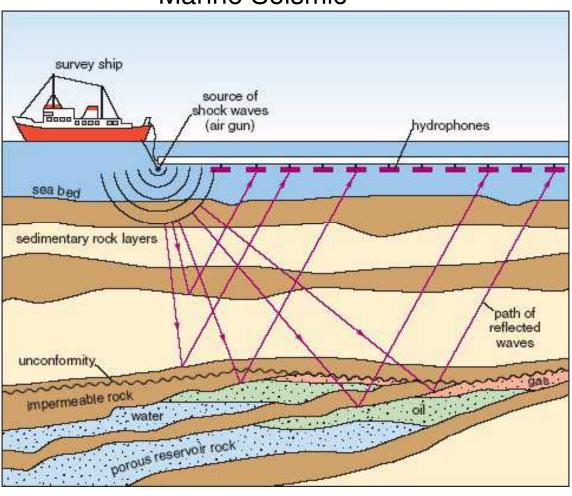
Fast Multilevel Methods for the Helmholtz Equation

Schnelle Löser fur Partielle Differentialgleichungen May 11 - 17, 2014, Mathematisches Forschungsinstitut Oberwolfach , Germany

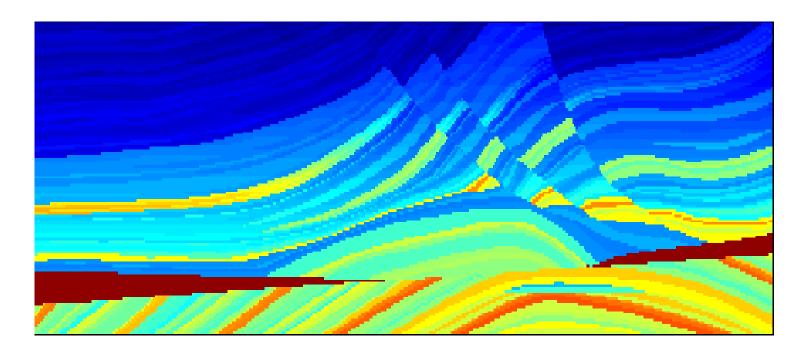
Kees Vuik, Abdul Sheikh and Domenico Lahaye

http://ta.twi.tudelft.nl/users/vuik/

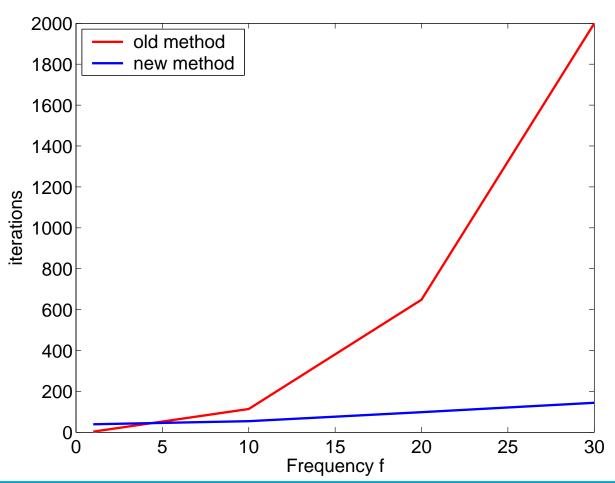
Marine Seismic



hard Marmousi Model



hard Marmousi Model (2006)



Contents

- 1. Introduction
- 2. Preconditioning (2002-2008)
- 3. Numerical experiments
- 4. Second-level preconditioning (2008-2014)
- 5. Fourier Analysis of two-level methods
- 6. Numerical experiments
- 7. Conclusions

1. Introduction

The Helmholtz equation without damping

$$-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y) \text{ in } \Omega$$

 $\mathbf{u}(x,y)$ is the pressure field,

 $\mathbf{k}(x,y)$ is the wave number,

 $\mathbf{g}(x,y)$ is the point source function and

 Ω is the domain. Absorbing boundary conditions are used on Γ .

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)

TUDelft

6

Problem description

Second order Finite Difference stencil:

$$\begin{bmatrix} -1 \\ -1 & 4 - k^2 h^2 & -1 \\ -1 & \end{bmatrix}$$

- Linear system Au = g: properties Sparse & complex valued Symmetric & Indefinite for large k
- For high resolution a very fine grid is required: 10-20 gridpoints per wavelength $\to A$ is extremely large!
- Is traditionally solved by a Krylov subspace method, which exploits the sparsity.

TUDelft

2. Preconditioning

Equivalent linear system $M_1^{-1}AM_2^{-1}\tilde{x}=\tilde{b},$ where $M=M_1\cdot M_2$ is the preconditioning matrix and

$$\tilde{x} = M_2 x, \quad \tilde{b} = M_1 b.$$

Requirements for a preconditioner

- better spectral properties of $M^{-1}A$
- cheap to perform $M^{-1}r$.

Spectrum of A is $\{\mu_i - k^2\}$, with k a given constant and μ_i are the eigenvalues of the Laplace operator. Note that $\mu_1 - k^2$ may be negative.

Preconditioning (overview)

ILU Meijerink and van der Vorst, 1977

ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997

Multigrid Lahaye, 2001

Elman, Ernst and O' Leary, 2001

AILU Gander and Nataf, 2001

analytic parabolic factorization

ILU-SV Plessix and Mulder, 2003

separation of variables

TUDelft

Preconditioning (Laplace type)

Laplace operator Bayliss and Turkel, 1983

Definite Helmholtz Laird, 2000

Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner (SLP)

$$M \equiv -\Delta - (\beta_1 - i\beta_2)k^2$$
, $\beta_1, \beta_2 \in \mathbb{R}$, and $\beta_1 \leq 0$.

Condition $\beta_1 \leq 0$ is used to ensure that M is a (semi) definite operator.

 $ightarrow eta_1, eta_2 = 0$: Bayliss and Turkel

 $\rightarrow \beta_1 = 1, \beta_2 = 0$: Laird

 $ightarrow eta_1 = -1, eta_2 = 0.5$: Y.A. Erlangga, C. Vuik and C.W.Oosterlee

10

3. Numerical experiments

Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same method as the Helmholtz operator.

k	ILU(0.01)	M_0	M_1	M_i
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	> 1000	150	52

Spectrum of SLP

References: Manteuffel, Parter, 1990; Yserentant, 1988

Since L and M are SPD we have the following eigenpairs

$$Lv_j = \lambda_j Mv_j$$
, where, $\lambda_j \in \mathbb{R}^+$

The eigenvalues σ_i of the preconditioned matrix satisfy

$$(L - z_1 M)v_j = \sigma_j (L - z_2 M)v_j.$$

Theorem 1

May 15, 2014

Provided that $z_2 \neq \lambda_j$, the relation

$$\sigma_j = rac{\lambda_j - z_1}{\lambda_j - z_2}$$
 holds.

unnlied Mathematics

12

Spectrum of SLP

Theorem 2

If $\beta_2 = 0$, the eigenvalues $\sigma_r + i\sigma_i$ are located on the straight line in the complex plane given by

$$\beta_1 \sigma_r - (\alpha_1 - \alpha_2) \sigma_i = \beta_1.$$

Theorem 3

If $\beta_2 \neq 0$, the eigenvalues $\sigma_r + i\sigma_i$ are on the circle in the complex plane with center c and radius R:

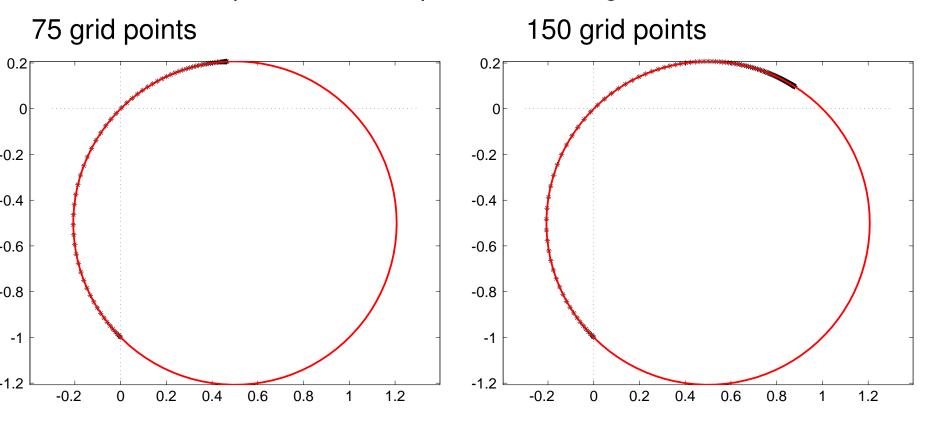
$$c = \frac{z_1 - \bar{z}_2}{z_2 - \bar{z}_2}, \quad R = \left| \frac{z_2 - z_1}{z_2 - \bar{z}_2} \right|.$$

Note that if $\beta_1\beta_2 > 0$ the origin is not enclosed in the circle.

TIDalft

Eigenvalues for Complex preco k = 100

spectrum is independent of the grid size



Inner iteration

Possible solvers for solution of Mz = r:

- ILU approximation of *M*
- inner iteration with ILU as preconditioner
- Multigrid

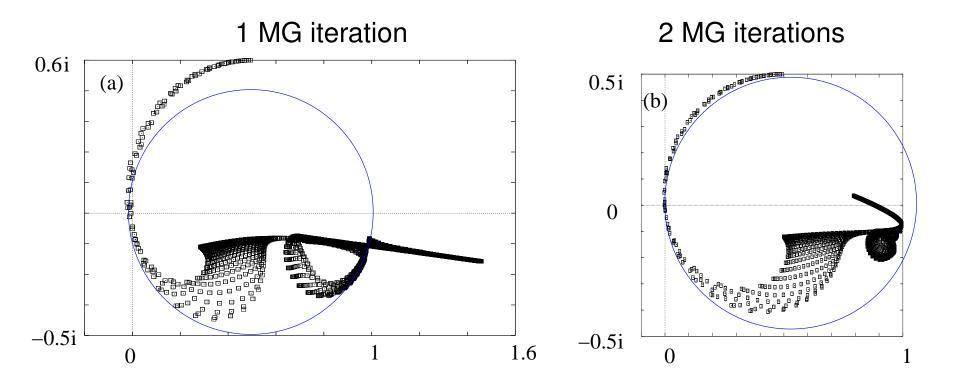
Multigrid components

- geometric multigrid
- Gauss-Seidel with red-black ordering
- matrix dependent interpolation, full weighting restriction
- Galerkin coarse grid approximation

Numerical results for a wedge problem

k_2	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	201(0.56)	1028(12)	5170(316)	_	_
ILU(A, 0)	55(0.36)	348(9)	1484(131)	2344(498)	_
ILU(A, 1)	26(0.14)	126(4)	577(62)	894(207)	_
ILU(M, O)	57(0.29)	213(8)	1289(122)	2072(451)	_
ILU(M, 1)	28(0.28)	116(4)	443(48)	763(191)	2021(1875)
MG(V(1,1))	13(0.21)	38(3)	94(28)	115(82)	252(850)

Spectrum with inner iteration



4. Second Level Precond. (2008-2014)

Summary so far

- ILU and variants
- From Laplace to complex Shifted Laplace Preconditioner (2005)
- Shifted Laplace Preconditioner (SLP)

$$M := -\Delta \mathbf{u} - (\beta_1 - \iota \beta_2) k^2 \mathbf{u}$$

- Results show: $(\beta_1, \beta_2) = (1, 0.5)$ is the shift of choice
- Properties of SLP?

I

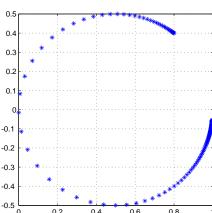
Shifted Laplace Preconditioner (SLP)

- Introduces damping, Multi-grid approximation is possible
- The modulus of all eigenvalues of the preconditioned operator is bounded by 1
- Small eigenvalues move to zero, as k increases.

Spectrum of $M^{-1}(1,0.5)A$ for

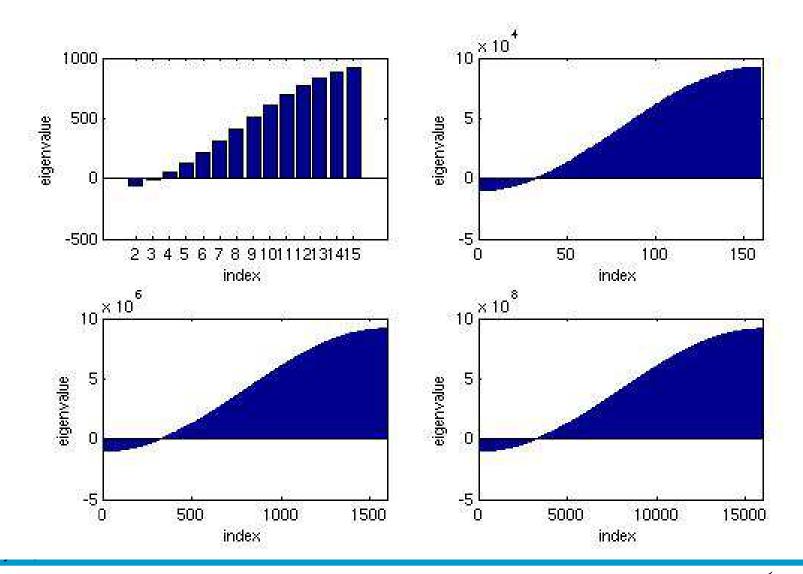
$$k = 30$$

and



k = 120

Spectrum as function of k



Deflation: or two-grid method

Deflation, a projection preconditioner

$$P = I - AQ$$
, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

where,

$$Z \in \mathbb{R}^{n \times r}$$
, with deflation vectors $Z = [z_1, ..., z_r]$, $rank(Z) = r \le n$

Along with a traditional preconditioner ${\cal M}$, deflated preconditioned system reads

$$PM^{-1}Au = PM^{-1}g.$$

Deflation vectors shifted the eigenvalues to zero.

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z = I_h^{2h}$ and $Z^T = I_{2h}^h$ then

$$P_h = I_h - A_h Q_h$$
, with $Q_h = I_h^{2h} A_{2h}^{-1} I_{2h}^h$ and $A_{2h} = I_{2h}^h A_h I_h^{2h}$

where

 P_h can be interpreted as a coarse grid correction and

 Q_h as the coarse grid operator

Deflation: ADEF1

Deflation can be implemented combined with SLP M_h ,

$$M_h^{-1} P_h A_h u_h = M_h^{-1} P_h g_h$$

 $A_h u_h = g_h$ is preconditioned by the two-level preconditioner $M_h^{-1} P_h$.

For large problems, A_{2h} is too large to invert exactly. Inversion of A_{2h} is sensitive, since P_h deflates the spectrum to zero.

To do: Solve A_{2h} iteratively to a required accuracy on certain levels, and shift the deflated spectrum to λ_h^{max} by adding a shift in the two level preconditioner. This leads to the **ADEF1** preconditioner

$$P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^{max} Q_h$$

Deflation: MLKM

Multi Level Krylov Method a, take $\hat{A}_h = M_h^{-1} A_h$, and define \hat{P}_h by using \hat{A}_h (instead of A_h) will be

$$\hat{P}_h = I_h - \hat{A}_h \hat{Q}_h,$$

where

$$\hat{Q}_h = I_h^{2h} \hat{A}_{2h}^{-1} I_{2h}^h$$
 and $\hat{A}_{2h} = I_{2h}^h \hat{A}_h I_h^{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$

Construction of coarse matrix A_{2h} at level 2h costs inversion of preconditioner at level h.

Approximate A_{2h}

$$\hat{A}_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$$

$$\begin{array}{c|c} \textbf{Ideal} & \textbf{Practical} \\ \hat{A}_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h} & \hat{A}_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h} \\ & \hat{A}_{2h} \approx I_{2h}^h I_h^{2h} M_{2h}^{-1} A_{2h} \\ \end{array}$$

^aErlangga, Y.A and Nabben R., ETNA 2008

5. Fourier Analysis of two-level methods

Dirichlet boundary conditions for analysis.

With above deflation,

$$spec(PM^{-1}A) = f(\beta_1, \beta_2, k, h)$$

is a complex valued function.

Setting kh = 0.625,

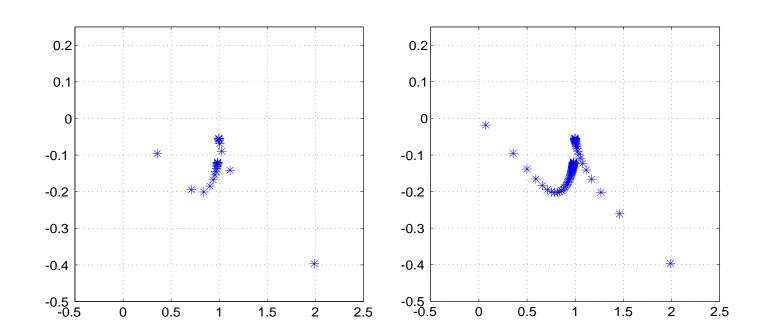
- Spectrum of $PM^{-1}A$ with shifts (1,0.5) is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift for the preconditioner is varied from 0.5 to 1.

Fourier Analysis

<u>ADEF1:</u> Analysis shows spectrum clustered around 1 with few outliers.

$$k = 30$$

$$k = 120$$



Fourier Analysis

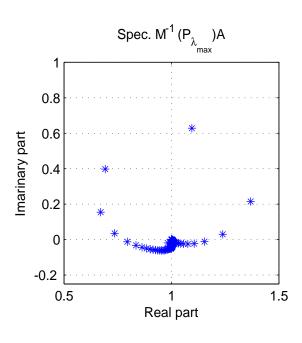
Spectrum of Helmholtz preconditioned by MLKM b,

k = 160 and 20 gp/wl

Ideal

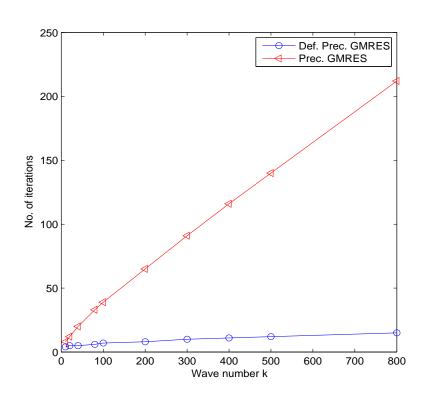
Spec. M⁻¹ (P_{\lambda_max})A 1 0.8 1 0.6 0.4 0.2 0 -0.2 0.5 1 1.5 Real part

Practical



^bTwo-level

6. Numerical results

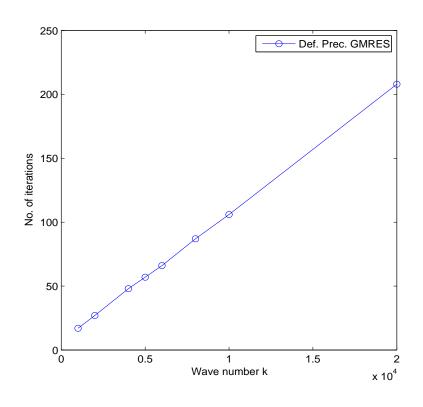


Number of GMRES iterations for the 1D Helmholtz equation

$$10 \le k \le 800$$

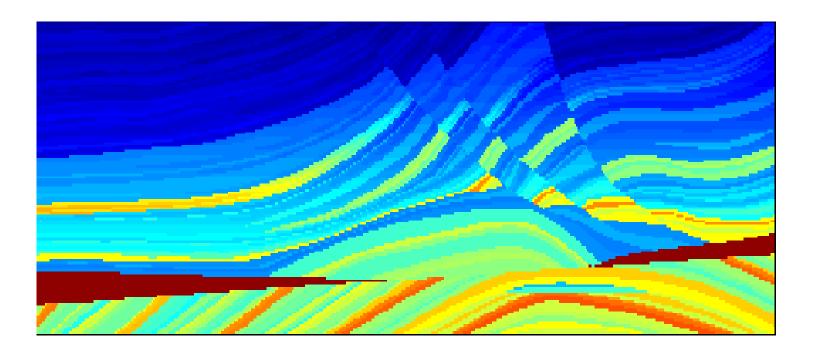
Ŋ

Numerical results



Number of GMRES iterations for the 1D Helmholtz equation $1000 \le k \le 20000$

hard Marmousi Model

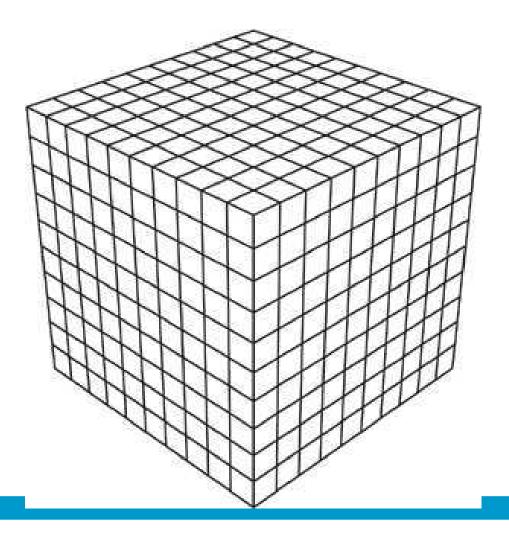


hard Marmousi Model, PETSc solver

kh = 0.39, Bi-CGSTAB for SLP, FGMRES(20) for ADEF1(8,2,1)

Frequency f	Solve Time		Iterations	
	SLP-F	ADEF1-F	SLP-F	ADEF1-F
1	1.22	5.07	13	7
10	10.18	9.43	112	13
20	72.16	60.32	189	22
40	550.20	426.79	354	39

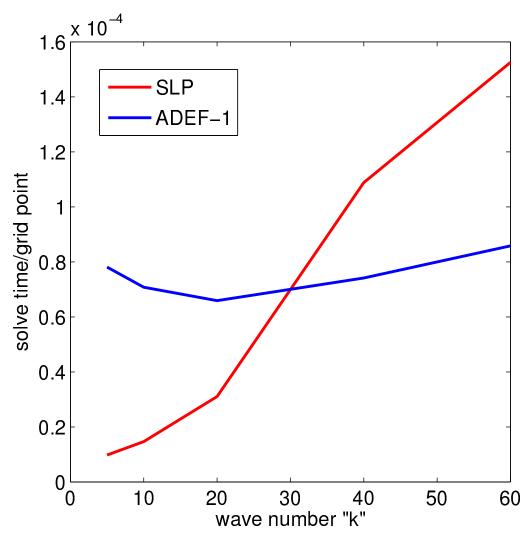
Cube with constant *k*



Cube with constant *k*

Wave number	Solve Time		Iterations	
k	SLP-F	ADEF1-F	SLP-F	ADEF1-F
5	0.04	0.32	7	8
10	0.48	2.32	9	9
20	8.14	17.28	20	9
40	228.29	155.52	70	10
60	1079.99	607.45	97	11

Cube with constant *k*



7. Conclusions

- The proposed preconditioner (shifted Laplacian + multi-grid) is independent of the grid size and linearly dependent of k.
- With physical damping the proposed preconditioner is also independent of k.
- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- With deflation the convergence is nearly independent of the imaginary shift.
- With deflation the convergence is initially weakly depending on k. For large k is scales again linearly.
- With deflation the CPU time is less than without deflation.
- The convergence of ADEF1 and the practical variant of MLKM are similar.

Open Questions

May 15, 2014

- Can ADEF1 also be rewritten as a 'standard' Multi-grid method?
- Why is the behavior of the near null eigenvectors so 'bad'?

36

References

- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based
 Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27,
 pp. 1471-1492, 2006
- M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. Numerical Linear Algebra with Applications, 20, pp. 645-662, 2013
- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html

