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ABSTRACT 

GMRES and cc,s arc well known iterative methods for the solution of certain sparse 
linear systems with a nonsymmetric matrix. These methods have been compared 
experimentally in many studies, and specific observations on their convergence 
behavior have been reported. A new iterative method to solve a nonsymmetric system 
has been proposed by Eirola and Nevanlinna. The purpose of this paper is to 
investigate this method and to compare it with GMRES. We have seen problems for 
which this method is more efficient than GMRES. The original method has as 
drawbacks that it is not scaling invariant and that it may suffer from numerical 
instability, but it is shown that these deficiencies can be repaired. A method proposed 
by Broyden (1969) seems related to the new method and is therefore included in the 
comparison. 

INTRODUCTION 

In this paper we compare the GMRES method (Saad and Schultz, 19861, 
the EN method (Eirola and Nevanlinna, 19891, and the B method (Broyden, 
1969). Our main motivation to study the EN method is that it deepens our 
insight into projection-type methods, which may lead to better iterative 
methods. Descriptions and some relevant properties of these methods are 
given in Section 1. In Section 2 we describe numerical experiments for EN, 

which motivate the theoretical analysis of Section 3. In that section we give a 
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relation between the EN and the GMRES method. Subsequently we compare 
the efficiency of the two methods. Though in some cases the EN method is 
more efficient than the GMRES method, this is not the case in general. In 
Section 4 we show that the convergence and the stability properties of EN are 
not scaling invariant, as they are for GMRES and other projection methods, 
and we also show how this can be rectified to the advantage of the EN 

method. Furthermore, we describe some problems for which EN diverges and 
GMRES converges. In Section 5 we consider a variant of the EN method, 
which is algebraically equivalent to the CMRES method. This enables us to 
make a better comparison between GMRES and EN, and it gives more insight 
into GMRES. Finally, in Section 6 we compare the EN method with the B 

method and a general class of methods given in Broyden (1970). Further- 
more we compare the efficiency of B and GMRES. From these comparisons it 
appears that the most efficient and robust method is the implementation of 
the full GMRES method as described in, e.g., Saad and Schultz (1986) and 
Van der Vorst (1989). However, it appears from experiments that if the 
iterative methods (EN and GMRES) are restarted, then EN can be much more 
efficient than CMRES. This aspect is a subject for further study and is not 
reported on in this paper. 

1. GMRES, EN, AND B METHODS 

The GMRES method was originally proposed in Saad and Schultz (1986). 
We use results in Huang and Van der Vorst (1989) for understanding the 
convergence behavior of GMRES. Consider the linear system Ax = b with 
X, b E R” and A E Iwnx” nonsingular. The Krylov subspace Kk(A; rJ is 
defined by Kk(A; ro) = span{r,, Ar,, , Ak-‘r,}. The kth iterate rk is writ- 
ten as xk = x0 + zk, where zk E Kk(A;r,) and r,, = b - Ax,. In the GMRES 

method the vector zk is chosen as the vector which solves the linear 
least-squares problem 

zk = arg min [lb-A(r,+z)ll,. 
i E f&A;r,) 

From this definition it follows that 

(1.1) 

In the EN method we take a different splitting of the matrix in each 
iteration step: 

A=H;‘-Rk, 
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which leads to the basic iteration method 

The key idea is to improve H, from step to step by (cheap) rank-l updates: 

H, = Hk-l + u~-~v:-~. 

For the kth step this leads to 

rk = rk-l - A(Hk_l f uk_lv~-l)rk-l 

= (I- A&&-k_, - Pk-IAUk- 

with pk._1 = vl-rrk-r. 
The ideal choice for u&i would have been such that 

Pk--lAUk--l = (I- AH,_,)rk-1, 

or 

pk-luk-I= A-'( Z - AH,-,)rk-1. 

If H;yl is a suitable split-off part of A, then A- ’ can be replaced by Hk- i, 
and this motivates the choice for uk _ r: 

tbk_l= H,_,(Z- AHI,_,)rk_,. 

The choice for vk_i now follows by minimizing /lrkll2 as a function of pk-1: 

(Auk-l)T(z-AHk-l)rk-l 
pk-l= IIAU,_$ ’ 

so that 

1 

Ok-’ = llAU,_,ll; 
(I - AHk-i)rAnk-, 

is an obvious choice. 
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This leads to the following algorithm (Eirola and Nevanlinna, 1989, 
pp. 512, 513): 

1. 
2. 
3. 
4. 

Given x0, Ha, compute ra and take k = 0. 

E, = I- AH,, uli = H, Ekrk, 2;k = EEAuk / lIA~~)li. 
H k+l=Hk+up:, Xk+l=Xk+Hk+lrk, rk+l= b-Axkfl. 
Stop if I/r k+ 1(12 is small enough; otherwise k := k + 1 and return to 
step 2. 

The only difference between EN and GMRES is the choice of uk. By taking 
u k = Hkrk instead of uk = H, Ekrk, we obtain an iterative method alge- 
braically equivalent to GMRES. 

The following equalities and definitions will be used in our analysis: 

ck = Au, / IIAuklla, (1.3) 

k 

E k+l=(I-PdEoa Pk = c c&-, and cErcj = 0 for i # j, (1.4) 
i=O 

r -E kfl- k+lrk. (1.5) 

Equation (1.4) only holds if all H, are nonsingular. Therefore, in the case 
that Hk+i is singular whereas H, is nonsingular we take H,, 1 = Hk (see 

Eirola and Nevanlinna, 1989, p. 518). The following property may be used to 
check whether Hk + 1 is singular. 

Property 1.6 (Eirola and Nevanlinna, 1989, p. 518, Proposition 2.1). 
Assume H, is nonsingular. Then Hk+ i is singular if and only if clEOrk = 0. 

The description of the algorithm given above is suitable for analysis; 
however, in order to save computational work we prefer the following 
implementation given in Eirola and Nevanlinna (1989, p. 519): At step k, 

xk,rk,uO ,..., uk_l,c,, ,,..., ck_l are known. Then compute 

1. a,=cT(rk-AHOrk) for i=O,...,k-1, v=HOrk+CfL,$xiuia 6= 

rk -AT; 
2. &=cf’(5-AH,() for i=O,...,k-1, uk=~(HO~+~f~$+‘i), ck= 

Au,, where r is such that llcklja = 1; 

3. xk+l = xk + 77 + ukcl.f, rk+l = .$ - ckc;‘$. 

In the sequel, ENS denotes the given implementation. 
In another implementation given in Eirola and Nevanlinna (1989; p. 5191, 

5 and ck are computed as follows: 5 = rk - AH,rk -CfI,‘aici and ck = 
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T(AHJ + C~~$Iici>. This implementation is used in situations where it is 
more efficient to compute a linear combination of k + 1 vectors instead of 
multiplying one vector by A. Note that .$ is the component of rk - AHark 
orthogonal to span{c,, . . , c~_~}. Hence pi is equal to - c~AH&, which 
implies that ck is the normalized component of AH& orthogonal to 
span{c,, , c~_~}. In this implementation the vectors 5 and ck are made 
orthogonal by the Gram-Schmidt process. For stability reasons we propose 
the following implementation (ENS) based on the modified Gram-Schmidt 
process: 

1. ,$(O’ = (I - AHo)rk, n(O) = Hark, oI = c,T5(“), ,$(i”) = t(“) - (yici, n(i+i) = 

$) + aiui, i = 0,. . , k - 1; 
2. cp) = AHotck’, u’ko’ = Ho@k), pi = - c,?& ck (i+ 1) = q + PiCi, u(ki+*j = 

t.Q’ + piui, i = 0,. . . , k - 1, ck = cf’/ Ilc~k’l/~, uk = u(kk)/ /lcik’lls; 
3. x k + i = rk + T(k) + uk cft’k’, rk + 1 = (1 - ckcl)(‘k’. 

In our experiments the stability properties of ENS and ENS have appeared to 
be more or less equivalent. 

In the B method, a nonsingular matrix Ho E RnXn must also be specified, 
which again is viewed as an approximation to the inverse of A. The algorithm 
runs as follows (Broyden, 1969, p. 94): 

1. given x0, Ho, compute r. and take k = 0, 
2. pk=Hkrk, xk+llxk+pli, ‘k+l=b-AXk+l, 
3. yk = rk - rk+l, 
4. Hk+l= Hk -(H, y, - p,)plH, /plHk yk, k := k + 1, and return to 

step 2. 

2. NUMERICAL EXPERIMENTS 

In order to get some idea of the convergence behavior of the EN method, 
we report on some numerical experiments. These experiments have been 
carried out in double precision arithmetic ( = is decimal places) on a 
HP9000845 computer. Our test matrices and right-hand sides are taken from 
Huang and Van der Vorst (1989, pp. 16, 17). These matrices are of the form 
A = SBS-i with A S B E Iw’a”xloo. We have selected S to be equal to > > 

1 P 0 

1 . . 
S= I ..I .@’ 

0 1 
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The system Ax = b is solved for right-hand sides such that x = (1,. . ,l>' 
(experiments with other choices of x show more or less the same conver- 
gence behavior). In these experiments we take Ha = I and x0 = (0,. ,O)“. 
The matrices in our testset are as follows [the numbering refers to the 
problems in Huang and Van der Vorst (1989, p. 17)]: 

PROBLEM P6. 

1 

1+a 
3 

B= 4 

-0 

(double eigenvalue for (Y + 0). 
PROBLEM P7. 

3 
4 

(conjugate eigenpair 1 + ai). 
PROBLEM P8. 

1+a 
1+a 

5 

0 

100 

0 

100 

6 

I 

0 

100 

(two conjugate eigenpairs which come close for (Y + 0). 
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PROBLEM P9. 

1 1 0 
1 

3 
B= 4 

-0 loo_ 

(defect matrix with Jordan block of order 2). 

For these problems we have plotted the convergence behavior of the EN 

method in terms of the reduction factors Ilrk+illz / I(T~\~~, for different values 
of cy and j3. In order to facilitate comparison, different curves have been 
plotted in the same figure. The lowest curve is always plotted on the right 
scale. Each successive curve has been raised by 0.1 vertically with respect to 
the previous one. 

The results for B := B/100 ( an explanation of this seemingly awkward 
choice is given in Section 4) are given in Figures 1, 3, 5, and 7. These figures 
are in a qualitative sense largely the same as Figures 2,4, 6, and 8 for CMRES, 
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1.12 
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a = 10m3 
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FIG. 1. Problem P6, p = 0.9, EN. 
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FIG. 2. Problem IS. p = 0.9, (:MRES. 
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FIG. 3. Problem Y7, p = 0.9, EN. 
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FIG. 4. Problem P7, p = 0.9, CMRES. 
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Q= 1 
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FIG. 6. Problem P8, p = 0.9, GMRES. 

FIG. 7. Problem P9, EN. 
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FIG. 8. Problem PQ, GMRES. 

obtained from Huang and Van der Vorst (1989, Figures 17, 18, 20, 21). This 
leads us to expect some relation between EN and CMRES. In the following 
section, this relation is identified more explicitly. 

A quantitative comparison of the experiments shows that /rkllz in EN is 
larger than I(~~~112 in GMRES. Furthermore, in Figure 1 we observe, for (Y = 0 
and p = 0.9, peaks at k = 9 and k = 50, whereas in Figure 2 these peaks 
occur at k = 16 and k = 79. For the other situations similar observations 
have been made. This indicates that if GMRES leads to a peak at the k th 
iterate and EN to a peak at the jth iterate, then j is larger than k/2. This 

TABLE 1 
NUYBER OF rrEFv.TlON STEPS FOR WHICH 

IlrJl2 / llblla Q lo- 12 

Steps 

Y EN C’MRES 

0 38 65 
30 44 84 
60 35 70 

300 86 150 
3000 408 455 
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-y = 3000 
7 = 300 
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FIG. 10. Problem PlO, GMRES. 
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again underlines the idea that the convergence behavior of GMRES after 2k 

steps is at least comparable with EN after k steps. This seems reasonable, 
since EN is more than twice as expensive per iteration step as GMRES. In 
these experiments the implementations ENS and ENS give the same results. 

Finally we describe some numerical experiments for a more realistic 
problem. We take s1 to be the unit square and consider the pde 

-An+yu,=l onR and &o=O. 

Using the standard five-point central finite-difference approximation over a 
uniform rectangular grid, we obtain a linear system (Problem PlO). We take 
the step size in the x- and y-directions equal to $ [EN is applied to the 
system multiplied by 45O/(y/60 + l)]. Starting with x0 = (0,. . . , OjT gives 
the results shown in Table 1. Except for the choice y = 3000, it appears from 
Table 1 that roughly 2k steps of GMRES are comparable with k steps of EN 

(see also Figures 9 and 10). 

3. A COMPARISON OF EN AND GMRES 

In this section we will show that the space spanned by the vectors ok, 
generated by EN, is contained in a Krylov subspace. Furthermore, we will 
compare the norms of the residuals in EN and CMRES. Then by estimating the 
required amount of work and memory we will be able to compare the 
efficiency of the two methods. 

First we will show that the vectors ck which are generated by the EN 

method are elements of a Krylov subspace. 

THEOREM 3.1. If Hk is not singular and Ekrk + 0, then 

rk = r0 + E aki( AH,,)‘r, 
i=l 

and 
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Proof. In order to simplify relations, we redefine ck, in this proof, as 

ck = Auk (3.1) 

(note that only the direction of ck is relevant). 
We prove the theorem by an induction argument in k. From (3.1) it 

follows that c0 = AH,E,r, = AH,(Z - AH&,, so that ca E span((AH,)r,, 
(AH,J2r,]. This implies that the theorem is true for k = 0. 

Combination of (1.4) and (IS) gives 

r -E k+l- k+Irk=(I--k)(z-AAH,)rk=(z-AH,)Tk-PkEOTk. 

Since Pk is the orthogonal projection onto span{c,, . . .,ck}, it follows by 
induction that 

2(k + 1) 

rk+l=rO+ c ak+l,i(AHoh-o. (3.2) 
i=l 

Furthermore, from (3.1) we obtain ck+i = AHk+,Ek+,rk+, = (I - Ek+i) 

Ek+irk+i. Together with (1.4) this gives 

C k+l= [z-(z-Pk)(z-AHo)]Ek+lrk+l=(AHo+ PkEo)Ek+l’k+l. 

Another application of (1.4) leads to 

and hence 

Since Pk is the orthogonal projection onto span(c,, . ,c,}, it follows by 
induction and (3.2) that ck+ 1 E span((AH,,)ro,. . ,(AHo)2(k+1)+2ro), which 
completes the proof. n 

The following definition is used for the comparison of the residuals of EN 
and GMRES. 
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TABLE 2 
AMOUNT OF WORK AND MEMORY FOR DIFFERENT METHODS 

Method 

EN1 
EN2 
CMRES 

Multiplications 
with Inner Vector 

Steps H, A products updates Memory 

k 2k 4k k2 k2 2kn 

k 2k 2k k2 2k2 2kn 

2k 2k 2k 2k2 2k2 2kn(+2k2) 

DEFINITION 3.2. rEN is the residual in the k th step of EN. ri is the 
residual in the kth step of GMRES applied to the postconditioned linear 
system AH,y = b, where H, is the same matrix in both methods (note that 
x = H,y solves the system Ax = b). 

From Theorem 3.1 and (1.2) we obtain the following inequality: 

This inequality supports our earlier observation on the numerical experi- 
ments reported in Section 2. 

In order to compare the efficiency of EN and GMRES we need an estimate 
for the amount of work and memory in each method. For obvious reasons we 
have listed in Table 2 the amount of work and memory requirements for k 
steps of EN and 2k steps of GMRES. 

The inner products in ENS can be computed in parallel. Furthermore in 
ENS the vector updates used to form ?I and 5 (or uk and ck) can be 
computed in parallel. The inner products and vector updates in the imple- 
mentation of GMRES as given in Van der Vorst (1989) cannot be computed in 
parallel. This might be a disadvantage for GMRES in a parallel computing 
environment. 

Since in most of our numerical experiments llr~N112 and Ilr~,llz differ 
considerably, we also give estimates for the amount of work and memory 
requirements for the following experiment. The solution of Problem PlO with 
y = 300 is computed with the EN method and the GMRES method. The results 
are plotted in Figure 11. Note that EN requires more multiplications with H, 

and A than GMRES to obtain the same accuracy. Choosing eps = lO_“, it 
appears that llr~,“ll~ / llbllz < eps and llr&,ll~ / llblle Q eps. The amount of 
work and memory requirements to obtain this accuracy are listed in Table 3. 
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0 14 28 42 56 

FIG. 11. Problem PIO. 

70 

In practical situations the order of the linear system, n, will be much 
larger than the required number of iterations. In such cases the term 2k2 in 
the required amount of memory for the GMRES method is negligible. 

We conclude that when Ilr;“lln = Il~~~ll~, the ~392 method is more effi- 
cient than the GMMRES method in terms of flops counts. However, the 
experiment has shown that there are problems for which I~T-~~[[~ = ll~j.11~ 
with j < 2k. In the following section we will give more evidence for such 
situations. In such cases it is less clear which method is preferable in terms 
of flops counts. With respect to the memory requirements we note that 
GMRES is preferable. 

Multiplications 
with Inner Vector 

Method Steps H,, A products updates Memory 

EN1 86 172 344 7396 7396 154800 

EN2 86 172 172 7396 14792 154800 

GMRES 150 150 150 11250 11250 135000( + 11250) 
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4. SOME SPECIFIC PROPERTIES OF EN 

In this section we will show that the convergence and stability properties 
of the EN method are not scaling invariant. Subsequently we will provide 
some examples where the EN method does not converge. Finally we will 
show that Property 1.6 is useless from a practical point of view. 

4.1 The Convergence Behavior of EN with Respect to Scaling 

From its construction it follows that GMRES is scaling invariant, which 
means that when the method is applied to the system pAx = pb, then the 
iterates are the same for every choice of p # 0. One might expect from the 
foregoing that EN has the same property. However, from our experiments it 
follows that EN is not scaling invariant. This is well illustrated by the results 
for Problem P6 (with (Y = lop5 and /3 = 0.9). In our first experiment we take 
H, = pl as an approximation for A-‘. Obvious choices for p are p = l/A,, 

p = 2/o, + A,), and p = l/h,, where A, = 1 is the smallest and A,, = 100 
the largest eigenvalue of A. We obtain Ilr&llz / llrollz = 1O65 for p = l/A, = 

1, Ilr~,“L / llrol12 < 1O-12 for p = 2/(A, + A,) = A, and Ilr~~llz / llrolh =Z 
10-l” for p = l/A, = A. So the convergence behavior of EN strongly 
depends on the choice of p. 

As a second experiment we apply EN to Problem P6 with B := pB for 
p = lo-‘, lo-“, 10e3, and 10m4 and H, = I. The method is terminated as 
soon as jlril12 / Ilbl12 < 10-i”. Th e number of iteration steps, for different 
choices of p, is given in Table 4. 

The convergence behavior is displayed in Figure 12. In this figure, each 
curve is plotted at the right scale. For p = 10-i we notice that initially the 
residuals increase. For p = lop2 the curve is identical to the corresponding 
curve in Figure 1. Note that the curves for p = lop3 and p = lop4 are nearly 
the same. Furthermore, these curves show a striking resemblance to the 
corresponding curve for GMRES in Figure 2. 

TABLE 4 
NUMBER OF ITERATION STEPS FOR WHICH 

lb-J2 / llblle G 10 -12 (FOR P6) 

P Iterates 

10-i 78 
10-Z 40 
10-a 64 
10-4 66 
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.24 

.12 

.00 
-4 .CI..-Y+,-~,.,.,.,*~~.-.;...~ . . . . ;...-l. 

10.0 30.0 50.0 70.0 90.0 

FIG. 12. Problem P6. I, p = lo-‘, II, p = 10e2, III, p = 10-3, IV, p = 10m4. 

An explanation of this might come from the observation that for p = 10m4 
we have that E, = I - AH, = 1. This together with (1.4) implies 

Using this expression and (1.51, it follows from 

that uk = H,r,. This explains the resemblance of the curves, since the choice 
uk = H,r, leads to a method algebraically equivalent to CMRES [see Eirola 
and Nevanlinna (1989, p. 513) and also the following section]. 

In our example the choice p = lo-’ is obviously preferable. We will call 
this value Popt for our experiment. However, in general we know of no 
criterion which could be used for defining a priori an optimal p. Hence popt 
has to be determined experimentally. Furthermore, for this example we 
observe that for p = lOpop, the speed of convergence is halved, whereas for 

P = O.lPopt the speed of convergence is approximately the same as for GMRES. 
Taking into account the amount of work and memory for the two methods 
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(see Table 2, Section 3) we conclude that we need a fairly 
if we want EN be more efficient than GMRES. 

From these experiments it seems likely that the 
Z - AH, has to be less than one (compare Section 4.2). 

good guess for port 

spectral radius of 
This conjecture is 

confirmed by the following experiment. We take KI to be the unit square and 
consider the pde 

Au = 0 on R and ulao is given. 

Using the standard five-point central finite-difference approximation over an 
equidistant rectangular grid, we obtain a symmetric linear system. For H, 
we take an average of the incomplete Choleski (IC) and a modified incom- 
plete Choleski (MIC) matrix; see Van der Vorst (1990, Section 3). The IC 
matrix corresponds to 0 = 0, whereas the MIC matrix corresponds to 0 = 1. 
Taking 200 points in the X- and y-directions, and x,, = 0, we obtain the 
results given in Table 5. 

Note that EN converges rather fast for the choices 0 < 8 < 0.98 but 
diverges for the choice 8 = 1 which corresponds to the MIC preconditioner. 
This seems to be quite in line with similar experiments reported for 
preconditioned cg in Van der Vorst (1990, Section 3). However, if we apply 
EN to O.lAH, and 0 = 1, then we obtain llr,“,“lls / llroll~ Q 10e6. Therefore we 
believe that these experiments confirm our conjecture, since the spectral 
radius of I - AH, with the IC matrix is less than one, whereas with the MIC 
matrix the spectral radius is much larger than one (see Gustafsson, 1978). 
This result suggest that the divergence for 8 = 1 in the previous experiment 
is not caused only by a loss of independence among the Krylov subspace 
basis vectors for this value of 8 [which is the reason for the slow convergence 

TABLE 5 

NUMBER OF ITERATION STEPS FOR WHICH 

IlrJle / IlrJe Q lo+ 

8 Iterates 

0 21 

0.5 17 

0.9 14 

0.95 13 

0.96 14 

0.97 13 

0.98 17 

0.99 46 

1 * 
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of cg in this case (Van der Vorst, 1990, Section 311. We conclude that the 
convergence behavior of EN depends not only on the choice of H, but also 
on the scaling parameter port. We expect good convergence if the spectral 
radius of Z - poPtAH, is less than one. 

Our experiments show that EN is not invariant with respect to a general 
transformation of coordinates. Note that this conclusion is not in contradic- 
tion with Eirola and Nevanlinna (1989, Proposition 2.2), which states that EN 
is invariant under unitary transformations. 

4.2. The Stability of EN with Respect to Scaling 
From Figure 12 it appears that initially the residuals increase for p = lo- ‘, 

To illustrate this phenomenon we will describe some experiments for p in 
the vicinity of 0.1. The results are given in Table 6, where i is the smallest 
value such that llrillz / llbllz < 10 - l2 and i,,, is defined by Ilri,,llz = 
max I<j<i IlrjllZ. 

This table shows that initial residuals increase fast for p < 0.1 and that 
the inequality Ilb - Axill~/llbll~ < 10-l” does not hold for p > 0.10, as it 
should in exact arithmetic. For a possible explanation of the increase of the 
residuals we make use of the equality rk+ 1 = (I - Pk)E,,rk. The right-hand 
side consists of two parts: firstly a multiplication with E, and secondly 
a multiplication with the orthogonal projection Z - Pk. Since a(E,) c 
[l - loop, 1- p], it follows that when p > 2 X lo-“, llEorkllz can be larger 
than llrkl)a. For the second part we always have 11(Z - Pk)EOrk(12 < IIE,,rkllz. 
From this it appears that for p E (O.O,O.OZ) the residual decreases in both 
parts. For p E [O.O2,0.09] the increase in the first part is canceled by the 
decrease in the second part. For p E (0.09, ~1, initially the increase in the 
first part dominates, whereas after a number of iteration steps (i,,,) the 
decrease in the second part dominates. 

Note that in exact arithmetic ri = b - Axj. However, for p > 0.1 this is 
clearly violated in EN, and hence the reliability of ri given by EN depends on 
the value of p. To explain this we let ri and ri denote the exact values, and 

TABLE 6 

II;rl”,&J2 FOR D’FFERENT Y.M>~‘ES OF p 

P in,,, ll~i,,,~Jl2 / Ilhll2 i Ilril12 / llbllz lib - A+ / ilbllz 
0.09 1 1 74 9x 1or’” 9x 10r’R 

0.10 32 1.9x 10’ 78 2.6 x lo- ‘,I 4.3 x lo- I3 

0.11 42 1.8 x 10” 80 4.3 x lo- ‘3 2.9x10-” 

0.13 53 4.5 x 10’ 84 3.3 x lo- ‘3 1.4x 10-h 

0.15 59 9.4 x 10” 91 4.4 x 10 ‘:I 2.2x 10-2 
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Pi and x”i denote the numerically computed values. Now define .Zi = Fi__- Tli 

and .zi = ri,,, - ri, and suppose that lIPi__ - ri,,,,,112 / IJri,,112 = E and 

Il2i - zil12 / lIzill z E, where e is a modest multiple of the machine precision. 

For p = 0.15 this implies II?, - ~~112 = IIB,,rr,r- rin,,_-(Zi - zj)lls = e{llrin,_lla + 
Il.211~1 = 2 x 101”llbllaE and lIPi - (b - Ax^,)lJa = /Iii - ri + 
(h - Axi)-@ - Mi)ll =2x lO’“llhllae. Th’ IS implies that due to rounding 
errors it is possible, for p = 0.15, that llril12/llbllz <10-i’ whereas 
Ilh - Af,lla / llbllz = 10”~ [note that KJA) = 1001. 

We conclude that the stability of the EN method depends on p. In the 
given experiment the EN method is quite stable for p < 0.09 and rather 
unstable for p > 0.1. It is, in general, not known for which p EN is stable. 
These results do not support the stability properties claimed in Eirola and 
Nevanlinna (1989, p. 516). 

4.3. Some Examples Where the EN Method Does Not Converge 
In this subsection we give some examples for which EN fails to converge. 

In order to identify such problems we look for nonsingular matrices A and 
H,, such that H, is singular. Taking H, = I, it follows from (1.3) that if 
E,r, # 0 then c,, = yAEoro with y = l/ IIAEor,l12. Using Property 1.6, it 
follows that Hi is singular if and only if ciE,r,, = y(AE,rJTE,r, = 0. Thus 
A should be such that (Av)rv = 0 for v E R”, which means that Av and v 
are orthogonal. A simple matrix with this property is 

EXAMPLE 1. We apply Eh‘ to Ax = b with 

A=; -’ 
[ 1 0 ’ 

ff=l 0 0 
[ 1 0 1' 

X= 

Starting with 

0 
x0 = ( 1 0 
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1 
r. = ( 1 1 

Since 

E,=I-AH,= _; ; , 
[ 1 

we obtain 

and co = 

which implies that ciE,r,, = 0 (H, singular). Continuing the method with 
Hi = H, yields E, = E, and crE,r, = 0 (H, singular). After k iteration 
steps we obtain H, = H,, Ek = E,, and rk = E,kr,. The eigenvalues of E, 
are l+i and I-i, so that 

1 

P-‘r, and llrklls -+w for k -+m. 

Thus, for this example the EN method is clearly divergent. 
This example shows that EN does not converge for each given linear 

system. It is known that GMRES converges slowly for this type of matrices. In 
Huang and Van der Vorst, (1989, p. 23) it is shown that when GMRES is 
applied to Ax = b with A E Rnx” given by 

I 
O.*.*Ol 
1 0 * . . . 0 
010.e.0 

A= . . b=(l,O ,..., O)T, and . . 
. . . 

0 1 o_ 

then x4 =x,,, 0 < f < n - 1, and x, = X. 
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In our next example EN converges badly, whereas GMRES converges very 
fast. 

EXAMPLE 2. Take 

0 - 10” 0 
lo3 0 

H, = 1, A=p 
1.03 

.1.04 
, and 

-0 2_ 

x = (l,...,f 

Starting with x0 = (0,. . . ,O)r, we obtain IIr;l,“dIl~ / llbllz > 10P7 for p = 10A3, 
whereas Ilrtsllz / llbllz < lo-‘“. The rather bizarre convergence behavior of 
EN in dependence on the scaling parameter p is nicely illustrated by the fact 
that Ilrkl’ II2 / llbllz < lO_” for p = 10e4 but llrr&i112 / llbllz > 1O-5 for p = 
10e5. Using the ENS implementation, we obtain for the updated residual 
Ilr~~,““llz/ llblla < 10-i” for p = 10-3, 10e4, and 10P5, whereas the exact 

residual IlAx,, - bllz / llbllz equals 3~ 10P4, 2~ 10P6, and 5~ 10e7 for p 
respectively 10P3, 10P4, and 10e5. 

In Section 4.1 we have seen, and explained, that for p small enough, 
application of EN to pAx = pb gives IIT~~~II~ = Il~-~?l[~ for some problems. 
Example 2 shows that there are also linear systems where this equivalence 

does not hold. 

4.4. The Practical Relevance of Property 1.6 
In this subsection we consider the application of ENS to Example 2 for 

p = 10P3. Taking into account the similarity between Examples 1 and 2, we 
expect that in Example 2, H, is nearly singular. By computation it follows 
that IIElr,llz = 1.4~ 10” and IIH,E,r,112 = 2.6X lo-lo, so IIH;‘llz is very 
large. It appears that the computed vector cl = yAH,E,r, has a large 
relative error and that c:cr equals 1.5 X 10e4 instead of 0. This explains the 
bad convergence behavior of ENS in Example 2. The large relative error in cl 
is also predicted by Eirola and Nevanhnna (1989, p. 515, Theorem 2.2) if we 
use that 
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This experience motivates us to investigate the practical applicability of 
Property 1.6. We note the following drawbacks: 

(1) if clE,rk = 
c;E,rk f 0; 

0, then it is possible of course that the computed value of 

(2) if clE,rk # 0, then it is still possible that H,, 1 is nearly singular. 

To get around these difficulties we could replace the condition clE,rk = 0 

by 

(4.1) 

If the inequality (4.1) holds, we take H, + I = H, However, this condition has 
certain disadvantages too. First of all, it is not clear which values of E are 
feasible. Secondly, implementation of this condition does not help much in 
Example 2. In that case we have Ic~E,,r,l/ (1 E,r,(le = 1.8~ 10-i2. If we take 
E < 1.8 x 10-12, then we obtain the same results as without this condition, 
whereas E > 1.8X1O-12 leads to H, = H, for 0 <k < 100 and Ilr,,lla/ 
llbl12 = 10”‘. Hence, for Example 2 there is no value of E such that the ENS 

method combined with (4.1) is convergent. 
This indicates that implementing Property 1.6 in this way is useless from 

a practical point of view. 
From the given examples it follows that EN is not attractive if some of the 

matrices H, are (nearly) singular. Therefore, it is important to know a priori 
when the matrices Hk are (nearly) singular. In Eirola and Nevanlinna (1989, 
Theorem 2.3) the following “safe” case is stated: if AH, is positive (or 
negative) definite, then Il(AHk)~1112 < l//_~, where 

p = inf 
I(AHodTxl 

llXllz=l (11~11~ + IlAH,~ll~)i’~ 

The following theorem states that if AH, is neither positive nor negative 
definite, then it is possible to obtain a singular matrix H,. 

THEOREM 4.2. lf AH, is neither positive nor negative definite on Im( E,), 

then there exists a right-hand-side vector b such that H, is singular. 

Proof. The condition on AH, implies that there is a vector v E Im( E,) 

such that (AH,,v)~v = 0. Since v E Im( E,), we can find b E R” such that 
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E,b = 2;. Applying EN to this system with x,, = (0,. . .,O)r yields c,, = 
yAH,E,b with y = l/ IJAH,E,bllz. F rom Property 1.6 and the equations 

it follows that H, is singular. W 

Note that if there is a vector o such that (Av)~u = 0, then l/p is infinite. 
Our conclusion is that it is only “safe” to apply the EN method if AH, is 

positive or negative definite. 

4.5. A Scaling Invariant Version of the EN Method 

In Section 4.1 and 4.2 we have shown that the convergence and stability 
properties of EN are not scaling invariant. As a consequence of this one 
should estimate a parameter port such that the spectral radius of I- pLoptAH, 

is less than one. In this section we modify the EN method so that parameter 
estimation is not longer required. 

In Section 1 we have shown that rk+ 1 = (I - AH,)rk - pkAuk. Combina- 
tion with uk = H,(Z - AHk)r, gives rk+i = (I - pLAHk)(Z - AHkIrk. Since 
Ek=(I-AHk)=(I-Pk_l)(l-AHo),rk+l can also be written as rk+i= 

(I - pkAHk)(I - P,_,)(Z - AH,)rk. 
Note that it is the multiplication by Z - AH, which makes EN not scaling 

invariant. Using this observation, we modify EN so that rk+ i obtained with 
the modified EN method can be written as follows: 

r k+l=(I-~kAH~)(I-Pk-l)(I--~AHo)rk, 

where the constant yk = (AH,rkjTrk / IIAHOrkll~ minimizes 11(1- -yAH,)rkl12. 

To implement the modified method (ENS) the first step of the implementa- 
tion ENS should be changed as follows: 

1. y = (AH,rkjTrk / IIAH,,rklIt, t(O) = (I - yAHo)rk, q(O) = yHork, ai = 
c;$+), ,$‘+I) = t(j) - (yic,, $+l) = $) + (yiui, i = 0,. . .,k - 1. 

It is easy to show that ENS is scaling invariant, and that is confirmed by our 
numerical experiments. 

Application of ENS to Problem P6 (with (Y = lo-’ and /3 = 0.9) with 
B := pB gives IJr$J12 / l)rol12 < lo- ” for all choices of p. Finally we apply 
ENS to the pde problem given in Section 4.1. The results are given in Table 
7. Note that ENS converges also for the choice 0 = 1. Furthermore, the 
optimal number of iterates of ENS in Table 5 equals 13, whereas the optimal 
number of iterates of ENS in Table 7 equals 9. Thus in this example we 
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TABLE 7 

NUMBER OF ITERATION STEPS FOB WHICH 

llr:“3112 / llr~ll2 < lo-” 

0 Iterates 

0 21 

0.5 18 

0.9 12 

0.95 11 

0.96 11 

0.97 10 

0.98 10 

0.99 9 

1 22 

observe that the convergence of ENS is approximately 1.5 times as good as 
the convergence of EN% 

5. ANOTHER FORMULATION OF THE GMRES METHOD 

In Eirola and Nevanlinna (1989, p. 513) it is noted without proof that, 

when choosing 

uk = Hkrk > (5.1) 

instead of uk = H, Ekrk, the EN method leads to an algorithm algebraically 
equivalent to CMRES. In this section we first prove this equivalence under the 
assumption that the matrices Hk are nonsingular. Subsequently we give a 
slight modification of the choice (5.1) such that the method remains equiva- 
lent to GMRES even if the matrices H, are singular. A suitable implementa- 
tion of this method arises if an orthonormal basis for the Krylov subspace is 
generated by the modified Gram-Schmidt process. 

First we will show that the vectors ck form an orthonormal basis for 

span((AH&,, . . . , (AH,) k+lro}. Since (1.4) is only valid for the choice uk = 
Hk Ekrk, we use the equality 

E k+l= (+ckC:)Ek (5.2) 

[cf. Eirola and Nevanlinna (1989, p. 512)]. 
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THEOREM 5.1. Let uk be chosen as uk = Hkrk in EN. When H, is not 

singular and rk # 0, then rk+l = (I - Pk)r,,, where Pk = C:,O~I~F is the 

orthogonal projection onto span{(AH,)r,, . . ,(AH#+‘r,). 

Proof. As in the proof for Theorem 3.1, we take 

ck = Au, (5.3) 

We prove the theorem by an induction argument on k. Using (5.1) and (5.3) 
we obtain c,, = (AH&,. Combination of (1.5) and (5.2) gives r1 = E,r, = 

(I - c,cr)E,r,. Since c0 = (AH,)rO, it follows that ri = (I - c,ci)r,. This 

implies that the theorem is true for k = 0. 

It follows from (5.1) and (5.3) that ck+i = AHk+irk+, = (I - Ek+l)rk+l. 

Equation (5.2) implies Ek+l = (I - Pk>EO and ck+i = [I -(I - Pk) 

(I - AH,)](Z - Pk)rO by induction. The last equation can also be written as 

ck+l=(Z- Pk)AHo(Z- P,)r,=(Z- P,) CO- i (AH,)cicTro 
i=O 

By induction it follows that (AH,)c, E span{c,,.. .,c& for i = 0,. .., k - 1; 

hence 

C k+l= -(I- Pk)AHOckc~rO. (5.4) 

Since ck has a nonzero component in the direction of (AHo)k+‘ro, Hk+l is 
nonsingular, and rk+ 1 # 0, it follows that ck+ 1 has a nonzero component in 
the direction of (AHOjk+‘rO. Using (5.4) it follows by induction that cTck+i 
= 0, i = 0, . . . , k. Thus {co, . . . , c~+~} is an orthonormal basis for 

spdAH,)r,, . . . , (AH,) k+2r,,}. Combining (1.5), (5.2) and (5.3) we obtain 

r ki2 = E k+2rk+l=(z-Ck+lCkT+l)(z-AHk+l)rk+l’ 

so that 

By induction it follows that fk+2 = (I - Pk - ck+ic~+i)r,,, which concludes 
our proof. n 
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From this theorem we conclude that the method converges if the 
matrices H, are nonsingular. Since GMHES leads to the solution within a 
finite number of iteration steps, we look for a modification of (5.1) such that 
the condition on H, can be dropped. To this end we note that it follows from 
(5.4) that cA-+ r is a unit vector in the direction of (I - F’,)(AH,)c,. Choose 
the vector uk as follows: 

(5.5a) 
uk = U&r - H&-r> k 21, 

which implies 

c0 = AHOro, 

C k = - (I- Pk_l)&,Ck-l. 

(55b) 

It can be proven that rk+ 1 = (I- Pk)?-“, where P, = E:=,c,cT is the orthog- 
onal projection onto span((AH,)r,, . , (AH,)k+lr,). Furthermore, it is easy 
to show if ck # 0 and ck+ r = 0 then rk+r = 0. From this remark and (1.2) it 
follows that EN with uk as in (5.5) is equivalent to GMRES applied to the 
postconditioned linear system AH,y = b. 

An implementation of this method is: 

1. u0 = H,r,/ IIAHor,l12, co = Au,, k = 0, x1 = x0 + u,,c~ro, and r, = 
- coc{ro; 

2. L!hile I( rkf1112 > eps do k := k +l, C~“)=AHOC~_~, U~‘)=HOC~__I, “i= 
C,T&) ) Cc”+‘) = @ up = 

;ik,/ \I&$,2, uk = uii-p;!:~k’,,& 

u(k) _ aiui, i=o ,..., k -1, ck = 
3 

. k+l = xk + ukC:rk and rk+r = rk - ck +-k 

Note that the vectors ck are made mutually orthogonal by the modified 
Gram-Schmidt process. In this implementation of GMRES, 2k iteration steps 
involve 2 k multiplications with A and H,, 2 k2 inner products, 4k’ vector 
updates, and 4kn memory space. Comparing this with G.MRES in Table 2, it 
follows that this implementation requires 2 k2 vector updates and 2 kn 
memory space extra. 

Using the choice (5.5b), the GMRES method is formulated in the same way 
as the EN method. This correspondence gives some theoretical insight: for 
instance, also for GMRES a matrix H, can be formed which approximates the 
inverse of A. With respect to flops counts and memory requirements we 
prefer the implementation of GMRES given in Saad and Schultz (1986) and 
Van der Vorst (1989). 
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6. A COMPARISON OF THE EN AND THE B METHOD 

In this section we compare the EN method with the B method described 
in Broyden (1969). Th e B method is mostly used to solve nonlinear systems, 
but it can also be used to solve a linear system. The description of the B 

method indicates certain similarities to the EN method. However, a further 
investigation reveals essential differences. The main difference is that rk = 
rO + CT” laki(AHO)irO for the EN method, whereas rk = rO + Cf= lPki(AHO)ir,, 
for the R method. We conclude this section with a comparison of the R and 
the CMRES method. 

From the descriptions of the EN and B methods in Section 1, we note the 
following correspondence: in both methods rank-one updates are used to 
construct a matrix Hk which is an approximation to the inverse of A 
(compare Broyden, 1969 and 1970). In order to make a more detailed 
comparison we use the following vectors: 

DEFINITION 6.1. 

H,THk f-k 
u k = -(&AH, -H,)f-k> vk= T T rk Hk HkAHkrk ’ 

ck = tb.4,. 

Note that uk,tik, etc., are different for the different methods. Since only 
the residuals for the methods will be compared, we have chosen to identify 
them by a superscript as in rf (for Broyden), where necessary. 

From the description of the B method, Definition 6.1, and the equations 
p,=Hkrk and Yk=f-k-?-k+l=rk - b + A(Xk + Hkrk) = AHkrk we deduce 
that 

H k+l = H, + t+v;. (6.1) 

THEOREM 6.2. If r~@-H,AHk?-, + 0 then rk = TO +~~=lak,(AH,)“ro, 
where 

span{c,,..., ck) Cspan{(AH,))r,,...,(AH,)kt2r,}. 

Proof. We prove the theorem by an induction argument on k. From 
Definition 6.1 it follows that c0 = Au, = -(AH,)‘r, +(AH,)r,; hence 
span{c,} C span{(AH,)r,,(AH,)2r,). Th’ 1s implies that the theorem is true for 
k =o. 
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Since x k+l = xk + Hkrk we haVe rk+l= (I - AHk)rk. This together with 
Definition 6.1 and (6.1) yields 

/ k-1 \ k-1 

rk+l=rk - A 1 H, + .-cuio’ 1 rk = rk - AH,,rk - c cioTrk. 
\ i=O I i=O 

NOW, it follows by induction that 

k+l 

rk+l=f”o+ c ak+l,i(AHo)iro. 

i=l 

(6.2) 

By Definition 6.1 we have that ck+i = -(AHk+,)“rk+, +(AHk+i)rk+i. Since 
H k+ 1 = H, + Cf=oui~z~, the following equation holds: 

c k+l= - AH, + ; cit$ 
i=O 

This implies that 

ck+l = -(Affcj)2rk+l +(AHo)rktl 

k k k + c C&y -AH,- c c,~~r+l rk+i- c (AH,)ciw,?rk+l. 
i=O i=O 1 i=O 

Using (6.2), it follows by induction that ck+ 1 E span{(AH,r,, . . . , (AH,,)k+3r,}. 
n 

Theorem 6.2 together with (1.2) yields the following inequality: Ilrzllz 2 

Ilr~ll~. From the numerical experiments given in Section 2 it follows that 
IlrLlla can be much larger than Ilr;“llp. H ence, the B and EN methods cannot 
be equivalent. In Broyden (1970) a generalization of the R method is given. 
In this method, the BG method, the update of H, is as follows: 

H -H,-(H,Yk-pk)q:‘/4:‘yk, k+l - 

where pk = Hkrk, yk = AH,r,, and qk is an arbitrary vector subject only to 
the restriction that qryk # 0. Note that with the choice qk = HTpk the RG 
method is equal to the B method. In the same way as for the B method it 
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follows that llri”l12 > Ilrillz; hence there is no choice of qk such that BC: and 
EN are equivalent. 

It can be shown that for qk = EtAuk, BC: is algebraically equivalent to 
CMRES, which starts with x0 + H,(h - Ax,). Furthermore, it appears that BG 

with yk = ElAu, is a secant method (Broyden, 1970). However, the specific 
method given in Broyden (1970, p. 373) is different from GMRES. 

In order to estimate the efficiency of the BG method we make a compari- 
son with the GMRES method. With respect to the amount of work and 
memory for an implementation of the BG method we note that the k th step 
costs at least one multiplication with H, and A together with k inner 
products and 2k vector updates, whereas .Zk vectors of length n must be 
stored in memory. This, in combination with the inequality Ilri”llZ > llr~lln, 
yields that for every choice of qk the BG method is less efficient than GMRES 

applied to the postconditioned system AH,,y = b. 

7. CONCLUSIONS 

In this paper we have compared the methods GMRES, EN, and B. From 
this comparison it appears that in some numerical experiments EN takes less 
work than GMRES. However, a theoretical investigation shows that the 
efficiency of EN can be at most only slightly better than that of G.MRES. 

Furthermore, the numerical experiments show that the convergence and 
stability of EN are not scaling invariant. However, we specify a new version 
of the EN method which is scaling invariant. The convergence behavior of 
this version seems to be better than that of the original EN method. 
Subsequently we gave a formulation of GMRES in the same spirit as the EN 

method. This correspondence gives theoreticai insight, but in practical situa- 
tions we prefer the implementation of the CMRES method as given in Saad 
and Schultz (1986) and Van der Vorst (1989). 

Since the class of RG methods proposed in Broyden (1970) seems to be 
related to EN, this class is included in our comparison. We show that the EN 

method (with uI; = H, Ekrk) is not equivalent to any BG method. With 
respect to GMRES, a BG method is specified which is algebraically equivalent 
t0 CMRES. 
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