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Abstract

On the occasion of the third centenary of the appointment of Johann Bernoulli

at the University of Groningen, a number of linear systems solvers for some

Laplace-like equations have been compared during a one-day workshop. CPU-

times of several advanced solvers measured on the same computer (an HP-755

workstation) are presented, which makes it possible to draw clear conclusions

about the performance of these solvers.

1 Introduction

To mark the 300th anniversary of the appointment of Johann Bernoulli as professor at

the University of Groningen a number of scienti�c activities occurred including a one-day

workshop entitled \Laplace Symphony". The subject of this workshop was the comparison

of solvers for a number of Laplace-like equations. These equations arise in many subject

areas using mathematical models, for example, in uid dynamics, electro-magnetics and

astrophysics. The numerical solution of these time-dependent and/or non-linear partial

di�erential equations requires the repeated solution of large sparse systems of linear equa-

tions. In an attempt to provide more insight about the e�ciency of linear solvers for

discretised PDE's, it is relevant to compare them for discretised Laplace operators.
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Of course, it is neither practical nor sensible to cover all aspects of e�cient implementa-

tion on scalar, vector and parallel computers. Therefore, we focus on the computing time

and the memory usage. The investigation is made on an HP-755 workstation enabling us

to perform direct comparison of the methods.

Section 2 summarizes the six test cases studied at the workshop. A short description of

each method is given in Section 3. The CPU-time comparison of the methods is presented

in Section 4. In the last section, we draw some conclusions.

2 Test cases

In the �rst �ve cases, the system of linear equations Au = b to be solved has a matrix

A which is symmetric and positive (semi-)de�nite. The remaining one has a mild non-

symmetry due to a symmetry disturbing boundary treatment.

The �rst two problems follow from the discretisation of the Laplace equation on a

uniform grid in 2 and 3 dimensions, respectively. These are adopted because a large

number of methods are applicable to these problems including those that directly exploit

symmetry, e.g., cyclic reduction and FFT approaches.

In order to study grid e�ects, the third problem concerns a Laplace operator discretised

on a highly stretched grid. Reference [4] shows that the convergence rate of many common-

place iterative methods deteriorates for such problems. Similar convergence deterioration

is seen for problems with strong discontinuities in the coe�cients, an example of which

has been included as test problem four. The �fth problem arises from a higher-order

discretisation on an unstructured grid. This test matrix has a very irregular sparsity

pattern and lacks the diagonal dominance property.

The last problem deals with a system of linear equations with a non-symmetric co-

e�cient matrix. Reference [26] shows that preconditioning is needed in order to solve

the problem in a reasonable time making it an attractive test for the preconditioners we

consider.

For each problem the right-hand side is the zero vector and a starting vector is given.

(Of course, all solvers were able to deal with general right-hand side vectors and general

starting vectors.) It was not allowed to assume and exploit symmetry in the (trivial)

solution. In each case the stopping criterion for the iteration is

u

(n)

max

� u

(n)

min

< 10

�6

(u

(0)

max

� u

(0)

min

) (1)

We now give a more detailed description of the test cases:

1. Uniform-2D. The Laplace equation on the unit square with boundary condition

u = 0 everywhere and a standard �ve-point discretisation on a uniform grid with

mesh size 1=M , M = 256, 512, 1024. The starting vector is the function

u(x; y) = (xy(1� x)(1� y))

2

e

x

2

y

(2)

evaluated at the grid points.
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2. Uniform-3D. The Laplace equation on the unit cube with condition u = 0 on the

entire boundary and a standard seven-point discretisation on a uniform grid with

mesh size 1=M , M = 24, 48, 96. The starting vector is the function

u(x; y; z) = (xyz(1� x)(1 � y)(1� z))

2

e

x

2

yz

(3)

evaluated at the grid points.

3. Stretched. The Laplace equation on the unit square with boundary conditions

@u

@n

= 0

everywhere and a standard �ve-point discretisation on a non-uniform (M+1) �

(M+1)-grid, M = 128, 256, 512. In the neighborhood of the boundaries the grid is

re�ned in such a way that the ratio of maximummesh size to minimummesh size is

equal to 1000 and the ratio of subsequent mesh sizes is kept constant. The starting

vector is again given by (2). Due to the Neumann boundary conditions, the solution

is determined up to a constant, hence the coe�cient matrix is singular.

This problem is of interest for unsteady incompressible Navier-Stokes solvers, where

at each time step the pressure has to be computed from a Poisson equation for which

a system with a discretized Laplace operator needs to be solved.

4. Discontinuous. The stationary di�usion equation

�

@

@x

(D(x; y)

@

@x

u(x; y))�

@

@y

(D(x; y)

@

@y

u(x; y)) = 0 (4)

on the unit square with boundary condition

@u

@n

= 0 everywhere and a standard

�ve-point discretisation on a uniform grid. The function D(x; y) is de�ned by

D(x; y) = 10000 for x � 0:3 ^ y � 0:8;

D(x; y) = 1 elsewhere.

The number of mesh intervals in one direction is a multiple of 10, hence the bound-

aries of areas with di�erent di�usion coe�cients coincide with grid lines. Since the

discretisation, like the underlying PDE, is conservative it is well de�ned at these

boundaries. The mesh-size is 1/400, hence there are (401)

2

unknowns. The starting

vector is again (2). Discontinuous coe�cients arise, for example, in equations for

semi-conductors and reservoir simulations.

5. Unstructured. The system arises from a �nite-element discretisation of the Laplace

equation on the domain shown in Fig. 1.
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u = 0
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@u

@n
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@u

@n

= 0

@u

@n

+ u = 0

Figure 1: The domain and the boundary conditions for Problem 5.

This �gure also shows the boundary conditions and a coarse �nite element mesh.

We use a re�nement of this mesh leading to a matrix of dimension 25759 and 147155

non-zero entries. This problem comes from a simpli�ed model of the temperature

distribution in the ground near a gas pipe. The discretisation is performed by

the �nite element package SEPRAN using quadratic isoparametric triangles. This

implies that the coe�cient matrix is certainly not an M-matrix, since it has both

positive and negative entries outside the main diagonal.

6. Non-symmetric. This problem (proposed by C. Vuik [26]) concerns a pressure calcu-

lation for the incompressible Navier-Stokes equations. For the discretisation a �nite

volume technique is used combined with boundary �tted coordinates. This results

in a structured matrix with at most 9 non-zero elements per row. The matrix looks

like a discretisation of a Laplace equation, however it is weakly non-symmetric due

to the treatment of the boundary conditions. The physical domain and a coarse

�nite volume grid are given in Fig. 2. Neumann boundary conditions are posed on

Boundary 1, 2, and 3, whereas on Boundary 4 a Dirichlet condition is used. The

problem is solved on an M � 4M -grid with M = 16; 32; 64; 128.

3 Description of solvers

The solvers used in the comparison will be shortly described in this section. We start

with three public domain methods, of which the �rst two are direct solvers. These will

be followed by solvers developed by the authors.
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Figure 2: The domain and grid for the non-symmetric problem

3.1 FISHPAK

FISHPAK is a package for the solution of separable elliptic partial di�erential equations

(implemented by Adams, Swarztrauber and Sweet, 1980). It can handle periodic, Neu-

mann and Dirichlet boundary conditions only. In two dimensions it consists of a general-

ization of the Buneman cyclic reduction algorithm [6] developed in the 1970s. In contrast

to Buneman's algorithm this variant [21] can handle arbitrary grid-sizes and the compu-

tation time shows a much smoother behavior as a function of the grid-size than the FFT

(Fast Fourier Transform) based approach. However, in three dimensions FFTs are used

in order to reduce the problem to a set of tridiagonal problems. For this task it makes use

of routines from FFTPACK of Swarztrauber (version April 1985). The computation time

of the 3D case depends strongly on the grid-sizes, as FFTs are fast only if the size of the

vector on which it operates is a highly composite number. This is the case for Problems

1 and 2.

The memory required is about 1 real per unknown in both 2D and 3D, hence only 8

bytes per unknown. This is due to the fact that the problem is separable so only work

arrays of a lower dimension need to be stored.

3.2 UMFPACK/SuperLU

UMFPACK is a package for solving non-symmetric systems of linear equations with arbi-

trary sparsity pattern. It is based on a combined unifrontal/multifrontal algorithm that

enables a general �ll-in reduction ordering to be applied. In the tests, version 2.0 (Septem-

ber 1995) [7] is used. We also considered the package SuperLU (October 1995) which has

the same functionality as UMFPACK. It uses so-called supernodes and BLAS to optimize

performance [9]. Both methods aim to reduce the data movement in order to exploit the

cache. In order to limit the number of results we only show results of UMFPACK. The

performance of SuperLU is comparable. The memory requirement of these methods is
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proportional to the �ll in the decomposition and can become rather large. They even run

out of memory (1/2 gigabyte) for the larger problems.

3.3 ILUT(SPARSKIT)

ILUT is a preconditioner supplied in SPARSKIT [19] which uses a dual thresholding

strategy for dropping elements. The strategy works as follows

1. At a certain stage in the decomposition any element whose size is less than some

user speci�ed tolerance tol (relative to the norm of the current row in U) is dropped.

2. The �ll of each row of L and U is limited by a user speci�ed number lfil. Only the

largest lfil elements in each row of L and U are kept.

ILUT can handle non-symmetric systems and arbitrary sparsity patterns. It does not

make any reordering of the unknowns. (Though their exists a version with partial pivot-

ing.) In our case we used lfil = 10 and tol was set to 10

�3

and 10

�7

for Problems 1,2 and

Problems 3-6, respectively. In all cases this led to the maximum �ll-in per row of 2 times

lfil hence approximately 20. This preconditioner is used within Bi-CGSTAB which is

also supplied in SPARSKIT. The memory needed is about 33 double precision reals and

25 integers per unknown hence in total 364 bytes per unknown.

3.4 ICCG with diagonal and hyperplane ordering

ICCG uses the Conjugate Gradient method with a (relaxed) incomplete Cholesky-decom-

position without �ll-in as a preconditioner [24]. The rate of convergence slightly depends

on a parameter � in this decomposition. The choice � = 0 yields the classical incomplete

decomposition, � = 1 gives Gustafsson's modi�cation. We do not try to optimise for �,

but choose � = 0:98; 0:98; 0:90; 0:95 for the �rst four problems, respectively.

In the 2D-problems (1, 3, 4) we reorder the unknowns in the forward and backward

substitutions implicitly along the diagonals of the grid. This amounts to a frontal approach

in the solution process. All computations for the unknowns on a diagonal can be performed

independently, which may result in high execution rates on vector and parallel machines.

However, implicit reordering amounts to loops with large strides, and a probably ine�cient

use of the cache on workstations. This technique is, of course, only applicable to structured

grids in two dimensions.

In the structured 3D-problem (Uniform-3D) the unknowns are explicitly reordered

along hyperplanes. As all computations on a hyperplane can be done in parallel, this

approach results in high performance on parallel and vector computers [23, 8]. Here, the

loops in the forward/backward substitution process have stride one, but the computations

involve some indirect addressing. Nevertheless, data locality is obtained by the explicit

reordering, which leads to a more favourable use of the cache. We apply Eisenstat's

implementation [10] in order to avoid multiplication with the matrix A.

The amount of memory used is �xed for each problem. In the 2D-problems we need

9 double precision numbers (72 bytes) per unknown, including storage for the elements

of A and the solution x. In the 3D-problem we use 8 index arrays for indirect adressing
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in addition to 10 double precision numbers per unknown. This amounts to 112 bytes per

unknown. In case memory is a bottleneck, the storage required can be reduced to 84

bytes per unknown by recomputation of 7 index arrays in each iteration. The overhead

involved is negligible on scalar processors.

3.5 MILU-rrb, MILU-rrb&rcm and DRIC

The solver presented in this section essentially relies on the module ITSOL [16] developed

at the University of Brussels and now available publicly. This module solves sparse positive

(semi-)de�nite linear systems by the conjugate gradient method and makes use of a variety

of incomplete LU based preconditioners. It was challenging to test them on the proposed

problems. (ITSOL is essentially a research tool for testing the numerical e�ciency of

preconditioners, i.e., little e�ort has been done to optimize the code in terms of computing

time.)

For the test problems Uniform-2D and Discontinuous we used a preconditioner which

consists in performing a MILU factorization with respect to a recursive red-black (rrb)

ordering of the unknowns, �ll-in entries being accepted provided that the red unknowns

in a same level remain uncoupled. This method originates from [1, 5] and has recently

been proved of near optimal order [17]. The method proved easy to implement requiring

little memory. (The preconditioner needs less than twice the amount of space needed to

store the system matrix.) Including the iteration vectors and indirect addressing vectors,

the memory requirement is about 16 words of 8 bytes (i.e. 128 bytes) per unknown.

The method o�ers a nice compromise between e�ciency and ease of implementation,

but is not applicable to 3D or unstructured problems. It also performs poorly if the

PDE is anisotropic or if, like in the problem Stretched, anisotropy is introduced at the

discretization level. For this problem, an e�cient method was obtained by using the

observation that the MILU factorization produces a good preconditioner for such cases

provided one uses a reverse Cuthill-McKee (rcm) type ordering and accepts a modest level

of �ll-in [13]. This leads us to reorder the matrix according to the rrb approach in regions

where the local mesh sizes are not much di�erent, and according to an rcm-like algorithm

in the highly stretched regions. By using the appropriate �ll-in strategy in each region,

this yields a preconditioner which performs like the purely MILU-rrb does on isotropic

problems. Memory requirements are similar and in some cases even slightly smaller with

the mixed method. However, we confess that it is di�cult to �nd an ordering algorithm

which would allow the use of this combined approach in a \black box" fashion. From this

point of view, it is worth noting the recent progress made in [15], where a modi�cation

of MILU-rrb factorizations is proposed to make them robust with respect to anisotropy

and/or grid stretching in a way totally transparent for the user.

Finally, for the problems Uniform-3D and Unstructured, we used a less e�cient but

more \general purpose" method, namely a perturbed MILU preconditioner with pertur-

bations added automatically according to the DRIC algorithm [14]. Natural ordering was

used for the problem Uniform-3D, for which much better CPU times would have been

obtained with a code using direct addressing. For the problem Unstructured, we reorder

the unknowns according to a variant of the rcm algorithm (see [13]). Instead of factorizing

the system matrix, which might be unstable or lead to poor performances, we factorize
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the M-matrix obtained by deleting the positive o�-diagonal entries and subtracting them

from the diagonal (so as to preserve the row-sum); we refer to [20] and the references

therein for an analysis of this reduction technique. For the problem Uniform 3D, the

memory requirement is as in previous cases about 128 bytes per unknown, whereas, for

the problem Unstructured, it is about 206 bytes per unknown because the system matrix

is somewhat denser.

3.6 NGILU and MRILU

NGILU (Nested Grids ILU) combines an incomplete LU-decomposition with a reordering

similar to the partitioning of unknowns in multi-grid, with the objective to obtain grid-

independent convergence, [22]. This technique is only applicable to structured grids. It

has been used for the �rst, second and fourth test problem.

For the other test problems we have used a more general renumbering which is deter-

mined during the factorization and based upon the matrix instead of the underlying grid.

In the sequel of this paper, the resulting preconditioning technique is denoted by MRILU

(Matrix Renumbered ILU) [3]. Below we give a brief description of this method.

In the �rst step of the algorithm we reduce the system by using a renumbering such

that the coe�cient matrix obtains the block structure,

 

D

1

S

12

S

21

S

22

!

(5)

in which D

1

is a diagonal matrix with a dimension as large as possible. This partitioning

can be done for matrices A having an arbitrary sparsity pattern (see, for example, [18]).

At step k, the unknowns are permuted in such a way that the k�th system of linear

equations S

k

x = b can be partitioned as

 

S

11

S

12

S

21

S

22

! 

x

1

x

2

!

=

 

b

1

b

2

!

(6)

in which the block S

11

is strongly diagonally dominant. Next, this block is approximated

by a diagonal matrix P with the same row sums. With this approximation x

1

can easily

be eliminated and the reduced system is given by the Schur-complement S

k+1

= S

22

�

S

21

P

�1

S

12

. This approach can be combined with a dropping strategy as described in [22]:

any element in S

21

or S

12

which is smaller than a given threshold parameter is lumped on

the main diagonal. We continue the approach described above until we obtain a Schur-

complement that is small enough to be solved with a standard method and so we �nally

arrive at the incomplete factorization S

1

= LU +R where R is called the residual matrix.

It appears that a successful approach is to demand that the row sums of jRj do not

exceed a preset threshold parameter ". Hence the lumping strategy and partitioning of

the Schur-complements is done in such a way that

P

j

jr

ij

j � " for each i.

For the �rst �ve test problems, the resulting preconditioning technique is combined

with the Conjugate Gradient method. The last test problem is solved with preconditioned

Bi-CGSTAB.

NGILU used about 140 bytes per unknown for the problems where it is applied (Prob-

lems 1,2 and 4). As it is based on a structured grid it needs in general less memory than
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MRILU. However, for Problem 3 (Stretched) MRILU takes advantage of the structure

in the matrix and also needs only 140 bytes per unknown. For Problem 5 and 6 MRILU

needs about 240 and 430 bytes per unknown, respectively. The higher memory require-

ments for the last problem are due to the non-symmetry. Of course, the needed memory

depends on the choice of the dropping parameter. It can be decreased at the cost of some

extra iterations.

3.7 MGD9V

This code is intended for a class of problems that is wider than the Laplace equation. Its

scope is the solution of linear systems resulting from the 9-point discretisation of the fol-

lowing general linear second-order elliptic partial di�erential equation in two dimensions:

Lu � �r � (D(x)ru(x)) + b(x) � ru(x) + c(x)u(x) = f(x) (7)

on a bounded domain 
 � R

2

with suitable boundary conditions. D(x) is a positive

de�nite 2 � 2 matrix function and c(x) � 0. D and c are allowed to be discontinuous

across an interface in 
. The user supplies the discretisation of (7) (e.g. by a �nite element

or �nite volume technique):

L

n

u

n

= f

n

(8)

where u

n

and f

n

are grid-functions de�ned on the grid 


n

. The convection is allowed

to be dominant; roughly speaking hkbk > kDk. The code performs only for the scalar

case and within the constraints of a regular domain and a structured grid. The code

is of black-box type: no interference of the user with the algorithm is required beyond

speci�cation of the discrete system of equations and its right-hand side. Incomplete line

LU-factorization (ILLU), also called incomplete block LU-factorization, is used as basic

iterative method (for a description see [28] and the references mentioned there). Like

for other basic iterative methods, the convergence of ILLU on its own is slow for low-

frequent components in the residual. The algorithm of MGD9V is a multigrid method: it

accelerates a basic iterative technique by coarse grid corrections, resolving the low-frequent

components on coarser grids with increasing mesh-size. Let u

n

be an approximation of

u

n

, the coarse grid correction (CGC) then reads:

d

n�1

= R

n�1

(f

n

� L

n

u

n

); (9a)

solve L

n�1

e

n�1

= d

n�1

; (9b)

~u

n

= u

n

+ P

n

e

n�1

: (9c)

R

n�1

is the restriction operator that transfers the residual from the �ne grid 


n

onto

the coarse grid 


n�1

, P

n

is the prolongation operator that transfers a correction for the

solution from the coarse to the �ne grid. Once the prolongation has been de�ned, we

choose R

n�1

� P

T

n

. The operator L

n�1

is de�ned by the sequence of operations

L

n�1

= R

n�1

L

n

P

n

: (10)

The code computes the coarse grid matrix of L

n�1

, thus relieving the user of this task.

After the CGC the residual consists of short wavelength components only, which are
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reduced e�ciently by (ILLU) relaxation. This completes one so-called multigrid cycle.

The algorithm is applied in a recursive manner with respect to the solution of (9b).

Bilinear interpolation would be the obvious choice for the prolongation. However, this

yields an excruciatingly slow algorithm in the case of discontinuous di�usion coe�cients.

Therefore, an alternative prolongation P

n

has been constructed that satis�es jump con-

ditions across interfaces. Moreover, we let it handle the case of dominant advection by

means of biased interpolation (of upwind-type, this way the mesh P�eclet number is pre-

served when the grid is coarsened). These improvements have been achieved by extracting

the necessary information implicitly stored in L

n

. This causes the prolongation P

n

to be

di�erent at each grid-point. The above makes the e�cient implementation of (10) a non-

trivial task. A full description of the whole algorithm can be found in [29]. The storage

requirements of MGD9V amount to

68

3

reals or 181 bytes per unknown (matrix, right-hand

side and solution included).

3.8 The RILU �ll preconditioner

We describe the RILU �ll preconditioner for the non-symmetric problem. The coe�cient

matrix of this problem has 9 non-zero elements per row. If the number of �nite volumes

in the x

1

direction is denoted by n

1

, then the following elements of the pressure matrix

A are possibly non-zero:

a

ij

6= 0 for j � i 2 f�n

1

� 1;�n

1

;�n

1

+ 1;�1; 0; 1; n

1

� 1; n

1

; n

1

+ 1g:

The RILU fill preconditioner is based on an Incomplete LU decomposition [12]. The

amount of �ll-in, which is allowed, can be varied by the parameter n

�ll

. If n

�ll

= 0 then the

lower triangular matrix L and the upper triangular matrix U are such that the non-zero

pattern of L+ U is the same as the non-zero pattern of A [26]. Suppose n

�ll

> 0 and n

�ll

is even, then the set P

n

�ll

is de�ned as

P

n

�ll

= [�n

1

� 1;�n

1

+ 1 +

n

�ll

2

] [ [�1�

n

�ll

2

; 0] :

The non-zero elements of L and U are:

l

ij

6= 0 for j � i 2 P

n

�ll

and u

ij

6= 0 for i� j 2 P

n

�ll

:

Note that 9 + 2 � n

�ll

extra vectors are needed to store the preconditioner.

The main diagonal elements of L are equal to 1. In ILU �ll the remaining elements of

L and U are calculated by the following rule:

(LU)

ij

= a

ij

for all i� j 2 P

n

�ll

and j � i 2 P

n

�ll

nf0g.

For problems where the solution is a smoothly varying function, it is a good idea to use

the Modi�ed ILU preconditioner [11], or the Relaxed ILU preconditioner [2] instead of

the classic ILU preconditioner [12]. The RILU �ll(�) preconditioner is an average of the

ILU �ll and MILU �ll preconditioner. In the MILU �ll preconditioner the following rules

are used:
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Table 1: The methods used in the comparison

Not. Description Problem

1 2 3 4 5 6

D ICCG with diagonal (2D) or hyperplane ordering (3D) (Dekker) � � � �

F FISHPAK (public domain) � �

MR MRILU (Botta, v/d Ploeg and Wubs) � � �

NG NGILU (Botta, v/d Ploeg and Wubs) � � �

N1 MILU-rrb (Notay) � �

N2 DRIC (Notay) � �

N3 MILU-rrb&rcm (Notay) �

S ILUT/Bi-CGSTAB (SPARSKIT, public domain) � � � � � �

U UMFPACK (public domain) � � � � � �

V RILU �ll (Vuik) �

Z MGD9V (De Zeeuw) � �

rowsum(LU)

i

= rowsum(A)

i

, and

(LU)

ij

= a

ij

for all j � i; i� j 2 P

n

�ll

nf0g.

In [27] numerical experiments are presented to compare RILU �ll(�) with di�erent choices

of n

�ll

and �.

The results reported in Section 4 are obtained with Bi-CGSTAB [25] as the iterative

method and RILU �ll(�) as the preconditioner with the choices: n

�ll

= 8 and � = 1. The

memory requirements per unknown for this combination are: matrix: 9 entries, right-

hand side: 1, Bi-CGSTAB: 10, and the preconditioner: 25. This implies that the method

needs 45� 8 = 360 bytes per unknown.

4 CPU-times per unknown

In this section, we present the CPU-times for several solvers for the test cases described

in Section 2. Of the methods based on an exact decomposition we present only a few

results of UMFPACK. (Results of SuperLU look very similar and have been omitted).

The timings of UMFPACK given below are based on a single application of the LU

decomposition, hence, no iterative re�nement is performed.

The solvers described in the previous section are indicated in the plots in the present

section as shown in Table 1. Moreover, this table shows to which problem a particular

method is applied. This shows more or less the range to which a certain method can be

applied. We remark that MGD9V can also be used for the �rst problem and MRILU for

all. The numbering of the problems will be the same as that in the Section 2.

The CPU-times have been measured on an HP-755 workstation. All solvers were writ-

ten in standard FORTRAN 77 and the programs have been compiled with the command

fort77 +O3 progname.f. Both the results with and without preprocessing (e.g. the work

which has to be done only once if several systems with the same coe�cient matrix, but

with di�erent right-hand sides, have to be solved) are shown. It should be mentioned
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that all solvers, except ILUT, UMFPACK and MGD9V, exploit the symmetry in the

coe�cient matrix for Problems 1-5. This exploitation halves the storage requirement and

the time for the factorization, but has in general little e�ect on the solution phase.

1. Uniform-2D. In Fig. 3 the performance of all methods applied to this problem is

shown and in Fig. 4 a magni�cation of this plot is made in order to be able to

discriminate between the better methods.
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Figure 3: Timings for Uniform-2D; left for solving and right for preprocessing and solving

For this problem, the package FISHPAK gives the best results (see the right plot

in Fig. 4). From the results of NGILU and MILU-rrb (marked N1 on the �gure) it

appears that the conjugate gradient method combined with a proper preconditioning

technique performs very well. UMFPACK has a fast solution procedure. However,

the factorization phase is expensive and the caseM=512 requires too muchmemory.

The poor performance of ILUT (marked by S) and ICCG with diagonal ordering

(marked by D) with respect to the other methods shows the importance of (near)

grid-independency for huge problems.
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Figure 4: Timings for Uniform-2D for the better methods; left for solving and right for

preprocessing and solving
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2. Uniform-3D. Again it appears that FISHPAK gives the best results. It is more

than a factor 10 faster than the second best method. The other methods except

UMFPACK presented in Fig. 5 use the conjugate gradient method combined with a

modi�ed incompleteCholeski decomposition as preconditioning technique. From the

results it appears that the di�erence in performance between ICCG with hyperplane

ordering (marked by D) and the other incomplete decompositions is not as large

as in the similar 2D-test case. This is due to a much lower condition number

of the matrix in this case because there are less points in each spatial direction

compared with the 2D case. Notay used DRIC (marked by N2) for this problem

since MILU-rrb is not applicable in 3D. Hence the curve for the solver of Notay is

less horizontal than in 2D. Also the curve associated with NGILU is less horizontal

than in the 2D case. Another indication showing that 3D problems are intrinsically

harder than 2D problems is the performance of the direct method UMFPACK.

For M = 24 (N = 12167) UMFPACK requires 17 milliseconds per unknown for

preprocessing and solving. Hence, for this number of unknowns it is already two

orders of magnitude slower than the iterative methods. For higher values of M the

memory requirements become too high. This problem shows that direct methods

become unpractical in 3D for modest grid resolutions.
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Figure 5: Timings for Uniform-3D; left for solving and right for preprocessing and solving

The results of ILUT are not shown in the �gures, because for this problem ILUT

showed a very slow convergence.

3. Stretched. This problem shows how important grid-independency is on highly

stretched grids. The matrix has a very large condition number in this case. ICCG

with diagonal ordering and ILUT severely su�er from this extreme condition num-

ber (see Fig. 6).
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Figure 6: Timings for Stretched; left for solving and right for preprocessing and solving

The results of the better methods are presented in Fig. 7. With MILU-rrb&rcm

(marked by N3) and MRILU the CPU-time per unknown increases only slightly

with mesh re�nement. The multi-grid method MGD9V (marked by Z) is truly grid-

independent: the CPU-time per unknown does not increase at all when the grid is

re�ned.

For UMFPACK the story is as before. However, there is a di�erence with the

Uniform-2D problem. Though with the Uniform-2D problem the case M = 256

could be solved by UMFPACK, here it runs out of memory for this value of M . We

attribute this to an unlucky pivoting step.
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Figure 7: Results of the better methods for Stretched; left for solving and right for

preprocessing and solving

4. Discontinuous. The CPU-times in milliseconds per unknown for both with and with-

out preprocessing are listed in Table 2. The problem run here contains N=160801

unknowns and can be compared with results of the previous 2D problems for sim-

ilar number of unknowns. Compared to Fig. 4 we observe that NGILU performs

about the same, whereas MILU-rrb is a little slower. MGD9V is more than a fac-
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tor 2.5 slower than its corresponding performance on the stretched grid shown in

Fig. 7. ILUT has a slow convergence on this problem and is even outperformed by

UMFPACK.

Table 2: Results for Discontinuous (N=160801)

Solving Preprocessing+Solving

ICCG with diag. ord. 1.20 1.21

MGD9V 0.29 0.30

MILU-rrb 0.09 0.15

NGILU 0.05 0.09

ILUT 2.75 2.89

UMFPACK 0.03 1.7

5. Unstructured. Again the CPU-times per unknown in milliseconds are listed (see

Table 3). For this problem only those methods remain that can handle arbitrary

sparsity patterns. The problem size is modest, which explains that here UMFPACK

performs well. Here we have a larger gap between MRILU and the solver of Notay

because, contrary to MILU-rrb (which is not applicable to unstructured problems),

DRIC does not exploit any multilevel structure. MRILU needs more than 70 percent

of the CPU-time for the construction of the preconditioner. This is substantially

more than in the Stretched problem where this number is about 50 percent. It

appears that MRILU has less �ll-in for stretched problems than for \equidistant"

problems.

Table 3: Results for Unstructured (N=25759)

Solving Preprocessing+Solving

DRIC 0.29 0.74

MRILU 0.08 0.21

ILUT 0.97 1.09

UMFPACK 0.03 1.5

6. Non-symmetric. For this modest sized problem UMFPACK has the shortest solve

time (see Fig. 8). In the factorization phase it is again expensive, but if one has to

compute the solution for a large number of right-hand sides it may be worth the

e�ort. Furthermore, RILU �ll and MRILU perform well. The di�erence between

the methods will become more pronounced for higher resolutions, where the grid-

independency pays o�.
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Figure 8: Results for non-symmetric; left for solving and right for preprocessing and solving

5 Conclusions

For Problem 1, FISHPAK gives the best results. This package optimally exploits the

symmetry in the problem and solves the systems of linear equations more than ten times

faster than the other solvers. A drawback of FISHPAK is that it can only be used

for matrices that can be represented by stencils with constant coe�cients, whereas all

other solvers are developed for a much broader class of applications. In some cases it

is possible to use it as a preconditioner, but then the iterative method should converge

within about 10 iterations to remain competitive with the other methods. Moreover, in

3D the FISHPAK solver is based on Fast Fourier Transforms which makes it very sensitive

to the number of grid points, e.g., changing M from 96 to 97 (a prime) yields an increase

of the computation time with a factor 6.

For the uniform-3D problem it is found that direct solvers based on LU factorization

become unpractical due to the high level of �ll-in needed. ICCG with hyperplane ordering

performs much better here than its counterpart in the 2D case. This is due to the better

conditioning of the 3D matrix as compared to the one of the 2D case when using the same

number of unknowns.

The packages UMFPACK and SuperLU, which are based on a complete decomposi-

tion of the coe�cient matrix, can be interesting for relatively small systems of equations,

especially when the complete decomposition can be used more than once. The decom-

position phase is typically two to three orders of magnitude more expensive than the

solution phase. It appears that the solution phase of these methods is extremely fast due

to a proper cache handling. However, for large systems of equations, both the storage

requirements and the CPU-times of these methods are orders of magnitude higher than

for iterative methods.

For problems in which an extreme stretching of the grid is used MRILU, MILU-

rrb&rcm and the multi grid package MGD9V, are the only methods that perform well.

MGD9V has the nice property that the CPU-time per unknown does not increase at

all with mesh re�nement. With MRILU and MILU-rrb the CPU-time increases only

slightly when the mesh is re�ned. For systems of linear equations with not more than 10

6

unknowns MRILU is the most e�cient method.
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The only methods able to solve all six test problems are UMFPACK, ILUT and a

multilevel-ILU preconditioning technique (NGILU in case of regular, uniform grids, and

MRILU otherwise). The last method has the additional advantage to perform well for all

test problems. Only for a uniform grid, NGILU is outperformed by the package FISHPAK.

We have focussed mainly on the number of operations necessary to solve Au = b,

and the e�ciency on an HP-755 workstation. On supercomputers the performance will

of course be di�erent (this might be an interesting subject for a next workshop).
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