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SPE 10

Single-phase flow, grid size 60 x 220 x 85 grid cells.

Method Number of iterations
ICCG 1011

DICCG 2

Table : Number of iterations for the SPE 10 benchmark (85 layers) for the ICCG
and DICCG methods, tolerance of 10−7.
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Problem Definition

Reservoir Simulation
Single-phase flow through a porous media [1]

Darcy’s law + mass balance equation

−∇ ·
[
αρ

µ
~K(∇p− ρg∇d)

]
+ αρφct

∂p

∂t
− αρq = 0.

ct = (cl + cr ),

α a geometric factor

ρ fluid density

µ fluid viscosity

p pressure

~K rock permeability

g gravity

d depth

φ rock porosity

q sources

cr rock compressibility

cl liquid compressibility
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Problem Definition

Discretization
2D case, isotropic permeability, small rock and fluid compressibilities,
uniform reservoir thickness and no gravity forces.
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Vṗ + T p = q.

q : sources or wells in the reservoir, Peaceman well model, Iwell is the well index

q = −Iwell (p− pwell )

Accumulation matrix

V = Vctφ0I,

V = h∆x∆y∆z .

Transmissibility matrix
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Problem Definition

Incompressible model
T p = q.

Compressible model

Vn+1 (pn+1 − pn)

∆tn
+ T n+1pn+1 = qn+1.

Or:
F(pn+1;pn) = 0. (1)
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Newton-Raphson

Using Newton-Raphson (NR) method, the system for the (k + 1)-th NR
iteration is:

J (pk )δpk+1 = −F(pk ;pn), pk+1 = pk + δpk+1,

where J (pk ) = ∂F(pk ;pn)
∂pk is the Jacobian matrix, and δpk+1 is the NR

update at iteration step k + 1.

J (pk )δpk+1 = b(pk ). (2)
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Conjugate Gradient Method (CG)

Successive approximations to obtain a more accurate solution x [2]

Ax = b,

x0, initial guess rk = b−Axk−1.

minxk∈κk (A,r0)||x− xk ||A, ||x||A =
√
xTAx.

Convergence

||x− xk ||A ≤ 2||x− x0||A

(√
κ(A)− 1√
κ(A) + 1

)k

.

Preconditioning
Improve the spectrum of A.

M−1Ax =M−1b.

Convergence

||x− xk ||A ≤ 2||x− x0||A

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k

, κ(M−1A) ≤ κ(A).
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Deflated PCG

DPCG history

1987 Nicolaides and Dostal
First versions of DPCG

1999 Vuik, Meijerink, Segal
DPCG applied to reservoir simulations (Shell)

2004 Nabben, Vuik
Theory and porous media flow

2008 Nabben, Tang, Vuik, ...
Theory comparison: DPCG, MG and Domain Decomposition, bubbly
flow
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DPCG

DPCG history

2008 Nabben Erlangga
Convection diffusion, Helmholtz, MLK method

2010 Jönsthövel, Vuik
Mechanical problems, parallel computing

2014 Nabben, Sheikh, Lahaye, Vuik, Garcia
MLK/ADEF method Helmholtz equation

2016 Diaz, Jansen, Vuik
Porous media flow, Model Order Reduction (MOR)
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DPCG

Deflation

P = I − AQ, P ∈ Rn×n, Q ∈ Rn×n,

Q = ZE−1ZT , Z ∈ Rn×k , E ∈ Rk×k ,

E = ZTAZ (Tang 2008, [3]).

Convergence
Deflated system

||x− xk ||A ≤ 2||x− x0||A

(√
κeff (PA)− 1√
κeff (PA) + 1

)k

.

Deflated and preconditioned system

||x− xk ||A ≤ 2||x− x0||A

(√
κeff (M−1PA)− 1√
κeff (M−1PA) + 1

)k

.

κeff (M−1PA) ≤ κeff (PA) ≤ κ(A).
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Deflation vectors

Recycling deflation (Clemens 2004, [4]).

Z = [x1, x2, xq−1],

xi ’s are solutions of the system.

Multigrid and multilevel (Tang 2009, [5]).
The matrices Z and ZT are the restriction and prolongation matrices of
multigrid methods.

Subdomain deflation (Vuik 1999,[6]).
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Deflation Vectors

Model Order Reduction (MOR)
Many modern mathematical models of real-life processes pose challenges
when used in numerical simulations, due to complexity and large size.

Model order reduction aims to lower the computational complexity of such
problems by a reduction of the model’s associated state space dimension
or degrees of freedom, an approximation to the original model is
computed. (Vuik 2005, [7])

Proper Orthogonal Decomposition (POD)

Reduced Basis Method (RBM)

Principal Component Analysis (PCA)

Singular Value Decomposition (SVD)
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Deflation vectors

Proposal

Use solution of the system with diverse well configurations
’snapshots’ as deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal
Decomposition (POD).

Vuik, Diaz, Jansen (TU Delft) P-BPFS 14 / 31



Proper Orthogonal Decomposition (POD)

POD: find an ’optimal’ basis for a given data set (Markovinović 2009 [8],
Astrid 2011, [9])

Get the snapshots
X = [x1, x2, ..., xm].

Form R

R :=
1

m
XXT ≡ 1

m

m∑
i=1

xix
T
i .

Then
Φ = [φ1, φ2, ....φl ] ∈ Rn×l

are the l eigenvectors corresponding to the largest eigenvalues of R
satisfying: ∑l

j=1 λj∑m
j=1 λj

≤ α, 0 < α ≤ 1.
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Lemma 1

Let A ∈ Rn×n be a non-singular matrix, and x is a solution of:

Ax = b. (3)

Let xi ,bi ∈ Rn, i = 1, ...,m, be vectors linearly independent (l .i .) and

Axi = bi . (4)

The following equivalence holds

x =
m∑

i=1

cixi ⇔ b =
m∑

i=1

cibi . (5)
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Lemma 1 (proof)

Proof⇒ x =
m∑

i=1

cixi ⇒ b =
m∑

i=1

cibi . (6)

Substituting x from (6) into Ax = b and using the linearity of A we
obtain:

Ax =
m∑

i=1

ciAxi =
m∑

i=1

cibi = b. Similarly for⇐ �

Vuik, Diaz, Jansen (TU Delft) P-BPFS 17 / 31



Lemma 2

If the the deflation matrix Z is constructed with a set of m vectors

Z =
[
x1 ... ... xm

]
, (7)

such that x =
∑m

i=1 cixi , with xi l .i ., then the solution of system (3) is
obtained with one iteration of DCG.
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Lemma 2 (proof)

Proof.
The relation between x̂ and x is given by [3]:

x = Qb + PT x̂.

For the first term Qb, taking b =
∑m

i=1 cibi we have:

Qb = ZE−1ZT

(
m∑

i=1

cibi

)
= Z(ZTAZ)−1ZT

(
m∑

i=1

ciAxi

)
= Z(ZTAZ)−1ZT (Ax1c1 + ...+Axmcm) = Z(ZTAZ)−1(ZTAZ)c

= Zc = c1x1 + c2x2 + . . .+ cmxm =
m∑

i=1

cixi = x.
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Lemma 2 (proof)

Therefore,
x = Qb, (8)

is the solution to the original system.
For the second term of the equation, PT x̂, we compute the deflated
solution x̂.

PAx̂ = Pb
APT x̂ = (I − AQ)b using APT = PA [3] and definition of P,

APT x̂ = b−AQb
APT x̂ = b−Ax = 0 taking Qb = x from above,

PT x̂ = 0 as A is invertible.

Then we have obtained the solution

x = Qb + PT x̂ = Qb,
in one step of DCG.

�
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Numerical experiments

Heterogeneous permeability (Neumann and Dirichlet boundary conditions).
The experiments were performed for single-phase flow, with the following characteristics:

nx = ny = 64 grid cells.

5 linearly independent snapshots.

System configuration
Well pressures (bars) Boundary conditions (bars)

W 1 W 2 W 3 W 4 P(y = 0) P(y = Ly) ∂P(x=0)
∂n

∂P(x=Lx)
∂n

-5 -5 +5 +5 0 3 0 0
Snapshots

W 1 W 2 W 3 W 4 P(y = 0) P(y = Ly) ∂P(x=0)
∂n

∂P(x=Lx)
∂n

z1 -5 0 0 0 0 0 0 0
z2 0 -5 0 0 0 0 0 0
z3 0 0 -5 0 0 0 0 0
z4 0 0 0 -5 0 0 0 0
z5 0 0 0 0 0 3 0 0

Table : Table with the well configuration and boundary conditions of the system
and the snapshots used for the Case 1.
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Numerical experiments

Heterogeneous permeability (Neumann and Dirichlet boundary
conditions).

Figure : Heterogeneous permeability, 4
wells.

κ2 (mD) 10−1 10−2 10−3

ICCG 75 103 110
DICCG 1 1 1

Table : Number of iterations for different
contrasts between the permeability of the
layers for the ICCG and DICCG methods.
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Numerical experiments

Heterogeneous permeability (Neumann boundary conditions).
The experiments were performed for single-phase flow, with the following
characteristics:

nx = ny = 64 grid cells.

Neumann boundary conditions.

15 snapshots, 4 linearly independent.

W1 = W2 = W3 = W4 = -1 bars,
W5 = +4 bars.

Figure : Heterogeneous permeability layers.

Figure : Eigenvalues of the data snapshot
correlation matrix.

σ2 (mD) 10−1 10−2 10−3

ICCG 90 115 131

DICCG4 1 1 1

DICCG15 200* 200* 200*

DICCGPOD4 1 1 1

Table : Number of iterations.
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Numerical experiments

SPE 10 model
60x220x85 grid cells.
Neumann boundary conditions.
15 snapshots, 4 linearly independent.
W1 = W2 = W3 = W4 = -1 bars, W5 = +4 bars.

Figure : SPE 10 benchmark, permeability
field.

Method Iterations

ICCG 1011
DICCG15 2000*
DICCG4 2

DICCGPOD4 2

Table : Number of iterations for ICCG and
DICCG methods.
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Numerical experiments

Compressible heterogeneous layered problem
35x35 grid cells.
Neumann boundary conditions.
W1 = W2 = W3 = W4 = 100 bars, W5 = 600 bars.
Initial pressure 200 bars.
Contrast between permeability layers of 101, 102 and 103.

Figure : Solution, contrast between
permeability layers of 101.

Figure : Eigenvalues of the data
snapshot correlation matrix, contrast
between permeability layers of 101.
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Numerical experiments

1st NR Iteration
σ2
σ1

Total Method ICCG DICCG Total % of total

ICCG(only) Snapshots ICCG+DICCG ICCG(only)

101 780 DICCG10 140 42 182 23
780 DICCGPOD6 140 84 224 29

102 624 DICCG10 100 42 142 23
624 DICCGPOD7 100 42 142 23

103 364 DICCG10 20 42 62 17
364 DICCGPOD7 20 42 62 17

Table : Comparison between the ICCC and DICCG methods of the average number of linear
iterations for the first NR iteration for various contrast between permeability layers.

2nd NR Iteration
σ2
σ1

Total Method ICCG DICCG Total % of total

ICCG(only) Snapshots ICCG+DICCG ICCG(only)

101 988 DICCG10 180 78 258 26
988 DICCGPOD6 180 198 378 38

102 832 DICCG10 140 90 230 28
832 DICCGPOD7 140 154 294 33

103 884 DICCG10 110 90 200 23
884 DICCGPOD7 110 150 260 29

Table : Comparison between the ICCC and DICCG methods of the average number of linear
iterations for the second NR iteration for various contrast between permeability layers.
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Numerical experiments

Compressible SPE 10 problem
60x220x85 grid cells.
Neumann boundary conditions.
W1 = W2 = W3 = W4 = 100 bars, W5 = 600 bars.
Initial pressure 200 bars.
Contrast in permeability of 3x107.

Figure : Eigenvalues of the data snapshot correlation matrix.
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Numerical experiments

1st NR Iteration

Total Method ICCG DICCG Total % of total
ICCG(only) Snapshots ICCG+DICCG ICCG(only)

10173 DICCG10 1770 1134 2904 28
10173 DICCGPOD4 1770 1554 3324 32

Table : Total number of linear iterations for the first NR iteration, full SPE 10 benchmark.

2nd NR Iteration

Total Method ICCG DICCG Total % of total
ICCG(only) Snapshots ICCG+DICCG ICCG(only)

10231 DICCG10 1830 200 2030 20
10231 DICCGPOD4 1830 200 2030 20

Table : Total number of linear iterations for the second NR iteration, full SPE 10 benchmark.
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Conclusions

Solution is reached in few (1 or 2) iterations for the DICCG method
in the incompressible case.

A good choice of snapshots takes into account the boundary
conditions of the problem.

The number of iterations of the DICCG method does not depend on
the contrast between the coefficients (Heterogeneous permeability
example).

The number of iterations of the ICCG method is reduced up to 80%
with the DICCG method in the compressible case.

Only a limited number of POD basis vectors is necessary to obtain a
good speed-up. (for more info see [10, 11])
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