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Abstract. To develop unified computing methods that are accurate and efficient both for
compressible and incompressible flows, one may modify methods developed for the fully
compressible case, or, vice-versa, modify incompressible methods. Both approaches are
reviewed. One leads to colocated, the other to staggered schemes. The latter resemble
closely classical schemes for the hyperbolic systems of equations governing atmospheric
and oceanographic flows. General equations of state are considered, leading to nonconvex
hyperbolic systems. A simple way to solve a class of Riemann problems is presented, using
Oleinik’s formulation of the entropy condition. The Osher scheme and a staggered scheme
are found to converge with the same accuracy to the physical weak solution. The staggered
scheme turns out to be useful for computing with the homogeneous equilibrium model a
hydrodynamic flow with cavitation, in which a region where the Mach number reaches 25
is embedded in a domain where the Mach number equals 10−3.
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1 INTRODUCTION

If there are regions in the flow domain where the Mach number M is not small, the
compressible equations of the motion must be used. Although these are uniformly valid
for M ≥ 0 (until real gas effects set in), standard numerical methods for the compressible
case break down when M . 0.2, as discussed below. Therefore different methods, that
are uniformly valid for M ≥ 0, are required if regions with M . 0.2 and M & 0.2 occur
simultaneously. These what we will call unified methods are the subject of this paper.

Typical circumstances where M is small in parts of the domain but where compressibil-
ity cannot be neglected are the following. Due to the geometry of the domain, local high
Mach zones may be embedded in a low Mach flow. Examples are the flow in the inlet of an
internal combustion engine, or hydrodynamic flow with cavitation using the homogeneous
equilibrium model, discussed below. Conversely, during the hyperbolic flight phase of a
re-entering space vehicle, thick boundary layers and separation zones develop, in which
M . 0.2.

First, we will explain why standard computing methods for compressible flow break
down as M ↓ 0. Then we will discuss the concept of preconditioning, by which methods
for compressible flow may be extended to the low Mach number regime. Finally, we will
discuss generalization of methods for incompressible flow to the compressible case.

2 DIFFICULTIES WITH THE ZERO MACH NUMBER LIMIT

If suffices to consider the one-dimensional Euler equations, in the usual notation:

Ut + f(U)x = 0 , U =


 ρ

m
ρE


 , f =


 m

m2/ρ + p(ρ, T )
m + 1


 . (1)

Assuming a perfect gas, we have p = ρRT . The following well-known considerations
show that numerical difficulties are to be expected when M ↓ 0, which M = u/c, u = m/ρ,
and the speed of sound given by c =

√
γp/ρ.

The eigenvalues of the Jacobian f
′
(U) are given by λ1 = u − c, λ2 = u, λ3 = u + c.

The spectral number of f
′
is defined by κ(f

′
) = ρ(f

′
)ρ((f

′
)−1), with ρ the spectral radius.

For simplicity we assume u ≥ 0. Then

κ(f
′
) = (u + c)max{1

u
,

1

|u − c|} = max{1 + 1

M
,
M+ 1

|M− 1|} .

When κ(f
′
) � 1, f

′
is ill-conditioned, and numerical difficulties may crop up. This

is seen to occur in the sonic limit M → 1 and the incompressible limit M ↓ 0. In
standard computing methods for compressible flow a carefully designed artificial viscosity
term is incorporated, either implicitly as in approximate Riemann solvers or flux-splitting
methods (e.g. [35], [29], [49], [23], or explicitly, as in the Jameson-Schmidt-Turkel scheme
([16]). This takes care of the singularity at M = 1, but nothing is done about the
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singularity at M = 0, and in practice these schemes are inapplicable when large regions
with M . 0 occur. For more information about the underlying causes for this, see [19],
[9].

Another indication of trouble is stiffness of the equations. A typical stability condition
for explicit schemes is τ ≤ h(u + c), with τ the time step and h the mesh size. In
the absence of acoustic effects, the physical time scale in low Mach flow is L/u, and a
reasonable time step is τp = h/u. We find τ/τp ≤ M/(1+M), so that for stability τ must
be much smaller than τp if M 
 1. When this happens a system is called stiff. Numerical
inefficiency results, caused by the unwanted requirement to resolve acoustic modes, which
travel with speed u ± c.

There is also an accuracy problem. When the stiff system is solved with the required
very large number of time steps, often wrong results are obtained for M small. This is
shown and analyzed in [9], [42].

3 PRECONDITIONING

One way to alleviate the stiffness problem is to change the governing equations. This
looks like putting an end to the disease by killing the patient, but is not as bad as it
seems. The procedure is called preconditioning. This solves both the stiffness and the
accuracy problem, as shown in [9], [42]. A practical advantage of preconditioning is that
existing codes for compressible flow can be modified to improve performance for weakly
compressible flow.

The principle will be explained for the one-dimensional inviscid case. Preconditioning
consists of multiplication of the time-derivative by a matrix P−1:

P−1Ut + f(U)x = 0 . (2)

Stationary solution are not affected by preconditioning, but time accuracy is lost. The
preconditioning matrix P (U) is to be chosen such that (2) is less stiff than the original
system as M ↓ 0. The eigenvalues λ(Pf

′
) should remain closer together than λ(f

′
) as

M ↓ 0. The design of P (U) has been and still is the subject of much research. We
will discuss the preconditioner proposer in [51]. We switch to new primitive variables
Q = (p, u, T ), with T the temperature. The preconditioned system is

ΓQt + f(Q)x = 0 , Γ =


 θ 0 ρT

θu ρ uρT

θH − 1 ρu HρT + cpρ


 , (3)

where θ is a parameter chosen as follows:

θ = 1/w2 − ρT/(cpρ) ,

with w a velocity magnitude given by
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w =




εc if |u| ≤ εc ,
|u| if εc < |u| ≤ c ,
c if |u| > c .

The parameter ε (∼ 10−5) is included to prevent singularity for u = 0. For the
eigenvalues we find

λ(Γ−1f
′
(Q)) = {u, ũ + c̃, ũ − c̃} , ũ = u(1− α) ,

c̃ =
√

α2u2 + w2 , α = (1− βw2)/2 , β = (ρp +
ρT

cpρ
) .

For a perfect gas, β = 1/c2, so that α = (1 − M2
w)/2, Mw = w/c. Hence, when

M = |u|/c > 1 we have α = 0, and the eigenvalues equal those of the unpreconditioned
system. At low Mach we have α ∼= 1/2, and ũ± c̃ ∼= 1

2
u(1±√

5), so that the stiffness has
been removed.

Equation (3) is discretized in space as follows. Finite volume integration gives

hjΓj
dQj

dt
+ F (Q)|j+1/2

j−1/2 = 0 , (4)

where hj is the size of the finite volume. The Roe scheme gives

Fj+1/2 =
1

2
{f(Qj) + f(Qj+1)} − 1

2
|f ′|j+1/2(Qj+1 − Qj) .

Practical experience and the analysis of [9], [42] shows that this gives unsatisfactory
results for M . 0.2. Much better results are obtained if the preconditioning is allowed to
influence the artificial dissipation term, as follows:

Fj+1/2 =
1

2
{f(Qj) + f(Qj+1)} − 1

2
Γj+1/2|Γ−1f

′|j+1/2(Qj+1 − Qj) . (5)

For extension of this method to the two-dimensional viscous case, see [51], where suc-
cessful applications to fully and weakly incompressible flows are shown.

To compute nonstationary flow, time accuracy has to be restored. This may be done
by dual time stepping, introducing a pseudo-time s. Equation (4) is replaced by

hj
dUj

dt
+ hjΓj

dQj

dt
+ F (Q)|j+1/2

j−1/2 = 0 .

For simplicity, we choose the implicit Euler scheme in time and the explicit Euler
scheme in pseudo-time, and obtain:

hj

τ
(
∂U

∂Q
)m−1
j (Qm

j − Qn
j ) +

hjΓj

σ
(Qm

j − Qm−1
j ) + F (Qm−1)|j+1/2

j−1/2 = 0 ,
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where τ is the time step and σ the pseudo-time step. The superscript n counts physical
time steps and the superscript m counts pseudo-time steps. For m = 0 we put Qm = Qn.
A time step is executed by stepping in pseudo-time with m = 1, 2, ..., m̄, where m̄ follows
from the condition that the pseudo-time difference has become negligible, so that we have
completed a time step for (4). In [51] it is shown that dual time stepping is significantly
more efficient than physical time stepping if M . 0.2. Nevertheless, dual time stepping
is expensive, because a large number of pseudo-time steps is required for each physical
time step. As a consequence, the efficiency is much less than that of incompressible flow
solvers, so that preconditioned dual time stepping methods cannot be called efficient for
weakly compressible nonstationary flows. In [9] it is shown that pseudo-time stepping can
be dispensed with. We can solve directly

dUj

dt
+ F (Q)|j+1/2

j−1/2 = 0 ,

with F (Q) given by (5). As remarked in [30], for efficiency an implicit time stepping
scheme must be used. If this is necessary anyway, because of a large disparity in mesh
sizes for example, this is no disadvantage. However, the resulting nonlinear algebraic
system is difficult, and iterative methods that have been used until now requiere much
computing time. This still needs improvement.

Considering extensions to more dimensions, the viscous case, flows with combustion
and chemistry and implementation of boundary conditions, we give a few pointers to the
literature. For a review of early literature, see [41]. The preconditioner of [51] described
above is an extension of the one introduced in [3], [4]. Iterative methods methods for
implicit preconditioned schemes are analysed in [19], [18], [5]. Some recent publications
are: [43], [8], [9].

Preconditioning is a way to extend the functionality of existing codes for fully compress-
ible flows to almost incompressible flows. The efficiency of methods for incompressible
is not matched. In the next sections the reverse route is followed, namely extension of
methods for incompressible flows to compressible flows.

4 MACH-UNIFORM DIMENSIONLESS EULER EQUATIONS

To get more mathematical insight in what happens as M ↓ 0 we make the governing
equations equations dimensionless. The influence of the choice of units is conveniently
shown for the following nonconservative form of (1):

ρt + mx = 0 , mt + (um + p)x = 0 , pt + γpux + upx = 0 . (6)

The units of length, velocity, time, density and pressure are xr, ur, xr/ur, ρr and pr.
We let xr be a characteristic dimension of the domain and ur a typical velocity magnitude,
such as the velocity at infinity if we have flow around a body. This choice of units reflects
that we are not interested in acoustics, for which the physical time scale is much smaller
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than xr/ur. The dimensionless form of (6) is the same as (6), exept for the momentum
equation, which becomes

mt + (um)x +
pr

ρru2
r

px = 0 . (7)

In compressible fluid dynamics it is customary and reasonable to choose for the unit pr

a value that is representative for the magnitude of the pressure in the flow, and similarly
for ρr. As a consequence, cr =

√
γpr/ρr is representative for the magnitude of the sound

speed in the flow. We rewrite (7) as

mt + (um)x +
1

γM2
r

px = 0 , Mr = ur/cr , (8)

where Mr is representative for the values of the Mach number that actually occur. The
fact that (8) is singular as M ↓ 0 is another indication of difficulties to be expected when
standard methods for compressible flow are applied to weakly compresible flow.

Useful insight is gained by studying the asymptotic behaviour of the solution as Mr ↓ 0.
We consider the three-dimensional nonconservative version of the above equations:

Dρ

Dt
+ ρdivu = 0 , (9)

ρ
Du

Dt
+

1

ε
gradp = 0 , ε = γM2

r , (10)

Dp

Dt
+ γpdivu = 0 . (11)

We postulate an asymptotic expansion of the following form:

ρ(t,x) = ρ0(t,x) + ερ1(t,x) +O(ε2) ,

and similarly for the other two unknowns. To leading order, (10) gives gradp0 = 0,
hence p0 = p0(t). Equation (11) gives

1

γ

d ln p0

dt
= −divu0 . (12)

Integration over the flow domain Ω gives

d ln p0

dt
= − γ

|Ω|
∫
∂Ω

u0 · ndS .

If the normal velocity is not prescribed along the whole boundary, p0(t) must be given,
otherwise it follows from (12). Hence, p0(t) is known. Because p0 does not depend on x
it has no dynamic effect. Equation (9) gives
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(
∂

∂t
+ u0 · ∇) ln ρ0 =

1

γ

d ln p0

dt
.

Equation (10) gives

ρ0
Du0

Dt
+ gradp1 = 0 . (13)

Equations (12)–(13) determine u0, ρ0 and p1; p1 acts as a Lagrange multiplier to allow
u0 to satisfy the constraint (12). When p0 and ρ0 are constant we recover the familiar
incompressible Euler equations. For ρ0, u0, p0 we have obtained a well-posed problem,
so that we may conclude that the assumed asymptotic expansion is correct.

Since

p(t,x) = p0(t) + εp1(t,x) +O(ε2) ,

there is for ε 
 1 a danger of rounding errors in numerical approximations of grad p.
This can be avoided by working with p − p0 instead of p. This is possible because, as
argued above, p0(t) can be determined a priori. From (13) we see that p1 is of the same
size as ρ0 u0 · u0. Therefore a good choice for the dimensionless pressure is

p =
p̂ − p̂0

ρ̂rû2
r

, (14)

where for clarity the hat symbol is used to denote dimensional quantities. The other
unknowns are made dimensionless as before. We now assume there is no global com-
pression or expansion, so that p̂0(t) = constant, and flow into or out of closed vessels is
excluded. We choose p̂0 = Rρ̂rT̂r, with T̂r a reference temperature that is typical for the
temperatures that occur in the problem. The dimensionless equation of state is

ρ = (1 + γM2
rp)/T .

Hence, as Mr ↓ 0 the dependence of ρ on p disappears, eliminating acoustics, but ρ still
varies with T . The dimensionless form of the nonconservative equations of motion (6) is
found to be, in three dimensions,

ρt + divm = 0 , mt + (um)x + (vm)y + (wm)z + gradp = 0 ,

M2
r{

Dp

Dt
+ γpdivu}+ divu = 0 .

(15)

We see that now the system does not become singular as Mr ↓ 0. Furthermore, as Mr ↓
0 the pressure equation reduce to the familiar solenoidality constraint of incompressible
flow. The dimensionless form of the conservative energy equation is found to be
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(ρE)t + div(mH) = 0 ,

E = e +
1

2
γ(γ − 1)M2

r|u|2 , H = h +
1

2
γ(γ − 1)M2

r|u|2 ,

with the dimensionless internal energy and enthalpy defined as e = T, h = γT .

5 STAGGERED SCHEME

We now generalize the incompressible staggered scheme of [13] to the compressible
case. This is also done in [11], [12], [15], [17], [24], [36], [47]. In these methods the
singularity for M ↓ 0 is not removed, as we do by splitting the pressure according to (14).
It is shown in [24] that the other methods give unnecessary shock smearing by updating
velocity instead of momentum in the pressure-correction step. All methods quoted derive
the pressure-correction equation from the mass conservation equation, whereas equation
(15) suggests that it is more appropriate to derive it from (the pressure formulation of)
the energy equation, which we will do.

One may also generalize incompressible colocated schemes to the compressible case.
This is done in [7]. In the incompressible colocated case, measures are required to suppress
spurious pressure oscillations. This is usually done with the pressure-weighted interpola-
tion method of [33]. This implies a perturbation of the mass conservation equation. An
explicit expression for this perturbation is given in [26]. It is to be expected that this
artificial perturbation masks weak compressibility effects. We prefer to stick with the
staggered scheme.

To explain the basic principles, it suffies to consider the one-dimensional case. A
staggered grid is used, with velocity and momentum at nodes xj+1/2 = jh and pressure and
density at nodes xj = (j−1/2)h, with h the mesh size, assumed uniform. For higher order
accuracy, we use the MUSCL slope-limited approach [48], [50] for spatial discretization and
Runge-Kutta time stepping. These are familiar techniques in computational gasdynamics
using colocated schemes, see for example [22]. These techniques are also used in the
following scheme:

ρ
(m+1)
j − ρn

j + αm+1λ(u
(m)ρ(m))|j+1/2

j−1/2 = 0 , λ = τ/h ,

m
(m+1)
j+1/2 − mn

j+1/2 + αm+1λ(u
(m)m(m) + pn)|j+1

j = 0 ,

ρn+1
j = ρ

(4)
j , mn+1

j+1/2 = m
(4)
j+1/2 −

1

2
λδp|j+1

j , δpj = pn+1
j − pn

j ,

M2
r{δpj + λ(un+1pn)|j+1/2

j−1/2 + λ(γ − 1)pn
j u

n+1|j+1/2
j−1/2}+ λun+1|j+1/2

j−1/2 = 0 .

Here the superscript m ∈ {0, 1, 2, 3} is a Runge-Kutta stage counter. Following [38],

we choose α1 = 1/4, α2 = 1/3, α3 = 1/2, α4 = 1. The quantities ρ
(m)
j+1/2, (u(m)m(m))j and
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pn
j+1/2 are approximated with a slope-limited scheme, according to the MUSCL approach,

for example, if u
(m)
j+1/2 > 0:

ρ
(m)
j+1/2 = ρ

(m)
j +

1

2
ψ(rj)(ρ

(m)
j+1 − ρ

(m)
j ) , rj =

ρ
(m)
j − ρ

(m)
j−1

ρ
(m)
j+1 − ρ

(m)
j

.

For the limiter function we take the van Albada limiter ([44]). Substitution of un+1
j+1/2 =

(m/ρ)n+1
j+1/2 in the pressure equation gives for the pressure correction δp a linear system,

that is reminiscent of a discretized convection-diffusion equation. Pressure correction
is not included in the Runge-Kutta stages, to save computing time. Note that in the
momentum equation the pressure is taken implicit (i.e. pn+1 is required for mn+1) and in
the pressure equation the discrete approximation of divu is taken at the new time. This is
done in order to obtain a nonsingular discrete system for Mr = 0, that is identical to the
classical incompressible pressure correction method of [13]. As a consequence, accuracy
and efficiency equal those of incompressible methods as Mr ↓ 0.
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Figure 1: Solution of a Riemann problem; λ = 0.3, h = 1/48, ]; t = 0.15.

The numerical solution of a Riemann problem is compared with the exact solution in
Fig. 1. The maximum Mach number is 2. In this and similar problems the accuracy is
found to be comparable to that of well-established colocated schemes, such as the Osher
and AUSM schemes. Apparently, the staggered scheme satisfies the Rankine-Hugoniot
and entropy conditions. Stationary contact discontinuities are found to be preserved.
Extension to two dimensions is presented in [2]. How to formulte accurate staggered
schemes on nonsmooth curvilinear two- and three-dimensional grids is discussed in [54],
[53].

6 A NONCONVEX HYPERBOLIC SYSTEM

We will now consider the case of an arbitrary barotropic (p = p(ρ)) equation of state,
with application to hydrodynamic flow with cavitation in mind. The simplest nonlinear
hyperbolic system is
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Vt − uy = 0 , ut + p(V )y = 0 . (16)

This is called the p-system. It describes one-dimensional flow of an inviscid barotropic
medium in the Lagrange coordinate y, with V = 1/ρ the specific volume, u the velocity
and p the pressure, satisfying the barotropic equation of state p = p(ρ). The trajectory
of a fluid particle that a t = 0 is located at x = a is x = x(a, t), and u = xt. The
Lagrange coordinate y is defined by y =

∫
ρ(a, 0)da. For completeness, we describe the

transformation to Eulerian coordinates x, t̃ = t. We have

∂

∂y
=

∂x

∂y

∂

∂x
=

1

ρ(a, 0)

∂x

∂a

∂

∂x
,

∂

∂t
=

∂

∂t̃
+

∂x

∂t

∂

∂x
=

∂

∂t̃
+ u

∂

∂x
.

Mass conservation of a fluid particle requires that ρ(a, 0)da = ρ(x, t) = ρ(x(a, t), t)∂x
∂a

da,
so that ∂x/∂a = ρ(a, 0)/ρ(x, t). Substitution gives

∂

∂y
=

1

ρ(x, t)

∂

∂x
.

We see that transformation to the Eulerian frame gives the nonconservative barotropic
Euler equations (deleting the tilde):

ρt + uρx + ρux = 0 , ut + uux +
1

ρ
px = 0 .

In order to explore some of the consequences of p(V ) (or p(ρ)) being nonconvex, we do
some analysis on (16), rewritten as

Ut + f(U)y = 0 .

We recall a few basic facts; for more background, see [37]. The eigenvalues of the
Jacobian f

′
(U) are λ1,2 = ∓C, C2 = −dp/dV . Assuming dp/dV < 0, we have a strictly

hyperbolic system. The two members of (16) may be linearly combined as follows: ut ±
CVt ∓ C(uy − CVy) = 0, and we see that the Riemann invariants are u ± a with

a(p) =

∫
−CdV =

∫
1

C
dp ,

and that the characteristic curves satisfy dx/dt = ±C. The jump condition at a shock
is s[U ] = [f ], so that the shockspeed s satisfies s = ±√−[p]/[V ], with [·] the size of the
jump. Physically relevant weak solutions must also satisfy the entropy condition: as time
increases, characteristics must converge into shocks and may not emanate from shocks.
We note that s2 corresponds to the slope of the chord connecting left and right shock
states in the graph of p(V ), and the square of the characteristic velocity C2 corresponds
to the slope of the tangent to the p(V ) graph. A little reflection leads us to the formula-
tion of the entropy condition due to Oleinik [27]:
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Right running waves must connect states following the upper concave hull of the
p(V ) graph, and left running waves must connect states following the lower convex
hull of the p(V ) graph.

An example will follow.
For validation of numerical schemes in the absence of convergence theory, analytic

solutions are helpful. Frequently, the Riemann problem for hyperbolic systems can be
solved more or less explicitly. The domain is y ∈ R and the initial conditions are given
by

U(y, 0) = UL , y < 0 ; U(y, 0) = UR , y > 0 ,

with UL,R constant. If U(y, t) is a solution, then so is U(by, bt) with b an arbitrary
positive constant. Hence, solutions may be sought in similarity form U(y, t) = U(ξ), ξ =
y/t. Assuming a smooth solution, substitution gives (f

′ − ξ)U
′
= 0. Non-trivial solutions

are obtained with

ξ = λ1,2,
dU

dξ
= R1,2, R1,2 = (1,±C)T ,

where R1,2 are the eigenvectors of f
′
. Solutions of this type are called fans. For a left

running fan, ξ = λ1 = −C(ξ). From U
′
= R1 we obtain:

0 =
du

dξ
− C

dV

dξ
=

d(u + a)

dξ
,

so that the Riemann invariant u + a = constant across left-running fans. Similarly,
u − a = constant across right-running fans. Discontinuous similarity solutions are given
by shocks:

U(ξ) = UL, ξ < s, U(ξ) = UR, ξ > s .

Shocks and fans can be patched together to solve the Riemann problem; this is to be
done such that the entropy condition is satisfied. How to do this in general is discussed
in [52] and Chapt. 17 of [37]. Many possibilities have to be tested for a general equation
of state and general UL,R. We will simplify the situation such that a subclass of Riemann
solutions is easily obtained. The equation of state is nonconvex with two inflection points,
see Fig. 2. The symbols on the curve denote from right to left states 1 to 5; state 2 is
indicated by a circle. The lower convex hull includes the tangent (not shown) to the graph
between states 3 and 4. Note that p3 and p4 follow directly from the geometry of the p(V )
graph, and can be determined a priori, which is the essence of our simplification. We
assume that UR = U1 and UL = U5 are given such that the intermediate state U2 between
right and left running waves satisfies V2 > V3. Then the structure of the
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Figure 2: Graph of p(V ) with assumed intermediate states in solution of Riemann problem.

solution follows from Oleinik’s entropy condition. As noted before, in a fan the graph
of p(V ) is followed, and in a shock the chord between the left and right V is followed.
Remembering that the solution must be on the upper concave hull for right running waves,
a glance at Fig. 1 tells us that we must follow the chord between states 1 and 2. Hence,
we have a shock between states 1 and 2. For left running waves the lower convex hull
must be followed, so that we follow the tangent between states 3 and 4. Therefore we
have a composite left running wave consisting of a fan between U2 and U3, an expansion
shock between U3 and U4, and a fan between U4 and U5. In the nonconvex case, the
entropy condition does not forbid expansion shocks. If we succeed in finding a solution
with the Ansatz implied by Fig. 2 we are done, otherwise more general methods must
be followed. States 1 and 5 follow from the specification of the Riemann problem, and,
as noted earlier, p3 and p4 follow from the geometry of the graph of p(V ). It remains
to determine p2, u2, u3, u4. We will derive an algebraic equation for p2. For the shock
between states 1 and 2 the jump condition gives:

u2 = f2(p2) ≡ u1 + (p2 − p1)/
√
−(p2 − p1)/(V2 − V1) .

For the left running fan between states 2 and 3 the Riemann invariant u+a is constant,
so that

u3 = f3(p2) ≡ f2(p2) + a(p2)− a(p3) .

For the left running shock between states 3 and 4 the speed s34 is known, because we
know V3 and V4. The jump condition gives

u4 = f4(p2) ≡ f3(p2) + (p4 − p3)/s34 .

Finally, for the left running fan between states 4 and 5, u + a is constant, which gives
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f4(p2) = u5 + a5 − a4 .

If this equation has a real root the problem is solved.
The solution profile inside a fan is determined as follows. With practical applications

in mind we switch to the Euler frame and use the conservation form of the barotropic
Euler equations:

Ut + f(U)x = 0 , U =

(
ρ
m

)
, f =

(
m
um + p(ρ)

)
. (17)

In a similar way as before one finds that the characteristics and Riemann invariants
are given by

dx

dt
= u ± c , a ± u = constant , c =

√
dp

dρ
, a =

∫
1

ρc
dp . (18)

Postulating a similarity solution U = U(ξ), ξ = x/t, we find that for a left-running fan
with ξ = λ1 = u − c we have a + c + ξ = constant. This gives us p = p(ξ), and u = u(ξ)
follows from u = c+ ξ. A right-running fan is handled similarly. Fig. 3 (drawn line) gives
an example of a solution obtained in this way.

7 NUMERICAL METHODS FOR A NONCONVEX HYPERBOLIC SYS-
TEM

The linearized version of the p-system (16) is equivalent to the linearized shallow-water
equations:

dt + ux = 0 , ut + gdx = 0 , (19)

with d the water depth, and g the acceleration of gravity. The average depth is unity.
The shallow-water equations are usually discretized on a staggered grid, with depth nodes
at xj = (j − 1/2)h and velocity nodes at xj+1/2 = jh, with h the mesh size. This
historic preference for a staggered grid for geophysical fluid dynamics and hydraulics
goes back to the pioneering work of [34] on computation of atmospheric flows. Five
different arrangements of nodes (including the colocated case) were studied systematically
in [1], [32], with the grid used in [31] and [13] coming out best with respect to numerical
dispersion and dissipation; this is the staggered grid also used here. The prevalence of
colocated schemes in computational gasdynamics is to be ascribed to the fact that shock
capturing is a more important issue than numerical dissipation and dispersion of smooth
waves, and that staggered schemes are harder to implement accurately in two and three
dimensions on nonsmooth curvilinear grids than colocated schemes; how this may be done
is described in [54], [53].
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The well-known schemes of [10], [21], [39], [40] for the full shallow-water equations are
strongly related to the following staggered scheme for the one-dimensional linearized case
(19) (Hansen scheme):

dn+1
j − dn

j + λun|j+1/2
j−1/2 = 0 , λ = τ/h ,

un+1
j+1/2 − un

j+1/2 + λgdn+1/2|j+1
j = 0 , dn+1/2 = (dn + dn+1)/2 .

Because of its low computing cost and favorable dispersion and dissipation proper-
ties, we will apply a variation of the Hansen scheme to the nonconvex barotropic Euler
equations. But first we will apply a colocated scheme, well-known in computational gas-
dynamics.

Most schemes in computational gasdynamics are specialized to the case of a perfect gas
and need to be re-engineered for arbitrary equations of state, but the Osher scheme, [28],
[29], is sufficiently general to make application to general equations of state straightfor-
ward. The scheme is colocated; all unknowns reside in the nodes xj = (j − 1/2)h. Finite
volume integration of (17) gives, putting j = 0 for brevity,

Un+1
0 − Un

0 + λ(F n
1/2 − F n

−1/2) = 0 .

The numerical flux of the Osher scheme is

F1/2 =
1

2
{f(U0) + f(U1)} − 1

2

U1∫
U0

|f ′
(U)|dU .

The integral depends on the path chosen in state space between the states U0 and U1.
The path is parametrized by U = U(σ), 0 ≤ σ ≤ 1, U(0) = U0, U(1) = U1, so that the
integral becomes

1∫
0

|f ′
(U)|dU

dσ
dσ .

The integration path is chosen such that the integral is easy to evaluate and computing
cost is small. The path is divided in two parts Γ1 (0 < σ < 1/2) and Γ2 (1/2 < σ < 1).
The integration path is chosen such that

dU

dσ
= R2 on Γ1 ,

dU

dσ
= R1 on Γ2 ,

with R1,2 the eigenvectors of f
′
. This choice has the following consequences. Let R1, R2

be row vectors such that RαRβ = δα
β . We have R1,2 = (1, u ∓ c)T , R1,2 = (c ± u,∓1).

Since

14
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RαdU

dσ
= 0 on Γα , α = 1, 2 ,

we find

0 = R1dU

dσ
=

1

2c
(u + c)

dρ

dσ
− 1

2c

dρu

dσ
=

1

2

dρ

dσ
− ρ

2c

du

dσ
.

Equation (18) gives

da

dσ
=

1

ρc

dp

dσ
=

c

ρ

dρ

dσ
.

We see that the Riemann invariant a−u is constant on Γ1, so that (a−u)1/2 = (a−u)0.
Similarly, (a + u)1/2 = (a + u)1. This gives us the state at σ = 1/2:

a1/2 =
1

2
(a0 + a1 + u1 − u0) , u1/2 =

1

2
(a1 − a0 + u1 + u0) . (20)

Next, we have to check whether λ2 = u + c changes sign on Γ1. This happens if
(u0 + c0)(u1/2 + c1/2) < 0. The sonic state on Γ1 (if any) is labeled with superscript s and
subscript 1. In the sonic point we have

as
1 + cs

1 = as
1 − us

1 = a0 − u0 , (21)

which can be solved for ps
1. We have a sign change of λ1 = u − c on Γ2 if (u1/2 −

c1/2)(u1 − c1) < 0. In a similar way as before a sonic state on Γ2 follows from

as
2 + ss

2 = a1 + u1 . (22)

The sonic value of σ on Γα is called σα. We can now evaluate the state space integral.
We have

σ1∫
0

|f ′
(U)|dU =

σ1∫
0

|f ′
(U)|R2dσ =

σ1∫
0

|λ2|R2dσ

= sign(λ2(0))

σ1∫
0

λ2R2dσ = sign(λ2(0))

σ1∫
0

f
′
(U)R2dσ

= sign(λ2(0))

σ1∫
0

f
′
(U)dU = sign(λ2(0))(fσ1 − f0) .

Similarly,
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1/2∫
σ1

|f ′
(U)|dU = sign(λ2(

1

2
))(f1/2 − fσ1) ,

σ2∫
1/2

|f ′
(U)|dU = sign(λ1(1))(fσ2 − f1/2) ,

1∫
σ2

|f ′
(U))|dU = sign(λ1(1))(f1 − fσ2) .

If there is no sonic point on Γ1 we get

1/2∫
0

|f ′
(U)|dU = sign(λ2(

1

2
))f1/2 − sign(λ2(0))f0 .

For the determination of U for σ = σ1, 1/2, σ2 we have to solve the algebraic equations
(20)–(22) for p. This involves the function a(p), which must be computed by numerical
quadrature for an arbitrary equation of state, so the Osher scheme is computationally
expensive. But it gives satisfactory numerical results, as shown in Fig. 3.
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Figure 3: Solution of a Riemann problem with a nonconvex equation of state with the Osher scheme;
t = 0.2, h = 1/48, λ = 0.4.

Because the scheme is only first order accurate the shock between states 1 and 2 is
somewhat smeared, and the very steep expansion fan between states 4 and 5 is even more
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smeared. Better accuracy can be obtained by using higher order flux-limited schemes for
spatial discretization and Runge-Kutta time stepping, as discussed before.

Next, we apply the staggered scheme of Sect. 5, specialized to the barotropic case. The
scheme is similar to the Hansen scheme, except that we take momentum implicit in the
first equation, in order to obtain a unified method for compressible and incompressible
flow. This time we use Euler time stepping and the first order upwind scheme in space.
The resulting scheme is given by

ρn+1
j − ρn

j + λmn+1|j+1/2
j−1/2 = 0 , mn+1

j+1/2 − mn
j+1/2 + λ(unmn + pn+1/2)|j+1

j = 0 , (23)

where we use the first order upwind scheme: (unmn)j+1
∼= (unmn)j+1/2. In one dimen-

sion, solving (23) takes little computing time, but in more dimensions this is expensive.
We therefore use the pressure correction method, as in Sect. 5. First, a prediction for the
momentum is made using the old pressure:

m∗
j+1/2 − mn

j+1/2 + λ(unmn + pn)|j+1
j = 0 .

Next, a correction δm = mn+1 − m∗ is postulated of the following form:

δmj+1/2 = −1

2
λδp|j+1

j , δp = pn+1 − pn .

Substitution of mn+1 = m∗ + δm in the mass conservation equation gives

ρ(pn+1
j )− ρ(pn

j ) +
1

2
λ2(δp|jj−1 − δp|j+1

j ) = −λm∗|j+1/2
j−1/2 . (24)

This is a nonlinear equation for δp. Linearization gives

ρn+1
j − ρn

j
∼= (

dρ

dp
)nj δpj = δpj/(c

n
j )

2 .

Substitution results in the following linear equation for the pressure correction:

(
1

cn
j

)2δpj +
1

2
λ2(−δpj+1 + 2δpj − δpj−1) = −λm∗|j+1/2

j−1/2 .

Results are shown in Fig. 4. The accuracy is the same as for the Osher scheme. But
the staggered scheme requires much less computing time, because only simple central
and upwind differences are used. Fig. 4 suggests that the staggered scheme converges to
correct weak solutions.

An application in which the nonconvex barotropic Euler equations occur is the homo-
geneous equilibrium model for hydrodynamic flow with cavitation. A complete mathe-
matical model with tracking of bubble interfaces is very computing intensive. A simplified
approach is to adopt a hypothetical isothermal one-phase fluid with an artificial equation
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Figure 4: Solution of Riemann problem with staggered scheme; t = 0.2, h = 1/48, λ = 0.4.

of state p = p(ρ), corresponding to water for p larger than a certain value p2, and to vapor
below a certain value p1, with a smooth artificial transition for p1 < p < p2. This leads
qualitatively to the kind of nonconvex equation of state shown in Fig. 2. This so-called
homogeneous equilibrium model is used to compute flows with cavitation in [6], [14], [25],
[45], [46].

In the wet part of the flow, the Mach number is very small, e.g. M ∼= 10−3. In the
transition regime p1 < p < p2 the speed of sound c =

√
dp/dρ becomes very low, so that we

have M as high as 25 in the application shown below. Therefore, to use the homogeneous
equilibrium model as it stands, a unified compressible/incompressible numerical scheme is
required that is efficient and accurate for both very low and very high Mach numbers. In
some works, useful results have been obtained with numerical methods that do not satisfy
this requirement, by modification of the homogeneous equilibrium model; for example,
by making the water artificially compressible. Such a compromise is not needed with
the present numerical method. Furthermore, the flows under consideration are usually
unsteady, showing a cyclic shedding of bubbles. Therefore time accurate methods are
called for. As seen in Sect. 3, this puts a burden on colocated schemes with low Mach
preconditioning.

It turns out that the nonlinearity of p = p(ρ) is so strong that the linearized version
pressure-correction equation (24) is not accurate enough, and that the nonlinear equation
(23) must be solved iteratively to sufficient precision. Furthermore, to enhance stability
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for high Mach numbers an upwind scheme needs to be used for ρ in the mass conserva-
tion equation, replacing mj+1/2 by uj+1/2ρj , uj+1/2 = 2mj+1/2/(ρj + ρj+1). Higher order
MUSCL type upwind approximations may also be used. To further enhance stability one
may replace (um)n by (um)n+1 in the momentum equation. These features, and stability
analysis, are presented in [45], [46].

Fig. 5 shows a result concerning unsteady sheet cavitation in flow around the EN ([20])
hydrofoil. Darker shading corresponds to lower density. Cavitation bubbles are captured
as regions of low density. There is good agreement with experimental observations.

Figure 5: Density distribution in cavitating flow around EN hydrofoil, computed with homogeneous
equilibrium model.

We conclude that staggered schemes provide a viable approach to unified compress-
ible/incompressible methods for flows in which both very low and very high Mach numbers
occur simultaneously.
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[7] I. Demirdžić, Z. Lilek, and M. Perić, A collocated finite volume method for predicting
flows at all speeds, Int. J. Num. Meth. Fluids, 16, 1029–1050, (1993).

[8] J.R. Edwards and C.J Roy, Preconditioned multigrid methods for two-dimensional
combustion calculations at all speeds, AIAA J., 36, 185–192, (1998).

[9] H. Guillard and C. Viozat, On the behavior of upwind schemes in the low Mach
number limit, Computers and Fluids, 28, 63–86, (1999).

[10] W. Hansen, Theorie zur Errechnung des Wasserstandes und der Strömungen in Rand-
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