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Abstract 

Dissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring during the heat 
treatment of as-cast aluminium alloys prior to hot extrusion. A mathematical model is proposed to describe such a process. 
In this model an equation is given to determine the position of the particle interface in time, using two diffusion equations 
which are coupled by nonlinear boundary conditions at the interface. Some results concerning existence, uniqueness, and 
monotonicity are given. Furthermore, for an unbounded domain an analytical approximation is derived. The main part of 
this work is the development of a numerical solution method. Finite differences are used on a grid which changes in time. 
The discretization of the boundary conditions is important to obtain an accurate solution. The resulting nonlinear algebraic 
system is solved by the Newton-Raphson method. Numerical experiments illustrate the accuracy of the numerical method. 
The numerical solution is compared with the analytical approximation. (~) 1998 Elsevier Science B.V. All rights reserved. 

AMS classification: 35R35; 65M06; 80A22 
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I. Introduction 

Heat treatment of metals is often necessary to optimise their mechanical properties both for further 
processing and for final use. During the heat treatment the metallurgical state of the alloy changes. 
This change can either involve the phases being present or the morphology of the various phases. 
Whereas the equilibrium phases can be predicted quite accurately from the thermodynamic models, 
there are no general models for microstructural changes nor general models for the kinetics of these 
changes. In the latter cases both the initial morphology and the transformation mechanisms have to 

* E-mail: c.vuik@math.tudelft.nl. 

0377-0427/98/$19.00 (~) 1998 Elsevier Science B.V. All rights reserved 
PH S 0 3 7 7 - 0 4 2 7 ( 9 8 ) 0 0 0 7 6 - 4  



124 F. Vermolen, K. Vuik l Journal of Computational and Applied Mathematics 93 (1998) 123-143 

be specified explicitly. One of these processes that is amenable to modelling is the dissolution of  
second phase particles in a matrix with a uniform initial composition. 

To describe this particle dissolution in solid media several physical models for binary alloys have 
been developed, incorporating the effects of  long-distance diffusion [35, 3, 28] and nonequilibrium 
conditions at the interface [20, 1, 29]. These articles did not cover the technologically important 
dissolution of  stoichiometric multi-component particles in ternary alloys. 

The phase transformation element in steel has been studied in [12, 33]. Reiso [23] investigated 
the dissolution of  Mg2Si-particles in aluminium alloys mainly experimentally. He compared his re- 
suits to a simple dissolution model valid for dissolution in infinite media. All analyses indicate that 
the addition of  a second alloying element can influence the dissolution kinetics strongly. However, 
in none of  these articles attention was paid to the effect of  the particle geometry on the disso- 
lution of  particles in ternary alloys. The present article describes the dissolution of  spherical and 
needle-shaped particles, a planar medium, a spherical layer of  segregation and the combination of a 
dissolving particle and a dissolving spherical layer of  segregation. In many metallurgical situations, 
the thermal treatment also aims at the dissolution of  the segregation layer around the grains. In the 
articles mentioned, no attention was paid to the impact of all physical parameters on the overall 
dissolution kinetics. 

The present work covers a detailed numerical analysis of  a coupled Stefan problem in which 
two boundaries either move or are fixed. The diffusion equation is solved using a finite difference 
discretization. The displacement of  the boundary is computed with a front-tracking method. The 
concentration of  both chemical elements are linked via the hyperbolic relation between the Dirichlet 
conditions corresponding to both diffusing elements. The disappearance of a moving boundary is 
incorporated and modelled by a transition of  a Dirichlet condition to a Neumann condition. The 
calculation can then be continued until complete homogenisation has been reached. We expect that 
our approach is applicable to a much wider class of  Stefan problems involving more equations or 
other coupling conditions. This is a point of  current research. 

The mathematical model for the dissolution of  second phases in ternary alloys is given in Sec- 
tion 2. Some remarks about existence, uniqueness and properties of the solution are given in Sec- 
tion 3. In Section 4 the numerical method is specified. Some properties of  the numerical method 
are investigated in Section 5. In this section also a number of metallurgical applications are solved 
and properties of  their solutions are given. 

2. A model of dissolution in ternary alloys 

Consider three chemical species denoted by A, B, and C. We investigate the dissolution of  
an AtBmCn particle in an A - B - C  alloy, where we assume that the concentrations of B and C 
are small with respect to that of  component A. The concentrations of  B and C are written as 
CB, CC (mol/m 3), respectively. At a given temperature the initial concentrations are equal to c ° and 
c °. The concentrations of  B and C in the particle are denoted by CB, p~ and CC, part. The interface 
concentrations (cB, so~ and Cc, sol) are variant. 

We consider a one-dimensional problem. The geometry is given by f2(t) -- {x E ~ [Ml ~< Sl ( t )  <~ 
x ~< S2(t) ~< M2}, t E [0, T] where T is an arbitrary positive number. In some applications there is a 
time t~ and t2 such that, respectively, S l ( t ) =  M~, t ~> t~ and S2( t )=  ME, t >~ t2. For the determination 
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of cB, cc we use the multi-component version of Fick's second law (see [30, 21] [p. 160]): 

OCp 1 0 ( OcB ~ 1 0 f rr~ a OCc 
Ot r a Or DP'Bra -- --~-r J + - ~ r  ~Up, cr -~-r ) '  rEO(t ) ,  tE(0,  T], pE{B,C},  (1) 

where a is a geometric parameter, which equals 0,1, or 2 for, respectively, a planar, a cylindrical, 
or a spherical geometry. Note that MI should be nonnegative for a ~ 0. All these geometries oc- 
cur in metallurgical applications. For simplicity, we assume DB, c = Dc, s = 0, both species diffuse 
independently, and that DB, B : DB, Dc, c = DC (m2/s) are constant. Hence, the equations given in 
Eq. (1) reduce to 

OCp Dp 0 (raOCp~ 
0t r a 0r \ 0 r J '  rEO(t ) ,  tE(0,  T], pE{B,C}.  (2) 

As initial conditions we use 

Cp(r,O)=c°(r), r~fZ(0), pE{B,C},  (3) 

where c ° are given nonnegative functions. When a moving boundary becomes fixed, i.e., Sk(t)=Mk, 
we assume that there is no flux through the boundary, so 

~rP(Mk, t ) = 0  t>>.tk, pE{B,C},  kE{1,2}.  (4) for 

On the moving boundaries a Dirichlet boundary condition is used: 

cp(Sk(t),t)=Cp, k, so~(t), tE[0,  T], pE{B,C},  kc{1,2} .  (5) 

So, six unknown quantities remain: Sk(t),cB, k,~ol(t), and Cc, k, sol(t), k E {1,2}. To obtain a unique 
solution six boundary conditions are necessary. We assume that the particle is stoichiometric, which 
means that CA, pa~t, CB,part, and Cc,p~t are constant. Using the Gibbs free energy of the stoichiometric 
compound we get [30] 

(CB,k, sol(t)) m" (Cc, k,~ol(t))" =K,  kE  {1,2}, (6) 

where the exponents m,n correspond to the stoichiometric phase AIBmCn and K is a constant 
depending on temperature. The balance of B and C atoms and the constant composition of the 
particle lead to the following equations [24] for the moving boundary positions: 

(Cp, paa--Cp, k ,~ol ( t ) )~ t ( t )=Dp~r(Sk( t ) , t  ), tE(0,  T], pE{B,C},  kE{1,2}. (7) 

Condition (7) implies 

DB Oca Dc OCc 
cB, p,a --~,k,~o,(t) ff;r (Sk ( t ) , t ) :  CC, p art __---Cc, k, so,(t) -~r(Sk(t),t), kE{1,2}. (8) 
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The moving boundary problem given by Eqs. (2 ) - (7 )  is known as a Stefan problem. For a re- 
cent book where this type of  problems is considered we refer to [32] (see, for instance, p. 132, 
(2.5),(2.9)). There are some differences between the dissolution in a binary alloy [30] and in a 
ternary alloy. In the first place, two diffusion equations have to be solved, which are coupled 
through the conditions (5 ) - (7 )  on the moving boundaries. Secondly, the problems are nonlinear 
due to the balance of  atoms on S1,S2, both in the binary and the ternary case. However, in the 
mathematical model for a ternary alloy an extra nonlinearity occurs in Eq. (6). Survey papers and 
books on the Stefan problem are [9, 16, 8, 17, 5, 25]. 

3. Properties of the Stefan problem 

After the description of  a maximum principle we give some results concerning existence, unique- 
ness, and monotonicity of  solutions of  the given Stefan problem. Also an approximate solution is 
given for the dissolution of  a particle in an unbounded domain (ME = ~ ) .  

3.1. The maximum principle for the diffusion equation 

First a few basic principles are formulated, which are used later in this section. The Stefan problem 
is formed by the diffusion equation and a displacement equation for one or more moving boundaries. 
For the diffusion equation it can be proved that the solution satisfies a maximum principle, which 
we present for completeness. 

Maximum principle: 
Suppose c satisfies the inequality 

~2 C (~C 
~0 ,  rCf2(t), tC(0 ,  T], (9) 

t~r 2 t~t 

then a local maximum has to occur at one or both of the sides S l , S  2 (the moving boundaries), or 
at t = 0 (the initial condition). Suppose that a local maximum occurs at the point P on $1, or $2. 
If O/Ov denotes the derivative in an outward direction from ~2(t), then Oc/Ov>O at P. 

This statement is referred to as the maximum principle and has been proved by Protter and 
Weinberger for a general parabolic operator (see [22] [p.168,170]). This principle can also be 
applied for local minima (and Oc/Ov<O) when the inequality in Eq. (9) is reversed. The principle 
thus requires the global extremes of  a solution to the diffusion equation to occur either at the 
boundaries $1,$2, or at t = 0. 

3.2. Some limitations of  the Stefan problem 

In this section we consider some artificial problems, in order to investigate the limitations of  
our mathematical model. In the first example we show that the model breaks down when the 
concentration at the interface is equal to the particle concentration. From the second example it 
appears that difficulties occur when the initial concentration is equal to the particle concentration. 
Then the ternary model should be replaced by a binary model. 
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The movement of  the boundaries $1,$2 is given by Eq. (7). This holds provided Cp, so l¢Cp,  part , 

p E {B,C} to prevent a division by zero. If  (dCp/Or)(Sk(t),t)7~O then a division by zero would 
imply an infinite displacement. Such a situation can occur, for example, when we have an initial 
concentration profile in which c°(r)<Cp, pa~t for rc(SI (O) , (SI (O)+ $2(0)) /2)  and cO(r)>Cp, part for 
r E ( (S I (0 )+  $2(0))/2,$2(0)). Simulations have shown that then possibly Cp,~ot converges to Cp,paa, 
causing a division by zero when computing the displacement of  the boundary. These examples 
shows that in general it is impossible to show global existence of  the solution. A blow up in finite 
time is possible. This kind of  problems have been a popular topic in recent free boundary research 
[14, 31, 26, 27, 37, 38, 2, 13]. However, in our metallurgical applications we never encounter this 
type of  problem, because the initial concentrations are always less than the concentrations in the 
particle. For cylindrical and spherical problems blow up occurs when the particle disappears. From 
a practical point of  view the effect of  this blow up on the concentration profiles is negligible. 

We consider the following planar problem: c ° = 0, c o = CB,part, S2 ( t )=  M2, and for simplicity 
Eq. (4) is replaced by 

cp(M2,t)=C°p, p E  {B,C}. (10) 

Suppose that SI,CB, and Cc are a solution of  the Stefan problem, where 0 ~< Cc,~ol(t) ~< Cc, p,rt. Then 
we have the following result: 

Proposition. There is no ~>0 such that Sl(t) is monotone on [0,~], unless CB, sol(t)= Ca, pax. 

Proof. Suppose there is a ~>0  such that dSl/dt >>. 0 , tC  [0,~]. This assumption together with the 
inequality Cc, sol(t) ~< Cc,p,rt, and Eq. (7) implies that (t3Cc/Or)(Sl(t), t) >>. O, t E [0, ~]. Eq. (6) implies 
that Cc, so~(t)~ 0. From the maximum principle it follows that the maximum occurs at S~. However, 
at such a point the inequality (~Cc/Sr)(Sl(t), t ) < 0  holds. This leads to a contradiction. 

Now we assume that there is a ~>0  such that dSl/dt <~ O, tE [0,~]. When there is a ?E [0,~] 
such that CB, sol(t)>CB, p,~, Eq. (7) implies that (dcc/~r)(St(?),?) >>. O. Using the maximum principle 
as before, we again obtain a contradiction. In the same way it can be proved that Ca, so~(t')<CB, par~ 
is impossible. [] 

This proposition implies that the only physically acceptable solution occurs when CB,so~(t)= CB, part. 
In this case we are faced with a division by zero when computing the displacement of the boundary. 
However, due to the maximum principle cB(r , t )= cB, p~ = c °, so (OcB/~r)(Sl(t),t)= 0. Hence, we 
are faced with a zero-by-zero division. From a thermodynamic point of view it is reasonable that 
for this case there is no change of  the concentration profile in the matrix. The boundary conditions 
are coupled via Eq. (6). The solution for this situation can be obtained using the solution of the 
concentration profile of  the element C only. We are thus faced with a binary diffusion problem, in 
which the interfacial concentration of  element C is then determined by the concentration of element 
B by Eq. (6). 

3.3. Monotonicity properties 

Consider the solution of  the Stefan problem: SI,CB, and Cc, where $2 =ME and Eq. (4) replaced 
by Eq. (10). We assume that c ° < CB,part- Suppose that at some time, h, ca(Sl(h ), tl )<Cn,part and at a 



128 F. Vermolen, K. VuiklJournal of Computational and Applied Mathematics 93 (1998) 123-143 

later time, t3 > tl, we would have cB(SI(t3), t3)>CB, part. From the continuity of  cB(Sfft), t), it follows 
that for some time, t2, such that tl <t2 <t3, cB(SI(t),t)<CB, p~, t E [h,t2), and cB(Sl(t2),t2)= CB,p~. 
According to Eq. (7), (OcB/3r)(S1 (t2), t2)=0. This violates the maximum principle. A similar situation 
can be analysed for c o >CB, p~t, and CB(S1(h ), tl ) >  CB,part- From this it can be concluded that the sign 
of  cp(Sk(t), t)--Cp, paa does not change with time, provided this sign is equal to the sign of  c°(r)-cp, paa 
for all r. 

3.4. An approximate solution 

For the classical one-phase planar Stefan problem (Ml = -o~ ,  M2 = 0, c o = 1, c(S(t), t) = 
O, 2dS/dt =-(Oc/Or)(S(t) , t))  a self-similar solution is already found by Neumann in 1860 [34] 
[p. 122]: S( t )=kvq and c(x, t ) =  1 - ( 1  +erf(x/2xfi))/( 1 +erf(k/2)) ,  where k satisfies the transcendental 
equation 

k =  
2 exp( - (k /2 )  2) 

2x/-~ 1 + erf(k/2) " 

Our approximate solution is related to a self-similar solution as given above. 
For the case that diffusion takes place in an infinite medium with spherical symmetry near a 

spherical particle, the Laplace transform can be used to solve the problem. The diffusion equation 
for spherical symmetry determines the transport of  matter: 

Ot r 2 Or ?.2 , p C {B, C}. 

The condition at the interface is given by 

cp(Sl(t),t)=cp, sol(t). 

At infinity and for t = O: 

Cp(r,O)=c °, Cp(OC, t ) = c  °, 

where c ° are given constants. We approximate the function Cp, sol(t) by a constant value Cp, sol. By 
means of  the (inverse) Laplace transform an approximate solution [35] is given by 

Sl(t) ( r ~  S l ( t ) )  
~p(r,t)=c~+(rp,~o,-cO)* , E r f c  . (11) 

r \ 2V'-  t ) 

This approximation is exact when Sl(t) is constant. So we assume that the difference between 
the exact solution and the approximation is small as long as Sl(t) is a slowly varying function. 
Substitution of  ~p into Eq. (7), yields 

dSl(t)  Z C D, 

- Cp,~ol S - ~  + dt Cp,part 
(12) 
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Combination of  both components to fullfill the requirement as stated by Eq. (8), it follows that 

CB, part - -  CB, so I ~ -~- - -  CC, part - -  CC, so I S l ~  + 
(13) 

Using Eq. (6) as the relation between the concentrations at the interface S~, it follows that for t ~ 0: 

^ D / - ~  : (K/.....~B, sol) 1/m -- C ° CB, so I - -  C ° . 

CB, part - -  CB, so 1 V DC CC, part -- (K/3[,sol)l/m" 
(14) 

As has been remarked before, it has been assumed that the interfacial concentration is constant 
in time. The variation of  the interracial concentration with time is most significant at the early 
stages: the interracial concentrations then change from c ° to cp, sol. In the later stages, the interfacial 
concentrations will vary less with time and the above used approximation may be more accurate. 
As the diffusion of  the chemical elements proceeds, the elements reach the other boundary. Then, 
an accumulation of  atoms occurs there. However, this analytical model does not incorporate this 
effect since it is assumed that the domain in which the elements diffuse is infinite. Therefore, at the 
later stages this approximation will become less accurate as well. 

For the case of  a particle stoichiometry BC, i.e. n = m, the following quadratic equation results 
from Eq. (14): ~(CB, sol)2 "~ - flea, sol--F ~ )=  0 with ~,fl,~ given as 

~X ~--- CC,part - -  O'C 0 ,  fl=CTCB, partCO--cOcc, part " ~ K ( ¢ 7 -  1) ,  ~=(cOB--~TCB, part)K, 

where a = V~c /DB.  If  (ac ° -Cc,  p~t)(aCB, part- c ° ) < 0  then there is only one root for which the 
inequality ~B, so~ > 0 holds. If  however, 0 0 ( O ' C c -  CC, part)(O'¢B, p a r t -  ¢ B ) > 0  and the discriminant is positive 
then we have to keep in mind that the roots have to meet the requirement that the Stefan problem 
is not degenerate, i.e., we may not have 0 ~< c°<cp,p~-t<cp, so~ or O<cp,~oL<Ce, p~t<c °, p E  {B,C}. 
A root that does not satisfy this requirement is rejected. It appears that indeed two nonnegative, 
nondegenerate solutions for ~B, sol can be obtained. 

Consider the following example: (CB, p~rt, Cc, pa.) = (50,1), ~c ° c °~ = (2,30), Dc 2 * DB 
2-  10-13m2/s, and the value of  K is varied. The interface concentrations have been calculated 
and substituted in Eq. (12) to obtain the interface velocity for t ~ 0. The interface velocity co- 
efficient dS(t) /dt ,  v~ is plotted in Fig. 1. For 0 < K < 5 0 ,  it can be seen that the discriminant is 
positive and hence two solutions are obtained. One of  the solutions is degenerate and is there- 
fore rejected. The other one leads to a positive boundary velocity so the particle increases. For 
5 0 < K < 4 7 0 . 3 3  two nondegenerate solutions exist. Both solutions have a negative boundary veloc- 
ity so the particle dissolves. For K = 470.33 the discriminant is zero and the solutions coincide. 
Considering the discriminant of  the quadratic equation, it follows that the discriminant is negative 
for 470.33 < K < 5 5 6 8 1  giving two complex solutions. The solutions for K>55681  are both degen- 
erate. It appeared from numerical experiments that the slower solution is more stable numerically. It 
appears that this stability depends on the formulation of  the zero-point problem. For higher orders 
(different stoichiometries) it is very hard to state any general remarks about the solution. 
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Fig. 1. Interface velocity for various values of K. 

4. The numerical method 

Various numerical methods are known to solve Stefan problems. In [9] the following types of  
method are distinguished: front-tracking, front-fixing, and fixed-domain methods. In a front-fixing 
method a transformation of  coordinates is used (a special case is the isotherm migration method 
(IMM)). Fixed domain methods are the enthalpy method (EM) and the variational inequality method 
(VI). Various methods are compared in [10]. The latter methods (IMM, EM, VI) are only applicable 
when the concentration is constant at the interface. Since in our problem the concentration varies at 
the interface we restrict ourselves to a front-tracking method. Front-tracking methods are described 
in [19, 4, 15, 36, 39]. Our main interest is to give an accurate discretization of the boundary 
conditions. Therefore, we use the classical moving grid method of  Murray and Landis [19] to 
discretize the diffusion equations. First an outline of  the numerical method is given. Thereafter each 
part is described in more detail. 

The equations are solved with a finite difference method in the r and t-direction. A characteristic 
feature of  a front-tracking method is that the interface positions are nodal points in every time-step. 
So, the position of  the grid points depends on time. An outline of  the algorithm is: 
(1) Compute the concentration profiles solving the nonlinear problem given by Eqs. (2 ) - (6 )  and 

(8). 
(2) Predict the positions of  $1 and $2 at the new time-step: Sl(t + At) and Sz(t + At). 
(3) Redistribute the grid such that Sl(t + At)  and S2(t + At) are nodal points. 
(4) Return to step 1. 
We introduce the following notation: the time-step is At = TINt, and the positions of  the interfaces 
are denoted by S~ = Sk(jAt), k E {1,2}. The step-size in the space direction is ArJ = ( S g -  S()/N, 
and r /=S(+iArJ,  i E {0,. ,N}. In some expressions j .. r/~_l/2 is used, which is equal to S[+(i-4-½)ArJ. 
Finally, the concentration ck(r/ , jAt) is approximated by c~i, k E {B,C}. In the remainder of  this 
section we give a detailed description of  the various parts of  our algorithm. In this paper we explain 
the method for an equidistant grid. In practice one can save much computation time when the grid 
is refined in the neighbourhood of  the moving boundaries. 
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4.1. Discretization o f  the interior reoion 

In this section we use the symbols c and D instead of  cB, cc, DB, or Dc. We suppose that ~-~j+l '-'k 
and c[ are given. The concentration on the new time-step satisfies the following equation: 

c/+1 

DAt  
j + l  )a [rJ+l )a-lcJ+l [_ j+l  "~a~j+l . . . .  - -  + {[(ri+l/2 +~. i-1/2 J i -- ,ri-l/X) c,-1 -- (r/++ll/2)acJ:ll}l{(r/+l)a(ArJ+l) 2} 

1{ J J  } C i + l -  Ci--1 ( r / + l  ' 
- -  D A t  c/+ ~ f i  - r / )  , i = l , . . . , N - 1 .  ( 1 5 )  

In this formula central differences are used to discretize the term (1/ra)(O/Or)(r~Oc/Or). The final 
term is caused by the changing mesh. The value of  c j is given in the point ( r / , jA t ) .  However, 
for the time derivative it is necessary to evaluate c/ at (r/+m,jAt). Linear interpolation is used to 
approximate this value: 

cJ'r j+l "At" • ['Oc~ j .  j+l J b (r/+' • Ci+ 1 --  Ci-  1 
,s -2£;7 - 4 ) .  

For a > 0  a division by zero could occur in Eq. (15) when r/+l = 0 .  Since i /> 1 and $1; ~> M1 i> 0, 
the value of  r/+1 is always positive, so Eq. (15) is valid also for a > 0 .  

4.2. Discrete boundary condition at a f ixed  boundary 

At a fixed boundary the Neumann boundary condition (4) holds. For a discrete version of  this 
condition we assume that Eq. (15) is also valid for i = 0, and i = N .  Note that virtual concentrations 
c{~ l, and ,.j+l - ~N+I occur. These concentrations are eliminated by using the discrete analogue of  Eq. (4): 

c J + l  __ cJ+l p j + l  __ c J + I I  
-- t 'N+  1 -- --0,  --0.  (16) 

2ArJ+t 2ArJ+l 

An exception is made for the case i = 0, and a > 0 ,  because then Eq. (15) contains a division by 
zero. Now Eq. (4) is replaced by a balance of  atoms. For a = 2 the balance is considered for a 
sphere with radius iArl  j+l : 

Using cylinder coordinates a similar expression holds. After simplification for spherical and cylin- 
drical geometry the resulting equations are 

c ~ + l  - -  Co j A F J + I  c¢+1 _ c ~ + l  

At 2 ( a + l )  = D  A r  j+l ' 
a E  {1,2}. (17) 

4.3. Discrete boundary condition at a moving boundary 

In the numerical method we assume that the positions of  the boundaries are known at t j + l  = 

( j  + 1)At. Hence, on each boundary ($1,$2) two boundary conditions (6), (8) are necessary. The 
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derivatives used in Eq. (8) are discretized with central differences including the virtual concentrations 
c j+', and ,.j+l - ~N+l. We assume again that Eq. (15) holds for i = 0 ,  and i = N .  Condition (6) is replaced 
by 

( ~ j + l  x m r ~ j + l  )n [ ~ j + l  xmt" ~ j + l  xn 
C.B,0] ~t.C, 0 = K ,  \CB,N) tcC, N) = K .  (18) 

Summarising, we note that at the new time-step 2(N + 3) unknowns are used, whereas up to now 
only 2(N + 2) equations are specified. This implies that the solution consists of  a two-parameter 
family. To determine a unique solution we assume that all concentrations are a function of  c j+l B,O , 
a n d  ,,.,j+ 1 • -B,N- These remaining unknowns are determined by the following coupled nonlinear equations 
(cf. (8)): 

f ,  ( r , j + l  ,,..j+l -~ j I k t . B , O , t ~ B , N J  :~ DB(CC, p~ r , j + l ' ~ [ ~ j + l  j + l  ~ _ _ c j + l ) ( c j + l  j + l  x - "-c,o J~'-B,1 - cB,-IJ - Dc(CB, pm B,o c,1 - Cc,-l) = 0 (19) 

and  

f,- ( , . , j+l  ~ j + l  \ __ DB(CC,  part t . j + l  .~[~j+l __ c J + l  . J z ~ . t " B , O , t ' B , N )  = - -  wC,N )kt~B,N+l B,N--1 ) 

__ Dc(CB,par t  ,, .j+l "~tr, J + l  __ C j+ l  - -  "B,N. '~.~C,N+I C,N--I) = 0. (20) 

So the problem has been reduced to obtaining a root for the vector function (fa, fz). We approximate 
this root by the Newton-Raphson method. 

The pth iterates of  the concentrations are denoted by c j+~ B,i (P), i E {0,N}. The continuous Newton- 
Raphson method runs as follows: 

= icB,  o t P ) ~  - f , ( P )  |CB, o t p + l )  / j+l. 
~ . j + l ,  j+l + ( J ( p ) ) - )  , (21) 
,,'-B, u t P  + 1) \ CB, N(p)  ] -- f 2 (P)  

where J is the Jacobian. In practice, it is impossible to compute J ,  so we use a discrete approxi- 
mation J .  The elements of  the 2 x 2 m a t r i x  3' are 

Jk i = [A(c~.+01 + (2 " J+' , z)e,c.,  N + (i 1)e) fk(C~+o 1 (2 " J+' , - -  . . . .  l )~ ,  CB, N 

- ( i - 1 ) e ) ] / 2 ¢ ,  k, iE{1,2}.  

The discretization of the Jacobian is determined using a central difference in order to guarantee an 
accuracy of  O(e 2). From a numerical point of  view it is important to note that e has to be sufficiently 
small, but larger than the accuracy of  the numerical scheme to evaluate the concentrations. 

To start the Newton-Raphson procedure an initial guess has to be found. To prevent convergence 
to an undesired root, the initial guess is chosen as close as possible to the root. For time-steps j > 1, 
the boundary concentrations from the former time-step are chosen as initial guesses. However, at 
time step j = 1, the roots of  (see Eq. (14)) 

x -- c°(r,) D~  ~ -- c°(ri) 
CB,-p~--'--x , ~ -- Cc, p m -  ~ '  i E { 0 , N }  (22) 

are used. We terminate the iteration when 

, . .j+l t j + l  ~ j + l  / 
CB,0 (P)[ + ~B,NkP + 1) - -  C j + l "  I,-B,o tP  + 1 ) -  B,N(p)l<e.  
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The given approach is adapted for the case a > 0 and sJ+I< Ar  j+l. In this case the virtual grid-point 
near Sl is released. The derivatives in Eq. (8) are replaced by one-sided differences, and Eq. (15) is 
no longer used for i = 0. When an accurate solution is needed at this point of blow up, a numerical 
method based on the phase field model [6, 7] can be used. 

4.4. Adaptat ion  o f  the movin9 boundaries 

We have only used one-half of the boundary conditions given in Eq. (7) to determine the con- 
centrations. The remaining conditions are used to adapt the positions of the moving boundaries. The 
adaptation of S~ and $2 is comparable, therefore we only describe the determination of S1. Two 
different methods are described. 

An Euler forward time integration yields 

S~ +l =S~  + D B A t  c j -- C j 
• " B,1 B,-1 S~ +1 idem. 

- c j 2ArJ ' CB, part B,0 

Due to the explicit nature of this adaptation it is important to choose the time-step not too large 
relative to the grid-size. In our computations we choose At such that At ~< 10(Ar°)2/max{DB, Dc}. 
The virtual concentrations j J CB,_I,CB, N+ l, are computed from Eq. (15). For a > 0 and S/ < Ar g+l the 
central finite difference to approximate (acB/dr ) (S l ( t ) , t )  is replaced by a one-sided finite differ- 
ence, as has been mentioned in the previous section. When the distance between a moving bound- 
ary and a fixed boundary is small ((S~ +l - - M k ) / ( S  ° - - M k ) < e ,  kc{1 ,2} )  we fix the boundary 
(S j+l =Mk, k E {1,2}), and change the boundary conditions accordingly. 

The second method is the Trapezium method. Since this method is implicit the new positions of 
the moving boundaries are computed iteratively (cf. [15]). The outline of the algorithm is summarised 
as follows: 
(1) p : = 0  (p is the iteration number). 

j+l  - - C  j iE  {0,N}. (2) CB, i ( p ) - -  B,i, 

" - c " ' - '  S]+l (p)  idem (predictor). (3) S / + I ( p ) : S  j -k- DDAt cj " 
J 2Ari ' CB, part --C B, 0 

(4) Generate mesh, i.e., determine rJ+l(p).  
(5) Carry out one Newton-Raphson iteration step (Eq. (21)) and solve the diffusion equation to 

p j+ l  .- ~ j + l /  
obtain ,-B,i tP  + 1 ) and ,-c,i tP + 1 ). 

J J j+ |  1+| ~ ' ~ I  CB'I--CB'--I CB'l (P+l)--CB'--I(P+l) "~ " 
(6) s/+l(p + l ) - - S / +  z t2Ar./(c~,pa~--C~,o) "~ 2ArJ+'(p)(Ca, pan--cJ+.ol(p+l))J ' S ~ + l ( p  "~- 1) idem (corrector). 

(7) While 
j+l j+l )--cB,u(p)[+ + l ) e p : =  p + l  1 )-cB, 0 (p)[ + ]cs, N ( p +  1 Is l -u ,  I Is~-M21 

]cB, ° (p+ j+l j+l [S(+'(p+I)-Si/+'(p)[ IS~+'(p+l)-Sz'+'(p)[ 

go to step 4. 
C j+l  = C  j + l /  . cJ+I __C j + l "  S j+l  S j + l -  (8) B,~ B, i t P ) ,  c , ; -  c,;(.P), and k = k tp), k E {1, 2}, do next time iteration. 

Using the above algorithm the accuracy of the free boundary position is improved. The roots of the 
vector function (fl ,  f2) are determined within the same iteration as the free boundary positions S j+l 
and S j+l. Since in step 5 of the algorithm only one Newton-Raphson iteration step is performed, 
the order of the total amount of work done at each time-step is similar to the order of the total 
amount of work done at one Euler forward iteration. 
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5. Numerical experiments 

In all computations the position of  the interfaces are determined with the Euler forward method, 
except in the section where the Euler forward and the Trapezium method are compared. 

5.1. The accuracy of  the space discretization 

In order to determine the accuracy of  the calculations, grid-size and time-step dependence tests 
have been carried out. The results are shown in Figs. 2and 3. The following input parameters have 
been used: D c = 2  D B = 2 .  10-13m2/s, COp=O, Cp,part=50, p E { B , C } , K = I ,  m = n = l ,  S ] ( 0 ) =  
5 . 1 0  -7 m, M2----5-10-6m, $2(0)=M2,  and we assume spherical geometry. The grid-size and time- 
step were decreased until the differences are negligible for the whole simulation. It can be seen 
in Figs. 2 and 3 that the distances between all curves are negligible for small times. For larger 
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Fig. 4. Relative position of the interface Sl(t)/Sl(O); with the Euler forward method. 

times the differences increase. The use of a virtual point at the interface increases the accuracy 
considerably. The observed rate is O(Ar 2) with a virtual point and O(Ar) without a virtual point. 

In case of the use of a virtual grid point, the central discretization reads as follows: 

4 J i - Cp_l  ( A r J )  2 O3Cp 
-2~-~ -- (S l ( t j ) , t j )+ -~ ~r3(Ol,tj),  O , E ( S I ( t j ) - A r  j, S , ( t j ) + A r J ) .  

Without the use of a virtual grid point we have the following one-sided discretization: 

c/,, - CpJ, o ~ ArJ 82cp 
~ r J  -- ~, (S'(ti)'tJ) + 2 ~r 2 (02,tj), 02 E (S,(tj),Sl(tj) + ArJ). 

In the vicinity of the interface we observe the following inequalities: 8Cp/Sr <0,82Cp/ 
8r 2 > O, O3Cp/~r3 < 0. Therefore, in case of the presence of a virtual grid point and without a 
virtual grid point, respectively, the discretization at the interface overestimates (Fig. 2) respectively 
underestimates (Fig. 3) the interface velocity. 

5.2. The accuracy o f  the time integration 

We used the same input-parameters for the determination of the accuracy of the time integration 
except for SI(0)= 10-6m. The time-step was varied until convergence was reached. The results 
have been printed in Fig. 4 (Euler Forward) and Fig. 5 (Trapezium). It can be well observed 
that the difference between the two methods is small as long as the time-step is sufficiently small 
(At ~< 1 s, corresponding to At ~< 312.5(Ar°)2/max{DB, Dc}). The results obtained with the Euler 
forward method become inaccurate when At i> 10s, whereas the Trapezium method still produces 
accurate results. 

5.3. A comparison o f  the analytical and numerical solution 

As has been mentioned before, the initial guess for the interfacial concentrations is based on 
some analytical considerations. The derivation of this analytical approximation is summarised in 
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Section 3. This expression holds for spherical symmetry, but it can be used for planar geometry 
as well [1]. Unfortunately, this derivation has to be done under the assumption that the interfacial 
concentration remains constant during the entire dissolution process. At the early stages of the 
dissolution process, the interfacial concentration does not remain constant (see Fig. 6). To compute 
the interfacial concentration we iterate the analytical solution using the following predictor-corrector 
method with a sufficiently small time-step: 
Predictor-corrector method: 
(1) Compute CB, sol(At) from Eq. (14), j =  1. 
(2) Substitute ~a, sol(At) in Eq. (12) and compute S1(j" At). 
(3) Using Sl( j"  At),  obtain ca,~ol((j-t- 1). At) from Eqs. (8) and (13), j : = j  + 1, go to 2. 
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The results obtained with the analytic approach are of the same order of magnitude as the results 
obtained using the finite difference scheme (see Fig. 6). The finite difference results in Fig. 6 have 
been obtained using various M2/Sl(O)-values. Though there is a small difference between the results 
from the analytical and numerical scheme already at early stages, it can be seen that for large 
M2/Sl(O)-values the match between the analytical approximation and the numerical solution is good. 
This is as expected, because the analytical approximation is based on the dissolution of a spherical 
particle in an infinite medium. The differences at early stages are due to the rather large variation of 
the Dirichlet conditions with time. At later stages, the Dirichlet conditions vary less with time and 
the difference between the results stops increasing. An advantage of the analytical approximation is 
that it costs a negligible amount of CPU-time. However, in reality the effects of soft-impingement 
(a bounded domain) are relevant. Then the analytical approximation is not reliable. 

5. 4. An analysis o f  the discretized Jacobian 

In subsection 4.3 the Newton-Raphson procedure to obtain the Dirichlet conditions has been 
outlined. In this method the Jacobian plays an important role. The Jacobian consists of the derivatives 
of both boundary functions f ,  i E {1,2}, with respect to cB, sol at both boundaries. Therefore, during 
each zero point iteration we determine f l, f 2 at ( CB, so1( SI ), CB, soI( S2 ) ), ( CB, soI( S1) + e, cB, sol( S2 ) ), and 
(cs, sol( Sl ), ca, sol(S2) 4-e), which means that in every iteration the discretized equations have to be 
solved 5 times. It is obvious that for the case that the diffusion fields between the boundaries Sl and 
$2 do not interact, the off-diagonal coefficients of the Jacobian are negligible and could be set zero. 
In this case it is sufficient to evaluate f l , f2 at (CB, sol(Sl),CB, sol(S2)), (CB,sol(Sl)-~-e, CB, sol(S2)+ e), 
and (CB,~ol(S1)- e, cB,~ol(S2)- e), so the discretized equations need only be solved 3 times, which 
speeds up the calculation. For each time-step, about 4 Newton-Raphson iterations had to be applied 
to get the desired accuracy. 

The off-diagonal Jacobian terms have been analysed relative to the diagonal Jacobian terms (i.e., 
Jl,E/Jl,1 and JE,1/J2,2). It appeared that these values remained approximately constant during an 
entire simulation, also when the diffusion fields of both phases started to impinge. In Fig. 7 the off- 
diagonal Jacobian terms have been displayed as a function of the dimensionless time-step defined by: 
0~ = v/min(DB, Dc)* At / (S2(O)-  Sl(0)). It can be seen that the influence of the cross-terms in the 
Jacobian increases with increasing time-step. This may be explained using the theory of penetration. 
It can be proved that for a planar medium the penetration depth as a function of time is given by 
L( t )=  v/rcmax(DB, ~}c)t. The penetration depth corresponds to the minimal distance from one of 
the moving boundaries to the position where the concentration has been unchanged. For the ternary 
case, the interfacial concentrations change during each time-step At. If L(At )  <~ $2(0) - SI(0) then 
the changes of the interracial concentrations do not influence each other, i.e., the off-diagonal terms 
of the Jacobian are negligible. 

For the planar geometry, we have by symmetry J1,2/Jl,l =J2,1/J2,2. In the cylindrical and spherical 
cases we have the inequality J1,2/Jl,l > J2,1/J2,2. This inequality becomes stronger for the spherical 
case. The inequality will be explained for the spherical geometry. As the area of $2 is larger than 
the area of $1 and the area increases from $1 to $2, the influence on the boundary condition at 
S~ by the boundary condition at $2 will be larger than the influence on the boundary condition at 
$2 by the boundary condition at $1. Therefore we have the inequality J~,2/J~,l > J2,~/d2,2. A similar 
explanation may be given for the case of cylindrical geometry. 
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For the planar geometry, the penetration depth may be written as 

/n  max(Ds, Dc) . . . . .  

L(At )=  v/nmax(DB,~c) At = V ~ D - ~  ~t~21"O)- SI(O))" 

From this it follows that 

L min(DB, Dc) L(A t )  

s (o) - s , ( 0 )  

is an important dimensionless number. From Fig. 7 it can be seen that if ~ < 0.1 the off-diagonal 
terms of the Jacobian are negligible for all geometries. 

5.5. Application to the movement o f  two boundaries in a ternary alloy 

Some calculations for a ternary alloy have been carried out with two simultaneously mov- 
ing boundaries. Fig. 8 shows some results for the boundary position as a function of time. The 
input parameters for these curves are D c = 2 D B = 2 .  1 0 - 1 3 m 2 / s ,  cO:O,  Cp, part=50, pE{B,C},  
K =  1, m = n :  1,$1(0):7.5.10-7m, M2 =5"10-6m, M2-$2(0) =2-10-8m, N = 5 0 0 , A t =  100Ar2/ 
max(DB, Dc). 

It can be seen in Fig. 8 that the dissolution time is largest for a spherical segregation layer ($2). 
For both cylindrical and spherical geometries the surface of the segregation layer increases during 
the dissolution process. For the particle ($1) it takes most time to dissolve for the planar geometry, 
as the surface of the particle decreases during dissolution for both cylindrical and spherical geometry. 
For a comparison the curve of $1, without the presence of $2, versus time has been displayed for 
a spherical geometry. It appears that the dissolution of a particle is considerably delayed by the 
presence of a segregation layer. It can be observed as well that at the early stages there is no 
influence on the dissolution kinetics of Sl from the boundary $2. 

To illustrate the behaviour of the concentration profile, the concentration profiles of both chemical 
elements at different times have been presented in Fig. 9 for the spherical geometry. As is to be 
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expected, at the early stages the profiles are very steep. The interracial concentrations at $1 converge 
during dissolution as a result of  soft-impingement. For the concentration profile at t = 5 s, Dirichlet 
conditions are in effect at both boundaries: both $1 and $2 are moving. For t = 10s it can be seen that 
the boundary condition at $2 has changed into a Neumann condition: no mass transfer is allowed 
through the boundary. Later, when $1 =M1 (dissolution of  the particle) a Neumann condition is 
applied at S1 too. Finally the profile becomes homogeneous. 

5.6. The influence of  the diffusion coefficients of  both elements 

To illustrate the applicability o f  the model, some calculations have been carried out for the case 
o f  a stoichiometric spherical second phase Mg2Si and Mg2X in a ternary aluminium alloy. The 
diffusion coefficients Dsi and DMg, taken from Fujikawa [11] and Yamane [18] for a temperature of  
793 K, are 2.15.10 -13 and 3.24.10 -13 m2/s, respectively. Furthermore, the initial particle radius, the 
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cell radius, and initial matrix concentrations have been taken, respectively, as  1 0  - 6  m, 8-10 - 6  m, 0, 0. 
For K the value of  0.35 has been used. As the calculation concerns an Mg2X particle, we have 
CMg, pa~t = 66.7%. 

In Fig. 10 the interfacial position for the case of  dissolution of  a spherical Mg:X particle in 
aluminium is given. Various choices for the diffusion coefficient Dx are used. The special choice 
Dx = DMg corresponds to the dissolution of  an Mg particle, so this is a binary alloy. Note that 
initially the interfacial velocity decreases. At the final stages of  dissolution, the interfacial area has 
become so small, that the interfacial velocity has to be large to satisfy the Stefan condition. It can 
be seen from Fig. 10 that the addition of  a second element can influence the dissolution kinetics 
strongly. 

Fig. 11 represents the interfacial concentration at $1 of  both alloying elements as a function of  
time. From Fig. 11 it is clear that at the initial stages the atoms of  the slower element accumulate 
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near the interface. On the other hand, the atoms of  the faster element diffuse deeper into the matrix. 
This causes the diverging behaviour of  the interfacial concentrations at early stages. 

A more detailed analysis in which the stoichiometry, cell size and diffusion coefficient have been 
varied can be found in [30]. 

6. Conclusions 

A mathematical model is given to describe the dissolution of  stoichiometric multi-component 
particles in ternary alloys. Some results concerning existence and uniqueness are given. 

An analytical approximate solution is given, valid when the dissolution takes place in an un- 
bounded domain. The results are cheap to calculate and they are reasonably accurate. This analyti- 
cal approximation can also be used for short simulation times in a bounded domain, or as starting 
solution for the Newton-Raphson process used in the numerical method. 

The numerical method described is second order accurate when virtual points are used to discretize 
the boundary conditions at the interface. The Trapezium method to compute the interface positions 
is more accurate than the Euler forward method, whereas the computational costs per iteration 
are comparable. A criterion is given to estimate when the off-diagonal terms of  the Jacobian are 
negligible. Then the computational work can be decreased considerably. The numerical solutions 
lead to valuable insight for metallurgical applications. 

A number of  open questions remain: 
• Is the model valid when blow up occurs? 
• Which numerical method should be used to compute a solution which blows up? 
• A point of  current research is an extension of  the described model to alloys with more 

chemical elements. 
• The analytical approximation suggests that for some choices of  parameters the problem has 

more than one solution. Further research is needed at this point, especially when different 
stoichiometries (n ~ m) are used. 
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