i = k + 1, . . . , n.

Thus, PMGA has eigenvalue 1 with algebraic multiplicity k, and n− k eigenvalues of
the form αλi(2− αλi) for i = k + 1, . . . , n.

Let {σi} be the set of eigenvalues of PMGA, which are positive and sorted increas-
ingly, so that its condition number is given by σn

σ1
. By assumption, αλi(2− αλi) > 0

for all i = k + 1, . . . , n, and, by calculation, αλi(2− αλi) ≤ 1 for all α and λi. Thus,

σ1 = min
i∈[k+1,n]

{αλi(2− αλi)}, σn = 1.

Since the function f(λ) := αλ(2 − αλ) is concave down,

(5.5) min
i∈[k+1,n]

{αλi(2− αλi)} = min {αλk+1(2− αλk+1), αλn(2 − αλn)} .

Subsequently, we choose αopt to maximize this minimum eigenvalue,

max
α

min {αλk+1(2 − αλk+1), αλn(2− αλn)} .

This is achieved when

αλk+1(2− αλk+1) = αλn(2− αλn),

i.e., for α = 2
λk+1+λn

.

Corollary 5.2. Let the conditions of Theorem 5.1 be satisfied. Then, κMG,αopt
≤

κDEF.
Proof. If the optimal weighting parameter, αopt, is substituted into (5.5), then

the smallest eigenvalue of PMG,αopt
A is equal to

(5.6)
4λk+1λn

(λk+1 + λn)2
.

As a consequence, the condition number of PMG,αopt
A is then given by

(5.7) κMG,αopt
=

(λk+1 + λn)
2

4λk+1λn
.

Finally, κMG,αopt
≤ κDEF follows from the fact that

(λk+1 + λn)
2

4λk+1λn
≤ λn

λk+1
⇔ (λk+1 + λn)

2 ≤ (2λn)
2,

which is always true, since λk+1 ≤ λn.
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Remark 5.3.

• Using this weighting, the condition numbers corresponding to MG and DEF
are the same if the spectrum of A is “flat” (i.e., if λk+1 = λn). In all other
cases, using the optimized parameter, αopt, in MG leads to a more favorable
condition number than DEF.

• In section 4, it has been shown that it is possible to have κMG > κDEF.
However, Theorem 5.1 shows that these examples can never be constructed
if an optimal relaxation parameter is used.

• In practice, approximations to α are fairly easy to compute, although the
exact eigenvalue distribution is usually unknown. Gershgorin’s theorem gives
us estimates of both λ1 and λn which can be used to approximate λk+1. A
naive approximation can be made by assuming that the spectrum is dense
between λ1 and λn and that λk+1 is simply a linear function of k: λk+1 =
λ1 +

k
n−1 (λn − λ1).

• An optimal weighting parameter, αopt, can also be considered for general
preconditioners, M ; however, it is often much more difficult to express αopt

explicitly, as it depends on the spectral properties of MA, which may not be
known. In general, the optimal choice of α is such that relaxation converges as
quickly as possible on the modes that are not being treated by the coarse-grid
correction phase. Thus, if the spectral picture of MA is known well enough
to approximate the eigenvalues corresponding to λk+1 and λn, a choice of
αopt similar to that in (5.4) may be possible.

6. Symmetrizing the smoother. In the previous section, we have seen that
MG can be expected to converge in fewer iterations than DEF for specific choices
of M and Z, when the same components are used in both MG and DEF. However,
the fact that MG requires fewer iterations than DEF for many preconditioners does
not necessarily mean that it is more efficient, since each iteration of MG is more
expensive, due to the use of two smoothing steps. In order to make a fairer comparison
between DEF and MG, we now consider DEF using the preconditioning version of
the symmetrized smoother:

(6.1) SS∗ = (I −MA)(I −MTA) = I − M̃A,

with

(6.2) M̃ := M +MT −MAMT .

Note that M̃ , as defined here, is the same as in (3.11). We then use M̃ as the
preconditioner in DEF, since this choice allows implementation in such a way that
each iteration of BNN, DEF, and MG has similar cost. In this section, the spectra
of MG, BNN, and DEF are compared, using M̃ in DEF and BNN and M in MG.
For general Z and M such that M̃ is SPD, we show that BNN and DEF, both
with preconditioner M̃ , and MG with smoother M yield the same eigenvalues for
those modes that are not treated by the coarse-grid correction. This statement is
completely independent of the choices of M and Z and, as such, is more general than
similar results that have appeared previously (e.g., that of [29]).

Theorem 6.1. Let M ∈ R
n×n be as given in (2.1) such that PMG with smoother

M is SPD. In addition, let M̃ be as defined in (6.2) such that PBNN with preconditioner

M̃ is SPD. Then, the eigenvalues of PMGA and PBNNA are equal.
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Proof. We show the equivalence of MG and BNN by examining the eigenvalues
of their error-propagation forms,{

I − PMGA = S∗PTS,

I − PBNNA = PT (I − M̃A)PT .

We examine both methods by making the same similarity transformation,

I − PA → A
1
2 (I − PA)A− 1

2 ,

which allows us to make use of the fact that I −A
1
2QA

1
2 is an orthogonal projection

in the L2-inner product. Computing the similarity transformed systems, we have{
A

1
2 (I − PMGA)A

− 1
2 = (I −A

1
2MTA

1
2 )(I −A

1
2QA

1
2 )(I −A

1
2MA

1
2 ),

A
1
2 (I − PBNNA)A

− 1
2 = (I −A

1
2QA

1
2 )(I −A

1
2 M̃A

1
2 )(I −A

1
2QA

1
2 ).

By defining C := (I − A
1
2QA

1
2 )(I −A

1
2MA

1
2 ), we can rewrite the latter expressions

as {
A

1
2 (I − PMGA)A

− 1
2 = CTC,

A
1
2 (I − PBNNA)A

− 1
2 = CCT ,

where the following the equalities are used:⎧⎪⎪⎪⎨⎪⎪⎪⎩
(I −A

1
2QA

1
2 )2 = I −A

1
2QA

1
2 ,

(I −A
1
2QA

1
2 )T = I −A

1
2QA

1
2 ,

(I −A
1
2MA

1
2 )T = I −A

1
2MTA

1
2 ,

I −A
1
2 M̃A

1
2 = (I −A

1
2MA

1
2 )(I −A

1
2MTA

1
2 ).

Since A
1
2 (I − PMGA)A

− 1
2 and A

1
2 (I − PBNNA)A

− 1
2 are similar to I − PMGA and

I − PBNNA, respectively, and σ(CTC) = σ(CCT ) (see, e.g., [21]), we obtain

σ(I − PMGA) = σ(CTC) = σ(I − PBNNA),

and the theorem follows immediately.
From Theorem 6.1, we obtain that MG with M and BNN with M̃ give exactly

the same condition number. This also implies that the condition number of MG is
not smaller than the condition number of DEF.

Corollary 6.2. Let M be given and M̃ be as in Theorem 6.1. Then,
(i) κMG = κBNN, and
(ii) κDEF ≤ κMG,

where κMG, κBNN, and κDEF are the condition numbers corresponding to MG, BNN,
and DEF, respectively.

Proof. The corollary follows from Theorem 6.1 and [16, Thm. 2.7].
Remark 6.3.

• Ordering the smoothers in the opposite way would lead to a different definition
of M̃ ; this, in turn, could change the eigenvalues of MG and BNN, although
an analogous result to Theorem 6.1 still holds for the consistent choice of S
and M̃ .

• Corollary 6.2 shows that BNN, DEF, and MG are expected to show compara-
ble convergence behavior for special choices of the fine-level preconditioners.
We note that this result is valid only in exact arithmetic. If coarse-grid
systems are solved inaccurately, for example, DEF might have convergence
difficulties, while BNN and MG are less sensitive; see, e.g., [21].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A COMPARISON OF TWO-LEVEL PRECONDITIONERS 1731

7. Numerical experiments. In this section, we present the results of some
numerical experiments to demonstrate the theoretical results presented above, as well
as to compare with the performance of a one-level preconditioned CG algorithm, where
the preconditioner M is used alone, denoted by PREC. In these results, a random
starting vector is chosen and used for each iterative method, and the iterative process

is terminated when the norm of the relative residual,
||rj+1||2
||r0||2 , falls below a fixed

tolerance, δ = 10−8. We start with a 1D Laplace-like problem to illustrate the theory
obtained in section 4. Then, a two-dimensional (2D) bubbly flow problem is used
to show the performance of DEF, BNN, and MG with the choices discussed in the
previous section. Finally, a 2D finite-element discretization of Poisson’s equation is
used to demonstrate the difference between the typical choices of M and Z for BNN,
MG, and DEF. We stress that these examples are chosen to highlight the presented
theory and not to present the efficiency of the solvers; in practice, very different choices
of M and Z are used for each method (see [12, 25]), and much larger problem sizes
are needed for these approaches to be more efficient than optimized direct solvers.

7.1. 1D Laplace-like problem. Several 1D Laplace-like problems are consid-
ered, with the matrices

(7.1) A =

⎡⎢⎢⎢⎢⎣
β γ ∅
γ β

. . .

. . .
. . . γ

∅ γ β

⎤⎥⎥⎥⎥⎦ , β, γ ∈ R,

where we vary the constants β and γ so that each test case corresponds to a different
region within Figure 4.1; see Table 7.1. In addition, we chooseM = I and Z consisting
of eigenvectors corresponding to the smallest eigenvalues of A. In all examples, we
use α = 1 in MG, so that we can see cases where DEF is faster to converge than MG.
On the right-hand side, b, is chosen randomly. We take n = 100 (other values of n
lead to approximately the same results), and the number of projection vectors, k, is
varied. The results of the experiment can be found in Table 7.2.

Table 7.1

Test cases corresponding to different regions as presented in Figure 4.1.

Test problem β γ Range of λi Region Expected fastest method

(T1) 1.5 −0.125 [1.25, 1.75] B2 DEF
(T2) 1 −0.05 [0.9, 1.1] A1 / A2 MG
(T3) 0.25 −0.1 [0.05, 0.45] B1 DEF
(T4) 1.25 −0.125 [1.0, 1.5] A2 / B2 MG/DEF

Table 7.2(a) shows that DEF yields a smaller condition number and is faster than
MG for the choices of β and γ in (T1). On the other hand, as observed in Table 7.2(b),
β and γ can also be chosen such that MG yields a smaller condition number and is
faster to converge than DEF.

Since the condition number associated with DEF is always below that of MG in
the case presented in Table 7.2(c), DEF is expected to converge in fewer iterations than
MG; however, that is not the case. The two methods converge at roughly the same
rate for large k, but MG is faster than DEF for small k. This can be explained by the
fact that the spectrum of eigenvalues of MG consists of two clusters; see Figure 7.1(c).
If the first cluster of 1’s in the spectrum of MG is omitted (or is approximated by a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1732 J. TANG, S. MACLACHLAN, R. NABBEN, AND C. VUIK

Table 7.2

Results of the experiment with test cases as presented for the Laplace-like problems where the
coefficients are given in Table 7.1. The results are presented in terms of number of iterations, #
It., and condition number, κ.

(a) β = 1.5, γ = −0.125.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 11 1.4 11 1.4 11 1.4
DEF 11 1.4 10 1.3 8 1.1
BNN 11 1.7 10 1.7 8 1.7
MG 15 2.3 15 2.3 12 2.3

(b) β = 1, γ = −0.05.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 9 1.2 9 1.2 9 1.2
DEF 9 1.2 9 1.2 7 1.1
BNN 9 1.2 9 1.2 7 1.1
MG 5 1.01 5 1.01 5 1.01

(c) β = 0.25, γ = −0.1.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 34 9.0 34 9.0 34 9.0
DEF 34 8.8 24 4.9 11 1.4
BNN 34 19.6 25 11.0 11 3.2
MG 30 10.1 22 5.7 11 1.9

(d) β = 1.25, γ = −0.125.

k = 2 k = 20 k = 60

Method # It. κ # It. κ # It. κ

PREC 11 1.5 11 1.5 11 1.5
DEF 12 1.5 11 1.4 8 1.1
BNN 12 1.5 11 1.5 8 1.5
MG 10 1.3 10 1.3 9 1.3

Ritz value), then the condition number of the remaining spectrum is smaller than that
of DEF. When k = 20, the ratio of the largest to smallest nonunit eigenvalues of MG
is approximately 3.5, while the ratio of the largest to smallest nonzero eigenvalues of
DEF is 4.9. While the CG convergence bound predicts 20 iterations for DEF (which
requires 24), it predicts only 16 iterations for MG when ignoring the unit eigenvalues
(while MG requires 22). These “extra” iterations for MG are likely the result of
resolving the Ritz value at 1.

Finally, MG has a smaller condition number and is faster than DEF for small k in
the case presented in Table 7.2(d). On the other hand, for large k, DEF has a smaller
condition number than MG and performs somewhat better than MG. Indeed, the best
method depends on k (through λk+1) for this case with β = 1.25 and γ = −0.125.

7.2. 2D bubbly flow problem. Using pressure-correction techniques for solv-
ing the Navier–Stokes equations, the major computational bottleneck that arises in
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(a) β = 1.5, γ = −0.125.

10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

λ i

 

 

DEF
MG

(b) β = 1, γ = −0.05.
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(c) β = 0.25, γ = −0.1.
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(d) β = 1.25, γ = −0.125.

Fig. 7.1. Eigenvalues associated with DEF and MG for the test cases with k = 20 as presented
in Table 7.2.

modeling bubbly flows is the solution of the Poisson equation with a discontinuous
coefficient,

(7.2) −∇ ·
(

1

ρ(x)
∇p(x)

)
= 0, x = (x, y) ∈ Ω = (0, 1)2,

where p denotes the pressure and ρ is a piecewise-constant density coefficient; see
[12, 24] and the references therein. We consider circular bubbles of air in the domain,
Ω, that is otherwise filled with a fluid; see Figure 7.2(a) for the geometry. Here, a
density contrast of 103 is considered. A standard second-order finite-difference scheme
is applied to discretize (7.2), where we use a uniform Cartesian grid. Nonhomogeneous
Neumann boundary conditions are imposed so that the resulting linear system (1.1) is
still compatible. Moreover, we consider here the incomplete Cholesky decomposition
without fill-in, IC(0), as the preconditioner, M . We refer the reader to [21] for more
details about this experiment.

Let the open domain, Ω, be divided into subdomains, Ωj , j = 1, 2, . . . , k + 1,
such that Ω = ∪k+1

j=1Ωj and Ωi ∩ Ωj = ∅ for all i �= j. The discretized domain
and subdomains are denoted by Ωh and Ωhj , respectively. Then, for each Ωhj with
j = 1, 2, . . . , k + 1, a projection vector, zj, is defined as follows:

(7.3) (zj)i :=

{
0, xi ∈ Ωh \ Ωhj ,
1, xi ∈ Ωhj ,
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Fig. 7.2. Settings for the bubbly flow problem.

where xi is a grid point of Ωh. The subdomains are identical square domains, which
are chosen independently of the bubbles, and the number of them can be varied; see
also Figure 7.2(b). It can be shown that these projection vectors accurately approx-
imate the slowly varying eigenvectors corresponding to small eigenvalues when k is
sufficiently large; see [12] and the references therein. Then, we take Z := [z1 z2 · · · zk].
Hence, Z consists of orthogonal, disjoint, and piecewise-constant vectors. We remark
that the projection vectors are not restricted to choices that are common in domain
decomposition and deflation. Typical MG projection vectors could also be taken, as
will be seen in the next subsection.

Results for DEF, BNN, and MG using the same choice forM (IC(0)) are presented
in Table 7.3. From the table, it can be observed that, for all k, DEF and BNN require
the same number of iterations, whereas MG requires the fewest number of iterations,
as expected from the discussion in section 2. Recall that this does not necessarily
mean that MG is the fastest method with respect to computing time, since each
iteration of MG is more expensive than an iteration of DEF. Moreover, note that
the difference in performance between the cases with k = 3 and k = 15 is small. In
these cases, the subspace spanned by the corresponding projection vectors allows only
poor approximations to the eigenvectors associated with the smallest eigenvalues of
A. With k = 63, the eigenvectors associated with the smallest eigenvalues of A are
well approximated by the coarse-grid correction, and so we see fast convergence for
all methods.

Table 7.3

Number of iterations required for convergence and the 2-norm of the relative errors of 2L-PCG
methods for the bubbly flow problem with n = 642 and using the same M in all three methods. PREC
requires 137 iterations and leads to a relative error of 4.6× 10−7.

k = 22 − 1 k = 42 − 1 k = 82 − 1

Method # It. ||xit−x||2
||x||2 # It. ||xit−x||2

||x||2 # It. ||xit−x||2
||x||2

DEF 149 1.5× 10−8 144 3.1× 10−8 42 1.8× 10−8

BNN 149 1.5× 10−8 144 3.1× 10−8 42 1.1× 10−8

MG 86 1.0× 10−7 93 6.5× 10−8 32 1.9× 10−8

We now perform the same experiment as above, but using the symmetrized IC(0)
preconditioner, M + MT − MAMT , in DEF and BNN. In contrast to the previous
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Table 7.4

Number of iterations required for convergence and the 2-norm of the relative errors of 2L-PCG

methods for the bubbly flow problem with n = 642 and using the symmetrized ˜M in DEF and BNN.
PREC requires 137 iterations and leads to a relative error of 4.6× 10−7.

k = 22 − 1 k = 42 − 1 k = 82 − 1

Method # It. ||xit−x||2
||x||2 # It. ||xit−x||2

||x||2 # It. ||xit−x||2
||x||2

DEF 87 7.2× 10−8 94 1.3× 10−8 34 7.6× 10−9

BNN 87 7.2× 10−8 94 1.3× 10−8 34 7.6× 10−9

MG 86 1.0× 10−7 93 6.5× 10−8 32 1.9× 10−8

experiment, the amount of work for each iteration of BNN, MG, and DEF is now
approximately the same and Theorem 6.1 holds. The results of this experiment are
presented in Table 7.4. As can be observed in the table, the performance of all three
methods is now nearly identical, as expected from the theory of section 6.

7.3. Comparing choices of M and Z. In this section, we compare the pre-
conditioners that result from making choices for M and Z that are typical for each
of the families of preconditioners considered here. For simplicity, we will base our
comparison on a 2D finite-element discretization of the constant-coefficient Laplace
operator, −Δu = f , on the unit square with Dirichlet boundary conditions.

For DEF, we consider a similar combination of results as those presented in the
previous subsection, with M chosen as the inverse of the IC(0) approximation to A,
and Z chosen based on subdomain vectors. Note that since we consider the problem
with Dirichlet boundary conditions, we include all subdomain vectors, zj, in Z, in
contrast to the Neumann boundary condition case considered in section 7.2.

For BNN, we consider a similar partitioning of the computational domain into
subdomains (now with overlap along subdomain boundaries), with Z chosen based
on the overlapping subdomain vectors, weighted so that the columns of Z remain a
partition of unity. To choose M , however, we use the matrix given by assembling
local exact inverses of the assembled element-stiffness matrices over each subdomain,
weighted to account for the subdomain boundary overlap. In these tests, we ignore the
elimination of the interior degrees of freedom on each subdomain that is normally used
in BNN [13]; while important for practical reasons, our goal here is to present a simpler
comparison within the framework considered above. For the interior subdomains, the
locally assembled element-stiffness matrices are singular; we address this singularity
when computing the inverse by first computing the exact LU factorization of the
(singular) matrix and then adding a small constant to the lower-right diagonal entry
of U before computing U−1L−1. This gives a low-cost approximation of the pseudo-
inverse of the singular subdomain matrix but has the effect that MA has (k − 2)2

large eigenvalues, one for each singular subdomain matrix whose LU factorization has
been perturbed. Each of the eigenvectors corresponding to these eigenvalues, however,
is in the range of Z, and, thus, the errors associated with these modes are exactly
eliminated by the coarse-grid correction process.

For MG, we consider a weighted Jacobi smoother, with M = 4
5D

−1, where D is
the diagonal part of the discretization matrix. The subdomain vectors in Z are chosen
based on linear interpolation from a coarse grid that is coarsened by a factor of 2, 4,
or 8 in each direction.

Table 7.5 gives iteration counts for 2L-PCG using DEF, BNN, and MG as pre-
conditioners with M and Z chosen as for deflation. In these tests, we always take the
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Table 7.5

2L-PCG iteration counts for preconditioners with M and Z chosen as in subdomain-based
deflation preconditioners.

22 pts per subdmn 42 pts per subdmn 82 pts per subdmn

n DEF BNN MG DEF BNN MG DEF BNN MG

322 12 11 8 15 14 10 18 17 12
642 12 11 9 17 16 13 22 21 17
1282 13 12 9 17 16 14 24 23 19

grid to be evenly divisible by the number of subdomains, so that each subdomain is of
the same size. For each problem size, we consider the performance of these algorithms
when the subdomains have 22, 42, and 82 points each. For this choice of M and Z,
we see that the iteration counts for all methods are similar when the subdomains are
of the same size. As expected, as the size of the subdomains grows (and, thus, the
total number of subdomains shrinks), the iteration counts grow somewhat.

Similarly, Table 7.6 gives iteration counts for 2L-PCG using DEF, BNN, and
MG as preconditioners with M and Z chosen as for BNN. Here, we assume that the
subdomains are overlapping, and so the fine-grid domain size is of one point fewer
in each direction than would evenly divide the domain into the required number of
subdomains. For each problem size, we consider the performance of these algorithms
when the subdomains have 22, 42, and 82 points each. For this choice of M and Z,
we see that the performance of the DEF and BNN preconditioners is nearly identical
(as expected) and grows roughly with the logarithm of the subdomain size. The
preconditioner based on MG with this choice of M and Z performs quite poorly,
however. This is, perhaps, not surprising, since the MG preconditioner applies the
smoother based on M twice per iteration and measures reduction in the residual
between these steps and not after the coarse-grid correction step that damps the
errors magnified by M . While Theorem 4.1 does not directly apply here (as the
columns of Z are not eigenvectors of MA), we see similar results; the spectrum of
MA is not tightly clustered around 1, and, thus, the convergence of MG is poorer
than that of DEF and BNN.

Table 7.6

2L-PCG iteration counts for preconditioners with M and Z chosen as in balancing Neumann–
Neumann preconditioners.

22 pts per subdmn 42 pts per subdmn 82 pts per subdmn

n DEF BNN MG DEF BNN MG DEF BNN MG

312 6 5 295 12 11 158 18 17 170
632 6 5 > 500 12 11 404 18 17 > 500
1272 6 5 > 500 12 11 > 500 18 17 > 500

While geometric multigrid is almost always used with coarsening by a factor
of only 2 in each direction, this is not a requirement of the algorithm. However,
because of the overlapping nature of bilinear interpolation on a quadrilateral grid, the
coarsening process in multigrid cannot easily be thought of in terms of subdomains.
In Table 7.7, we give iteration counts for conjugate gradient using DEF, BNN, and
MG as preconditioners using M and Z chosen as for MG, with coarsening by factors
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Table 7.7

2L-PCG iteration counts for preconditioners with M and Z chosen as in geometric multigrid.

Coarsening by 22 Coarsening by 42 Coarsening by 82

n DEF BNN MG DEF BNN MG DEF BNN MG

312 12 11 6 23 22 14 41 40 26
632 12 11 6 23 22 14 43 42 27
1272 12 11 6 23 22 14 43 42 27

of 22, 42, and 82, resulting in a coarse-grid matrix E = ZTAZ that is of the same
size as those for DEF or BNN with 22, 42, and 82 points per subdomain, respectively.
Here, we again see the nearly equivalent performance of DEF and BNN, with slightly
smaller iteration counts for MG.

The results in this section emphasize that, to a large degree, the particular choice
of a DEF, BNN, or MG-style preconditioner is much less important than the choice of
M and Z (with the exception of the poorly conditioned choice of M that arises from
the local Neumann conditions used within BNN). We emphasize, however, that this
comparison is made only in terms of the number of 2L-PCG iterations for each choice
of M and Z. As discussed earlier, for the algorithms compared here, the cost per
iteration of the MG-style preconditioner is larger than that for the DEF or (reduced)
BNN preconditioners. From Theorem 6.1 and its corollary, we know that by choosing
M so that the cost per iteration of these approaches is the same, their performance
will also be equivalent, as shown in the example given in Table 7.4. The results in
this section show that when M and Z are held constant, we still often see consistent
results for all methods.

8. Conclusions. We compare two-level PCGmethods based on deflation (DEF),
balancing Neumann–Neumann (BNN), and multigrid V(1,1)-cycle (MG) precondi-
tioners in their abstract forms, which all consist of combinations of one-level (tradi-
tional) and projection-type preconditioners. When specific choices are made for the
algorithmic components, each MG iteration is more expensive than a DEF or BNN
iteration, due to the more sophisticated form of the two-level preconditioner. At
first glance, we would expect MG to be the most effective method; however, we have
shown that there exist some choices for the algorithmic components for which DEF
is expected to converge faster than MG in exact arithmetic.

When Richardson relaxation is used with an optimal weighting as the one-level
preconditioner, the MG preconditioner is shown to always yield a smaller condition
number than those for DEF or BNN. For more sophisticated and effective one-level
preconditioners, we still expect MG to be superior to DEF and BNN, although the
work per iteration of MG remains more than that for the other methods.

If, on the other hand, the one-level preconditioners are chosen carefully (as pre-
scribed above), there are variants of the BNN, DEF, and MG preconditioners that
all require the same amount of work per iteration. In this case, their spectra differ
only in one cluster of eigenvalues around 0 or 1. Hence, these methods are expected
to show a comparable convergence behavior, assuming that coarse-grid systems are
solved accurately. This is observed in the given numerical results. In other words,
the performance of the BNN, DEF, and MG preconditioners depends strongly on the
choice of the parameters rather than on the choice of a specific two-level precondi-
tioner.
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