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SPE 10

Single-phase flow, grid size 60 x 220 x 85 grid cells.

Method | Number of iterations
ICCG 1011
DICCG 2

Table : Number of iterations for the SPE 10 benchmark (85 layers) for the ICCG
and DICCG methods, tolerance of 10~7.
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Problem Definition

Reservoir Simulation
Single-phase flow through a porous media [1]

Darcy's law + mass balance equation

- 0
-V %K(Vp —pgVd)| + apgbcta—'z —apq = 0.

= (a+c),

g gravity
« a geometric factor d depth

p fluid density ¢ rock porosity

w fluid viscosity q sources

p pressure ¢, rock compressibility

K rock permeability ¢/ liquid compressibility
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Problem Definition

Discretization

2D case, isotropic permeability, small rock and fluid compressibilities,
uniform reservoir thickness and no gravity forces.

h 0 ap h o ap h o op ap
1 Ox (kGX) Ay (kay) p 0z (ka ) *hoocge —ha=0

|V|5+Tp=q.|

sources or wells in the reservoir, Peaceman well model, Z,; is the well index

q:

= —Zuen(p — Pwen)

) i Transmissibility matrix
Accumulation matrix
Ay h
V = Vergol, Tt = Axns Mk;_-,J B
V = hAxAyAz. 2
kiij=—3 T
2 _|_ 4
ki1, kij1
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Problem Definition

Incompressible model

Tp

I
L

Compressible model

n+l _ n
Vn—i—l (p INT P ) + 7—n+1pn+1 _ qn—i-l.

F(p"p") =0. (1)
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Newton-Raphson

Using Newton-Raphson (NR) method, the system for the (k + 1)-th NR
iteration is:

J(PN)op = —F(pfip"), P =pk 4 opit,

where J(p¥) = %pk,fpn) is the Jacobian matrix, and Jp**? is the NR
update at iteration step k + 1.

J(p¥)sp* = b(p*). (2)
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Conjugate Gradient Method (CG)

Successive approximations to obtain a more accurate solution x [2]
Ax = b,

x°, initial guess rk = b — Axk"1

minx"EHk(A,r°)||x - xk”Aa ||X||A = VxT Ax.

Convergence

[Ix = x*[[.4 < 2[|x = x| |4 VA(A) ~ 1 '
- VE(A) +1

Preconditioning
Improve the spectrum of A.

M Ax = M b.
Convergence
k
/ “14) —
[Ix = x*[].4 < 2[|x — x°||.4 (%) ) K(MTTA) < K(A).
M-
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Deflated PCG

DPCG history
o 1987 Nicolaides and Dostal
First versions of DPCG
o 1999 Vuik, Meijerink, Segal
DPCG applied to reservoir simulations (Shell)
@ 2004 Nabben, Vuik
Theory and porous media flow

o 2008 Nabben, Tang, Vuik, ...
Theory comparison: DPCG, MG and Domain Decomposition, bubbly
flow
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DPCG

DPCG history

o 2008 Nabben Erlangga
Convection diffusion, Helmholtz, MLK method
o 2010 Jonsthovel, Vuik
Mechanical problems, parallel computing
o 2014 Nabben, Sheikh, Lahaye, Vuik, Garcia
MLK/ADEF method Helmholtz equation

o 2016 Diaz, Jansen, Vuik
Porous media flow, Model Order Reduction (MOR)
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DPCG

Deflation
P=I-AQ, PecR™"  QeR™"
Q=2ze1zT,  zeR™k £ eRKK
&= 2T AZ (Tang 2008, [3]).
Convergence

Deflated system

k
Ix = %L < 2l x||A(VHeﬁ(PA)+1

Deflated and preconditioned system

k
e -1 -

I — K4 < 2f}x — RO [ VFerMTEPA) = 1) -
\/Heff(M_lpA) +1

Fef(MTIPA) < kier(PA) < K(A).
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Deflation vectors

Recycling deflation (Clemens 2004, [4]).
Z = [xl,xz,xq_l],
x''s are solutions of the system.

Multigrid and multilevel (Tang 2009, [5]).
The matrices Z and Z7 are the restriction and prolongation matrices of
multigrid methods.

Subdomain deflation (Vuik 1999,[6]).
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Deflation Vectors

Model Order Reduction (MOR)
Many modern mathematical models of real-life processes pose challenges
when used in numerical simulations, due to complexity and large size.

Model order reduction aims to lower the computational complexity of such
problems by a reduction of the model's associated state space dimension
or degrees of freedom, an approximation to the original model is
computed. (Vuik 2005, [7])

o Proper Orthogonal Decomposition (POD)
o Reduced Basis Method (RBM)

o Principal Component Analysis (PCA)

o Singular Value Decomposition (SVD)
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Deflation vectors

Proposal

Use solution of the system with diverse well configurations
"snapshots’ as deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal
Decomposition (POD).
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Proper Orthogonal Decomposition (POD)

POD: find an 'optimal’ basis for a given data set (Markovinovi¢ 2009 [8],
Astrid 2011, [9])

o Get the snapshots
X = [X1,X2, .0, Xpm].

o Form R .
1 1
R = EXXT = E;X,‘X,'T.

o Then
& = [¢1, o, ....9] € R™!

are the [ eigenvectors corresponding to the largest eigenvalues of R
satisfying:

I
DY
ZJ_lj<oz O<a<l.

ij=1 >‘j -
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Let A € R™" be a non-singular matrix, and x is a solution of:

Ax = b. (3)
Let x;,b; € R", i =1,..., m, be vectors linearly independent (/.i.) and

Ax; = b;. (4)

The following equivalence holds

X = i CiX; <~ b= i C,'b,'. (5)
=1 =1
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Lemma 1 (proof)

m m
Proof = X = Z cixi = b= Z ¢ib;. (6)
i=1 i=1

Substituting x from (6) into Ax = b and using the linearity of A we
obtain:

m m
Ax =) cAx;j=» cbi=b.  Similarly for « X
i=1

i=1
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If the the deflation matrix Z is constructed with a set of m vectors

Z=[x1 . . Xm, (7)

such that x = >~ ¢ix;, with x; I.i., then the solution of system (3) is
obtained with one iteration of DCG.
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Lemma 2 (proof)

Proof.
The relation between X and x is given by [3]:

x=0b+ P’k
For the first term QOb, taking b =", cib; we have:
Ob=2z£127 (Z c,-b,-) = 2(2TAz)'z7 (Z c,-Ax,->
=1 =1
= Z(ZTAZ) 12T (Axicr + oo + Axmem) = 2(2TAZ2)"HZT AZ)c

m
=Zc=cX1+ X2+ ...+ CnXm = E CiXj = X.
i=1
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Lemma 2 (proof)

Therefore,
x = Qb, (8)
is the solution to the original system.

For the second term of the equation, PT&, we compute the deflated
solution X.

PA% = Pb
APTR = (T — AQ)b using APT = P A [3] and definition of P
APT& =b — AQb

APT& =b - Ax=0

taking Ob = x from above,
PTs=0

as A is invertible.
Then we have obtained the solution
x=0Qb+P'%=0b,
in one step of DCG.

X1
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Numerical experiments

Heterogeneous permeability (Neumann and Dirichlet boundary conditions).
The experiments were performed for single-phase flow, with the following characteristics:
nx = ny = 64 grid cells.

5 linearly independent snapshots.

System configuration

Well pressures (bars) Boundary conditions (bars)
Wi | w2 | w3| wa|Ply=0)| P(y=Ly) | 2Ee=0 | 2P6=L)
-5 -5 | +5 | +5 0 3 0 0
Snapshots
Wi w2 | w3| wa| P(y=0)| P(y=Ly) | 2P0 | 2P=E)
z; | -5 0 0 0 0 0 0 0
2z 0 -5 0 0 0 0 0 0
z3 0 0 -5 0 0 0 0 0
zz| O 0 0 -5 0 0 0 0
z5 0 0 0 0 0 3 0 0

Table © Table with the well configuration and boundary conditions of the system
and the snapshots used for the Case 1.
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Numerical experiments

Heterogeneous permeability (Neumann and Dirichlet boundary
conditions).

k2 (mD) | 1071 [ 1072 | 1073
ICCG 75 | 103 | 110
DICCG 1 1 1

Table © Number of iterations for different
R contrasts between the permeability of the
layers for the ICCG and DICCG methods.

Figure - Heterogeneous permeability, 4
wells.
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Numerical experiments

Heterogeneous permeability (Neumann boundary conditions).
The experiments were performed for single-phase flow, with the following
characteristics:

nx = ny = 64 grid cells.

Neumann boundary conditions.

15 snapshots, 4 linearly independent.
W1 = W2 = W3 = W4 = -1 bars,

W5 = +4 bars. o memew
B Figure © Heterogeneous permeability layers.
- o2 (mD) | 10* [ 1072 [ 1073
g ICCG 9 | 115 | 131
I T DICCG, | 1 | 1 | 1
T DICCGys | 200* | 200* | 200*
B e TR DICCGpop, | 1 1 1
Figure : Eigenvaluéseg?htj;e data snapshot Table - Number of iterations.

correlation matrix.
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Numerical experiments

SPE 10 model
60x220x85 grid cells.
Neumann boundary conditions.
15 snapshots, 4 linearly independent.
W1 = W2 = W3 = W4 = -1 bars, W5 = +4 bars.

Method Iterations
ICCG 1011
DICCGy5 2000*
DICCG, 2
DICCGpop, 2

Table - Number of iterations for ICCG and
DICCG methods.

Figure - SPE 10 benchmark, permeability
field.
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Numerical experiments

Compressible heterogeneous layered problem
35x35 grid cells.

Neumann boundary conditions.

W1 = W2 = W3 = W4 = 100 bars, W5 = 600 bars.
Initial pressure 200 bars.

Contrast between permeability layers of 101[ 102 and 103.

0

re [bar] Pressure diagonal [bar]

log(Value)

o

o

12 o

g
3

Rate [meter?/day]
g

° Time (days] h T Egenvaiue T
Figure : Eigenvalues of the data
Figure = Solution, contrast between snapshot correlation matrix, contrast
permeability layers of 10. between permeability layers of 101.
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Numerical experiments

15t NR Iteration
2 Total Method ICCG DICCG Total % of total
ICCG(only) Snapshots ICCG+DICCG | ICCG(only)
10! 780 DICCGyo 140 42 182 23
780 DICCGpop, 140 84 224 29
10? 624 DICCGso 100 42 142 23
624 DICCGpop, 100 42 142 23
103 364 DICCG;o 20 42 62 17
364 DICCGpop, 20 42 62 17

Table - Comparison between the ICCC and DICCG methods of the average number of linear
iterations for the first NR iteration for various contrast between permeability layers.

279 NR Iteration
2 Total Method ICCG DICCG Total % of total
ICCG(only) Snapshots ICCG+DICCG | ICCG(only)
10! 988 DICCGso 180 78 258 26
988 DICCGpop, 180 198 378 38
102 832 DICCGyo 140 90 230 28
832 DICCGpop, 140 154 294 33
103 884 DICCG;o 110 90 200 23
884 DICCGpop, 110 150 260 29

Table - Comparison between the ICCC and DICCG methods of the average number of linear
iterations for the second NR iteration for various contrast between permeability layers.
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Numerical experiments

Compressible SPE 10 problem
60x220x85 grid cells.

Neumann boundary conditions.

W1 = W2 = W3 = W4 = 100 bars, W5 = 600 bars.
Initial pressure 200 bars.

Contrast in permeability of 3x107.
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2 3 a4 5 6 & 8 9 10
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Figure : Eigenvalues of the data snapshot correlation matrix.
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15t NR lteration
Total Method ICCG DICCG Total % of total
ICCG(only) Snapshots ICCG+DICCG | ICCG(only)
10173 DICCGqg 1770 1134 2904 28
10173 DICCGpop, 1770 1554 3324 32

Total number of linear iterations for the first NR iteration, full SPE 10 benchmark.

2" NR lteration
Total Method ICCG DICCG Total % of total
ICCG(only) Snapshots ICCG+DICCG | ICCG(only)
10231 DICCGyg 1830 200 2030 20
10231 DICCGpop, 1830 200 2030 20

Total number of linear iterations for the second NR iteration, full SPE 10 benchmark.
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©

Solution is reached in few (1 or 2) iterations for the DICCG method
in the incompressible case.

o A good choice of snapshots takes into account the boundary
conditions of the problem.

o The number of iterations of the DICCG method does not depend on
the contrast between the coefficients (Heterogeneous permeability
example).

o The number of iterations of the ICCG method is reduced up to 80%
with the DICCG method in the compressible case.

o Only a limited number of POD basis vectors is necessary to obtain a
good speed-up. (for more info see [10, 11])
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